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0Deutsche Zusammenfassung

Eine planare topologische

Zeichnung von K
4

und

eine geometrische Zeich-

nung mit einer Kreuzung.

Diese Dissertation befasst sich mit theoretischen und

praktischen Aspekten des Zeichnens von Graphen. Ein

einfacher Graph G = (V ,E) kann auf vielfältige Arten

dargestellt werden, abstrakt als Adjazenzmatrix oder an-

schaulicher als Zeichnung in der Ebene. Dabei werden die

Knoten V als Punkte und die Kanten E als o�ene Kurven

zwischen ihren Endpunkten repräsentiert. Verbietet man

sich selbst schneidende Kurven, dann spricht man von

einer topologischen Zeichnung von G. Beschränkt man die

Darstellung der Kanten auf gerade Strecken, dann spricht

man von einer geometrischen oder geradlinigen Zeichnung vonG . Um die Qualität einer

Zeichnung Γ zu bewerten, können verschiedene Qualitätsmerkmale verwendet werden,

zum Beispiel die Zeichen�äche oder das Verhältnis der kürzesten zur längsten Kante.

Eine besonders grundlegende Zielfunktion ist die Anzahl der Kantenkreuzungen in Γ.

Imrich Vrt’o listet in seiner Online-Bibliographie [Vrt14] zu dem Thema über 700

Publikationen im Zeitraum 1954 bis 2014. Das entsprechende Optimierungsproblem

ist im topologischen Fall NP-vollständig [GJ79] und im geometrischen Fall sogar ∃R-

vollständig und somitNP-schwer [Bie91]. Es ist bemerkenswert, dass dieses Problem,

ungeachtet seiner praktischen Relevanz, ausschließlich theoretisch betrachtet wurde.

Uns sind keine Implementierungen von Verfahren bekannt, die in der Lage sind für

einen beliebigen Graphen eine geometrische Zeichnung mit einer kleinen Anzahl an

Kreuzungen zu berechnen. Allerdings wird sogenannten kräftebasierten Verfahren

die Eigenschaft zugeschrieben, für planare Graphen geometrische Zeichnungen mit

einer geringen Anzahl an Kreuzungen zu berechnen [Kob13]. Ein Nachweis dieser

Aussage existiert allerdings nicht.

Ein wesentlicher Teil der Arbeit beschäftigt sich daher mit dem Entwurf von Ver-

fahren zur Kreuzungsminimierung in geometrischen Zeichnungen. In einer aus-

führlichen experimentellen Evaluationen wird gezeigt, dass die Verfahren die Anzahl

an Kreuzungen, im Vergleich zu bekannten (kräftebasierten) Algorithmen um über die

Hälfte reduzieren. Da die Verfahren auf zeitaufwendigen geometrischen Operationen

aufbauen, zeigen wir auf wie das Verfahren um einen Faktor 20 beschleunigt werden

kann. Die entwickelten Techniken sind dabei nicht auf unsere Verfahren beschränkt,

sondern in einer breiten Klasse von geometrischen Berechnungen anwendbar.
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Optimierung der Geradlinigkeit bei Vorgabe der

Kreuzungszahl.

Da die minimale Anzahl an

Kreuzungen in topologischen

und geometrischen Zeichnungen

nicht notwendigerweise überein-

stimmen, kann eine zweite Per-

spektive auf das Problem ein-

genommen werden. Bei dieser

wird nicht explizit die Anzahl der Kreuzungen minimiert, sondern eine topologis-

che Zeichnung mit einer kleinen Anzahl an Kreuzungen ist vorgegeben und das

Optimierungskriterium ist die Geradlinigkeit der Kanten. Die Arbeit beschreibt für

dieses Problem ein kräftebasiertes Verfahren und ein Verfahren auf Grundlage von

geometrischen Operationen. Die hypothesen-getriebene Evaluation zeigt, dass das

zweite Verfahren signi�kant bessere Zeichnungen berechnet. Die Auswertung zeigt zu-

dem, dass die Heuristik unter bestimmten Voraussetzungen in der Lage ist geradlinige

Zeichnungen zu berechnen.

Maximierung des kleinsten Kreuzungswinkel.

In einer verwandten Problem-

stellung ist nicht die Anzahl der

Kreuzungen relevant, sondern

der kleinste Winkel zwischen

zwei sich kreuzenden Kanten in

einer geometrischen Zeichnung.

Gesucht ist eine Zeichnung, bei der dieser Winkel maximiert wird. Die Auswertung

zeigt, dass ein randomisierter Ansatz, im Vergleich zu bekannten Verfahren, Zeichnun-

gen mit deutlichen größeren Winkeln berechnet. In einem internationalen Wettbewerb

hat diese Heuristik Zeichnungen berechnet, deren Kreuzungswinkel mindestens einen

Faktor zwei größer ist als der Winkel der Kontrahenten [Dev+18].

Der zweite Teil der Arbeit beschäftigt sich mit theoretischen Aspekten von ge-

ometrischen Zeichnungen planarer Graphen, also Graphen mit einer kreuzungsfreien

Zeichnung. Planare Graphen haben die Eigenschaft, dass zu jeder planaren topologis-

chen Zeichnung eine geometrische Zeichnung Γ mit den gleichen kombinatorischen

Eigenschaften existiert [Fár48, Tut63]. Ein Teil der geometrischen Graphentheorie

beschäftigt sich mit der Frage, ob es auch dann noch eine geometrische Zeichnung Γ
vonG gibt, wenn Γ zusätzliche Anforderungen erfüllen muss. Eine Modellierung einer

Anforderung ist für eine Teilmenge S der Knoten die Positionen P vorzuschreiben.

Entspricht die Teilmenge S der äußeren Facette eines eingebetteten planaren Graphen

G und ist P in konvexer Lage, dann existiert immer eine geometrische Zeichnung

von G bei der S auf P liegt [Tut63]. Für innere Facetten gilt diese Aussage nur noch

unter bestimmten Voraussetzungen [MNR16]. In dieser Arbeit betrachten wir die

folgende drei Anforderungen: (i) das Einbetten einer einzelnen zusätzlichen Kante mit

der minimalen Anzahl an Kreuzungen, (ii) die Restriktion der Knotenpositionen auf
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vorgegebenen Kreisscheiben, und (iii) geometrische Zeichnungen auf Arrangements

von Geraden.

s

v t

Die topologische Einbettung (rot)

der Kante st kommt mit zwei

Kreuzungen aus. Jede geometrische

Einbettung (blau) hat mindestens

drei Kreuzungen.

Motiviert durch die Heuristiken zur Kreuzungs-

minimierung untersuchen wir geometrische Ze-

ichnungen, in denen nur eine Kante für die

Kreuzungen verantwortlich ist. Formal ist eine

kreuzungsfreie geometrische Zeichnung Γ von

einem planaren Graphen gesucht, so dass eine

gegebene neue Kante e in Γ mit der minimalen An-

zahl an Kreuzungen eingefügt werden kann. Für

Teilmengen der planaren Graphen wird gezeigt,

dass die Zeichnung Γ e�zient berechnet werden

kann. Im Allgemeinen zeigen wir, dass zu dem

Problem approximierende und parametrisierte Al-

gorithmen existieren.

Bei den folgenden beiden Fragestellungen sind die Anforderungen durch eine inter-

aktive Anwendung motiviert. In einem der beiden Probleme wird untersucht, ob eine

geometrische Zeichnung eines planaren Graphen e�zient berechnet werden kann, bei

der die Positionen der Knoten auf vorgegebene Kreisscheiben eingeschränkt sind. Wir

werden sehen, dass dies nur für bestimmte Mengen von Kreisscheiben der Fall und im

allgemeinen NP-schwer ist.

Je nach Anwendung werden Knoten zusätzliche Eigenschaften zugeordnet. In

einem einfachen (binären) Szenario kann dies durch eine Bipartition der Knotenmenge

V = A∪B, mitA∩B = ∅, formalisiert werden. In der Darstellung ist es wünschenswert,

dass die Knotenmenge A und B räumlich voneinander getrennt sind. Allgemeiner wird

nach einer geometrischen Zeichnung zu einem topologisch gezeichneten GraphenG =
(A∪B ∪S,E) gefragt, so dass jeder Knoten in der Knotenmenge S auf einer gegebenen

Geraden L platziert ist undA und B links beziehungsweise recht von L positioniert sind.

Nach einer bekannten Charakterisierung existiert eine solche geometrische Zeichnung

genau dann, wenn eine topologische Kurve L in der topologischen Zeichnung von G
existiert, die die gleichen kombinatorischen Eigenschaften wie L hat [Da +18]. Wir

Die topologische Zeichnung gemeinsam mit der Kurve L (links) existiert genau dann, wenn

eine entsprechende geometrische Zeichnung mit der Geraden L (mitte) existiert. Die Menge S
ist in orange gekennzeichnet. Rechts ein Beispiel für eine geometrische Zeichnung mit einem

Arrangement von Geraden.
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zeigen, dass es NP-vollständig ist zu entscheiden, ob eine solche topologische Kurve

L existiert. Allerdings ist das Problem Fest-Parameter berechenbar in |S |. In einer

Verallgemeinerung des Problems werden Mengen von Geraden anstelle einer einzelnen

Gerade betrachtet. Wir zeigen, dass nicht zu jedem Paar von Graph und Menge

von Geraden eine geometrische Zeichnung existiert. Schränkt man die Anzahl der

Schnittpunkte jeder Kante mit den Geraden ein, dann folgt aus der Charakterisierung,

dass jede Instanz eine geometrische Realisierung hat.
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1 Introduction

Graph drawing is concerned with the automatic visualization of networks, for example,

the visualization of social networks. Such a network is often modelled as a graph

G = (V ,E) where a person corresponds to a vertex v ∈ V and a friendship is an edge

uv ∈ E between two vertices u andv . One aim of graph drawing is to provide methods

that layout the graph in the plane, for example, in order to help to understand and

analyze the structure of the graph. There are many layout styles from which one can

choose. In the most basic form, each vertex corresponds to a point in the plane and

the edges that connect two vertices are represented by arbitrary curves between their

endpoints; see Figure 1.1a. If the curves are non-self intersecting and have pairwise

at most a single intersection point in their interior, then we refer to the drawing as a

topological drawing. There is a lot of freedom to route edges in topological drawings,

which makes it possible to represented edges by long and complicated curves. Thus, it

can be di�cult to track a curve from one endpoint of an edge to the other. Hence, it

feels natural to restrict the complexity of a drawing by limiting the number of turns for

each edge. In case that the edges of a drawing do not have turns, the drawing is entirely

determined by the position of the vertices, i.e., edges are straight-line segments. These

drawings are called geometric drawings; see Figure 1.1b.

This thesis studies geometric drawings from a practical and a theoretical point of

view. The practical part is concerned with problems related to crossings in geometric

drawings, i.e., an interior intersection point of edges. In the theoretical part, we study

(a) (b) (c)

Figure 1.1: (a) A topological and (b) a geometric drawing of the same graph. The geometric

drawing has the same combinatorial properties as the topological drawing in (a). Since the red

edge in (c) intersects a di�erent set of edges than the red edge in (b), (b) and (c) do not have

the same combinatorial properties.
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Chapter 1 Introduction

whether crossing-free drawings of planar graphs, i.e., graphs that have a crossing-

free drawing, can be stretched to geometric drawings while satisfying prescribed

constraints.

The studies of Purchase et al. [PCJ96, Pur97] indicate that the number of crossings

correlates with the readability of a drawing. Thus, a fundamental quality measure

of a graph drawing is the number of edge crossings, i.e., the number of edge-pairs

that have an interior intersection point. Besides this practical implication of small

number of crossings, the question "What is the minimum number of crossings of the

complete graph Kn?" triggered the interest of many theoreticians for decades. The

online-bibliography of Imrich Vrt’o [Vrt14] refers to over 700 papers on crossings in

graph drawings in the time period from 1954 to 2014. The decision question whether

a graph has a topological drawing with at most k ∈ N crossings, is an NP-complete

problem. If we ask for a geometric drawing, it is not known whether the problem

is in NP. Bienstock [Bie91] proved that geometric crossing minimization is ∃R-

complete, where ∃R is a complexity class that contains many geometric problems and

for which it is unknown whether ∃R = NP. In contrast to topological drawings, there

are almost no practical solution that computes geometric drawings with a minimum

or at least a small number of crossings. It is claimed that so-called force-directed

algorithms tend to create crossing-free drawings for planar graphs [Kob13]. Moreover,

there are only few theoretical results that investigate the number of crossings in such

drawings [CDR18]. In Part I, we will show that it is possible to compute drawings that

have signi�cantly less crossings than drawings of force-directed approaches.

The few restrictions for topological drawings make it easier, for example for a user,

to construct a topological drawing of a graph. Moreover, for certain problems there

already exist algorithms that compute topological drawings with high quality, for

example, in case of minimizing the number of crossings. But as already observed,

topological drawings can be di�cult to comprehend. Thus, we can ask whether a

topological drawing can be stretched to a geometric drawing while preserving the

combinatorial properties of the drawing. Two essential combinatorial properties of a

drawing are the order of the edges around a vertex and the order in which the edges

cross; compare Figure 1.1b and Figure 1.1c. Unfortunately, the question whether there

is a geometric drawing with the same combinatorial properties as a given topological

drawing is again an ∃R-complete problem [Mnë88, Sho91]. Thus, in general it seems to

be a di�cult task to �nd geometric drawings that preserve these properties. Fortunately,

Wagner [Wag36], Fáry [Fár48], and Stein [Ste51], independently proved the following

stretchability result for planar graphs.

Theorem 1.1 ([Fár48, Ste51, Wag36]). For every planar topological drawing E of a

graph G there is a planar geometric drawing of G that has the same set of edges on its

boundary (outer face) as E and the clockwise-order of edges around each vertex in both

drawings is the same.
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Thus, for every planar topological drawing there is a planar geometric drawing

with the same combinatorial properties, often referred to as a combinatorial embedding

of a planar graph. From thereon, many results on planar geometric drawings that

satisfy an additional set of constraints followed. One possible constraint is to �x the

positions of a subset of the vertices. More formally, let S ⊆ V be a subset of the

vertex set V of a planar graph G = (V ,E) and let P be a set of |S | points in R2
and

let γ : S → P be a bijective map. For a given topological drawing E of a planar

graph G, we ask whether there is a planar geometric drawing Γ of G with the same

combinatorial embedding and outer face as E that extends γ , i.e., such that for each

vertex v ∈ S , v has in Γ the position γ (v). In case that S is the set of all outer vertices

and γ induces a convex drawing of the outer face of G, then there exists a geometric

drawing of G that extends γ [Tut63]. If S corresponds to an inner face this is not

always possible [MNR16]. Another constraint restricts the positions of the vertices

in S to a straight line. Formally, we ask for straight line L and a geometric drawing Γ
where all vertices in S are on L. For each planar graph G with a topological drawing E

and a set S , there is such a drawing if and only if there is an open curve L that starts

and ends in the outer face of E, contains exactly the vertices in S and for each edge e
of G , L either entirely contains e or intersects e at most once [Da +18]. Note that this

curve has essentially the same properties as a line L in Γ, except that it is not straight.

Thus, we refer to such a curve as a pseudoline with respect to the embedded graphG. A

surprising recent result is that given a subset S of the vertices and a point set P of size

|S |, there is a map γ : S → P and a geometric drawing Γ of G that extends γ if there

exists a pseudoline L with respect to G that collects the vertices in S [Duj+19].

In the theoretical part of this thesis, we extend this line of research. For example

we prove that given a set of vertices S , it is NP-complete to decide whether there is a

pseudoline that collects exactly the vertices in S . On the positive side, we show that

under certain conditions the stretchability of an embedded graph and a pseudoline

can be generalized to an arrangement of pseudolines.

1.1 Outline and Contribution

This thesis is divided into a practical and a theoretical part. The practical part, Part I,

introduces and evaluates algorithms for geometric drawings with a small number of

crossings and algorithms that are related to this problem. Part II is concerned with

theoretical aspects of planar geometric drawings. In particular, we study whether a

topologically embedded planar graph can be stretched to a planar geometric drawing

while satisfying speci�c constraints.

3



Chapter 1 Introduction

Part I – Crossings in Geometric Drawings

Given a graph G = (V ,E) and number k ∈ N, it is NP-complete to decide whether

there is a topological drawing of G that hast at most k crossings [GJ83]. If we require

the drawing to be geometric, the problem is ∃R-complete [Bie91]. Thus, in practice

it is unlikely that there is an e�cient algorithm that computes a geometric drawing

with a minimal number of crossings. Chapter 4 and Chapter 5 are concerned with

the design and the evaluation of e�cient heuristics for this task. In contrast to the

geometric setting, there are e�ective heuristics that minimize the number of crossings

in topological drawings [Buc+13]. To pro�t from these techniques for the geometric

setting, we introduce in Chapter 6 techniques to stretch these topological drawings to

drawings where the edges are as straight as possible. Chapter 7 studies not the number

of crossings, but the crossing angles in geometric drawings, i.e., the smallest angle

incident to a crossing of two edges.

We use descriptive and inferential statistics to evaluate the performance of the

implementations. In Chapter 3, we describe the concepts that we use to evaluate the

algorithms. As part of this chapter, we introduce the concept of advantages which is

the base for the inferential statistical test that we use.

Geometric Crossing Minimization

v

v

Figure 1.2: Moving the vertex v
into the green regions reduces the

number of crossings.

Force-directed algorithms are attributed the prop-

erty that they tend to produce crossing-free ge-

ometric drawings of planar graphs [Kob13]. In

Chapter 4, we introduce three heuristics to mini-

mize the number of crossings in geometric draw-

ings. A crucial part is, for a �xed vertex v , to

characterize the set P of points p that induces

the minimal number of crossings for the edges

incident to v when v is moved to p. We show

that there is an O((kn + m)2 log(kn + m))-time

algorithm that computes P , where n and m are the number of vertices and edges of G,

respectively, and k is the degree of v ; see Figure 1.2. In an extensive experimental eval-

uation we show that for a broad variety of instances the heuristics are able to compute

geometric drawings that have about 50% fewer crossings compared to force-directed

methods that are implemented in the Open Graph Drawing Framework [Chi+13].

A drawback of this approach is that it extensively uses geometric operations that

require arbitrarily precise �oating point operations. In Chapter 5, we show how a

combinatorial tool to compute the dual of a line arrangement allows us to considerably

reduce the use of precise �oating point operations. On average this yields a speed-up

of the computations by a factor of 20. The technique is not restricted to this setting
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Outline and Contribution Section 1.1

and can be applied to a broad set of geometric operations. Further, we introduce

and evaluate a randomized approach to compute a position for a vertex with a small

number of crossings. The combination of both techniques allows the computation

of geometric drawings with a small number of crossings of graphs with up to 12 000

edges. Note that, in comparison to the evaluated instances in Chapter 4, this increases

the number of edges by a factor of 60. The experimental results are complemented by

an approximation algorithm with a provable performance guarantee.

Stretching Topological Drawings

Figure 1.3: The left topological drawing can be

stretched to the right geometric drawing.

For topological drawings there

are heuristics that successfully

minimize the number of cross-

ings in practice [Buc+13]. Unfor-

tunately, it is ∃R-complete to de-

cide whether the drawing can be

stretched to a geometric draw-

ing with same number of cross-

ings [BD93]. In Chapter 6, we assume that we are already given a topological drawing

with a small number of crossings. The goal is to �nd a drawing with the same combina-

torial properties, i.e., in particular the same number of crossings, and where the edges

are as straight as possible; see Figure 1.3. We introduce two heuristics for this problem.

One heuristic extends a known force-directed method and the other is a geometric

approach to this problem. The hypothesis-driven evaluation shows that the geometric

approach computes almost-optimal solutions for instances with few crossings per

edge. On instances with many crossings per edge the geometric approach computes

signi�cantly better results than the force-directed approach.

Crossing-Angle Maximization

Figure 1.4: The left drawing has a small crossing angle.

Ideally, the drawing has a crossing angle of 90
◦
.

In Chapter 7, we study the prob-

lem of computing a geometric

drawing of a graph that has

a large crossing angle, i.e., the

smallest angle incident to an

intersection point of any two

crossings edges; compare Fig-

ure 1.4. Deciding whether a

graph has a geometric drawing with a crossing angle of 90
◦

is an NP-hard prob-

lem [ABS12]. In Chapter 7, we introduce a randomized approach that computes

geometric drawings with a large crossing-angle. The evaluation shows that the choice

5



Chapter 1 Introduction

of the initial drawing a�ects the quality of the �nal drawing. Moreover, we show

that the crossing angles of the initial drawings are considerably increased. In partic-

ular, this implies that our approach computes drawings with a considerably larger

crossing angle than our implementation of known force-directed approaches. The

Graph Drawing Contest held during the annual International Graph Drawing and

Network Visualization Symposium posed the maximization of the crossing angle as

an algorithmic challenge. Our approach is the winning algorithm of the 2017 edition

of the graph drawing contest [Dev+18]. The crossing angle in drawings obtained

by our approach are larger by a factor of 2 compared to drawings of the competing

algorithms.

Part II – Stretching Topological Embeddings with Constraints

In this part, we study geometric drawings of planar graphs. In particular, we investigate

whether a topologically embedded planar graph can be stretched to a planar geometric

drawing while satisfying given constraints. The problem studied in Chapter 8 is

motivated by the crossing-minimization heuristics in Chapter 4. The question is, given

a number K ∈ N, a planar graph G and two vertices s and t , is there a geometric

drawing of G such that the edge st can be inserted as straight-line segment with at

most K crossings. In Chapter 9 and Chapter 10, we study constraints that restrict the

position of the vertices to a set of geometric entities, i.e., a set of disks or lines.

Inserting an Edge into a Geometric Embedding

s

v t

Figure 1.5: The topologically em-

bedded edge st has only two cross-

ings. Every geometric embedding

requires at least three crossings.

The problem in Chapter 8 is, given a numberK ∈ N,

a planar embedded graph G = (V ,E) and a pair

s, t ∈ V , is there a planar geometric drawing Γ of

G , with the same combinatorial embedding, where

the edge st can be inserted as straight-line segment

with at most K crossings; see Figure 1.5. If K is

the minimum number of crossings on st , where

st is an arbitrary curve, then we prove that the

problem equivalent to the existence of two speci�c

edge-disjoint paths in a planar graph. This new

characterization answers an open question of Eades et al. [Ead+15]. They were only

able to prescribe the combinatorial embedding of G but not the choice of the outer

face. In contrast to this characterization, our characterization gives conditions for

an arbitrary choice of the outer face. Moreover, we show that the problem is �xed-

parameter tractable in the number of crossings. In the following, let E + st be a

topological drawing of G such that E is a planar drawing of G and st has a minimum

number of crossings. For a speci�c graph class, we provide a polynomial-time algorithm

6



Outline and Contribution Section 1.1

that decides whether there is a geometric drawing Γ ofG with the same outer face and

combinatorial embedding as E such that Γ + st has the same number of crossings as

E + st . In case that the choice of the outer face is free and the maximum vertex-degree

of G is at most 5, we show that there always exists such a drawing Γ + st . For graphs

with a vertex of degree 6, this is not necessarily true. For graphs of maximum degree ∆,

we show how to construct a planar geometric drawing Γ ofG , such that the number of

crossings in Γ + st is bounded above by (∆ − 2)K , where K is the number of crossings

in E + st .

Planar Graphs on Disks

pipe

Figure 1.6: A topologically and the corresponding

geometrically embedded clustered graphs. The

orange region is a pipe.

In Chapter 9, we consider clustered

planar graphs, i.e., planar embedded

graphs G = (V ,E) with a partition

V = {V
1
,V

2
, . . . ,Vk } of the vertex

set. Moreover, we are given a set of

disjoint disks {D
1
,D

2
, . . . ,Dk }. Let

uv be an edge of G such that u ∈ Vi
and v ∈ Vj with i , j. We refer

to the convex hull of the disks Di
and D j as a pipe; see Figure 1.6. The

studied problem asks for a straight-

line drawing of G with the same combinatorial embedding and outer face as G , where

each vertex in the set Vi lies in the interior of the disk Di , and each edge lies in the

pipe of its corresponding disks and intersects the boundary of each disk at most once.

By showing that this problem is NP-hard for unit-sized disks, we answer an open

question of Angelini et al. [Ang+14]. In a restricted setting, in which some pipes and

disks are not allowed to intersect, we show that each instance admits a geometric

drawing where the position of the vertices lie in the interior of the prescribed disks.

Aligned Drawings

Let S be a subset of the vertices V of a planar embedded graph G. As stated in the

introduction, the graphG has a geometric drawing where the vertices S are positioned

on a common line if and only if there is a pseudoline with respect to G that collects all

vertices in S [Da +18]; see Figure 1.7. In Chapter 10, we prove that it isNP-complete to

decide whether such a pseudoline exists. Fortunately, the problem is �xed-parameter

tractable in the number of vertices in S .

In a generalization of the problem we consider, instead of a single pseudoline, a set

of pseudolines A = {L
1
,L

2
, . . . ,Lk } that is homeomorphic to a line arrangement

A = {L
1
,L

2
, . . . ,Lk }, where Li corresponds to Li , for i = 1, 2, . . . ,k . The problem

7



Chapter 1 Introduction

(a) (b) (c)

Figure 1.7: (a) A pseudoline that passes through a set S (orange vertices) and (b) a geometric

drawing where the vertices lie on a common line. (c) A graph aligned on a line arrangement.

asks for a geometric drawing Γ of G that essentially satis�es that each pseudoline Li
intersects in the embedding ofG the same set of edges as the line Li in Γ. We show that

there are instances that do not have a geometric drawing that satis�es this constraint.

Moreover, we prove that if some edge-pseudoline intersection-patterns are forbidden,

then every instance has a geometric realization.
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2 Terminology

In this section, we introduce terminology and notations that reoccur at several places

in this thesis. In particular, we de�ne basic geometric and graph-theoretic concepts,

and notions used in the area of graph drawing. We assume familiarity with the

computational complexity of decision problems and omit an explanation of the com-

plexity classes P,NP and related concept as, for example, �xed-parameter tractability.

Many geometric problems are only known to be NP-hard, i.e., it is unclear whether

the problems are in NP. Indeed, these problems are often ∃R-complete. The ex-

istential theory of the reals (∃R) is de�ned as the set of true sentences of the form

∃x
1
,x

2
, . . . ,xn ∈ Rf (x

1
,x

2
, . . . ,xn), where f is a quanti�er-free boolean formula over

the signature (0, 1,+, ∗, <) [Sch10]. It is not known whetherNP and ∃R coincide. For

a further overview over the existential theory of the reals we refer to [Sch10].

Graph theoretical notions

An undirected graph is a tuple G = (V ,E) where E ⊆ {{u,v} | u,v ∈ V }. An element

v ∈ V is a vertex and an element e ∈ E is an edge. Formally, an edge is a set {u,v} of

two vertices u,v . For convenience, we abbreviate {u,v} with uv , i.e., uv = vu. In a

directed graph the edge set E is a subset of V ×V , i.e., edges are ordered tuples in the

form (u,v) with u,v ∈ V . Note that in this case (u,v) , (v,u). If the set E is a multiset,

then we refer to G as a multigraph. An edge vv is a loop. A graph without loops is

simple. If not otherwise stated we assume that a graph is a simple graph.

We denote the number of vertices of G by n := |V | and the number of edges by

m := |E |. Two vertices u and v are adjacent if uv is an edge of G. An edge uv connects

the two vertices u andv and uv is incident to u andv . For a directed graph and a vertex

v an edge uv is incoming for v and an edge vu is outgoing for v . The set of vertices

adjacent to a vertex ofv is the (open) neighborhood N (v) ofv , i.e., N (v) := {u | uv ∈ E}.
We denote the set of edges incident tov by E(v). The degree of a vertexv is the number

of edges incident to v , i.e., |E(v)|. For directed graphs, the in-degree of v is the number

of incoming edges of v and the out-degree is the number of outgoing edges of v .

For a (directed) graph G = (V ,E), a sequence p = 〈v
0
,v

1
, . . . ,vk 〉, for k ∈ N, of

vertices vi ∈ V is a walk, if vi−1
vi is an edge of G, for i = 1, . . . ,k . For a directed

graph, p is an undirected walk, if vi−1
vi or vivi−1

is an edge of G. We say that a walk

traverses an edge vi−1
vi , for i = 1, . . . ,k , and contains the vertex vj , for j = 0, 1, . . . ,k .

The vertices v
0

and vk are the endpoints of p and for k > 1 and i = 1, 2, . . . ,k − 1 the

vertex vi is an interior vertex of p.

9
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p1 p2

p3

p4

(a)

p1 p2

p3

p4

(b)

p1

p2 = p5

p4

p6

p′5
p3

(c)

p1 p3

p4

p6

p′2

p2 = p5

(d)

Figure 2.1: The polygonal chain in (a) has an interior intersection and is therefore in contrast

to (b) not simple. There is no perturbation of the points of (c) that transforms the polygonal

chain to a simple polygonal chain. The polygonal chain in (d) is weakly simple, since there is

such a relocation of the points.

A walk that traverses no edge twice is a path. A path that contains not vertex twice

is a simple path. A walk with v
0
= vk that does not traverse an edge twice is a cycle.

A cycle is simple if the subpath 〈v
0
,v

1
, . . . ,vk−1

〉 is simple. A simple cycle on three

distinct vertices is a triangle. A graph is connected if for any two vertices u,v there is a

path p that has u and v as its endpoints. A graph is biconnected if the graphs remains

connected after the removal of any vertex.

Geometry

We refer to a tuple p = (xp ,yp ) ∈ R
2

in the Euclidean plane R2
as a point where xp and

yp are the x- and y-coordinates of p, respectively. We denote the Euclidean distance of

two points p and q by d(p,q) or | |p −q | |. The line that contains two given points p and

q is de�ned as the set {p + r (q−p) | r ∈ R}. The line segment s from p to q is the subset

of a line that contains all points in between p and q, i.e., s = {p + r (q − p) | r ∈ [0, 1]}.
We will often denote the line segment from p to q as pq. The points p and q are the

endpoints of the line segment pq. A point u of pq is an interior point of pq if it is not an

endpoint of pq. The ray from p to q is the set {p + r (q −p) | r ∈ R, r ≥ 0}. The circle of

radius r ∈ R with center c ∈ R2
is the set {p | | |c −p | | = r }, for r > 0. Correspondingly,

a disk of radius r and center c is the set of points with distance at most r from c , i.e.

{p | | |c − p | | ≤ r }. A unit circle (disk) has radius 1. A line that contains a segment (ray)

is the supporting line of the segment (ray). The cross product of two points p and q is

p × q = xpyq − ypxq . For a line l directed from p to q, we say a point u is left of l , if

(q − p) × (u − p) < 0. The point u is right of l if (q − p) × (u − p) > 0. Three points p,q
and u are collinear if there is a line that contains all three points. A (directed) line l
divides the plane into two sets, a set HL of points that are left of l and a set HR of

points that are right of l . We refer to HL and HR as the half-planes of l . The line l is

the supporting line of HL and HR .
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p q

(a) (b)

p q

(c)

p

(d)

Figure 2.2: Illustration of a (a) Jordan arc, a (b) Jordan curve and its interior (blue), and (c) a

convex region. We refer the bounded (blue) region as the interior of the Jordan curve. (c) The

blue region is the visibility region of p.

A polygonal chain is a tuple of line segments P = (p
0
p

1
,p

1
p

2
, . . . ,pn−1

pn), for n ∈ N;

see Figure 2.1. A polygonal chain is simple if only consecutive segments intersect and

then only in their endpoints, where we consider p
0
p

1
and pn−1

pn to be consecutive.

We call a polygonal chain P weakly simple if for any ϵ > 0 there is a relocation

(perturbation) of each point pi of P within a disk of radius ϵ and center pi such that P
becomes simple; compare also [Aki+17]. A polygonal chain is a polygon if pn = p0

.

A Jordan arc is an injective continuous functionψ : [0, 1] → R2
. The pointsψ (0)

and ψ (1) are the endpoints of ψ . A set of M ⊂ R2
is path connected, if for any two

points p ∈ M and q ∈ M , there is a Jordan arcψ that has p and q as its endpoints and

for each i ∈ [0, 1] the point ψ (i) is in M . Despite the fact that a connected region is

commonly de�ned as a region that is not the union of two or more disjoint non-empty

open sets, we refer to a path-connected region simply as connected. A connected set

M ⊂ R2
is a region in R2

. Let C be a unit circle with center (0, 0). A Jordan curve

is a injective continuous function ϕ : C → R2
. The famous Jordan curve Theorem

states that any Jordan curve ϕ divides the plane into two regions, an interior and an

exterior region. We say the Jordan curve is the boundary of these regions. Since a

simple polygon is a Jordan curve this applies to simple polygons as well.

Let M be a region. For a given point p ∈ M , a point q is visible from p if each point u
on the line segment pq is in M . We refer to the set of points that are visible from p
as the visibility region of p. A region M is convex if for any two points p,q ∈ M each

point on the line segment pq is in M .

We refer to a �nite set A of lines as a line arrangement. A line arrangement divides

the plane into a set of regions that we call the cells of A; see Figure 2.3. The following

de�nition of pseudoline arrangements is inspired by the de�nition of the projective

plane. LetC be a circle with center (0, 0) and a su�ciently (in�nitely) large radius. We

call the region bounded byC that does not contain the point (0, 0) the in�nity. We refer

to a Jordan arc that has both its endpoints in the in�nity and passes through the disk

DC bounded by C as a pseudoline. We refer to a set of pseudolines as an arrangement

of pseudolines if each pair of pseudolines intersects exactly once and the intersection

11
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(a) (b) (c)

Figure 2.3: (a, b) Two line arrangements that are not homeomorphic. The pseudoline arrange-

ments (b) and (c) are homeomorphic. The points on the intersection in (c) indicate the planar

subdivision of the arrangement.

(a) (b) (c) (d)

Figure 2.4: (a) A (thick) framework of a 4-cycle but not a drawing. (b) A drawing of graph

that is in our notion not a topological drawing. (c) A topological drawing and (d) a geometric

drawing.

point is in DC . Observe that, similar to line arrangements, a pseudolines arrangement

divides the disk DC into cells. A planar subdivision of a (pseudo-)line arrangement A

is a planar graph (a formal de�nition of planar graphs will be given later on) that

contains for each intersection of two elements in A ∪ {C} a vertex and two vertices

are connected by an edge, if their intersections are consecutive on a (pseudo-)line L

of A.

We consider two pseudoline arrangements A and A ′ to be homeomorphic, if there

is a bijective map ϕ : A → A ′ and each pseudoline in A and in A ′ can be directed

such that if a pseudoline L ∈ A intersects pseudolines L
1
,L

2
, · · · ∈ A in this order

then ϕ(L) intersects exactly ϕ(L
1
),ϕ(L

2
), · · · ∈ A ′ in this order; see Figure 2.3. A

pseudoline arrangement A is stretchable if there exists a line arrangement A that is

homeomorphic to A.

Drawings of Graphs

A framework of a graph G = (V ,E) maps each vertex v to a point pv in the plane

and each edge uv to a Jordan arc cuv with pu and pv as its endpoints; see Figure 2.4.

Observe that in this de�nition the arc cuv can be a space-�lling curve. In order to avoid
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(a) (b)

Figure 2.5: The closed curves are a proper extension of the black edges. The edges in (a) are

touching edges and the edges in (b) are crossing.

such pathological edge cases, we will only consider thick frameworks, i.e., there is an

ϵ > 0 such that for each edge uv ofG and each point q on cuv and all edges xy ofG the

circle of radius ϵ and center q has at most two intersection points with cxy , and cuv
and cxy have only a �nite number of intersection points. A thick framework of G is a

drawing of G if for any two distinct vertices u,v ∈ V the points pu and pv are distinct

and for each edge uv ∈ E and each vertex w ∈ V \ {u,v} the Jordan arc cuv of the

edge uv does not contain pw . For convenience, we do not distinguish between a vertex

(edge) and its drawing, i.e., we refer to pv and cuv simply as v and uv , respectively.

Moreover, for the purpose of this thesis, we assume that each pair of distinct edges

has at most a single intersection point.

Two edges e
1

and e
2
intersect if they have a common intersection point p that is

an interior point of e
1

and e
2
. Two Jordan curves C

1
and C

2
are a proper extension of

two edges e
1
and e

2
if Ci contains ei , C1

\ e
1

does not intersect e
2
, and C

2
\ e

2
does not

intersect e
1
; see Figure 2.5. Two intersecting edges e

1
and e

2
cross if for every proper

extension C
1

and C
2

of e
1

and e
2
, each region bounded by C

1
contains an endpoint

of e
2

and each region bounded by C
2

contains an endpoint of e
1
. Two intersecting

edges touch if they do not cross. A drawing is a topological drawing if each pair of

intersecting edges crosses. For convenience, we simply refer to a topological drawing

as a drawing. A drawing is a straight-line drawing or a geometric drawing if each edge

is drawn as a straight-line segment.

We denote the number of crossings in a drawing Γ by cr(Γ). The crossing number

cr(G) of a graph G is the minimum of cr(Γ) over all topological drawings Γ of G. The

rectilinear or geometric crossing number cr(G) of G is the minimum of cr(Γ) over all

geometric drawings Γ of G. Note that cr(G) ≤ cr(G) for all graphs G.

A drawing is planar if no pair of edges crosses. A planar (topological) drawing of

G is often called an embedding of G. A combinatorial embedding of G is a clockwise

ordering of the edges around each vertex that corresponds to the clockwise order in

a planar drawing of G. A graph G is planar if it has a planar drawing, i.e., cr(G) = 0.

Note that in this special case, we have by Theorem 1.1 that cr(G) = cr(G). Let Γ be a

planar drawing of G . The drawing partitions the plane into regions, which we call the
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f?1

f1

f?2

f2

e
µ(e)

Figure 2.6: A planar drawing Γ? of a dual graph G of an embedding Γ of G . The green region

f
2

indicates the outer face and the blue region f
1

is a inner face.

faces of Γ. There is one unbounded face which we call the outer face of G; compare

Figure 2.6. A face that is not the outer face is an interior face. Each face f is bounded by

a set of edges, we refer to these edges as the boundary of f . An edge e is incident to a

face f if the boundary of f contains e . Two distinct faces f
1

and f
2

are adjacent if they

are incident to a common edge e . Denote by FΓ the set of faces of a planar drawing

Γ of G. For a planar drawing Γ, a multigraph graph G? = (FΓ,E
?) is a dual graph G?

of G if there is a bijective map µ : E → E? with the property that for each uv ∈ E
with µ(uv) = f

1
f
2
, f

1
and f

2
are the two faces of G that have uv on its boundary. For a

compatible embeddings of G and G?
, we will refer to a vertex of G?

as a dual vertex of

a face f of G and denote this vertex by f ?. Correspondingly, an edge of G?
is dual to

an edge of G. A dual graph naturally comes with a planar drawing Γ? of G?
, where

each vertex f ? is positioned in the interior of the face f of Γ and for each edge e of G ,

e and µ(e) each have exactly one interior intersection point in Γ ∪ Γ? and moreover, e
and µ(e) cross in their interior; see Figure 2.6.

A planar drawing is triangulated if each face is bounded by a triangle. It is internally

triangulated if each interior face is bounded by a triangle and the outer face is bounded

by a simple polygon. A planar graph is (internally) triangulated if it has a (internally)

triangulated planar drawing. A triangle in a planar drawing is a separating triangle

if it is not a face, i.e., each region bounded by the triangle contains a vertex of G in

its interior. Let e = uv be an edge that is not incident to a separating triangle. The

contracted graphG/e is the graph obtained by inserting all edges ux for each neighbor

x ofv and by removing the vertexv including its incident edges and all multiple edges.

Letψ be a topological drawing ofG . We obtain a topological drawingψ/e ofG/e from

ψ by routing the new edges ux closely to the drawing of the edges uv and vx . Note

that this is always possible, sinceψ is a thick framework.
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3 Methodology

In this part of this thesis, we consider optimization problems that ask for a drawing

Γ? of a graphG that minimizes (or maximizes) a given function f . The task can be, for

example, to compute a drawing with a minimum number of crossings. The problems

that we consider in the following sections areNP-hard. For each problem, we develop

an algorithm A that computes for a graph G a drawing A(G) with a small (large) value

f (A(G)) that is not necessarily minimal (maximal). In this setting it is often unclear

how to prove a relationship between f (Γ?) and f (A(G)). In order to assess whether the

computed values are rather small or large, we take an empirical approach and compare

the solutions of di�erent algorithms with each other. Thus, a major contribution of

this part are the experimental evaluations of the introduced algorithms. In order to

evaluate the quality of the algorithms we use descriptive statistical tools. Moreover,

we generalize the well-known binomial sign test for paired samples in order to draw

statistically signi�cant conclusions. The aim of this section is to familiarize the reader

with these concepts. We start in Section 3.1 with the general setting and the statistical

tools. We introduce a concept that we refer to as advantage of one algorithm over a

second. In Section 3.2, we connect this concept to a statistical test. Finally, we describe

a framework to formulate a hypothesis that we apply in Chapter 4 and Chapter 6.

Without loss of generality, we assume in the following that the optimization problem

is a minimization problem, i.e., we ask for a drawing Γ of a graph G that minimizes f .

We used the notion of advantages and the binomial test with advantages in the

following publications [BRR17, BRR19, Dem+18, Rad+18, Rad+19, Rad15].

3.1 Descriptive Statistical Tools

In order to evaluate the quality of drawings computed by an algorithm A with respect

to an objective function f that maps a drawing to a number in R, we consider a set

of graphs G := {G
1
,G

2
, . . . ,GK }, with K ∈ N,K > 0. For each graph Gi ∈ G, we

apply the algorithm A to Gi and denote the computed drawing by A(Gi ). This yields a

sequence f (A(G)) := 〈f (A(G
1
)), f (A(G

2
)), . . . , f (A(GK ))〉. Without loss of generality,

we assume that the values are in non-descending order. The following descriptive

statistics of f (A(G)) are examples of functions that can be used to characterize the

computed values f (A(Gi )).

17
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f(A(G))

0 10 20 30 40 50 60 70

f(B(G))

Figure 3.1: Each segment corresponds to a graph in G. The numbers on the x-axis correspond

to the values f (A(Gi )) and f (B(Gi )). Note that the mean of f (A(G)) is smaller than the mean

of f (B(G)). But there are only two instances where the values corresponding to A are smaller

than the values for B.

The mean of f (A(G)) is the value

∑
G ∈G f (A(G))/K . The standard deviation of

f (A(G)) is the value

√∑
G ∈G

(
f (A(G)) − f

)
2

/K , where f is the mean of f (A(G)). The

values f (A(G
1
)) and f (A(GK )) are the minimum and maximum value of f (A(G)), re-

spectively. Forq ∈ (0, 1), the (empirical)q-percentile of f (A(G)) is the value f (A(G bqK c+1
))

if qK < N and otherwise it is 0.5 · (f (A(GqK ) + f (A(GqK+1
)). The 0.5-percentile of

f (A(G)) is called the median of f (A(G)).
These descriptive statistics of f (A(G)) only describe the sequence f (A(G)) but

do not necessarily reveal any information about the di�erence of f (A(Gi )) to the

optimal value f (Γ?). Since the problems that we consider in Part I are NP-hard, a

practical algorithmO that computes an optimal drawing Γ? might not be available. As

a consequence, we change our perspective and instead of comparing our algorithm A
to the algorithm O , we compare A to an established graph drawing algorithm B. Thus,

the question becomes whether the value f (A(Gi )) is smaller than the value f (B(Gi )).

One possibility to approach this question is to compare the descriptive statistics

of f (A(G)) to the descriptive statistics of f (B(G)). Note that the conclusion drawn

from these descriptive statistics are statements with respect to the aggregated values,

e.g., the mean value of f (A(G)) is smaller than the mean value of f (B(G)). As the

following example shows, in general, the comparison of the descriptive statistics does

not allow a statement about an individual instance Gi .

Consider the sequences f (A(G)) and f (B(G)) given in Figure 3.1. Observe that the

mean of f (A(G)) is smaller than the mean of f (B(G)). On the other hand, there are

only a few instances Gi on which f (A(Gi )) is smaller than the corresponding value

f (B(Gi )). Thus, depending on whether we compare individual instances to each other

or the descriptive statistics, we can draw di�erent conclusions about the performance

of A and B.

In the following, we describe one possibility to draw statements about the relation-

ship between f (A(Gi )) and f (B(Gi )) on the entire set G. If our hypothesis is that A
computes drawings ofGi with a smaller value of f than B, for each graphGi ∈ G, then

we would ideally observe that the inequality f (A(Gi )) < f (B(Gi )) is true for all graphs

Gi ∈ G. This notion is very strict in the sense that it requires that the inequality is

18
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true for all graphs in G. Moreover, even if the inequality is true for all graphs, it does

not reveal any information about the di�erence between f (A(G)) and f (B(G)). We

address these two issues with the following model:

Is there a large subset G′ ⊆ G and a large value ∆ ≥ 1 such that the

inequality f (A(Gi )) · ∆ < f (B(Gi )) is true for all Gi ∈ G
′
?

We introduce the following notion to further formalize this question. Let G′ be a

subset of G. We say that A has an advantage of ∆ ≥ 1 over B on G′ if the inequality

f (A(Gi )) · ∆ < f (B(Gi )) holds for all Gi ∈ G
′
. For a �nite set G, we say that a subset

F ⊂ G has relative size at least p ∈ [0, 1] if |F | ≥ p · |G|. With this machinery, we can

reformulate the previous model as follows:

For given values p ∈ [0, 1] and ∆ ≥ 1, is there a set G′ ⊆ G of relative

size p such that A has an advantage of ∆ over B?

Note that the advantage is a relative measure of the distances between the two sets

f (A(G)) and f (B(G)). We say that A has an absolute advantage of ∆ ≥ 0 over B on a

subset G′ of G if the inequality f (A(Gi )) + ∆ < f (B(Gi )) holds for all graphs Gi ∈ G
′
.

We will use absolute advantages in case that there are two constants c
1
, c

2
such that

f (Γ) ∈ [c
1
, c

2
] for all possible drawings Γ, e.g., if f returns the smallest angle of two

crossing edges in Γ.

3.2 Binomial Test with Advantages

The advantage of one algorithm over another describes the relationship between two

algorithms with respect to the set G. In case that G is a subset of a larger family of

graphs, for example, planar graphs, it is not necessarily possible to infer properties

of the entire set from the observations made on G. In the following, we introduce a

statistical test that allows to make statements about the superset of G in case that G

is a uniform random sample of its superset. We �rst recite the key ideas behind the

binomial test. Further, we connect advantages to the binomial (sign) test. Finally, we

propose one possibility to formulate a hypothesis in our setting.

Binomial Test

In this section, we give a short introduction to the binomial test. The following

description is based on Sheskin [She03]. The binomial test assesses the likelihood

of whether a binary sequence σ = 〈a
1
,a

2
, . . . ,an〉, with ai ∈ {0, 1}, for n ∈ N, is the

result of an experiment where the outcome 1 has probability at least π ∈ [0, 1] and the

outcome 0 has probability at most 1 − π .
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By |1|σ we denote the number of occurrences of 1 in σ , i.e., |1|σ =
∑n

i=1
ai .

Let π ∈ [0, 1] be a �xed value. Consider a sequence σπ = 〈b1
,b

2
, . . . ,bn〉 that is the

result of a binomial trial, for n ∈ N, i.e., for each i = 1, 2, . . . ,n, bi = 1 with probability

π and bi = 0 with probability 1 − π . We say that π is the probability of σπ . Let x ∈ N
with x ≤ n. The probability that a sequence σπ has the property that |1|σπ = x is

P=π (x) :=
(n
x

)
πx (1 − π )n−x . The probability that |1|σπ ≥ x is P ≥π (x) =

∑n
i=x P

=
π (i).

We now turn back to the initial question whether a binary sequence σ is the result of

an experiment where the outcome of 1 and 0 has probability at least p and at most 1−p,

respectively. In this setting the true probability p of σ is unknown. For this purpose, we

formulate a null hypothesis and an alternative hypothesis. The null hypothesis is that

the probability π of a given sequence σ is at most a value p ∈ [0, 1]. Conversely, the

alternative hypothesis is that the probability π of σ is larger than p, i.e., σ is indeed the

result of the assumed experiment. The binomial test quanti�es the probability that the

null hypothesis is true even though we decided to accept the alternative hypothesis as

the truth. This wrong decision is often called a type 1 error. Note that if the probability

P ≥p (|1|σ ) ≤ α for a value α ∈ (0, 1), then the probability that the null hypothesis is

true, is at most α .

We use the following terminology. For a �xed signi�cance level α ∈ (0, 1), we reject

the null hypothesis, if P ≥p (|1|σ ) ≤ α . Thus, if we reject the null hypothesis there is

only a small chance that we made a type 1 error, i.e., the null hypothesis actually is

true. In case that we reject the null hypothesis, we say that we accept the alternative

hypothesis at signi�cance level of α .

Binomial Test with Advantages

In this section we connect the concept of advantages to the binomial test. Note that

the binomial sign test with advantages is a generalization of the binomial sign test for

paired samples; compare Sheskin [She03].

A set of graphs G might be too large to apply the algorithms A and B to each graph

in G, e.g., it can be computationally too expensive or the size of set G is simply not

�nite. Nevertheless, it is desirable to draw reliable statements about the relationship

of A and B on the set G. In particular, we study the following alternative hypothesis:

For �xed values p ∈ [0, 1],∆ ≥ 1 and a graph G drawn uniformly at random from G,

the probability π that the inequality f (A(G)) · ∆ < f (B(G)) is true is at least p. The

respective null hypothesis is that the inequality is true with probability at most p.

Observe that this corresponds to an experiment with exactly two outcomes, i.e., the

inequality f (A(G)) · ∆ < f (B(G)) is either true or false. Thus, we can apply the

binomial test as follows.

For k ∈ N, let G′ = {G
1
,G

2
, . . . ,Gk } be a �nite set of graphs drawn uniformly

at random from G. Let σ = 〈a
1
,a

2
, . . . ,ak 〉 be a binary sequence, where ai = 1 if

the inequality f (A(Gi )) · ∆ < f (B(Gi )) is true and ai = 0, otherwise. The previous
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alternative hypothesis can be reformulated as that the probability of σ is at least p.

Hence, we can use the binomial test to test our hypothesis. In particular, we reject

the null hypothesis phrased in the previous paragraph if we reject the hypothesis that

the probability of σ is at most p. As before, we accept the alternative hypothesis at a

signi�cance level α ∈ (0, 1), if we do not reject the null hypothesis. If we accept the

alternative hypothesis that A has an advantage of ∆ over B with probability p, then it

is unlikely that the probability that A has an advantage of ∆ over B is at most p. Note

the subtle di�erence to the case that the alternative hypothesis is indeed true. Then

we expect that for a �nite subset G′ ⊂ G drawn uniformly at random that there is a

subset G′′ ⊂ G′ of relative size at least p such that A has an advantage of ∆ over B
on G′′.

Formulating and Testing Hypotheses

In contrast to the hypothesis of the binomial test the hypothesis of the binomial test

with advantages bases on two values, i.e., the value π and the advantage ∆, which

depend on each other. We introduce one possibility to formulate a hypothesis in this

setting.

Let G′ ⊆ G be a �nite random sample and let q ∈ [0, 1]. We partition G′ into two

sets G
test

and G
verify

. Where G
test

has relative size q with respect to G′ and G
verify

has

relative size 1 − q. For a given value p ∈ [0, 1], if A has an advantage over B on a

subset of relative size p of G
test

, we compute the maximum value ∆ such that A has an

advantage of ∆ over B on a subset of G
test

of relative size p. Note that, if we choose

a value ∆′ that is smaller than ∆, we increase the chance that A has an advantage

of ∆′ over B on a subset of relative size p of G
verify

. Thus, in order to increase the

likelihood that we can reject the null hypothesis, we ask whether A has an advantage

of min(1, c · ∆) over B, for c ∈ (0, 1). In this thesis we use c = 0.75. In case that we do

not reject the null hypothesis, we say that the advantage is signi�cant.
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4 Geometric Crossing
Minimization

In this chapter we consider the geometric crossing minimization problem, i.e., we seek

a straight-line drawing Γ of a graph G = (V ,E) with a small number of edge crossings.

Crossing minimization is an active �eld of research [ÁFS13, Buc+13]. While there is a

lot of work on heuristics for topological drawings, these techniques are typically not

transferable to the geometric setting. We introduce and evaluate three heuristics for

geometric crossing minimization. The approaches are based on the primitive operation

of moving a single vertex to its crossing-minimal position in the current drawing Γ, for

which we give anO((kn+m)2 log(kn+m))-time algorithm, where k is the degree of the

vertex and n and m are the number of vertices and edges of the graph, respectively. In

an experimental evaluation, we demonstrate that our algorithms compute straight-line

drawings with fewer crossings than energy-based algorithms implemented in the

Open Graph Drawing Framework [Chi+13] on a varied set of benchmark instances.

Additionally, we show that the di�erence of the number of crossings of topological

drawings computed with the edge insertion approach [Buc+13, CH16] and the number

of crossings in straight-line drawings computed by our heuristic is relatively small.

The �nal experiments are evaluated with a statistical signi�cance level of α = 0.05.

The research of this chapter was initiated in the Master thesis of Klara Reich-

ard [Rei16]. This chapter is based on joint work with Klara Reichard, Ignaz Rutter and

Dorothea Wagner [Rad+18, Rad+19].

4.1 Introduction

The empirical study of Purchase et al. [PCJ96] indicates that a drawing of a graph

with a small number of crossings is easier to comprehend than a drawing of the same

graph with a large number of crossings. Consequently, the minimization of crossings

has received considerable attention in theory and in practice; the bibliography of

Vrt’o is an impressive list of over 700 references [Vrt14]. A topological drawing of

a graph is a drawing where each edge is a Jordan arc and in a straight-line drawing

each edge is restricted to be a straight-line segment. The crossing number cr(G) of a

graph G is the minimum crossing number of all possible topological drawings of G.

The rectilinear crossing number cr(G) ofG is the minimum number of crossings over all

possible straight-line drawings ofG . Indeed, there is a family of graphs with a constant

crossing number but an unbounded rectilinear crossing number [BD93]. Moreover,

there is a di�erence in the algorithmic complexity of the respective minimization
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problem. The minimization of the crossing number is NP-complete [GJ83]. For

the minimization of the rectilinear crossing number only NP-hardness is known,

more precisely the problem is ∃R-complete [Bie91]. Due to these gaps, we can either

insist on a small number of crossings or on straight-line edges. In case of topological

drawings iteratively inserting edges into a (planar) graph with a small number of

crossings proved to be e�ective in practice [Buc+13, CH16]. Unfortunately, deciding

whether there is a straight-line drawing homeomorphic to a given drawing is ∃R-

complete [Sch10, Sho91]. Based on the topological drawings with a small number

of crossings, in Chapter 6, we heuristically straighten the edges. In general it is not

possible to transfer the results on topological drawings to the geometric setting. Thus,

if we insist on straight-line drawings, there is need for a geometric approach.

Several surveys [ÁFS13, Buc+13] show that the estimation of the (rectilinear) cross-

ing number of complete graphs has received considerable attention. Most recently

Fox et al. [FPS16] introduced an n2+o(1)
-time algorithm that computes a straight-line

drawing of a graph G with at most cr(G) + o(n4) pairs of crossing edges. This is a

1 +O(1) approximation for dense graphs but rather of theoretical interest for sparse

graphs. A considerable number of known upper bounds for the rectilinear crossing

number of the complete graphs Kn for n ≤ 100 [Aic19] is due to Fabila-Monroy and

López [FL14].

Energy-based algorithms are a common way to compute straight-line drawings of

arbitrary graphs. For a detailed description we refer to the survey of Kobourov [Kob13].

Energy-based algorithms are often designed to compute drawings with e.g. uniform

edge length or small stress. Kobourov claims that these algorithms tend to produce

crossing-free drawings for planar graphs. The force-directed approach by Davidson

and Harel [DH96] actively reduces the number of crossings among other optimization

criteria. Apart from that we are not aware of any algorithms that compute straight-line

drawings with a small number of crossings.

Contribution and Outline. Let G = (V ,E) be an undirected graph with vertex

set V and edge set E and let Γ be a straight-line drawing of G. For a vertex v ∈ V
and a point p ∈ R2

we denote by Γ[v 7→ p] the straight-line drawing obtained from Γ
by moving v to the point p. Based on the assumption that we are able to compute a

drawing Γ[v 7→ p?]with a small number of crossings, we introduce in Section 4.2 three

heuristics in order to compute drawings with few crossings. In Section 4.3 we show

that a drawing Γ[v 7→ p?] with a minimum number of crossings can be computed

in O((kn +m)2 log(kn +m)) time for a graph with n vertices, m edges, and a vertex

v of degree k . In Section 4.4 we experimentally evaluate our algorithms and show

that we achieve fewer crossings than energy-based algorithms implemented in the

Open Graph Drawing Framework [Chi+13] with a statistical signi�cance of α = 0.05.

Additionally, we compare our algorithm to topological drawings with a small number
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v1

(a)

v2

(b)

v3

(c)

Figure 4.1: Assume that structures in (a)-(c) are substructures of a common drawing Γ. De-

pending on the function crx (Γ, ·) the vertices are moved in a di�erent ascending order. For

x = Log we have that cr
Log
(Γ,v

3
) < 3.81 ≤ cr

Log
(Γ,v

1
) = 4 < 4.5 < cr

Log
(Γ,v

2
). For x = Sum

we have that cr
Sum
(Γ,v

1
) = 6 < cr

Sum
(Γ,v

3
) = 7 < cr

Sum
(Γ,v

2
) = 8. For x = Sq, we have that

cr
Sq
(Γ,v

1
) = 18 < cr

Sq
(Γ,v

2
) = 34 < cr

Sq
(Γ,v

3
) = 37.

of crossings. We show that there is only a small gap between the number of crossings

in topological and straight-line drawings of our benchmark instances. Throughout

the remainder of this chapter, a drawing of a graph is a straight-line drawing.

4.2 A Framework for Rectilinear Crossing Minimization

Let v be a vertex of the graph G = (V ,E) and let Γ be a drawing of G. Recall that the

drawing Γ[v 7→ p] is obtained from Γ by moving v to p. Assume that we are able to

e�ciently compute a position p? so that the number of crossings is minimized over

all drawings Γ[v 7→ p],p ∈ R2
. With this operation at hand, several possibilities arise

to compute a drawing of G with a small rectilinear crossing number. We introduce

three approaches. The vertex movement approach iteratively moves the vertices in

some order to their locally optimal position. The vertex insertion approach starts from

a large induced planar subgraph and inserts vertices at their locally optimal position.

The edge insertion approach starts with a maximal planar subgraph and iteratively

inserts edges into the drawing and locally modi�es the drawing to reduce the number

of crossings.

4.2.1 Vertex Movement Approach

Let S = 〈v
1
,v

2
, . . . ,vk 〉, k ∈ N, be a sequence of vertices ofG and let Γ

0
be an arbitrary

straight-line drawing of G. The drawing Γi is obtained from Γi−1
by moving vertex vi

to its locally optimal position.

The number of crossings in Γn may depend on the order S . Hence, we introduce the

following possibilities to choose S . As a baseline we use a random permutation of V
for S . We refer to this sequence as Random. To obtain other sequences S , we order the

vertices V in descending or ascending order with respect to the number of crossings
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of v in the initial drawing Γ
0

of G. Denote by E(v) the set of edges incident to v , and

by cr(Γ, e) the number of crossings of an edge e in the drawing Γ. We propose the

following ways to count the number of crossings incident to a vertex v . Figure 4.1

illustrates that these can yield di�erent orders of the same vertex set.

cr
Log
(Γ,v) =

∑
e ∈E(v)

log(cr(Γ, e) + 1) (4.1)

cr
Sum
(Γ,v) =

∑
e ∈E(v)

cr(Γ, e) (4.2)

cr
Sq
(Γ,v) =

∑
e ∈E(v)

cr(Γ, e)2 (4.3)

4.2.2 Vertex Insertion Approach

In the vertex insertion approach we identify a subset V ′ ⊂ V so that the induced

subgraph GP of V \V ′ is a planar subgraph of G. Starting from a planar drawing Γp
of Gp we iteratively insert the vertices in V ′ at their locally optimal position into Γp .

Since the respective decision problem of deciding whether there is set V ′ of at most

k vertices is known to be NP-complete [KD79, LY80], we take the following greedy

approach.

Let Γ be a non-planar straight-line drawing of G. Let T ′ = 〈v
1
,v

2
, . . .vn〉 be an

ascending (or descending) order of the vertices of G with respect to their number

of crossings crx in Γ with x = Log, Sum, Sq. Let i be the smallest index such that

the sub-drawing Γi of Γ induced by the vertices vi , . . . ,vn is planar, i.e., the vertices

V ′ = {vj | j = 1, 2, . . . , i − 1} are removed from Γ. We obtain a drawing Γj from Γj+1

by inserting vj at its locally optimal position in Γj+1
for j = 1, . . . i − 1.

4.2.3 Edge Insertion Approach

The following heuristic is inspired by the topological edge-insertion algorithm intro-

duced by Gutwenger et al. [GMW05]. We start with a maximal planar subgraph of G
and iteratively reinsert edges e into the previous drawing. We modify each drawing

so that we can add the edge e with a small number of crossings. It is NP-complete

to decide whether there is a set E ′ of k edges such that the graph G ′ = (V ,E \ E ′) is

planar [GJ79]. Fortunately, there are exact and heuristic approaches known [CHW18,

JLM98]. For further details we refer to Section 4.4.6.

Note that we assume all vertices to be in general position. More formally, let e = uv
be an edge of a graph G and Γ−e be a straight-line drawing of G − e . We obtain a

drawing Γ+e ofG by inserting e into Γ−e as a straight-line segment. In the following we

discuss strategies to locally modify the drawing Γ+e to obtain a drawing Γ with a small
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H1

H2

(a) (b)

H1

(c)

H2

H1

(d)

Figure 4.2: (a) A crossing minimal curve Cuv with dense Subgraphs H
1

and H
2
. (b) Graph

with the contracted Subgraphs H
1

and H
2
. (c) H

1
unpacked. (d) H

1
and H

2
unpacked.

number of crossings. Let Cuv be a crossing minimal curve from u to v , i.e., a Jordan arc

in Γ−e with u and v as its endpoints, only intersecting edges in its interior and with a

minimal number of edge crossings; see Figure 4.2a. Ideally, we can rearrange Γ−e such

that the edges crossed by e in Γ+e are the same as the edges crossed by Cuv . Note, that

this problem is closely related to the stretchability of pseudolines which is known to

be ∃R-complete [Sho91].

Endpoint. The Endpoint strategy solely moves the endpoints u and v of the inserted

edge e in an arbitrary order to their locally optimal position.

Crossed Neighborhood. For a vertex x and an edge e , denote the number of edges xy
that cross e in Γ+e by cr(Γ+e , e,x). Let Ce be the set of vertices with cr(Γ+e , e,x) > 0.

In addition to the endpoints of e , the Crossed Neighborhood strategy moves the

vertices in Ce in an order depending on the crossing number cra ,a = Log, Sum, Sq to

their locally optimal position.

Subgraph. Let Cuv be a crossing-minimal curve from u to v in Γ−e and let E ′ be the

edges crossing Cuv . Let R be the (not necessarily simple) region enclosed by e and

Cuv ; see Figure 4.2. The region R partitions G into a set of subgraphs H
1
,H

2
, . . . ,Hk

of G with drawings ΓH
1

, ΓH
2

, . . . , ΓHk
in the interior of R. Let Ej be the set of edges uv

with u ∈ V \V (Hj ) and v ∈ V (Hj ).

Let Γ
0

be the drawing obtained from Γ+e by contracting every subgraph Hj to a

vertex c j and placing the vertex in the barycenter of the vertices of Hj . In order to

obtain a drawing Γj from Γj−1
, consider a connected region fj such that moving the

vertex c j within fj in Γj−1
yields the same number of crossings, i.e., cr(Γj−1

[c j 7→ p]) =
cr(Γj−1

[c j 7→ p ′]) for every pair of points p,p ′ ∈ fj . Let f ?j be the region containing

the crossing minimal position p?j of the vertex c j in the drawing Γj−1
(we prove the

existence of such a region in Section 4.3). We obtain a drawing Γj by placing a scaled

drawing ΓHj
in the interior of f ?j and reinserting the edges Ej and deleting c j and

its edges. This operation can introduce new crossings of the edges Ej with ΓHj
. We

resolve these crossings by repositioning every vertex w ∈ V (Hj ) to its locally optimal

position with respect to the drawing Γj .
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Figure 4.3: The �gures highlight the complements of the visibility regions. (a) The visibility

regionVR(q, s) of a point q and a segment s = S[a,b]. (b) All regionsVR(u
1
, e) for a neighbor

u
1

of v . (c) All regionsVR(uj , e) for all neighbors uj of a vertex v .

4.3 Locally Optimal Vertex Movement

Let Γ be a drawing of a graph G and v be a vertex of G. The algorithms introduced in

Section 4.2 are based on the assumption that we can e�ciently compute a position

p? so that the number of crossings in the drawing Γ[v 7→ p?] is minimized. In this

section we show that this is possible in O((kn +m)2 log(kn +m)) time for a degree-k
vertex.

In the following we refer to the edges incident to the vertex v as active. The

remaining edges are called inactive. Let uv be an active edge and let e be an inactive

edge. We characterize the set of points p such that moving v to p introduces a crossing

between uv and e . Based on the resulting region, we de�ne an arrangement A(Γ,v).
Moving the vertex v within a face of this arrangement does not change the number of

crossings. Thus computing an optimal position p? reduces to �nding a particular face

in A(Γ,v).

The mentioned characterization is based on the notion of visibility. Let q ∈ R2
be the

position of u and let s = S[a,b] ⊂ R2
be a closed segment between two points a and b.

LetVR(q, s) ⊂ R2
be the visibility region of q with respect to s , i.e., the set of points

p ∈ VR(q, s) so that the segments s and S[q,p] do not intersect. Clearly, VR(q, s)
is the union of three half-planesHq,a ,Hq,b andHa,b as depicted in Figure 4.3a. We

denote the boundary ofVR(q, s) byBD(q, s). LetA(Γ,v) be the arrangement obtained

from intersecting the boundaries BD(u, e) for all pairs of active edges uv ∈ E and

inactive edges e; see Figure 4.3b and Figure 4.3c. We show that moving the vertex

v within a face of this arrangement does not change the number of crossings in the

drawing Γ[v 7→ p]. Thus it is su�cient to compute this arrangement and determine

the face f ? inducing the smallest number of crossings. To avoid special cases, we

assume that all vertices are in general position.
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Figure 4.4: Moving the vertex v within a face of A(Γ,v) does not change the number of

crossings. Illustration for the contradiction.
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Figure 4.5: (a) The boundary BD(q,ab) is bounded by the two rays Rq,a ,Ra,b and the edge

ab. The ray Rq,b lies on the boundary of BD(q,ab) and BD(a,bc). (b) The faces f and д
share a segment incident to an edge e . (c) The faces f and д share a segment on Rq,u .

Lemma 4.1. Let G = (V ,E) be a graph with a vertex v ∈ V and let Γ be a straight-line

drawing of G. Let f be a face of A(Γ,v), and let p and p ′ be two points in the interior

of f . Then p and p ′ have the same crossing number, i.e., cr(Γ[v 7→ p]) = cr(Γ[v 7→ p ′]).

Proof. For the sake of a contradiction, assume that there are two distinct points p
and p ′ in the interior of f , so that cr(Γ[v 7→ p]) < cr(Γ[v 7→ p ′]). This implies that

there is a pair of an active edge e
1

and an inactive edge e
2

that cross in Γ[v 7→ p ′] but

not in Γ[v 7→ p]; see Figure 4.4. Thus p ′ is not contained inVR(v, e
2
) but p is. This

contradicts the assumption that both p and p ′ lie in the interior of the same face of

A(Γ,v). �

Due to Lemma 4.1 it is su�cient to consider only one point p in the interior of a

face f in order to evaluate the crossing number cr(Γ[v 7→ q]) for an arbitrary point q
in f . Thus, in the following we denote with Γ[v 7→ f ] a drawing, where v is moved to

an arbitrary point in f .

Theorem 4.2. Let Γ be a straight-line drawing of a graph G = (V ,E) and let v be

a degree-k vertex of G. A point p? ∈ R2
with the property that cr(Γ[v 7→ p?]) =

minq∈R2 cr(Γ[v 7→ q]) can be computed in O((kn +m)2 log(kn +m)) time.

Proof. The proof relies on the following claims.
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Claim 1. The arrangement A(Γ,v) has O((kn + m)2) vertices. Moreover, it can be

computed in O((kn +m)2 log(kn +m)) time.

For each active edge uv we obtainO(m) visibility regions. The boundary BD(q,ab)
with respect to an edge ab can be represented by two rays Rq,a , Rq,b and the edge ab,

see Figure 4.5a. Observe that the two edges ab, bc share a common ray Rq,b . Thus,

there are in total O(kn +m) geometric entities (O(kn) rays and O(m) edges) with at

most O((kn +m)2) intersections. Thus, we can compute A(Γ,v) with a sweep-line

algorithm [BO79] in O((kn +m)2 log(kn +m)) time.

Claim 2. For all faces f and д of A(Γ,v) that share a segment s the values ∆f ,д such

that cr(Γ[v 7→ д]) = cr(Γ[v 7→ f ]) + ∆f ,д can be computed in O((kn +m)2) time.

We distinguish whether the segment s lies on an edge e or on a ray Ru,z for a

neighbor u of v and z ∈ V . In both cases we show that the value ∆f ,д is equal for all

pairs of faces f ,д that share a segment on e or Ru,z , respectively.

First, consider the case that s lies on an edge e = xy in Γ; see Figure 4.5b. Denote

by Hf and Hд the half-planes of the line that contains s such that Hf contains f and

Hд contains д. Let pf and pд be points in f and д, respectively, that are su�ciently

close to s . Note that, since we assume the vertices to be in general position, there is

no vertex z , x ,y that lies on the line that contains s , Thus, an edge uv and s cross

in Γ[v 7→ pf ] if and only if u ∈ Hд . Correspondingly, uv and s cross in Γ[v 7→ pд] if

and only if u ∈ Hf . Let nf and nд be the number of vertices incident to v contained

in Hf and Hд , respectively. Hence, we have that Γ[v 7→ pд] = Γ[v 7→ pf ] + nf − nд .

Due to Lemma 4.1 it follows that ∆f ,д = nf − nд . Moreover, the number nд and nf are

equal for all segments on e , i.e., it is su�cient to compute nд and nf with respect to Γ
and not for each segment s in A(Γ,v). Overall the counting requires O(km) time and

mapping these values to di�erences ∆f ,д requires additional time linear in the size of

the arrangement, i.e., O((kn +m)2) time.

Second, consider the case that s lies on a ray Ru,z , i.e., the ray originates in a vertex

z and the direction is determined by a neighbor u of v; see Figure 4.5c. As before,

let Hf and Hд be the half-planes that contain f and д, respectively. Since all vertices

lie in general position, we have the following. Each edge wv with w , u crosses the

same edges in Γ[v 7→ f ] as in Γ[v 7→ д]. The edges uv and xy cross in Γ[v 7→ f ],
with z , x ,y, if and only if uv and xy cross in Γ[v 7→ д]. Moreover, the edges uv and

xz cross in Γ[v 7→ f ] if and only if x lies in Hf . Correspondingly, uv and xz cross in

Γ[v 7→ д] if and only if x lies in Hд . Let n′f and n′f the number of neighbors of z that

lie in Hf and Hд , respectively. Thus, ∆f ,д = n
′
д − n

′
f .

The values n′f and n′д can be computed in O(du ) time, where du is the degree of u.

Since all di�erences ∆f ,д are equal for all pair of faces f ,д that have a common segment

that lies on Ru,z , all di�erences can be computed inO(
∑
q∈Nv

∑
u ∈V du ) = O(km) time.
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(a) (b) (c) (d)

Figure 4.6: (a, c) Example drawings computed by our Edge Insertion heuristic with a

repositioning with PrEd. (b, d) Drawings computed with Stress. (a, b) North graph 20.47.

(c, d) K
6
. Number of crossings: (a) 5, (b) 11, (c) 3, (d) 15.

In time linear in the size of A(Γ,v) these values can be mapped to segments in A(Γ,v).
This �nishes the proof of the second claim.

In the following vf denotes the dual vertex of a face f of A(Γ,v).

Claim 3. Let s and t be two faces of A(Γ,v) and let s contain v in its interior. Let

Π be a simple path from vs to vt in the dual graph of A(Γ,v). Then cr(Γ[v 7→ t]) =
cr(Γ) +

∑
(vf ,vд )∈Π ∆f ,д .

Since s containsv in its interior, the number of crossings in Γ and Γ[v 7→ s] coincide,

i.e., cr(Γ[v 7→ s]) = cr(Γ). Secondly, for two adjacent faces f and д, we can express the

number of crossings in Γ[v 7→ д] depending on the number of crossings in Γ[v 7→ f ]
and ∆f ,д , i.e., cr(Γ[v 7→ д]) = cr(Γ[v 7→ f ]) + ∆f ,д . This proves the claim.

Let f be the face of A(Γ,v) containing v . In order to �nd a face f ? with the

minimum number of crossings cr(Γ[v 7→ f ?]), we determine the number of crossing

cr(Γ[v 7→ д]) for every face д in the arrangement A(Γ,v). First, we compute the

di�erences ∆f ,д for all adjacent faces. According to Claim 2 this requires O((kn +m)2)
time.

In time linear in the size of A(Γ,v) the values Γ[v 7→ д] can be accumulated as

described in Claim 3 with a breadth-�rst search in the dual of A(Γ,v) starting at the

dual vertex of f . Note that in order to determine the face f ?, the term cr(Γ) can

be omitted from the statement of Claim 3, and thus, does not need to be computed.

According to Claim 1, the size of A(Γ,v) is in O((kn +m)2) and the arrangement can

be computed in O((kn +m)2 log(kn +m)) time. This concludes the proof. �

4.4 Evaluation

In the following evaluation we consider three approaches (i) our geometric heuristic

to minimize the number of crossings, (ii) commonly used algorithms to compute
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straight-line drawings of arbitrary graphs, i.e. energy-based algorithms, and (iii) an

approach to minimize the number of crossings in topological drawings.

We use synthetic and real-world instances to evaluate the performance of the

algorithms. Section 4.4.1 contains a brief description of our benchmark instances.

The evaluation is based on descriptive statistics and the statistical test described in

Section 3. Our evaluation is structured as follows. First, we identify a representative

for each type of heuristic, i.e., in Section 4.4.3 we consider energy-based layouts, in

Section 4.4.4, Section 4.4.5 and Section 4.4.6 we consider several con�gurations of the

vertex-movement, vertex-insertion and edge-insertion approach, respectively.

Starting from Section 4.4.7 we compare the representatives to each other. In par-

ticular in Section 4.4.7 we focus on the vertex-movement, vertex-insertion and the

edge-insertion approach. Section 4.4.8 compares stress minimization [GKN05], i.e.,

the representative of the energy-based layouts, to our heuristics. In Section 4.4.9 we

compare our heuristics to a topological crossing minimization approach. We conclude

the evaluation with an analysis of the running time in Section 4.4.10.

The drawings in Figure 4.6 give a �rst impression of the e�ectiveness of our al-

gorithm compared to stress minimization. Figure 4.6a and Figure 4.6c are obtained

by one of our heuristics with additional runs of PrEd [Ber00] in order to optimize

the aesthetics of the drawing. The remaining two drawings are computed by stress

minimization.

All experiments were conducted on a single core of an Intel Xeon(tm) E5-2670

processor clocked at 2.6 GHz. The server is equipped with 64 GB RAM. All algorithms

were compiled with g++ version 7.3.1 with optimization mode -O3. The operation

system was openSUSE Leap 15.0. For geometric operations we rely on CGAL [The17]

(v4.10) and GMP
1

to represent coordinates. The usage CGAL and GMP allows us to

evaluate our heuristics without dealing with geometric edge cases. We use snapshot

2017-07-23 of OGDF.

4.4.1 Benchmark Instances

We evaluated our algorithms on four classes of graphs, either purely synthetic or with

a structure resembling real-world data. The classes North and Rome (AT&T)
2

are the

non-planar subsets of the corresponding well known benchmark sets, respectively. The

Triangulation+X dataset contains maximal planar graphs with 64 vertices (generated

using [BM07]) and ten additional random edges. Note that 64 is the maximal number

of vertices the generator of Brinkmann et al. can handle. The Community graphs are

generated with the LFR-Generator [LFF08] implemented in NetworKit [SSM16].

They resemble social networks with a community structure. Note that the term

community structure is not formally de�ned, i.e., the set of all Community graphs is

1gmplib.org
2
http://graphdrawing.org/data.html
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Figure 4.7: Distribution of the number of vertices plus number of edges for each dataset.

the set of graphs that can be generated with the LFR-generator. Thus, the statistical

analysis of the Community graphs in section is with respect to the graph distribution of

the LFR-generator. For each of the remaining classes, we selected 100 graphs uniformly

at random. Figure 4.7 shows the size distribution of these graphs.

For each graph G we generated a random drawing on anm ×m integer grid, i.e., the

x- and y-coordinates of each vertex is an integer between 0 andm chosen uniformly

at random, where m is the number of edges of G. In case that the drawing contains

three collinear vertices, we assign a new random position to one of the three vertices.

We repeat this process until all vertices are in general position. The resulting drawing

is then used as input for all evaluated algorithms.

4.4.2 Framework for the Evaluation

We use the descriptive and inferential statistical tools introduced in Section 3. Moreover,

we show for each algorithm the distribution of the number of crossings in form of

a swarm plot, compare for example Figure 4.8 In order to keep the extend of the

evaluation at a reasonable level, we decided to not distinguish between the four

graph classes in Section 4.4.3 to Section 4.4.6. Each of the benchmark sets are drawn

uniformly at random from their graph class. Since this is not true anymore for the

union of the benchmark set, an inferential test is not meaningful in Section 4.4.3 to

Section 4.4.6. Therefore, in this case we provide only descriptive measures, including

the advantages. The evaluation in Section 4.4.6 considers the four benchmark sets

independently. Therefore, we are able to draw conclusions that are signi�cant at

signi�cance level of α = 0.05. In particular, we formulate and evaluate hypotheses

using the model described in Section 3.2.

4.4.3 Energy-Based Layouts

In this section we evaluate the energy-based layouts implemented in the Open Graph

Drawing Framework (OGDF), compare Table 4.1, with respect to the rectilinear
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Table 4.1: Energy-based graph drawing algorithms implemented in OGDF.

Name OGDF Ref.

DH ogdf::DavidsonHarel [DH96]

FMMM ogdf::FMMMLayout [HJ05]

FR ogdf::SpringEmbedderFR [FR91]

GEM ogdf::GEMLayout [FLM95]

KK ogdf::SpringEmbedderKK [KK89]

PMDS ogdf::PivotMDS [BP07]

Stress ogdf::StressMinimization [GKN05]

Table 4.2: Descriptive statistics of the number of crossings.

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

DH 651.59 6 248.50 570.0 993.25 2210

FMMM 156.58 1 35.00 89.0 289.00 1369

FR 163.75 2 46.75 109.0 281.25 1115

GEM 153.43 1 34.25 94.0 259.75 1174

KK 202.20 1 35.75 86.0 327.00 2503

PMDS 198.84 1 37.75 99.0 307.25 2449

Stress 155.78 1 32.75 82.5 288.75 1220

crossing number. Some drawings computed by FMMM, KK and PMDS are not valid,

i.e., distinct vertices have the same coordinates or a vertex lies in the interior of an

edge. We resolve this issue by iteratively perturbing vertices that lie on the interior of

an edge.

According to Table 4.2 drawings computed by DH have a considerably higher

number of crossings than drawings computed by GEM, FR or Stress. The table

indicates that FR computes drawings with a slightly higher number of crossings

compared to Stress and GEM. A comparison of Stress and GEM is not conclusive,

e.g., Stress has larger mean but a smaller median. Observe that FMMM computes

drawings with only small number of crossings more than Stress. Note that the

objective function of DH is explicitly con�gured to minimize the number of crossings.

The remaining algorithms do not have explicit mechanisms to reduce the crossings.

Each point in the plot in Figure 4.8 corresponds to the number of crossings of one

drawing computed by the algorithm indicated by the color. The measurements are

categorized by the respective graph class. We removed outliers from the plot, i.e., the

plot shows all measurements that di�er by at most three times the standard deviation

from the mean of the respective datasets. The plot con�rms our observation that

DH computes drawings with the highest number of crossings. For the remaining

algorithms, the plot does not show a clear preference. Comparing the graph classes to
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Figure 4.8: Comparison of drawings obtained from algorithms implemented in OGDF. The

number of crossings of a drawing for each graph in the class indicated on the x-axis clustered

by the algorithms. Outliers have been removed.
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Figure 4.9: Advantages of pairs of algorithms.

each other, the plot indicates that the drawings of graphs in the class Triangulation+X

computed by energy-based algorithms tend to have a larger number of crossings in

comparison to the remaining classes.

The observations drawn from Table 4.2 and Figure 4.8 neglect the fact that the

algorithms compute drawings of the same graphs, i.e., we are able to directly compare

the number of crossings of the drawings. The concept of advantages of one set of

drawings over another set of drawings introduced in Section 3 uses the mapping

between the drawings to compare the drawings. Note that the following advantages

are not signi�cant. Figure 4.9 shows the advantages of the algorithms on the x-axis

over the algorithms on the y-axis. For example, Stress has an advantage of 3.7 over

DH, for p = 0.75, i.e., the number of crossings of at least 75% of the drawings computed

by DH are larger by a factor of 3.7 than in the corresponding drawings computed by

Stress. For p = 0.5, we observe that Stress has an advantage over all algorithms. The
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advantages in between 1.0 and 1.2. We conclude that Stress computes drawings with a

slightly smaller number of crossings in comparison to the other energy-based layouts.

Thus, in the following we use Stress as a representative for the class of energy-based

algorithms.

4.4.4 Vertex Movement

For the vertex movement approach described in Section 4.2.1 we are free to choose a

vertex order. In this section, we evaluate how the choice of the vertex order a�ects the

number of crossings of the �nal drawings.

In Section 4.2.1 we introduced three possibilities to count the number of crossings

for a vertex v of G. Moreover, we can decide to order the vertices in ascending or in

descending order. Table 4.3 lists all con�gurations of the vertex movement approach

that we evaluate. It contains additionally a random permutation of the vertex set.

Table 4.3: Di�erent possibilities to order the vertices.

Name Counting for v ∈ V Order

Asc_Log cr
Log
(v) ascending

Asc_Sum cr
Sum
(v) ascending

asc_Sq cr
Sq
(v) ascending

Desc_Log cr
Log
(v) descending

Desc_Sum cr
Sum
(v) descending

Desc_Sq cr
Sq
(v) descending

Rnd random

As in the evaluation of the energy-based layouts we use the descriptive statistics

in Table 4.4, the plot in Figure 4.10 and the advantages (Figure 4.11) to compare

the con�gurations of the vertex-movement approach to each other. The statistics in

Table 4.4: Descriptive statistics of the number of crossings obtained by the vertex-movement

approach with di�erent vertex orders.

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

Asc_Log 282.35 1 44.00 214.5 495.50 1147

Asc_Sum 303.83 1 47.00 233.0 504.50 1303

Asc_Sq 310.28 1 46.75 246.5 510.25 1184

Desc_Log 182.28 1 32.75 167.5 267.25 1074

Desc_Sum 176.24 1 29.00 157.5 258.75 970

Desc_Sq 174.46 1 30.75 157.0 266.00 910

Rnd 238.54 1 35.75 185.5 387.00 1070
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Figure 4.10: Comparison of drawings obtained from di�erent con�gurations of the vertex

movement approach. The number of crossings of a drawing for each graph in the class indicated

on the x-axis clustered by the con�gurations. Outliers have been removed.
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Figure 4.11: Advantages of pairs of con�gurations of the vertex movement approach.

Table 4.4 and the plot in Figure 4.10 indicate that con�gurations that move the vertices

in ascending order (Asc_?) compute drawings with a considerably higher number

of crossings compared to con�gurations using a descending order (Desc_?) or the

random order (Rnd).

The plots of the advantages in Figure 4.11 con�rm this observation for p = 0.75.

For plots do not show a clear preference for either Desc_Sum con�guration or the

Desc_Sq con�guration. For p = 0.5 both have an advantage of 1.0 over Desc_Log and

for the p = 0.25, the corresponding advantage is 1.2.

In order to reduce the complexity of the rest of the evaluation, we choose a single

con�guration of the vertex movement approach. Therefore, we consider the average

number of crossings as a tie breaker. Since the Desc_Sq computes the smallest number

of crossings with respect to this statistic, we use this con�guration as the representative

for the vertex-movement approach.
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Table 4.5: Descriptive statistics of the number of crossings obtained by the vertex-insertion

approach with di�erent vertex orders.

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

Asc_Log 126.18 1 37.00 138.5 185.25 1217

Asc_Sum 131.16 1 34.00 142.0 188.00 1187

Asc_Sq 140.57 1 37.00 155.5 204.00 1316

Desc_Log 406.32 1 76.75 310.0 778.50 1905

Desc_Sum 386.56 1 72.75 276.5 739.75 1712

Desc_Sq 360.68 1 62.00 252.0 680.25 1652

Rnd 237.01 1 55.50 227.5 369.25 1080

4.4.5 Vertex Insertion

Similar to the vertex-movement approach, the order in which we remove and insert

vertices in the vertex-insertion approach (Section 4.2.2), can a�ect the number of cross-

ings of the �nal drawing. In this section, we evaluate the vertex-insertion approach

with di�erent vertex orders (see Table 4.3). Note that in case of an ascending order

(Asc_?) the vertices are removed in this order and inserted in the reversed (descending)

order. Vice versa, in an descending order (Desc_?) the vertices are removed in de-

scending order and reinserted in ascending order. Preliminary experiments indicated

that reinserting the vertices in same order instead of the reversed order yields a larger

number crossings. In order to reduce the complexity of the evaluation, we decided to

omit these con�gurations.

The descriptive statistics in Table 4.5 and the plot in Figure 4.12 show that the de-

scending vertex orders yield drawings with a considerably higher number of crossings

compared to the ascending orders. The statistics indicate that the vertex insertion

approach with the Asc_Log order computes drawings with the smallest number of

crossings. The advantages in Figure 4.13 con�rm this observation. For p = 0.75,

Asc_Log the advantage ∆ over any other con�guration C is higher or equal to the

corresponding advantage of Asc_Sum and Asc_Sq over C . Moreover, for p = 0.25 the

Asc_Log order has an advantage of 1.2 and 1.3 over Asc_Sum and Asc_Sq, respec-

tively. On the other hand, Asc_Sum and Asc_Sq each have only an advantage of 1.1

over Asc_Log. Hence, for the following evaluations we consider the vertex-insertion

approach with the Asc_Log order.

4.4.6 Edge Insertion

The edge insertion approach as described in Section 4.2.3 has several degrees of

freedom: (i) the computation of the maximal planar subgraph, (ii) the initial drawing

of the maximal planar subgraph, (iii) the order in which the edges are reinserted,
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Figure 4.12: Comparison of drawings obtained from di�erent con�gurations of the vertex

insertion approach. The number of crossings of a drawing for each graph in the class indicated

on the x-axis clustered by the con�gurations. Outliers have been removed.
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Figure 4.13: Advantages of pairs of con�gurations of the vertex insertion approach.

and (iv) the order in which the vertices are moved after each edge insertion. We

use the PlanarSubgraphFast algorithm [JLM98] implemented in OGDF in order

to compute a large planar subgraph and the PlanarStraightLayout method in

order to compute an initial drawing of the planar subgraph. In both cases we use the

default con�guration of OGDF. We reinsert the edges in the order they are returned by

the PlanarSubgraphFast routine. The con�guration EP only moves the endpoints

of an edge. The con�guration EI moves in addition to the endpoints the crossed

neighborhood of the newly inserted edge e , i.e., vertices that are incident to an edge

that crosses e . In Section 4.4.4 we selected the Desc_Sq order as a representative for

the vertex-movement approach. Hence, we use this vertex order to move the crossed

neighborhood of an edge.

39



Chapter 4 Geometric Crossing Minimization

Since EI moves a superset of the vertices of EP, we expect that EI further reduces the

number of crossings, compared to EP. Table 4.7, the plots in Figure 4.14 and Figure 4.15

con�rm this observation.

In comparison to the conference version [Rad+18] of the chapter, we reimplemented

the geometric operation of moving a single vertex and the heuristics (VM, VI, EI, EP).

In the experiments on the old code base, we observed that the edge insertion heuristic

with the additional movements of subgraphs introduced a signi�cant number of new

crossings. Since moving entire subgraphs did not seem promising, we decided to not

reimplemented this particular heuristic.

4.4.7 Comparison of our Heuristics.

In the following we compare our heuristics, i.e. VM, VI, EP and EI, to each other; refer to

Table 4.6. For the comparison of the heuristics to Stress and Tpl refer to Section 4.4.8

and Section 4.4.9, respectively. Table 4.7 suggests that EI computes drawings with

fewer crossings than EP, EP fewer than VI and VM. Recall that a point in Figure 4.14

corresponds to the number of crossings of one drawing computed by the algorithm

indicated by the color. The plot con�rms that the edge-insertion approaches compute

drawings with fewer crossings than VI and VM. Moreover, VI computes drawings

of the Triangulation+X graphs with fewer crossings then VM. For p = 0.75, we

observe that EI and EP compute drawings with considerably fewer crossings than VI

and VM; refer to Figure 4.15.

We now consider the graph classes independently. This enables us to draw state-

ments at a signi�cance level of α = 0.05. The hypothesis are generated in two phases

as described in Chapter 3, i.e., we determine a maximum advantage ∆ for each pair

of algorithms and each p ∈ [0.25, 0.5, 0.75] on a test set that contain 50% of each

benchmark set. On the remaining 50% of graphs we check whether there is a signif-

icant advantage of 0.75 · ∆ for the respective algorithms. Each graph is assigned to

either the test or the veri�cation set uniformly at random. The plots for the North,

Rome, Community and Triangulation+X graphs are given in Figure 4.16 Figure 4.17,

Figure 4.18 and Figure 4.19, respectively. If the background color of a cell is blue, it

indicates the advantage in this cell is signi�cant. Otherwise, we were not able to reject

the Null-Hypothesis at a signi�cance level of α = 0.05.

For the Triangulation+X graphs only EI has a signi�cant advantage over both

VI and VM, for p = 0.75. Thus, for a Triangulation+X graph selected uniformly at

random it is unlikely that the probability that EI has an advantage over VI (VM) is less

than p = 0.75. For p = 0.5, EP has a signi�cant advantage of 1.8 and 1.0 over VM and

VI, respectively.

Only for Triangulation+X graphs and the Community graphs, EI has a signi�cant

advantage of 1.0 over EP, for p = 0.75. For p = 0.5, EI has an advantage of 1.0, on the
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Table 4.6: Con�guration of the reference algorithms.

Algorithm Vertex Order

VM Vertex Movement Desc_Sq

VI Vertex Insertion Asc_Log

EP Edge Insertion Endpoints

EI Edge Insertion EP + Crossed Neighbors (Desc_Sq)

Stress ogdf::StressMinimization

Tpl ogdf::SubgraphPlanarizer

Table 4.7: Descriptive statistics of the number of crossings of drawings computed by the �nal

con�guration of the heuristics, Stress and Tpl.

Algorithm Mean Min .25-Percentile Median .75-Percentile Max

Tpl 43.30 1 7.00 29.0 66.25 610

EI 55.43 1 9.00 41.0 87.25 601

EP 69.41 1 9.00 49.0 107.75 630

VI 126.18 1 37.00 138.5 185.25 1217

VM 174.46 1 30.75 157.0 266.00 910

Stress 155.51 1 32.75 82.5 288.75 1220

Rome graphs. Note that in contrast to p = 0.25 this advantage is not signi�cant. For

the North graphs and p = 0.25, EI has a signi�cant advantage of 1.0 over EP.

Comparing VI and VM on the union of all benchmark sets, VI has an advantage

of 1.0 over VM for p = 0.5; see Figure 4.15. For p = 0.25, VI has an advantage of

1.6 over VM and VM has an advantage of 1.2 over VI. Considering the graph classes

independently, we see that on the North, Rome and Community graphs, VM has a

small advantage over VI again for p = 0.25. For the North and Community graphs

these advantages are signi�cant. On the Triangulation+X graphs VI computes

drawings with considerably fewer crossings than VM, i.e., for p = 0.75 VI has an

signi�cant advantage of 1.4 over VM.

Overall, we conclude that the edge-insertion approach (EI and EP) computes draw-

ings with signi�cantly fewer crossings than its competitors. It For p = 0.25 this

advantage increases to 1.2. depends on the graph class, whether the additional move-

ment of vertices (EI) signi�cantly decreases the number of crossings compared to EP.
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Figure 4.14: Comparison of the �nal con�gurations of each heuristic, Stress and Tpl. The

number of crossings of a drawing for each graph in the class indicated on the x-axis clustered

by the heuristic. Outliers have been removed.
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4.4.8 Comparison to Stress.

We compare the drawings computed by our heuristics with drawings computed by

stress minimization (Stress), i.e., to an algorithm commonly used to compute straight-

line drawings of general graphs. In Section 4.4.3 showed that this algorithm computes

drawings with fewer crossings than other energy-based heuristics implemented in

OGDF. We con�gured Stress to stop after convergence, thus we can not expect Stress

to compute drawings with a smaller number of crossings if we increase the computing

time.

Table 4.7 suggests that Stress computes drawings with at least a factor two more

crossings than EI and EP. A comparison between Stress and VI is inconclusive. On

average VI computes drawings with a smaller number of crossings; on the other hand,

Stress has a smaller median value.

In addition to the above observations, Figure 4.14 shows that on a large subset of

the Triangulation+X graphs Stress computes drawings with a considerably larger

amount of crossings than EI, EP and VI. On the Community graphs Stress achieves

a smaller number of crossings than VI and VM. For the remaining graph classes the

plot provides no clear distinction between VI, VM and Stress. Although Table 4.7 and

Figure 4.14 do not provide a conclusive distinction between Stress and VM, Figure 4.15

shows that Stress has an advantage of 1.1 over VM, for p = 0.5.

The advantages in Figure 4.15 show that Stress computes drawings with a factor

of 2.0 and 1.6 more crossings than EI and EP, respectively, for p = 0.75. Further,

considering only the Community graphs (Figure 4.18), EI has a signi�cant advantage

of 1.2 over Stress, for p = 0.75. For the Triangulation+X graphs, the advantage

increases to 2.2. We conclude that the edge-insertion approach computes drawings

with signi�cantly fewer crossings than Stress.

4.4.9 Comparison to Tpl.

We investigate how close the number of crossings in drawings computed by EI are

to the number of crossings in topological drawings. Note that Tpl as well as EI start

from a large planar subgraph and iteratively insert the remaining edges. The drawings

obtained by Tpl are not necessarily realizable as straight-line drawings with the same

number of crossings.

Table 4.7 shows that the maximum number of crossings computed by EI is smaller

than the corresponding number computed by Tpl. The Tpl approach iteratively inserts

edges into a planar graph. After each edge insertion the crossings are replaced by

degree four vertices. This �xes the crossings for future edge insertions. Our edge

insertion approach (EI) at least moves the vertices v incident to a new edge e . Since

the vertex movement minimizes the number of crossings of all edges incident tov , it is

possible that two edges that cross in Γ do not cross in Γ+e . Apparently, this �exibility
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Figure 4.20: The running time of each algorithm as a function of the running time of EP, i.e.,

each data point (tx , ty ) corresponds to graph G and an algorithm A, where tx and ty is the

running time of EP and A on G, respectively. We removed outliers to increase readability.

helps in some cases to �nd drawings with fewer crossings compared to Tpl. Indeed

there are 60 out of 400 instances in which the number of crossings computed by EI

is smaller or equal to the number of crossings computed by Tpl. On 35 instances EI

achieves a strictly smaller number of crossings than Tpl.

For at least 75% of graphs Tpl has an advantage of 1.1 over EP, see Figure 4.15. For

the same number of graphs, Tpl does not have an advantage over EI. On the other hand,

there is a subset containing at least 25% of graphs such that Tpl has an advantage of

1.5 over EI, and 1.8 over EP. Considering the Community and the Triangulation+X

graphs, Tpl has a signi�cant advantage over all other algorithms for p = 0.75, but the

advantage over EI is only 1.0.
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Table 4.8: Descriptive statistics of the running time in seconds per graph class. Percentile is

abbreviated with Perc.

Algorithm Mean Min .25-Perc. Median .75-Perc. Max

North

Tpl 0.90 < 0.01 < 0.01 0.01 0.16 42.07

EI 35.77 0.04 0.46 2.61 30.64 934.79

EP 4.37 0.01 0.10 0.57 4.60 95.53

VI 1.49 0.02 0.17 0.69 2.09 9.23

VM 3.86 0.04 0.32 1.48 5.87 29.60

Rome

Tpl 0.06 < 0.01 0.01 0.03 0.08 0.55

EI 10.86 0.20 1.14 4.99 15.81 61.11

EP 2.12 0.07 0.32 1.11 2.94 10.67

VI 5.62 0.09 0.66 1.85 3.24 178.40

VM 4.20 0.27 1.12 2.70 6.19 15.31

Community

Tpl 0.24 0.04 0.13 0.20 0.29 0.90

EI 50.81 24.66 38.80 50.41 61.11 88.73

EP 10.28 6.58 8.26 10.43 11.64 20.29

VI 27.40 7.05 8.60 10.25 17.53 514.47

VM 21.24 17.34 20.10 21.27 22.26 25.61

Tri. + X

Tpl 0.67 0.10 0.40 0.57 0.83 2.79

EI 391.40 200.23 348.75 393.31 428.81 566.14

EP 52.20 22.23 45.28 50.56 60.47 89.74

VI 5.56 4.98 5.39 5.53 5.71 6.52

VM 34.17 31.28 33.06 34.06 34.99 50.46
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4.4.10 Running Time

In this section we analyze the running time of our algorithms. We abstain from a

comparison to Stress, since Stress is very well engineered and requires at most 10
−2

seconds per instance on our graphs.

We compare the remaining algorithms listed in Table 4.6. Table 4.8 shows several

statistics of the running time grouped by graph class. Figure 4.20 shows the running

time of each instance for all graph classes. Since the running time of Tpl is less than

one second for most instances, compare Table 4.8, we omit these measurements in

Figure 4.20 to increase readability. A data point pG below the green diagonal indicates

that the algorithm that corresponds to pG uses less time to �nish on the graph than

EP. For example, Figure 4.20d shows that there are many instances where VM and VI

consume less time than EP. On the other hand, on every Triangulation+X instance,

the running time of EI is considerably higher. Note that on the Triangulation+X

graphs, EI only has a small advantage over VI; compare Figure 4.19. On the other hand,

VI is signi�cantly faster on this graph class.

The observation that EI has the longest running time, is true for all graph classes.

Recall that EI moves a superset of vertices compared to EP. Thus, this observation

is expected. Moreover, the �gures show that the edge-insertion approach that only

moves endpoints of an edge (EP) and VI pro�t from the incremental growth of the

drawing, whereas the vertex-movement approach has to deal with the entire graph in

each iteration.

4.5 Conclusion

In this chapter we introduced several heuristics that are based on moving a vertex to its

crossing minimal position. This position can be computed in O((kn +m)2 log(kn +m))
time. Our evaluation in Section 4.4 shows that the approach yields drawings with a

smaller number of crossings in comparison to the well-established stress minimization

algorithm.

The edge-insertion approach in combination with the crossed neighborhood strategy

computes drawings with the smallest number of crossings. We compared our heuristic

to an approach computing topological drawings with a small number of crossings.

Our experimental evaluation showed that there is only a relatively small di�erence

between the number of crossings. Especially, we could show that we are able to match

the number of crossings in about 15% of our instances. In Chapter 5 we engineer the

approach to cope with larger instances.
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We consider the minimization of edge-crossings in geometric drawings of graphs

G = (V ,E), i.e., in drawings where each edge is depicted as a line segment. The

respective decision problem is NP-hard [Bie91]. Crossing-minimization, in general,

is a popular theoretical research topic; see Vrt’o [Vrt14]. In contrast to theory and

the topological setting, the geometric setting did not receive a lot of attention in

practice. The approach introduced in Chapter 4 is limited to the crossing-minimization

in geometric graphs with less than 200 edges. The described heuristics base on the

primitive operation of moving a single vertex v to its crossing-minimal position, i.e., a

position in R2
that minimizes the number of crossings on edges incident to v .

In this chapter, we introduce a technique to speed-up the computation by a factor of

20. This is necessary but not su�cient to cope with graphs with a few thousand edges.

In order to handle larger graphs, we drop the condition that each vertex v has to be

moved to its crossing-minimal position and compute a position that is only optimal

with respect to a small random subset of the edges. In our theoretical contribution,

we consider drawings that contain for each edge uv ∈ E and each position p ∈ R2

for v o(|E |) crossings. In this case, we prove that with a random subset of the edges

of size Θ(k logk) the co-crossing number of a degree-k vertex v , i.e., the number of

edge pairs uv ∈ E, e ∈ E that do not cross, can be approximated by an arbitrary but

�xed factor δ with high probability. In our experimental evaluation, we show that the

randomized approach reduces the number of crossings in graphs with up to 12 000

edges considerably. The evaluation suggests that depending on the degree-distribution

di�erent strategies result in the fewest number of crossings.

This chapter is based on joint work with Ignaz Rutter [RR19].

5.1 Introduction

The minimization of crossings in geometric drawings of graphs is a fundamental graph

drawing problem. In general the problem isNP-hard [Bie91, GJ83] and has been stud-

ied from numerous theoretical perspectives; see Vrt’o [Vrt14]. Until recently only the

topological setting, where edges are drawn as topological curves, has been considered

in practice [Buc+13, CH16, GMW05]. In Chapter 4 we describe geometric heuristics

that compute straight-line drawings of graphs with signi�cantly fewer crossings com-

pared to common energy-based layouts. One of the heuristics is the vertex-movement

approach that iteratively moves a single vertex v to its crossing-minimal position, i.e., a
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position p? so that crossings of edges incident to v are minimized. Unfortunately, the

worst-case running time to compute this position is super-quadratic in the size of the

graph as the following theorem states.

Theorem 5.1 (Theorem 4.2 in Chapter 4). The crossing-minimal position of a degree-k
vertex v with respect to a straight-line drawing Γ of a graphG = (V ,E) can be computed

in O((kn +m)2 log(kn +m)) time, where n = |V |,m = |E |.

This is not only a theoretical upper bound on the running time but is also a limitation

that has been observed in practice. The implementation we used previously requires

considerable time to compute drawings with few crossings. For this reason we were

only able evaluate our approach on graphs with at most 200 edges. For example, on

a class of graphs that have 64 vertices and 196 edges our implementation already

required on average about 35 seconds to compute a drawing with few crossings.

Energy-based methods are common and well engineered tools to draw any graph.

For an overview we refer to [Kob13]. For example, the aim of Stress Majorization (or

simply Stress) is to compute a drawing such that the Euclidean distance of each two

vertices corresponds to their graph-theoretical distance [GKN05]. The algorithm has

been engineered to handle graphs with up to 10
6

vertices and 3 · 10
6

edges [MNS18].

Kobourov [Kob13] claimed that Stress tends to crossing-free drawing for planar

graphs. In the experimental evaluation in Chapter 4 we demonstrated for varied set

of graph classes that we are able compute drawings with signi�cantly less crossings

than drawings computed by Stress.

Fabila-Monroy and López [FL14] introduced a randomized algorithm to compute a

drawing of Kn with a small number of crossings. Many best known upper bounds on

the rectilinear crossing number ofKn , for 44 ≤ k ≤ 99, are due to this approach [Aic19].

The algorithm iteratively updates a set P of n points, by replacing a random point

p ∈ P by a random point q that is close to p, if q improves the number of crossings.

Since the number of crossings of Kn is in Θ(n4), the bottleneck of their approach is the

running time for counting the number of crossings induced by P . A similar randomized

approach has been used to maximize the smallest crossing angle in a straight-line

drawing; compare Chapter 7 and [Bek+18]. The approach iteratively moves vertices

to the best position within a random point set.

Contribution. The main contribution of this chapter is to engineer the vertex-

movement approach for the minimization of crossings in geometric drawings described

in Chapter 4 to be applicable on graphs with a few thousands vertices and edges.

1. In Section 5.3 we introduce so-called bloated duals of line arrangements, a combi-

natorial technique to construct a dual representation of general line arrange-

ments. In our application this results in an overall speed-up of about a factor of
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u1

v

u2

e f?

Figure 5.1: The black, blue and red segments show the arrangement A(Γ,v) of the black

drawing Γ. The blue and red region show the complement of the visibility regions of u
1

and

u
2
, respectively, and the edge e . The green region is crossing minimal.

20 in comparison to the recent implementation. This speed-up is necessary but

not su�cient to handle graphs with a few thousands vertices and edges.

2. In Section 5.4 we demonstrate that taking a small random subset of the edges is

su�cient to compute drawings with few crossings. Moreover, in Section 5.4.1

we prove that under certain conditions the randomized approach is an approxi-

mation of the co-crossing number of a vertex, with high probability.

3. Based on the insights of the evaluation in Section 5.4.2, we introduce a weighted

sampling approach. A comparison to a restrictive approach of sampling points

suggests that the degree-distribution of the graph is a good indicator to decide

which approach results in fewer crossings.

4. Overall, our experimental evaluation shows that we are now able to handle

graphs with 12 000 edges, which are 60 times more than the graphs that have

been considered in the evaluation in Chapter 4.

5.2 Preliminaries

We repeat some notation from Chapter 4. Let Γ be a straight-line drawing of a G =
(V ,E). Denote by N (v) ⊆ V the set of neighbors of v and by E(v) ⊆ E the set of edges

incident to v . For a vertex v ∈ V , denote by Γ[v 7→ p] the drawing that is obtained

from Γ by moving the vertex v to the point p. We denote the number of crossings

in a drawing Γ by cr(Γ), the number of crossings on edges incident to v by cr(Γ,v),
and we refer with cr(Γ, e, f ) to the number of crossings on two edges e and f in Γ,

i.e., cr(Γ, e, f ) ∈ {0, 1} if e , f . For a point u and a segment e , denote byVR(u, e) the

visibility region of u and e , i.e., the set of points p ∈ R2
such that the segment up and

e do not intersect. Moreover, let BD(u, e) be the boundary ofVR(u, e). Let A(Γ,v)
be the arrangement over all boundaries BD(u, e) for each neighbor u ∈ N (v) of v
and each edge e ∈ E \ E(u); see Figure 5.1. The arrangement has the property that
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two points p and q in a common cell of A(Γ,v) induce the same number of crossings

for v , i.e., cr(Γ[v 7→ p],v) = cr(Γ[v 7→ q],v); see Lemma 4.1. Thus, the computation

of a crossing minimal position p? reduces to �nding a crossing-minimal region f ? in

A(Γ,v).

For our experiments, we used two di�erent compute servers. Both systems ran

with an openSUSE Leap 15.0 operating system. All algorithms were compiled with

g++ version 7.3.1 with optimization mode -O3. System 1 was used for running time

experiments, i.e., for the experiments evaluated in Section 5.3.1 and in Section 5.4.2.

System 2 is used for the experiments evaluated in Section 5.4.3.

System 1 Intel Xeon(tm) E5-1630v3 processor clocked at 3.7 GHz, 128 GB RAM.

System 2 Two Intel Xeon(tm) E5-2670 CPU processors clocked at 2.6 GHz, 64 GB

RAM.

5.3 E�icient Implementation of the Crossing-Minimal

Position

The vertex-movement approach iteratively moves a single vertex to its crossing-

minimal position. The running time of the overall algorithm crucially depends on

an e�cient computation of this operation. Therefore the aim of this section is to

provide an e�cient implementation of the crossing-minimal position of a vertex. The

implementation used for the evaluation in Chapter 4 heavily relies on CGAL [The17],

which follows an exact computations paradigm and uses exact number types to, e.g.,

represent coordinates and intermediate results. This helps to ensure correctness but

considerably increases the running time of the algorithms. We introduce an approach

to compute the crossing-minimal position that drastically reduces the usage of exact

computations.

Computing a crossing-minimal position of a vertex v is equivalent to computing

a crossing-minimal region f ? in the arrangement A(Γ,v). The region f ? of a vertex

v can be computed by a breadth-�rst search in the dual graph A(Γ,v)?. Thus, the

time-consuming steps to compute f ? are to construct the arrangement A(Γ,v) and

then to build the dual A(Γ,v)?. Instead of computing the dual A(Γ,v)? we construct a

so-called bloated dual A(Γ,v)+. The advantage of this approach is that it su�ces to

compute the set of intersecting segments in A(Γ,v) to construct A(Γ,v)+ and it is not

necessary to compute the arrangement A(Γ,v) itself, i.e., the exact coordinates of each

intersection.

Let S be a set of line segments and let A be the arrangement of S . A bloated dual of

A is a graph A+ that has the following properties (compare Figure 5.2a):

(i) each edge e incident to a face f corresponds to a vertex v
f
e in A+,
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Figure 5.2: (a) Bloated dual A+ (blue) of an arrangement A (black). Inserting edges dual to a

segment s (b) and within a face (c).

(ii) if two distinct segments s, s ′ ∈ S of f have a common intersection on the boundary

of f , then v
f
s v

f
s ′ ∈ E(A

+), and

(iii) for two distinct faces f ,д sharing a common segment s , there is an edge v
f
s v

д
s ∈

E(A+).

Note that given a crossing-minimal face and v
f
s

0

, the geometric representation of f
has to be computed in order to compute a crossing-minimal position p ∈ f . Further a

vertex v
f
s

0

belongs to a cycle v
f
s

0

,v
f
s

1

, . . .v
f
sk . Then, the geometric representation of the

boundary of f can be computed by intersecting the segments si and si+1
, where we set

k +1 = 0. In the following, we will show that it is su�cient to know the order in which

the segments in S intersect to construct the bloated dual. Thus, exact number types

only have to be used to determine the order of two segments whose intersections with

a third segment s have a small distance on s .

We construct the bloated dual of A in two steps. First, we insert all vertices v
f
s ,v

д
s

and the corresponding edge v
f
s v

д
s . In the second step, we insert the remaining edges

v
f
s v

f
s ′ within a face f . For a compact description we assume that no intersection point

of two segments is an endpoint of a segment. We de�ne the source of s and target of

s to be the lexicographically smallest and largest point on s , respectively. We direct

each segment s from its source to its target.

Let p
1
,p

2
, . . . ,pl be the intersection points on a segment s in lexicographical order.

These intersection points correspond to a set of left faces f L
1
, f L

2
, . . . , f Ll+1

and to a set

of right faces f R
1
, f R

2
, . . . , f Rl+1

, such that f Li and f Ri share parts of their boundary; see

Figure 5.2b. Thus, we can associate a set of vertices vLi ,v
R
i , 2 ≤ i ≤ l + 1, with s , and

add the edges vLi v
R
i to A+. Note that only the order and not the actual coordinates

of the points p
1
, . . . ,pl has to be known to insert the edges. Thus, given the set of

segments that intersect s , an exact number type is only necessary to determine the

order of two segments si and sj whose intersection points pi and pj on s have a small

distance.
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Figure 5.3: Comparing the running time of two approaches (orange Precise, blue Bd) to

compute the crossing minimal region. Each point corresponds to a graph G . The x-axis shows

the number of edges of G. The y-axis depicts the running time in seconds to compute the

crossing minimal regions for all vertices of G.

We now add the remaining edges within a face f . Let S ′ = {s
1
, . . . , sk } ⊆ S be the

set of segments that intersect s in pi ; see Figure 5.2c. The two segments sL, sR ∈ S ′ that

lie on the boundary of f Li and f Ri can be determined as follows. To �nd the segment

sL , we distinguish two cases. First, assume that there exists a segment s ′ ∈ S ′ whose

source is left of s . Observe that if there is a segment s ′′ whose target is left of s , the

segment s ′′ cannot be the segment sL . Thus, we assume without loss of generality that

all sources of segments in S is are left of s . Then a segment s ′ ∈ S ′ is the segment sL

if and only if the segment s ′ and each segment s ′′ ∈ S ′ \ {s ′} form a right turn. Now

consider the case that there is no segment whose source is left of s . Then a segment

s ′ is sL if and only if the segment s ′ and each segment s ′′ ∈ S ′ \ {s ′} form a left turn.

The segment sR can be determined analogously.

Implementation Details. We give some implementation details which allow us

to e�ciently implement the construction of the bloated dual. We use the index of a

vertex to decide whether it is left or right of s , i.e., vertices with an odd index are left

of s and vertices with an even index are right of s . The fact that each vertex of A+

has degree at most 3 allows us to represent A+ as a single array B of size 3n, where n
is the number of vertices of A+. The vertices incident to a vertex vi occupy the cells

B[3i],B[3i + 1] and B[3i + 2]. Moreover, each pair of segments in S can be handled

independently to construct the bloated dual. This enables a parallelization over the

segments in S .

5.3.1 Evaluation of the Running Time

In this section, we compare the running time of the two approaches to compute the

crossing-minimal region of a vertex. We refer with Precise to the approach that uses

CGAL to compute the crossing minimal region and with Bd to the approach based
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Figure 5.4: The x-axis shows the vertex-degree and the y-axis the number of intersecting

edges in the arrangement A(Γ,v). The y-axis is in log-scale.

on the bloated dual. In order to compute all intersecting segments, we use a naive

implementation of a sweep-line algorithm [BO79]. In this approach all segments within

a speci�c interval are pairwise checked for an intersection. This has the advantage

that the computation is independent of the coordinates of the intersection.

The experimental setup is as follows. Given a drawing Γ of a graph G, we are

interested in the running time of moving all vertices of a graph to their crossing-

minimal positions. Therefore, we measure the running time of computing the crossing-

minimal regions of all vertices. In order to guarantee the comparability of the two

approaches, we use the same vertex order and only compute the crossing-minimal

region but do not update the positions of the vertices. We use the same set of benchmark

graphs used in Chapter 4: North
1
, Rome

1
, graphs that have Community structure,

and Triangulations on 64 vertices with an additional 10 random edges. For each

graph class, 100 graphs were selected uniformly at random. We use the implementation

of Stress [GKN05] provided by Ogdf [Chi+13] (snapshot 2017-07-23) to compute an

initial layout of the graphs.

The plots in Figure 5.3 shows the results of the experiments. Each point in the plot

corresponds to the running time of computing all crossing-minimal region of a single

graph. The plot shows that the Bd implementation is considerably faster than the

Precise implementation. For each graph class, we achieve on average a speed-up of at

least 20. The minimum speed-up on the North graphs is 8. For each graph class, the

speed-up is at least 18 for at least 75 out of 100 instances.

5.4 Random Sampling

The worst-case running time of computing the crossing-minimal region of a vertex v
is super-quadratic in the size of the graph; see Figure 5.1. Figure 5.4 shows the number

of intersecting segment in the arrangement A(Γ,v) compared to the vertex-degree of

1
http://graphdrawing.org/data.html
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v , for vertices of three selected graphs with at most 2 133 edges, compare Table 5.1. For

these graphs the arrangement already contains up to 440 685 519 intersecting segments.

Indeed, we were not able to compute the number of intersections for all vertices of

the graph c.metabolic, since the algorithm ran out of memory �rst. Due to the high

number of intersections in graphs with a high number of edges or a large maximum

vertex-degree, it is for these graphs infeasible to compute a crossing-minimal position

of a vertex. This motivates the following question: Is a small subgraph of G su�cient

to considerably reduce the number of crossings in a given drawing?

To address this question, we follow the vertex-movement approach. Let Γ
0

be a

drawing of G and let v
1
,v

2
, . . . ,vn be an ordered set of the vertices V of G. For each

vertex vi we obtain a new drawing Γi from the drawing Γi−1
by moving vi to a new

position p?i . To compute the new position we consider a primal sampling approach,

i.e., a sampling of points in the solution space R2
, and a dual sampling approach, i.e.,

a sampling of edges that induce constraints to the solution space.

More formally, we consider the following approach to compute a new position

of a single vertex vi . Let Si ⊂ E be a uniform random subset of the edges of G
and let V (Si ) ⊂ V be the vertices that are incident to an edge in Si . The graph

G |Si = (V (Si ) ∪ N (vi ) ∪ {vi }, Si ∪ E(vi )) induces a drawing Γ |Si in Γi−1
. Let Ri be the

crossing-minimal region of vi with respect to the drawing Γ |Si . Recall that for Si = E
the region Ri has the property that cr(Γ |Si [vi 7→ p],vi ) = cr(Γ |Si [vi 7→ q],vi ) for any

two points p,q ∈ Ri , compare Section 5.2. If Si is a strict subset of E, then Ri does not

necessarily have this property anymore. For this reason, let Pi ⊂ Ri be a set of uniform

random points and let p?i ∈ Pi ∪ {p
′
i } be the point that minimizes cr(Γ[v 7→ p?i ],vi ),

where p ′i is the position of vi in Γi−1
.

This remainder of this section is organized as follows. First, we analyze the dual

sampling from a theoretical perspective (Section 5.4.1), followed by an experimental

evaluation that compares the primal to the dual sampling (Section 5.4.2). Finally, based

on the insights from this evaluation, we introduce in Section 5.4.3 a weighted sampling

approach that is less restrictive than the dual sampling.

5.4.1 Approximating the Co-Crossing Number of a Vertex

In this section we study the dual sampling approach, i.e., the sampling of edges,

with tools introduced in the context of the theory of VC-dimension. A thorough

introduction into the theory of VC-dimension can be found in Matoušek’s Lectures on

Discrete Geometry [Mat02]. We will prove that computing the optimal position of a

vertex with respect to a small random subset of the edges is su�cient to approximate

the (so-called) co-crossing number of a vertex v . This statement is only true for for

drawings where the edges incident to v do not have to many crossings. We will

formalize this as follows.
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For a �xed vertex v , a drawing Γ is ε-well behaved if for each point p ∈ R2
and each

vertex u ∈ N (v), the edge uv crosses at most (1− ε)|E | edges in the drawing Γ[v 7→ p].
The co-crossing number co-cr(Γ,v) of a vertex v is the number of edge pairs e ∈ E and

uv ∈ E that do not cross. We show that given an ε-well-behaved drawing Γ of a graph

G = (V ,E) and a degree-k vertex v , a random sample S ⊂ E of size Θ(k logk) enables

us to compute a position q? whose co-crossing number is a (1 − δ )-approximation of

the co-crossing number of a vertex v . Note that we are not able to guarantee that a

large co-crossing number of a vertex v implies a small crossing number of v . On the

other hand, the co-crossing number is of interest for a variety of (sparse) graph. For

example, drawings that contain many triangles are ε-well-behaved, since every line

intersects at most two segments of a triangle.

A set system is a tuple (X ,F ) with a base set X and F ⊆ 2
X

. In the following, we

assume X to be �nite. For some parameters ε,δ ∈ (0, 1], a set S ⊆ X is a relative (ε,δ )-
approximation for the set system (X ,F ) if for each R ∈ F the following inequality

holds. ���� |S ∩ R ||S |
−
|R |

|X |

���� ≤ δ max{
|R |

|X |
, ε} (5.1)

The following proposition states that, if each set R is su�ciently large, then a (ε,δ )-
approximation S approximates each R. With the help of the concept of VC-dimension,

we will show for our setting that there is a set S , whose size does not depend on the

size of G, that is an (ε,δ )-approximation and such a set S can be computed with high

probability.

Proposition 5.2. For ε,δ ∈ (0, 1], let S be an (ε,δ )-approximation of the set system

(X ,F ). If every R ∈ F has size at least ε |X | then Equation 5.1 can be rewritten as follows:

(1 − δ ) |R | ≤ |X |
|S ∩ R |

|S |
≤ (1 + δ ) |R | .

Proof. In order to proof the claim, we make a case distinction based on the size of R. We

�rst assume that |S ∩ X |/|S | < |R |/|X |. Thus, we immediately get that |X | |S ∩ R |/|S | ≤
|R | ≤ (1 + δ )|R | Moreover, the following holds | |S ∩ R |/|S | − |R |/|X | | = |R |/|X | −
|S ∩ R |/|S |. Starting from the fact S is (ε,δ )-approximation, we can do the following

transformations.

|X |

(
|R |

|X |
−
|S ∩ R |

|S |

)
≤ δ |X |max

{
|R |

|X |
, ε

}
⇔ |R | − |X |

|S ∩ R |

|S |
≤ δ max {|R | , ε |X |}

⇔ |X |
|S ∩ R |

|S |
≥ |R | − δ |R | = (1 − δ ) |R |
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In order to complete the proof, assume that |S ∩ X |/|S | ≥ |R |/|X |.

|X |

(
|S ∩ R |

|S |
−
|R |

|X |

)
≤ δ |X |max

{
|R |

|X |
, ε

}
⇔ |R | − |X |

|S ∩ R |

|S |
≤ δ max {|R | , ε |X |}

⇔ |X |
|S ∩ R |

|S |
≤ |R | + δ |R | = (1 + δ ) |R |

�

Let F |A = {R ∩ A | R ∈ F } be the restriction of F to a set A ⊆ X . A set A ⊆ X
is shattered by F if every subset of A can be obtained by an intersection of A with a

set R ∈ F , i.e., F |A = 2
A

. The VC-dimension of a set system (X ,F ) is the size of the

largest subset A ⊆ X such that A is shattered by F [VC71].

Theorem 5.3 (Har-Peled and Sharir [HS11], Li et al. [LLS01]). Let (X ,F ) be a �nite
set system with VC-dimension d , and let δ , ε,γ ∈ (0, 1]. A uniform random sample S ⊆ X
of size

Θ

(
d · log ε−1 + logγ−1

εδ 2

)
is a relative (ε,δ )-approximation for (X ,F ) with probability (1 − γ ).

For a vertex u ∈ N (v), let Euv (Γ) = {e ∈ E | cr(Γ, e,uv) = 0} denote the set of edges

that are not crossed by the edge uv in Γ. Then we have co-cr(Γ,v) =
∑
u ∈N (v)

���Euv (Γ)���.
Moreover, let Euv (p) = Euv (Γ[v 7→ p]). Then the set Fuv =

⋃
p∈R2

{
Euv (p)

}
contains

for each drawing Γ[v 7→ p] the set of edges that are not crossed by the edges uv , i.e,

Euv (p). In particular (E,Fuv ) is a set system and we will prove that it has bounded

VC-dimension. This allows us to approximate the number of edges that are not crossed

by the edge uv . We facilitate this to approximate the co-crossing number of a vertex

for ε-well behaved drawings.

Lemma 5.4. The VC-dimension of the set system (E,Fuv ) is at most 8.

Proof. Recall that that vertex u has a �xed position. Let BD(u, e) be the boundary

of the visibility region of u and the edge e ∈ E. Let A denote the arrangement of all

boundaries BD(u, e), e ∈ E. Let F be the set of faces in A. Note that by Lemma 4.1

in Chapter 4 for every two points p,q ∈ f the sets Ep and Eq of edges that have a

non-empty intersection with the edge uv when v is moved to p and q, respectively,

coincide. Hence, the set Ef ⊆ E of edges that cross the edge uv , in the drawing

obtained from Γ where v is moved to an arbitrary position in f , is well de�ned. Thus,

the number of faces |F | is an upper bound for

���Fuv |A��� for every A ⊂ E. Note that
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there may be subsets of E that are represented by more than one face. Moreover,

observe that the visibility regionVR(u, e) is the intersection of three half-planes. Let

l1

e , l
2

e , l
3

e be the supporting lines of these half-planes and let A′ be the arrangement

of lines l ie , e ∈ E. Hence, the number of faces in the arrangement A′ of 3m lines is

an upper bound for |F |, with m = |E |. The number of faces |F ′ | of A′ is bounded by

f (m) := 3m(3m − 1)/2+ 1 [Moo91]. Thus, it is not possible to shatter a set A ⊂ E if the

number of faces |F ′ | is smaller than the number of subsets of A. The largest number

for which the equality 2
m ≤ f (m) holds is between 8 and 9. Since 2

m
grows faster

than f (m), the largest set that can possibly be shattered has size at most 8. �

Due to Proposition 5.2 and Theorem 5.3 a relative (ε,δ )-approximation Su of (E,Fuv )
allows us to approximate the number of edges that are not crossed by the edge uv . In

the following we show that we can approximate the co-crossing number of a vertex

v in any drawing Γ[v 7→ p] if we are given a relative (ε,δ )-approximation Su for

each vertex u that is adjacent to v . The number |Euv (p) ∩ Su |/|Su | corresponds to

the relative number of edges in Su that are not crossed by the edge uv . Hence, the

function λ(p) = |E |
∑
u ∈U |Euv (p) ∩ Su |/|Su | can be seen as an estimation of co-cr(p) =

co-cr(Γ[v 7→ p],v).

Lemma 5.5. Let ε,δ ∈ (0, 1] be two parameters and let Γ be an ε-well behaved drawing
of G. For every u ∈ N (v), let Su be a relative (ε,δ )-approximation of the set system

(E,Fuv ). Then (1 − δ ) co-cr(p) ≤ λ(p) ≤ (1 + δ ) co-cr(p) holds for all p ∈ R2
.

Proof. Recall that co-cr(p) is equal to

∑
u ∈N (v) |Euv (p)|. Since the drawing Γ is ε-

well behaved, for every u ∈ N (v) and every p ∈ R2
we have that at least an ε-

fraction of edges is not crossed by the edge uv , i.e., |Euv (p)| ≥ ε |E |. Since Su is a

relative (ε,δ )-approximation and due to Proposition 5.2 we have that (1−δ )|Euv (p)| ≤
|E | |Euv (p) ∩ Su |/|Su | ≤ (1 + δ )|Euv (p)|. Plugging this inequality into the sum of λ(p)
proves the lemma. �

Assume that ε,δ ,γ ∈ (0, 1) are constants. Lemma 5.5 shows that k independent

samples Su of constant size approximate the co-crossing number of v . By slightly

increasing the number of samples, we can use a single set S for all neighbors u. This

reduces the running time from O(k3
logk) to O(k2

log
3 k).

Lemma 5.6. Let v be a degree-k vertex and let ε,δ ,γ ∈ (0, 1] with γ ≤ 1/k . A uni-

formly random sample S ⊆ E of size Θ
(
(log ε−1 + logγ−1)/(εδ 2)

)
is a relative (ε,δ )-

approximation the set system (E,Fuv ) with probability 1 − kγ , for each uv ∈ E.

Proof. For each vertex u ∈ N (v), we denote with Au the event that S is a relative (ε,δ )-
approximation of the set system (E,Fuv ). According to Lemma 5.4 and Theorem 5.3 the

probability P(Au ) that a uniformly random sample is a relative (ε,δ )-approximation

59



Chapter 5 Scaleable Crossing Minimization

of (E,Fuv ) is 1 − γ . The following estimate can be proven by induction using the

equalities P(A ∧ B) = P(A) + P(B) − P(A ∨ B) and P(A ∨ B) ≤ 1.

P
©­«

∧
u ∈N (v)

Au
ª®¬ ≥

∑
u ∈N (v)

P(Au ) − k + 1

Plugging in the probability for P(Au ) proves that S is a relative (ε,δ )-approximation

with probability 1 − kγ for a γ ≤ 1/k . �

With Lemma 5.5 and Lemma 5.6 at hand, we have all the necessary tools to prove

the main theorem.

Theorem 5.7. Let ε,δ ,γ ∈ (0, 1] be three constants and let G = (V ,E) be a graph with

a ε-well behaved drawing Γ and let v ∈ V be a degree-k vertex. Let p? be the position

that maximizes co-cr(Γ[v 7→ p?],v). A (1 − δ )-approximation of co-cr(Γ[v 7→ p?]) can
be computed in O

(
k2

log
3 k

)
time with probability 1 − γ .

Proof. Let γ ′ = γ · k−1
and δ ′ = δ/2. Let S ⊆ E be a uniformly random sample of size

Θ
(
(log ε−1 + logγ ′−1)/(εδ ′2)

)
. According to Lemma 5.6, for each uv ∈ E, the sample S

is a (ε,δ ′)-approximation of the (E,Fuv ) with probability 1 − kγ ′ = 1 − γ .

According to Lemma 5.5 the expected number of crossing-free edges λ(p) is a (1−δ )-
approximation of co-cr(p), i.e., (1+δ ′) co-cr(q) ≥ λ(q) ≥ (1−δ ′) co-cr(q). Let p? be the

position that maximizes co-cr(p) and let q? be the position that maximizes λ(q). Hence,

we have λ(q?) ≥ λ(p?). Observe that over δ ′ > 0 the inequality (1−δ ′)/(1+δ ′) ≥ 1−2δ ′

holds. We use this to prove that co-cr(q?) ≥ (1 − 2δ ′) co-cr(p?).

co-cr(q?) ≥
1

(1 + δ ′)
λ(q?) ≥

1

(1 + δ ′)
λ(p?) ≥

1 − δ ′

1 + δ ′
co-cr(p?) ≥ (1 − 2δ ′) co-cr(p?)

Plugging in the value δ/2 for δ ′ yields that co-cr(q?) is a δ -approximation of co-cr(p?).
Since the three parameters ε,δ ,γ are constants, the size of the sample S is in Θ(logk).
Recall that the running time to compute the crossing-minimal position of v in a

drawing Γ is O((kn +m)2 log(kn +m)) (Theorem 5.1). Thus the position q? can be

computed inO(k logk + logk)2 log(k logk + logk)) time, sincem = |S | ∈ Θ(logk) and

n ≤ 2m. The following estimation concludes the proof.

O
(
k2

log
2 k log(k logk)

)
= O

(
k2

log
2 k log(k2)

)
= O(k2

log
3 k)

�

Note that the previous techniques can be used to design a δ -approximation algorithm

for the crossing number of a vertex. But this requires drawings of graphs where at

least ε |E | edges, i.e., Ω(|E |), are crossed. This restriction is not too surprising, since

sampling the set of edges can result in an arbitrarily bad approximation for a vertex

whose crossing-minimal position induces no crossings.
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5.4.2 Experimental Evaluation

In this section we complement the theoretical analyses of the random sampling of

edges with an experimental evaluation. We �rst introduce our benchmark instances,

followed by a description of a preprocessing step to reduce trivial cases and a set of

con�gurations that we evaluate.

Benchmark Instances. We evaluate our algorithm on graphs from three di�erent

sources.

DIMACS The graphs from this classes are selected from the 10th Dimacs Implemen-

tation Challenge - Graph Partitioning and Graph Clustering [Bad+18].

Sparse MC Inspired by the selection of benchmark graphs in [MNS18], we selected a

few arbitrary graphs from the Suite Sparse Matrix Collection (formerly known

as the Florida Sparse Matrix Collection) [DH11].

k-regular For each k = 3, 6, 9 we computed 25 random k-regular graphs on 1000

vertices following the model of Steger and Wormald [SW99].

Preprocessing. Some of the benchmark graphs contain multiple connected com-

ponents. Moreover, we observed that the Stress layout introduces crossings with

edges that are incident to a degree-1 vertex. In both cases, these crossings can be

removed. Therefore, we reduce the benchmark instances so that they do not contain

these trivial cases as follows. First, we evaluate only the connected component GC of

each graph G that has the highest number of vertices. Further, we iteratively remove

all vertices of degree 1 from GC .

The vertex-movement approach takes an initial drawing of a graph as input. Note

that the experimental results in Chapter 4 showed that drawings obtained with Stress

have the smallest number of crossings compared to other energy-based methods

implemented in Ogdf. In order to avoid side e�ects, we �rst computed a random

drawing for each graph GC where each coordinate is chosen uniformly at random

on a grid of size m ×m. Afterwards we applied the Stress method implemented in

Ogdf [Chi+13] (snapshot 2017-07-23) to this drawing.

Configurations. The previously described approach moves the vertices in a

certain order. We use the order proposed in Chapter 4, i.e, in descending order

with respect to the function cr(Γ
0
,vi )

2,vi ∈ V , where Γ
0

is the initial drawing. The

computation of the new position p?i of a vertex vi depends on three parameters

(|Si |, |Pi |,K). The parameter K is a threshold on the degree ki of vi , since we observed

in our preliminary experiments, that in case that ki is large, 128GB of memory are

not su�cient to compute the crossing-minimal region. Note that in case that |Si |
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Table 5.1: Statistics for the Dimacs and Sparse MC graphs. n,m, and ∆ correspond the number

of vertices, edges and the mean vertex-degree, respectively.

n m ∆ crossings time [min]

Stress S
512

S
0
S

512
S

0

Dimacs

adjnoun 102 415 8.14 6 576 3 775 4 468 0.11 0.09

football 115 613 10.66 6 865 3 568 4 030 0.14 0.17

netscience 352 887 5.04 1 724 583 814 0.53 0.31

c.metabolic 445 2 017 9.07 113 117 55 714 63 028 11.29 2.29

c.neural 282 2 133 15.13 128 068 86 641 90 920 5.23 2.07

jazz 193 2 737 28.36 223 990 143 647 153 040 5.22 3.31

power 3 353 5 006 2.99 7 622 6 854 6 293 4.56 10.74

email 978 5 296 10.83 504 144 342 020 357 272 37.12 12.48

hep-th 4 786 12 766 5.33 836 809 546 780 638 069 72.86 78.24

Sparse MC

1138_bus 671 991 2.95 657 402 467 0.41 0.33

ch7-6-b1 630 1 243 3.95 64 055 24 928 26 055 6.54 0.79

mk9-b2 1 260 3 774 5.99 412 397 248 884 252 198 20.33 7.14

bcsstk08 1 055 5 927 11.24 455 069 342 996 344 644 67.30 18.70

mahindas 1 258 7 513 11.94 1 463 437 933 247 1 042 787 68.17 24.09

eris1176 892 8 405 18.85 1 682 458 1 030 881 1 087 605 77.09 27.33

commanche 7 920 11 880 3.00 6 332 6 239 6 146 6.52 56.75

is constant the running time to compute Ri is O((ki · n
′)2 logn′) = O(k2

i ), where

n′ = |V (S)| ∈ O(|S |). We handle vertices of degree larger than K , as follows. Let

N
1
∪ · · · ∪Nl be a partition of the neighborhood N (v) of v with l = |N (v)|/K . Further,

let u
1
,u

2
, . . . ,uk be a random order of N (v), then Nj contains the vertices ua with

j ≤ a ≤ j + K . For each j, we compute a random sample S ji and a crossing-minimal

position q?j of vertex v with neighborhood Nj with respect to S ji . The new position p?i
of vi is the position that minimizes cr(Γ[vi 7→ q?j ],vi ).

We select the same parameters for each vertex and thus denote the triple by

(|S |, |P |,K). We expect that with an increasing number |S | the number of crossings

decreases. The sample size |S | = 512, was the largest number of samples such that we

are able to compute a �nal drawing of our benchmark instances in reasonable time.

As a baseline we sample 1000 points in the plane. Thus, we evaluate the following

two con�guration, S
512
= (512, 1, 100) and S

0
= (0, 1000,∞). Finally, we restrict the

movement of a single vertex to be within an axis-aligned square that is twice the size

of the smallest axis-aligned squares that entirely contains Γ
0
.
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Figure 5.5: Number of crossings of the k-regular graphs.

Evaluation. Table 5.1 lists statistics for the Dimacs and the Sparse MC graphs.

In particular the number of crossings of the initial drawing (Stress) and the drawing

obtained by the S
512

and S
0

con�gurations. Furthermore, we report the running times

for the two con�gurations. Since we use an external library (Ogdf) to compute the

initial drawing, the reported times do not include the time to compute the initial

drawing. Note that Stress required at most 0.9 min to complete on the Dimacs graph

and 2.3 min on the Sparse MC graphs. Since the size of the arrangement A(Γ,v)
depends on the degree of v , the overall running time varies with the number of

vertices and the average degree. Compare, e.g., c.metabolic to c.neural, or mk9-b2 to

bcsstk08. Moreover, the commanche graph shows that the running time of S
0

is not

necessarily smaller than the running time of S
512

. For each point p ∈ P the number of

crossings of edges incident tov in Γ[v 7→ p] have to be counted. Since the commanche

graph contains over 11 000 edges, the S
512

con�guration with |P | = 1 is faster than

the S
0

con�guration, which has to count the number of crossings for 1 000 points.

Now consider the number of crossings in the initial drawing (Stress) and in the

drawing obtained by theS
512

con�guration. Since we move a vertex only if it decreases

its number of crossings, it is expected that the number of crossings decreases on all

graphs. For most graphs, the S
512

con�guration decreases the number of crossings by

over 30%. In case of the ch7-6-b1 and the netscience graph the number of crossings

are even decreased by over 60%. Exceptions are the bcsstk08, power and commanche

graphs with 24%, 10% and 1.4% respectively. Comparing the number crossings obtained

byS
512

to the con�gurationS
0
,S

0
results in fewer crossings only on two graphs (power,

commanche).

Observe that the power, 11138_bus, ch7-6-b1 and commanche graphs all have an

average vertex-degree of roughly 3.0. The comparison of the number of crossing

obtained by S
512

and S
0

is not conclusive, since S
0

yields fewer crossings on the power

and commanche graphs and S
512

on the remaining two. In order to be able to further
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Table 5.2: Mean Number of crossings and standard deviation of number of crossings in

drawings of the k-regular graphs computed by S
0
, S

512
and Stress.

k crossings S
0

crossings S
512

crossings Stress

mean std mean std mean std

3 10 402.64 258.90 10 043.76 285.83 12 487.96 384.04

6 169 365.52 2260.86 170 558.48 2 379.56 227 303.68 3 450.72

9 580 661.80 6333.13 584 505.16 7 393.01 774 791.92 8 461.29

study the e�ect of the (average) vertex degree we evaluate the number of crossings of

k-regular graphs. We use the plots in Figure 5.5 for the evaluation and Table 5.2 lists

the corresponding descriptive statistics. Each point (xG ,yG ) corresponds to a k-regular

graph G. The color encodes the vertex-degree. Let ΓA and ΓB be two drawings of

G obtained by an algorithm A and B, respectively. The x-value xG corresponds to

the number of crossings in ΓA in thousands, i.e., cr(ΓA)/1000. The y-value yG is the

quotient cr(ΓB)/cr(ΓA). The titles of the plots are in the form (A,B) and encode the

compared algorithms. For example in Figure 5.5a algorithm A is Stress and B is S
0
.

For example, the Stress drawings of the 3-regular graphs have on average 12 487

crossings. Drawings obtained by S
0

have on average 17% less crossings, i.e., 10 402;

compare Table 5.2. On the other hand, S
512

decreases the number of crossings on

average by 20%. For k = 6, 9, S
0

and S
512

both reduce the number of crossings by

25%. In particular, Figure 5.5c shows that for k = 6, 9 it is unclear, whether S
512

or S
0

computes drawings with fewer crossings.

5.4.3 Weighted Sampling

For some graphs, the previous section gives �rst indications that sampling a set of

edges yields a small number of crossings compared to a pure sampling of points in the

plane. In particular Figure 5.5c indicates that the edge-sampling approach does not

always have a clear advantage over sampling points in the plane. One reason for this

might be that sampling within the set of points Pi in the region Ri is too restrictive.

Observe that the region Ri is only crossing-minimal with respect to the sample S and

does not necessarily contain the crossing-minimal position p?i of the vertex vi with

respect to all edges E. On the other hand, sampling the set of points Pi in R2
does not

use the structure of the graph at all. This motivates the following weighted approach

of sampling points in R2
.

For a set S ⊂ E, let crj be the number of crossings of the vertex vi with respect to

Γ |S , whenvi is moved to a cell c j of the arrangementA(Γ |S ,vi ). Let M be the maximum

of all crj . We select a cell c j with the probability 2
M−crj /

∑
k 2

M−crk . Within a given

cell, we draw a point uniformly at random. Note that in case that there are exactly
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(a) netscience (b) power (c) hep-th

Figure 5.6: Degree distribution of a selection of graphs on which theW
512

computes a small

number of crossings.

n cells such that cell c j induces j crossings, the probability that the cell c
0

is drawn

converges to 1/2 for n →∞.

Benchmark Instances, Preprocessing & Methodology. We use the same set

of benchmark instances and the same preprocessing steps as described in Section 5.4.

In order to obtain more reliable results, we perform 10 independent iterations for each

con�guration on the Dimacs and Sparse MC graphs. Since the k-regular graphs are

uniform randomly computed, they are already representative for their class. Therefore,

we perform only single runs on these graphs.

Configuration. We compare the following three con�gurations. R
0

refers to

the uniform random sampling of points in R2
with the parameters (|S |, |P |,K) =

(0, 1000,∞), R
512

to the restricted sampling in Ri with the parameters, (512, 1000, 100),

andW
512

to the weighted sampling in R2
with the parameters (512, 1000, 100). The

con�gurations are selected such that R
0

and R
512

di�er only in a single parameter,

i.e., in the number of sampled edges. The only di�erence between R
512

andW
512

is

the sampling strategy. Note that the parameters of R
0

and S
0

coincide, but not the

parameters of S
512

and R
512

.

Evaluation. Since we executed 10 independent runs of the algorithm on each

graph, Table 5.3 lists the mean and standard deviation of the computed number of

crossings for each graph. For each graph, we marked the cell with the lowest number of

crossings in green and the largest number in blue. For each graph, we used the Mann-

Witney-U test [She03] to check the null hypothesis that the crossing numbers belong

to the same distribution. The test indicates that we can reject the null hypothesis at a

signi�cance level of α = 0.01, for all graphs with the exception of football, ch7-6-b1

and bcsstk08. First, observe that the R
0

con�guration never computes a drawing

with fewer crossings than R
512

. Including the football, ch7-6-b1 and the bcsstk08
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Table 5.3: Mean and standard deviation (std) of the number of crossings categorized by

con�guration. For each graph the con�guration with the lowest and highest number of

crossings in marked.

R
0

R
512

W
512

mean std mean std mean std

Dimacs

adjnoun 4 445.0 39.55 3 655.7 62.96 3 951.2 19.53

football 3 973.6 97.93 3 350.0 83.38 3 247.0 73.84

netscience 819.0 30.73 497.1 28.78 437.8 12.87

c.metabolic 62 170.4 760.47 56 032.3 1 227.23 62 987.9 1 907.64

c.neural 89 744.3 1 239.22 86 500.8 1 364.5 99 426.1 1 258.98

jazz 152 013.8 1 930.13 147 387.1 3 134.15 213 019.4 1 696.07

power 6 301.1 33.51 4 512.8 63.09 3 912.5 30.97

email 356 583.4 3 512.0 341 503.8 3 480.74 351 168.7 2 624.18

hep-th 640 515.2 3 443.22 515 109.1 3 983.23 392 189.7 1 551.53

Sparse MC

1138_bus 474.6 13.25 342.9 12.91 247.6 9.8

ch7-6-b1 25 874.7 356.58 25 172.4 582.48 28 443.5 960.3

mk9-b2 251 360.9 1 514.05 245 447.4 2 914.18 228 794.5 2 069.96

bcsstk08 346 404.4 3 730.3 328 182.0 6 127.69 330 213.8 1 726.01

mahindas 1 036 745.7 11 494.88 936 889.0 11 207.34 1 105 850.9 10 185.51

eris1176 1 103 184.6 21 475.11 1 037 509.5 29 877.3 1 492 423.4 25 457.93

commanche 6 135.2 13.08 5 370.3 24.75 5 979.4 14.72

66



Conclusion Section 5.5

0 500
1.0

1.1

1.2

1.3

(W_512, R_512)

3 6 9
(a)

0 500

1.1

1.2

(W_512, R_0)

3 6 9
(b)

0 500

1.00

1.05

1.10

(R_512, R_0)

3 6 9
(c)

Figure 5.7: Comparison of the number of crossings of the k-regular graphs.

graphs, eleven of the drawings with the fewest crossings were obtained from the

R
512

con�gurations. Only seven correspond to the W
512

con�guration. Table 5.1

shows that these graphs have an average vertex-degree of at most 11. Moreover, the

degree-distributions of these graphs follow the power-law. For an example, refer to

Figure 5.6. On the other hand, a few of the graphs where R
512

outperformsW
512

also

have a small average vertex-degree.

We use Figure 5.7 to compare the e�ect of the vertex-degree on the number of

crossings. The plot follows the same convention as the plots in Figure 5.5. Observe

that for each k , theW
512

con�guration computes drawings with fewer crossings than

R
512

. The improvement decreases with an increasing k . The same observation can

be made for the comparison ofW
512

to R
0

but not for the comparison for R
512

to R
0
,

which indicates that sampling the set of points Pi within the region Ri is indeed too

restrictive, at least on our k-regular graphs.

Overall our experimental evaluation shows that even with a naive uniform random

sampling of a set of points in the plane the number of crossings in drawings of Stress

can be reduced considerably. Using a random sample of a subset of the edges helps to

compute drawings with even less crossings. The mean-vertex degree and the degree-

distributions are good indicators for whether the restrictive or the weighted sampling

of the point set Pi results in a drawing with the smallest number of crossings.

5.5 Conclusion

In our previous work we showed that the primitive operation of moving a single

vertex to its crossing-minimal position signi�cantly reduces the number of crossings

compared to drawings obtained by Stress. In this chapter we introduced the concept

of bloated dual of line arrangements, a combinatorial technique to compute a dual

representation of line arrangements. In our applications of computing drawings with
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a small number of crossings, this technique resulted in a speed-up of factor of 20. This

improvement was necessary to adapt the approach for graphs with a large number

of vertices and edges. On the other hand, since the worst-case running time is super-

quadratic, this improvement is not su�cient to cope with large graphs. In Section 5.4

we showed that random sampling is a promising technique to minimize crossings

in geometric drawings. In Section 5.4.1 we proved that a random subset of edges of

size Θ(k logk) approximates the co-crossing number of a vertex v with a high high

probability. Further, we evaluated three di�erent strategies to sample a set of points in

the plane in order to compute a new position for the vertex vi . First, the evaluation

con�rms that the number of crossings compared to Stress can be reduced considerably.

Furthermore, sampling a small subset of the edges is su�cient to reduce the number of

crossings compared to a naive sampling of points the plane. Our evaluation suggests

that weighted sampling is a promising approach to reduce the number of crossings

in graphs with a low average vertex degree. Otherwise, the evaluation indicates that

restricted sampling results in fewer crossings.

The running time of the vertex-movement approach in combination with the sam-

pling of the edges mostly depends on the number of vertices. Since a single movement

of a vertex is not optimal anymore, two vertices can be moved independently. Thus,

future research should be concerned with the question whether a parallelization over

the vertex set is able to further reduce the running time while preserving the small

number of crossings. Moreover, we ask whether it is su�cient to move a small subset

of the vertices to considerably reduce the number of crossings.
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We study the problem of computing straight-line drawings of non-planar graphs with

few crossings. We assume that a crossing-minimization algorithm is applied �rst,

yielding a planarization, i.e., a planar graph with a dummy vertex for each crossing,

that �xes the topology of the resulting drawing. We present and evaluate two di�erent

approaches for drawing a planarization in such a way that the edges of the input graph

are as straight as possible. The �rst approach is based on the planarity-preserving force-

directed algorithm ImPrEd [Sim+11], the second approach, which we call Geometric

Planarization Drawing, iteratively moves vertices to their locally optimal positions in

the given initial drawing.

Our evaluation shows that both approaches signi�cantly improve the initial drawing

and that our geometric approach outperforms the force-directed approach. To the best

of our knowledge, this is the �rst approach that targets towards the computation of a

straight-line drawing that respects an arbitrary planarization.

This chapter extends work initiated in my master thesis [Rad15] and is joint work

with Thomas Bläsius and Ignaz Rutter [BRR17, BRR19].

6.1 Introduction

In his seminal paper “How to Draw a Graph” [Tut63], Tutte showed that every planar

graph admits a planar straight-line drawing. His result has been strengthened in

various ways, e.g., by improving the running time, the required area [Cha+12] or to

restrict the position of some vertices to points on a line; compare Chapter 10 and [Da

+18]. In practice, however, many graphs are non-planar and we are interested in �nding

straight-line drawings with few crossings. Unfortunately, crossing minimization for

straight-line drawings is ∃R-complete, i.e., as hard as the existential theory of the

reals [Sch10]. We thus need to relax either the condition of minimizing the number

of crossings or the requirement of straight edges. Approximating the rectilinear

crossing number seems di�cult, and for complete graphs Kn , it is only known for

n ≤ 27 [Ábr+08]. In Chapter 4 and Chapter 5, we require straight-line edges and

heuristically minimize the number of crossings. In this chapter, we follow the second

approach, i.e., we insist on a small (though not necessarily minimum) number of

crossings and optimize the straightness of the edges in the drawing.

In contrast to the geometric setting, the crossing number for topological drawings

has received considerable attention and there is a plethora of results on crossing
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minimization; see [Buc+13] for a survey. The output of these algorithms typically is a

planarization Gp of the input graph G together with a planar embedding. To pro�t

from the results in this area, we focus on the problem of drawingGp such that for each

edge of G the corresponding planarization path in the drawing of Gp is as straight as

possible.

This type of problem is prototypical for several fundamental problems in graph

drawing that ask for a geometric realization of a given combinatorial description of a

drawing. The most prominent examples are the topology-shape-metrics framework

for orthogonal graph drawing [Tam87] and the fundamental (∃R-complete) problem

Stretchability, which asks whether a given arrangement of pseudolines can be

realized by geometric lines [Mnë88]. There have been several other works that consider

the problem of realizing a given combinatorial description of a drawing geometrically.

Thomassen [Tho88] gives a characterization for 1-planar graphs that admit a straight-

line drawing. Moreover, he shows that there is no �nite number of forbidden con�gu-

rations that characterize the straight-line drawable 2-planar graphs. Di Giacomo et al.

show that if the set of edges without crossings of a non-planar graph form a connected

subgraph then there is a drawing of the same graph with at most three bends per edge

that respects prescribed topological constraints [Gia+18]. Otherwise, the number of

bends is in Ω(
√
n)), where n is the number of vertices of G. Eades et al. study when a

(maximal) planar graph with an additional edge has straight-line drawing [Ead+15].

In Chapter 8, we consider the problem of computing such a realizable embedding

of a planar graph with an additional edge with a minimal number of crossings for

restricted planar graph classes.

Chan et al. [Cha+15] prove that a linear number of bends per edges is su�cient to

extend a given straight-line drawing of a planar graph. Given a �xed convex drawing of

a face f of a planar graph, Mchedlidze et al. [MNR16] introduce a linear-time algorithm

to test whether there is a straight-line drawing of a planar graph that extends the

drawing of f . Grilli et al. [Gri+14] study the problem of realizing a given simultaneous

planar embedding of two (or more) graphs with few bends per edge. For a survey on

graph drawing beyond planarity see [DLM19].

The algorithm of Dwyer et al. [DMW09] minimizes the stress of a layout while

preserving the topology of the drawing. Didimo et al. [DLR11] present an algorithm

that is able to preserve the topology unless changing the topology improves the

number of crossings. Bertault [Ber00] presents PrEd, a force-directed layout algorithm

for planar graphs that preserves the combinatorial embedding of the input drawing;

the approach was later improved by Simonetto et al. [Sim+11]. To the best of our

knowledge the problem of producing a drawing of an arbitrary planarization such that

the planarization paths are drawn as straight as possible has not been investigated

prior to this work.
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Contribution and Outline.. We study the problem of �nding a drawing of a given

planarization Gp of a graph G such that the planarization paths corresponding to the

edges of G are drawn as straight as possible. We present two approaches, one is based

on an adaption of ImPrEd that includes additional forces to facilitate straightening the

planarization paths (Section 6.3). The second is a geometric framework that iteratively

moves the vertices of a given drawing one by one to locally optimal positions such

that (i) the planarization and its planar embedding are preserved and (ii) the angles

on planarization paths in�uenced by that vertex are optimized (Section 6.4). This

framework has several degrees of freedom, such as the vertex processing order and the

exact placement strategy for vertices. We experimentally evaluate the modi�ed ImPrEd

algorithm (ImPrEd++) and several con�gurations of the Geometric Planarization

Drawing approach in a quantitative study (Section 6.5). We show that all our methods

signi�cantly increase the straightness compared to the initial drawing and that the

geometric algorithms typically outperform ImPrEd++ in terms of quality. Statistical

tests are used to show that these results are signi�cant with 95% con�dence.

6.2 Preliminaries

Intuitively, a planarization of a graph G is the graph resulting from placing dummy

vertices at the intersections of edges in a drawing of G. More formally, let G = (V ,E)
be a graph and letGp = (V Û∪Vp ,E

′ Û∪Ep ) be a planar graph such that every edge in Ep is

incident to at least one vertex inVp . The vertices inVp are called dummy vertices. Then

Gp is a planarization of G if the following conditions hold. (i) Dummy vertices have

degree 4, (ii) E ′ ⊆ E, (iii) for every edge e = uw ∈ E \ E ′, Gp contains a planarization

path from u to w whose edges are in Ep and whose internal vertices are in Vp , (iv) for

any two distinct edges e, e ′ ∈ E \ E ′ the paths pe and pe ′ are edge-disjoint, and (v) the

paths pe , e ∈ E \ E ′ cover all edges in Ep . We call the planarization Gp k-planar if the

longest planarization path has k dummy vertices, i.e., there are at most k crossings

per edge.

A dissected pair (u,v,w) is a pair uv,vw ∈ Ep of edges that belong to the same

planarization path; see Figure 6.1a. Note that formally (u,v,w) and (w,v,u) do not

coincide but we for the purpose of this chapter we consider the two dissected pairs

to be the same. The straight-line-deviation angle sd-α(u,v,w) of (u,v,w) is the angle

sd-α(u,v,w) = π − ∠(u,v,w). We simply refer to a straight-line-deviation angle as

deviation angle. A deviation angle is active with respect to v (also called v-active) if

moving v can alter that angle. This notation allows us to formalize our problem of

drawing the planarization paths of Gp as straight as possible as follows: Given an

embedded planarizationGp ofG and an angle α , is there a planar straight-line drawing

of Gp with the given embedding such that all deviations angles are smaller than α , i.e.,
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6 (u, v, w)

v α

u w

(a)

u v

w
x

z

(b) (c)

Figure 6.1: (a) The deviation angle sd-α(u,v,w) = α of the dissected pair (u,v,w). (b) Vertex

u and w are tail vertices of the dissected pair (u,v,w). Since w is a dummy vertex of the

dissected pair (v,w,x), w is a hybrid vertex. z is an independent vertex. (c) A (grey) straight

skeleton of a (black) polygon and a set of (blue) shrinked polygons. The geometric center is

depicted in red.

sd-α(u,v,w) ≤ α for every dissected pair (u,v,w) of Gp? The respective optimization

problem asks for the minimum angle α .

For a dissected pair (u,v,w), v is a dummy vertex and u and w are tail vertices; see

Figure 6.1b. A dummy that is not a tail is called pure dummy and a tail that is not a

dummy is called pure tail. Vertices that are both, tail and dummy, are called hybrid. A

vertex that is neither a dummy nor a tail vertex is called independent.

Let P be a polygon and let v be a vertex of P . A point p in the interior of P is visible

from v if the straight line connecting p with v does not intersect an edge of P . The

visibility region of v in P is the set of all points in P that are visible from v . The size of

a polygon P is the number of its vertices.

A shrinked polygon P ′ of a polygon P is the result of moving the vertices towards

the interior of a polygon P with constant speed along the straight skeleton of P [HH11];

see Figure 6.1c. A geometric center of a polygon P is obtained by shrinking P to a single

point. In case that the shrinking process yields disconnected polygons, we consider

the center of the polygon with the largest area as the center of P .

6.3 Force-Directed Planarization Drawing

We present a force-directed approach ImPrEd++ for straightening the planarization

paths in a given drawing based on ImPrEd [Sim+11], a spring embedder that is able to

preserve the planar embedding of a given drawing. ImPrEd preserves the combinatorial

embedding of a planar straight-line drawing as follows. Let Z
1
, . . . ,Z

8
be a partition

of the unit disk around a vertex v into eight octants; refer to Figure 6.2a. The radius of

each octant Zi is scaled by a value Ri such that any movement ofv by a direction lying

inside Zi preserves the combinatorial embedding. In order to allow a more �exible

movement of each vertex, we substitute the radial zones with a convex polygon
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Figure 6.2: (a) Radial zones (blue and green) used by ImPrEd. Forces (light red) are cropped

at the boundary of the zones (dark red) (b,c) Construction of the half-planes Lx in case (b) that

the projection of v lies on uv or (c) the projection does not lie on uv .

u

w

v

colin
bisect

(a)

v
w

u

orth

(b)

Figure 6.3: Our new forces. If v is a dummy vertex (a), move it along the bisector of the

adjacent segments. If v is a tail vertex (b), move it gradually along an arc.

Pv . The polygon corresponds to the construction given in the correctness proof of

ImPrEd [Sim+11].

For each vertexv , let Lv be a set of half-planes constructed as follows; see Figure 6.2b

and Figure 6.2c. For each edge uw of G and let vuwp be the projection onto the line

through uw . If the projection vuwp does not lie on the segment uw , set vuwp to the

closest point on uw . Let lv be the line perpendicular to the segment vvuwp through the

middle point of the segmentvvuwp . For each vertex x ∈ {u,v,w} we add the half-plane

hx of lv that contains x to the set Lx . Finally, the polygon Pv is the intersection of all

half-planes in the set Lv .

To reduce the deviation angles, we introduce the new forces Fd for dummy vertices

and F t for tail vertices. Hybrid vertices are a�ected by both forces. For independent

vertices, we apply the same forces as ImPrEd.

Let v be a dummy vertex and let (u,v,w) be a dissected pair containing v . To

encourage placing v collinearly between u and w , we apply a force in the direction of

the unit length bisector bisect(u,v,w) of the vectors u −v and w −v ; see Figure 6.3a.
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v

(a)

v

(b)

v

u
w

(c)

v

(d)

Figure 6.4: An initial drawing (a) that is di�cult to repair using the force-directed algorithm

although v could be moved to an optimal position without violating planarity (b). (c) The

closer v lies to the edge uw , the better are the v-active angles. (d) The (green) planarity region

of v .

Let colin(u,v,w) denote the point on the bisector that is collinear withu andw . We use

the dummy force Fd (v, (u,w)) = λ(colin(u,v,w) −v), where 0 < λ < 1 is a damping

factor. To form the dummy force Fd (v) for v , we sum over the two dissected pairs

where v is the dummy vertex.

For a tail vertex v and a dissected pair (u,w,v), we want to place v on the extension

of the segment uw ; see Figure 6.3b. To accomplish this, we try to perform a radial

movement of v around w over several iterations of the spring embedder. Hence,

we introduce a force in the normalized direction orth(u,w,v) of the tangent at v
with the circle centered at w and passing through v . The direction of orth(u,w,v)
is chosen such that it points away from the segment uw . The strength of the force

is proportional to dist(v,w) with a damping factor of 0 < κ < 1, i.e., F t (v, (u,w)) =
κ dist(w,v) orth(u,v,w). To obtain the resulting force for a tail vertex v , we sum over

all dissected pairs where v is a tail vertex.

6.4 Geometric Planarization Drawing

The spring embedder described in Section 6.3 restricts the movement of each vertex in

a very conservative manner, i.e., the restrictions ensure a preservation of the given

planar embedding. This may waste a lot of potential; see Figure 6.4a and Figure 6.4b.

The approach presented in this section aims to tap the full potential by making each

movement locally optimal. As the simultaneous movement of multiple vertices leads

to non-trivial and non-local dependencies, we move only a single vertex in each step.

To make this precise, we need to answer two questions. First, to which points can a

vertex v be moved such that the planar embedding is preserved? Second, which of

these points is the best position for v? Concerning the �rst question, we call the set

of points satisfying this property the planarity region of v and denote it by PR(v).
We show in Section 6.4.1 how to compute PR(v) e�ciently. Concerning the second

question, we de�ne the cost of a point p ∈ PR(v) to be the maximum of all v-active
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deviation angles when placingv at p. A point in PR(v) is a locally optimal position for

v if PR(v) contains no other point with strictly smaller cost. In Section 6.4.2, we show

how to compute an arbitrarily exact approximation of the locally optimal position.

The overall algorithm can be described as follows. We iterate over all vertices of

the graph. In each step, the current vertex is moved to its locally optimal position.

We repeat until we reach a drawing that is stable or a given number of iterations is

exceeded.

One important degree of freedom in this algorithm is the order in which we iterate

over the vertices. Another choice we have not �xed so far is the placement of indepen-

dent vertices. As an independent vertex has no active angle, each point in its planarity

region is equally good. We propose and evaluate di�erent ways of �lling these degrees

of freedom in Section 6.5.

For a tail or dummy vertex v , it can happen that there exists no locally optimal

position due to the fact that PR(v) is an open set. The cost may for example go down,

the closer we place v to an edge connecting two other vertices; see Figure 6.4c. We

therefore shrink PR(v) slightly and consider it to be a closed set. On one hand, this

ensures that a locally optimal position always exists. On the other hand, it (partially)

prevents that vertices are placed too close to edges, which is usually not desirable in a

drawing. The o�set by which we shrink PR(v) is discussed in Section 6.5, where we

describe our exact evaluation setup.

6.4.1 Planarity Region

Let Gp be a planarization with a given drawing and let v be a vertex of Gp . Let fv be

the face of Gp −v that contains the current position of v . Assume for now that fv is

bounded by a polygon surr(v), which we call the surrounding of v . Consider a point p
in the interior of fv and assume that we use p as the new position for v . Clearly, the

resulting drawing is planar if and only if p is visible from each of v’s neighbors; see

Figure 6.4d.

Thus, the planarity region PR(v) is the intersection of all visibility regions in

surr(v) with respect to the neighbors of v . It follows that the planarity region can be

obtained by �rst computing the visibility polygons of v’s neighbors in surr(v), and

then intersecting these visibility polygons. Let nv be the number of vertices of the

surrounding polygon surr(v) and letdv be the degree ofv . Observe that ifv is not a cut-

vertex then surr(v) does not have holes and computing the dv visibility polygons takes

O(dvnv ) time [JS87]. To intersect these dv visibility polygons (each having sizeO(nv )),
one can use a sweep-line algorithm [NP82] consuming O((k + dvnv ) lognv ) time,

where k is the number of intersections between segments of the visibility polygons.

As there are at most dvnv segments, k ∈ O(d2

vn
2

v ) holds, yielding the running time

O(d2

vn
2

v lognv ) for computing the planarity region. We �rst show that we can improve

75



Chapter 6 Stretching Topological Drawings

this running time in case that v is not a cut-vertex. Subsequently, we show how to

modify surr(v) so that we are able to apply the following lemma.

Lemma 6.1. Ifv is not a cut-vertex, then the planarity region PR(v) ofv has sizeO(nv )
and can be computed in O(dvnv lognv ) time.

Proof. Let Pu be the visibility polygon ofu in surr(v). A segmentw on the boundary of

Pu that is not part of a segment of surr(v) is called window. We say that the windoww
is generated by u; compare Figure 6.5. Instead of intersecting the visibility polygons of

all neighbors, we compute the planar subdivision induced by the segments of surr(v)
and all windows generated by neighbors of v . As there are only O(dvnv ) windows,

this can be done (again using a simple sweep-line algorithm) in O((k + dvnv ) lognv )
time, where k is the number of intersections between segments, i.e., the number of

vertices of the resulting planar subdivision H . We show the following three claims.

Claim 4. The planarity region of v is a face of the subdivision H .

Claim 5. Every window intersects with O(dv ) segments.

Claim 6. It su�ces to consider O(nv ) windows.

The �rst claim implies that we can compute the planarity region in linear time in

the size of H as we only need to �nd the face of H containing the previous position

of v (which is clearly contained in the planarity region). Each vertex of H is either

a vertex of surr(v) or an intersection of a window with a segment (which is either

also a window or a segment of surr(v)). Thus, the second and third claim show that

k ∈ O(dvnv ) holds. It is moreover not hard to see that no two di�erent edges on the

boundary of a face of H belong to the same segment of surr(v) or to the same window.

Thus, each face (and in particular the planarity region) is bounded by onlyO(nv ) edges,

which concludes the proof.

To prove Claim 4, �rst note that surr(v) is the outer face of H , as every window lies

completely inside surr(v). Let f be the face of H containing the previous position of

v . We step by step remove subgraphs of H that eliminate only faces that cannot be

part of the planarity region PR(v). In the end, only the face f remains, which shows

PR(v) = f . For this purpose consider an edge e incident to f . If e is not on the outer

face of H , then e is part of a window w . We can extend e to a path π between vertices

on the outer face such that the edges on π are all part of w . Then π separates H into

two parts. Faces in the part not containing f clearly cannot be part of the planarity

region due to the window w . Thus, we can remove this part, which has the e�ect that

e now lies on the outer face. Once all edges incident to f lie on the outer face, the

claim follows.

For Claim 5, observe that every window has two intersections with segments of

surr(v). Thus, all remaining intersections are with other windows. Letw
1

be a window

generated by the neighboru
1

ofv and letu
2

be another neighbor ofv . We show thatw
1
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Figure 6.5: (a) Three windows generated by the neighbor u
2
. (b) The window w

2
(generated

by u
2
) is dominated by w

1
(generated by u

1
). (c) The edges e ′ and e ′′ extend e to a path π that

correspond to a window of the neighbor u
1

(blue). Removing the blue region that does not

contain f , reduces the size of H (squared vertices).

intersects at most two windows generated by u
2
, which directly implies the claim. To

this end, consider three windowsw1

2
,w2

2
, andw3

2
generated byu

2
; see Figure 6.5a. Since

the lines through w2

i intersect in u
2
, the planar subdivision of surr(v) with these three

windows has four inner faces; one face incident to all three windows (and to edges of

surr(v)), and one face for each window w i
2

(for i ∈ {1, 2, 3}) that is only incident to

w i
2

and edges of surr(v). A window w
1

intersecting all three windows w1

2
, w2

2
, and w3

2

would need to cross the boundary of each of the latter three faces exactly once, which

is clearly impossible. Thus, w
1

can intersect at most two windows generated by u
2
.

To show Claim 6, note that at least one endpoint of every window is a concave

corner in surr(v), i.e., a vertex of surr(v) with an interior angle that is grater than 180
◦
.

Consider one concave corner x and let w
1

and w
2

be two windows with endpoint x .

The window w
1

separates surr(v) into two parts, one of which cannot be part of the

planarity region. If w
2

lies in this part, then w
2

yields no real restriction compared to

w
1
; see Figure 6.5b. Thus, we say that w

2
is dominated by w

1
. Clearly, removing all

dominated windows does not alter the result of the algorithm. Moreover, it is not hard

to see that there can be at most two non-dominated windows sharing an endpoint.

Thus, Claim 6 follows, which concludes the proof. �

Theorem 6.2. The planarity region can be computed in O(d2

vnv lognv ) time.

Proof. Ifv is not a cut-vertex, we can apply Lemma 6.1. Hence, consider the case thatv
is a cut-vertex. Then the surrounding polygon surr(v) has holes. In the following, we

show how to locally modify G such that v is not a cut-vertex anymore and such that

the planarity region ofv in the new graph coincides with the planarity region ofv inG .

Let P
0
, P

1
, . . . , Pk be the polygons that describe the boundary of surr(v), i.e., P

0
is the

outer polygon and P
1
, . . . , Pk the holes in the interior of P

0
; see Figure 6.6. Moreover,

let ui be a neighbor ofv that lies on the boundary of Pi . Consider the ray Ri starting in
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Figure 6.6: The blue segments are added as edges to G to ensure that v is not a cut-vertex.

ui in the direction from u
0

towards ui . Let siti ∈ Ri be the segment of minimal length

such that si lies on Pi and ti on Pj , j , i . We subdivide the corresponding edges in G
and add siti as an edge to G.

Clearly the planarity region of v in the modi�ed graph and the original graph

coincide and v is not a cut-vertex anymore. To �nish the proof of the theorem we

have to prove the claimed running time. First, the polygonal chains P
0
, . . . , Pk and

the neighbors ui can be computed in O(
∑k

i=0
|Pi |) = O(nv ) time. Each segment siti

can be computed in O(
∑k

i=0
|Pi |) = O(nv ) time. Overall this yields a running time of

O(dvnv ). Observe that the size if the surr(v) in the new graph is in O(dvnv ). Thus, we

can compute the planarity region of v by Lemma 6.1 in O(d2

vnv lognv ) time. �

6.4.2 Finding a Locally Optimal Position

In this section, we are given a vertex v together with its planarity region PR(v) and

we want to compute a locally optimal position. We consider the two cases where v
is a pure tail-vertex and the one where v is a pure dummy-vertex. These two cases

can be combined to also handle hybrid vertices. For both cases, our approach is the

following. For a given angle α , we show how to test whether PR(v) contains a point

with cost less or equal to α . For any E > 0 we can then apply O(log(1/E)) steps of a

binary search over the domain α ∈ [0, 2π ) to �nd a position in PR(v) whose cost is at

most E larger than the cost of a locally optimal position.

Placing a Pure Tail Vertex.

Let v be a pure tail vertex and let D(v) ⊆ N (v) be the set of dummy neighbors of

v , where N (v) is the neighborhood of v; see Figure 6.7. For each dummy neighbor

q ∈ D(v) there is a dissected pair (wq ,q,v) whose angle is active. Note that these are

the only active angles of a pure tail vertex. Consider the (oriented) line `(t) = q + t ·dq
with the direction vector dq = q −wq . Clearly, placing v onto `(t) (for t > 0) results

in the deviation angle sd-α(wq ,q,v) = 0. Moreover, all points in the plane that yield

sd-α(wq ,q,v) ≤ α lie in a cone, i.e., in the intersection (union if α ≥ π/2) of two

appropriately chosen half-planes.
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Figure 6.7: (a) A cone with respect to one neighbor q of v . (b) The intersection of all cones

with the planarity region (dashed) includes possible positions for the vertex v .

β

a

b

v β
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v
a

Figure 6.8: The angle ∠avb is at least β for β > 90
◦

(β < 90
◦
) if and only if v lies in the

intersection (union) of two discs (including its boundary, but excluding a and b).

It follows, thatv can be moved to a position with cost α if and only if the intersection

of all cones has a non-empty intersection with the planarity region PR(v); see for

example Figure 6.7. As v has at most dv dummy neighbors (recall that dv is the degree

of v), the intersections of all cones can be computed in O(d2

v logdv ) time using a

sweep-line algorithm [NP82]. Let C be the resulting intersection of the cones. Testing

whether C and PR(v) have non-empty intersection can be done inO((pv +d
2

v ) logpv )
time, where pv is the size of PR(v).

Lemma 6.3. Let v be a pure tail vertex and assume PR(v) has already been computed.

For any ϵ > 0, an absolute ϵ-approximation of the locally optimal position can be

computed in time O(log(1/ϵ)(pv + d
2

v ) logpv ).

Placing a Pure Dummy Vertex.

A pure dummy vertexv has only two active deviation angles. Let N (v) = {a,p,b,q} be

the neighbors of v so that (a,v,b) and (p,v,q) are dissected pairs. Consider the angle

β = ∠avb. By a generalization of Thales’ Theorem, β does not change when moving v
on a circular arc with endpoints a and b. Thus, to make sure that β is at least π − α
(i.e., to ensure that sd-α(a,v,b) ≤ α ), one has to place v in the intersection of two

discs (union if α > π/2); see Figure 6.8. These two disks must have a and b on their

boundaries and basic geometry shows that their radii have to be |ab|/(2 sin(π − α))
(which uniquely de�nes the two disks).
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The same applies for ∠pvq. Thus, requiring both active deviation angles sd-α(a,v,b)
and sd-α(p,v,q) to be at most α restricts the possible positions of the dummy vertex

v either to the intersection of four disks, or to the intersection of the union of two

disks with the union of two other disks. The check whether this intersection is empty

requires time linear in the size pv of the planarity region.

Lemma 6.4. Let v be a pure dummy vertex and assume PR(v) has already been com-

puted. For any ϵ > 0, an absolute ϵ-approximation of the locally optimal position can be

computed in time O(log(1/ϵ) · pv ).

Placing a Hybrid Vertex.

Letv be a dummy vertex with at least one dummy neighbor. Combining the techniques

from the two previous sections, we have to check whether PR(v) has a non-empty

intersection with the intersection of up to four cones and up to four disks. This can

again be done in time linear in the sizepv of the planarity region. We can thus conclude

(for all three types of vertices) with the following theorem.

Theorem 6.5. Let v be a vertex and assume PR(v) has already been computed. For

any ϵ > 0, an absolute ϵ-approximation of the locally optimal position can be computed

in time O(log(1/ϵ)(pv + d
2

v ) logpv ).

Overall Running Time. We have seen that the planarity region for a vertex v can

be computed in O(d2

vnv lognv ) time (Theorem 6.2) and that a locally optimal position

can be approximated in O(log(1/E)(nv + d
2

v ) logpv ) time. Note that if v is not a cut-

vertex pv ∈ O(nv ) otherwise it is in O(dvnv ). In the following, we assume that E is a

small constant and omit it from the running time.

As the degree dv of a vertex v is a lower bound for the size nv of its surrounding,

the running time of computing the planarity region dominates the time for computing

the locally optimal position. Each iteration thus needs O(
∑
v ∈V d2

vnv lognv ) time. In

the worst case, this yields the running time stated in the following theorem.

Theorem 6.6. One iteration of the Geometric Planarization Drawing approach takes

O(n4
logn) time.

Observe that since we assume that G has a small number of crossings, a cut-vertex

v can not be a dummy vertex; compare Figure 6.9. Thus if consider only biconnected

graphs the running time reduces to O(n3
logn). The running time improves further to

O(n2
logn) if the face degrees are bounded by a constant and even toO(n) if additionally

the vertex degrees dv are bounded.

Corollary 6.7. IfG is biconnected, one iteration of the Geometric Planarization Drawing

approach takes O(n3
logn) time.
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Figure 6.9: Removing a crossing in case that Gp is not biconnected and a dummy vertex is a

cut-vertex.

6.5 Evaluation

We present an empirical evaluation of our planarization drawing methods. We �rst

discuss the remaining degrees of freedom in our Geometric Planarization Drawing

framework. Afterwards, we describe our experimental setup and the statistical tests

we use for the evaluation. The �rst part of our evaluation focuses on the quality of

di�erent con�gurations of our Geometric Planarization Drawing approach. The second

set of experiments focuses on the running time. We evaluate three benchmark sets.

We give an extensive evaluation of the Rome graphs. Based on the insights obtained

from these graphs, we report the results for the North and Community graphs for a

limited number of con�gurations. We conclude the section with a presentation of a

few sample drawings.

6.5.1 Degrees of Freedom in the Geometric Framework

As pointed out above, our algorithmic framework o�ers quite a number of degrees of

freedom and possibilities for tweaking the outcome of the algorithm.

Initial Drawing. We consider two sets of initial drawings ImPrEd and Gc, are

both obtained from a planar straight-line drawing computed by PlanarStraight-

Layout [Kan96] computed with OGDF [Chi+13]. For the �rst set of initial drawings

we applied 100 iterations of ImPrEd, without the forces to optimize the planarization,

to the drawings obtained by the PlanarStraightLayout algorithm. For the second
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Dv

µDB

v

Figure 6.10: Moving the square dummy vertex towards the boundary of the planarity region

decreased the deviation angle of the red dissected pair.

set, we iteratively select a vertex and move the vertex to the geometric center of its

planarity region, i.e., the planarity region is shrunken to a single point. As before, we

repeated this process 100 times.

Vertex Orders. We propose di�erent orders for processing the vertices. An Outer

Shell is obtained by iteratively removing the vertices of the outer face. An Inner

Shell order is the reverse of an Outer Shell, and an Alternating Shell order is

obtained by alternating between the two orders. Path Repair is a sequence of vertices

where every vertex occurs dv times. Each edge of the graph G, corresponds to a

sequence of vertices of the planarizationGp , namely the vertices on the corresponding

planarization path (or an edge) ordered according to their appearance on that path (or

the sequence of the two end-vertices if the edge has no crossings). To obtain the Path

Repair order, we concatenate these sequences in an order based on a breadth-�rst

search.

Placement of Independent Vertices. For an independent vertex v , every position

in the planarity region PR(v) is equally good since all deviation angles are inactive.

To reduce the restrictions imposed by independent vertices on their neighbors, we

place v in the geometric center of PR(v).

Shrinking the Planarity Region. As mentioned before, a locally optimal position

for a vertex v might not exists as PR(v) is an open set; see Figure 6.10. Moreover,

it is visually unpleasant when vertices are placed too close to non-incident edges.

We thus shrink PR(v) as follows. Let DB be the length of the smallest side of the

planarity region’s bounding box and let µ > 0 be a parameter. Let Dv be the smallest

distance from v to a point on the boundary of PR(v). On one hand, the polygon

obtained from shrinking PR(v) by µDB may not contain v and therefore can yield a

worse deviation angle. On the other hand, if v lies close to the geometric center of

PR(v), shrinking PR(v) by Dv restricts the movement of v to a small region around

v . Hence, we choose to shrink PR(v) by the minimum of the values µDB and Dv . In

our experiments we used µ = 0.1.
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Table 6.1: Con�gurations for our Geometric Planarization Drawing approach.

Con�guration Vertex Order Angle Relax. Weight

Alternating Shell Alternating-Shell 0.0

Shell Outer-Shell 0.0

Path-Repair Path-Repair 0.0

Relax-x Alternating-Shell x · 10
−1

x ∈ {1, 2, 4, 6, 8}

Angle Relaxation. While the placement of the tail and hybrid vertices introduced

in Section 6.4.2 works independently from the vertex order, it is natural to require that

unplaced vertices (i.e., vertices that will be moved later in the same iteration) should

have a smaller in�uence on positioning decisions. Hence, we alter the binary search

in the cone construction: we replace the opening angle α of the cones of unplaced

vertices by (1−γ )α +γπ , where γ ∈ [0, 1] is the angle relaxation weight, thus widening

their cone depending on the value of γ .

Drawing Region. The drawing region is always limited by an axis-aligned rectangle

whose side-length is twice as large as the corresponding side-length of the smallest

axis-aligned rectangle that entirely contains the initial drawing.

Termination. We consider two possibilities to terminate the execution of our algo-

rithm, (i) after a �xed number of iterations, and (ii) after a �xed period of time. In order

to allow a fair comparison between all algorithms in Section 6.5.3, each algorithm gets

exactly 5n seconds to optimize the drawings. For experiments regarding the running

time in Section 6.5.4, we measure the time until convergence limited by 100 iterations.

Configurations. The presented degrees of freedom allow for many di�erent con-

�gurations of our algorithm. Table 6.1 lists a set of con�gurations of our heuristic

that we consider in our evaluation. Moreover, we compare these con�gurations with

the baseline algorithm Initial, which simply outputs the initial drawing, and with

our modi�cation ImPrEd++ of the force-directed algorithm ImPrEd. The node-node

repulsion force and the edge-attraction force used in ImPrEd are parametrized by

a value δ . The node-edge repulsion force has a parameter γ . We set both values to

(logn)−1

√
A/n, where A is area of the drawing region and n the number of vertices of

the graph. We set the damping factor λ to of the dummy force to 0.1 and the damping

factor κ of the force for tail vertices to 0.05.
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Figure 6.11: The distribution of the size of the selected Rome graphs, i.e., the sum of the

number of vertices the sum of the number of vertices and edges of a graph.

6.5.2 Experimental Setup and Methodology

We ran the algorithms on 100 randomly selected non-planar Rome graphs
1
. For each

of them, we used the largest non-planar biconnected component, Figure 6.11 shows

the size distribution of these graphs. To take the lengths of the planarization paths into

account, we de�ne three classes of instances: Low (L), Medium (M) and High (H ).

The partitioning is chosen such that the each class contains a comparable number of

graphs. A planarization belongs to L and toH if it is at most 2- and at least 6-planar,

respectively. Instances in the classM are k-planar with 2 < k < 6. There are 33

graphs in L, 40 inM and 27 inH . The mean number of number of dummy vertices

for graphs in L is 2.7. For the classM andH the mean number of dummy vertices is

16.2 and 47.0, respectively.

We applied ImPrEd++ and all con�gurations of the Geometric Graph Drawing

approach listed in Table 6.1 to each graph. In order to be able to apply the binomial

test with advantages, see Section 3.2, we have to assign a number to each drawing of a

graph. Thus, in the following we consider the deviation angle sd-α(Γ) of a drawing Γ
to be the mean of all deviation angles in Γ. Thus, if an algorithm A has an absolute

advantage of ∆ over an algorithm B on a subset G of the Rome graphs, this means

that the inequality sd-α(A(G)) + ∆ < sd-α(B(G)) holds for all graphs G ∈ G′. For

convenience we abbreviate absolute advantages by advantage.

As described in Section 3.2, we randomly partition our benchmark set into a test

set G
test

and a veri�cation set G
verify

that each contain 50 graphs. We determine the

maximum advantage ∆ of an algorithm A over an algorithm B on the set G
test

for a

subset of relative size 0.5. We use the set G
verify

to check whether A has a signi�cant

advantage of 3/4 · ∆ over B for a conjectured probability of 0.5. In this chapter, the

conjectured probability is alwaysp = 0.5 and thus, we omit this information. Therefore,

1graphdrawing.org/data.html
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the hypothesis that A has an advantage over B is short for A has an advantage over B
with probability 0.5.

A δ -drawing of a graph G is a drawing of G where each deviation angle is δ . For

each algorithm A, we determine the smallest value δ such that A has an advantage

of ∆ = 0
◦

over the δ -drawings of the graphs in a subset of G
test

. We check on the set

G
verify

whether A has signi�cant advantage over the (4/3 · δ )-drawings.

Implementation Details. We use OGDF
2

to planarize the graphs [GMW05] and

to compute the initial drawing [Kan96]. We use the libraries CGAL
3

to compute line

arrangements, STALGO [HH11, HH12] to shrink polygons, and GMP
4

to represent

coordinates.

6.5.3 �ality of the Drawings

In this Section we discuss the quality of our drawings. The evaluation is guided by the

following hypotheses.

I) Gc as an initial drawings yields smaller deviation angles compared to ImPrEd

(since the deviation angles of the initial drawings are smaller).

II) The Geometric Planarization Drawing approach and ImPrEd++ each have an

advantage over the initial drawing.

III) Geometric Planarization Drawing has an advantage over ImPrEd++.

IV) Relax-1 has an advantage over Relax-2, Relax-4, Relax-6 and Relax-8, respectively.

V) In class H , Relax-1 has an advantage over Alternating-Shell (due to the

weakened in�uence of unplaced vertices).

VI) In the presence of long planarization paths, the Path Repair order has an ad-

vantage over other vertex orderings (due to its ability to process all vertices of a

planarization path consecutively).

We use Figure 6.12 and Figure 6.13 to show whether the advantages support our

hypotheses. The �gures are supplemented with the statistics in Table 6.2. A value ∆ in

a cell in Figure 6.13 is the conjectured advantage of the algorithm A over the algorithm

B on the y-axis computed on the training set. Note that the respective maximum

advantage on the test set G
test

is 4/3 · ∆. A green cell indicates that the advantage is

signi�cant, i.e., it is unlikely that the null hypothesis, that for a random Rome graph G
the probability of the inequality sd-α(A(G)) + ∆ < sd-α(B(G)) is at most 0.5, is true

On the contrary, with a red cell we can not reject the null hypothesis. An empty cell,

indicates that the algorithm did not have an advantage on the test set. We rounded

the values ∆ to the largest integer ∆′ such that ∆′ < ∆. Therefore, a green cell that

2ogdf.net
3cgal.org
4gmplib.org
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Figure 6.12: The minimum δ for each con�guration (x-axis) such that it has an advantage

over a δ -drawing, factored by the classes L,M, andH (y-axis).

Table 6.2: Median and mean values of the deviation angle for the di�erent algorithms applied

to ImPrEd as initial drawing.

L +M +H L M H

med mean med mean med mean med mean

Initial 46.6 51.3 58.3 61.7 45.7 48.2 42.5 43.0

A-Shell 2.29 4.66 0.04 0.33 2.45 3.23 11.6 12.1

Shell 0.78 4.08 0.04 0.04 1.59 2.97 11.3 10.7

Relax-1 6.59 6.56 2.20 3.02 6.61 6.76 10.9 10.6

Relax-2 10.3 9.59 3.21 4.96 10.3 10.6 14.3 13.7

Relax-4 15.3 15.4 12.3 14.5 14.9 15.4 15.8 16.4

Relax-6 16.6 17.2 6.44 16.4 16.7 16.8 18.1 18.6

Relax-8 17.5 19.8 18.0 24.5 15.5 16.8 17.7 18.3

Path Repair 1.81 5.83 0.04 2.21 2.42 4.26 12.7 12.6

ImPrEd++ 23.8 20.7 2.78 5.21 25.3 23.7 36.2 35.2

contains a 0 means that the algorithm on the x-axis has advantage of ∆ < 1 over the

algorithm on the y-axis.

For example, we conjecture, based on the observation in the test set, that the

drawings of the Path-Repair con�guration have an advantage of 9
◦

over the drawings

of ImPrEd++; see Figure 6.13. Thus, there is a subset G′ of G
test

that contains 50% of the

graphs of G
test

such that for each graphG ∈ G′ the inequality sd-α(Γ
1
)+ 9

◦ < sd-α(Γ
2
),

where Γ
1

and Γ
2

are drawings of G computed by Shell and ImPrEd++, respectively.

Since the cell is green, the advantage is signi�cant

By Figure 6.12a, for classL we can say that the deviation angle of drawings computed

by the Shell con�guration have a signi�cant advantage of over 2
◦
-drawings. This is

not necessarily true for δ = 1
◦
. We now discuss our hypotheses.
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Figure 6.13: Advantage of each con�guration (x-axis) compared to each con�guration (y-axis),

factored by the classes L,M, andH .

Hypothesis I) Good initial drawing. For each con�guration, we compared the

deviation angles of the �nal layouts computed by the con�guration applied to both

sets of initial drawings (Gc and ImPrEd). For each con�guration, our test indicated

that Gc does not have an advantage over the ImPrEd drawings. Reversely, we were

only able to show for the A-Shell con�guration and ImPrEd++ that ImPrEd has an

advantage of less than 1
◦

over GC. Thus, there is no clear indication that either of the

initial drawings results in drawings with smaller deviation angles. In the following,

we always use ImPrEd as the initial drawing.

Hypothesis II) Advantage over the Initial drawing. For each con�guration, our

experiments support this hypothesis, i.e., the advantage over the initial drawing, inde-

pendent of the con�guration, is at least 27
◦
; see Figure 6.13a. Note that the advantage

over the Initial drawing decreases with the length of the longest planarization path

in a drawing; refer to Figure 6.13b-6.13d. Moreover, Figure 6.13d shows that for the
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Figure 6.14: Advantages of the Relax-x con�gurations.

classH we were not able show that ImPrEd++ has a signi�cant advantage over the

Initial drawing.

Hypothesis III) Advantage over ImPrEd++. Figure 6.13a shows that we can only

accept the hypothesis for the Relax-1 con�guration. For the classM, Figure 6.13c

shows that each con�guration except of Relax-1 has an advantage of at least 10
◦

over

ImPrEd++. For the classH each con�guration has an advantage of at least 15
◦

over

ImPrEd++; see Figure 6.13d. Moreover, Figure 6.12a shows that for the class L, ImPrEd

has a signi�cant advantage over 14
◦
-drawings, i.e., δ -drawings with δ = 14

◦
. On the

other hand, for example, Shell has a signi�cant advantage over 2
◦
-drawings. A similar

relation can be observed for the classesM andH . Overall, we summarize that there

are clear indications that the hypothesis is true for graphs with long planarization

paths.

Hypothesis IV) Relax-1 has an advantage over Relax-x . Figure 6.14 con�rms

this hypothesis for x > 2. For x = 2, we were not able to verify the hypothesis. But

note that Relax-1 has a signi�cant advantage over δ -drawings for smaller values of δ
compared to Relax-2; see Figure 6.12b. Observe that the statistics listed in Table 6.2

suggest that Relax-8 computes drawings with a smaller deviation angle than Relax-6

for graphs in the classH . The plot in Figure 6.12b on the other hand suggests that the

deviation angle of drawings computed by Relax-6 are considerably smaller than the

deviation angles of drawings computed by Relax-8.

Hypothesis V) Angle relaxation helps with long planarization paths. The plot

in Figure 6.13d does not indicate that there is a signi�cant advantages of Relax-

1 over any other con�guration of the Geometric Planarization Drawing approach.

Moreover, the values for the class H in Figure 6.12a do not indicate that Relax-1
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Figure 6.15: Time until convergence versus the δ -value. Symbol sizes indicate the classes L,

M, andH . Note: the δ -values of both �gures are not coincident due to di�erent experimental

setups. The setup for the quality assessment does not allow a running time analysis.

Table 6.3: Mean running time measurements for each con�guration.

Con�guration

Time per Iteration Total Time

L M H L M H

A-Shell 5.2 s 9.7 s 17.3 s 0.4 min 6.3 min 26.3 min

Shell 2.8 s 10.8 s 18.8 s 0.1 min 1.5 min 12.0 min

Relax-1 3.9 s 11.9 s 23.8 s 2.5 min 17.6 min 39.6 min

computes drawings with a considerably smaller deviation angle compared to the other

con�gurations. Hence, we conclude that there is no clear support for this hypothesis.

Hypothesis VI) Path Repair helps with long planarization paths. The plot in

Figure 6.13d shows that the test on the training set does not conjecture an advantage

of the Path Repair con�guration over the remaining con�gurations of the Geometric

Planarization Drawing approach. Hence, we do not have any indications that the

hypothesis is true.

6.5.4 Running Time

Force-directed methods have been engineered over the past decades. Hence, it is

reasonable that the running time of ImPrEd++ is much faster in comparison to our

approach that heavily relies on geometric operations. On the other hand, the deviation

angle of the drawings obtained by our approach are considerably smaller than the

deviation angles of the drawings obtained by ImPrEd++. Therefore, we only evaluate

the running time of our Geometric Planarization Drawing approach; see Table 6.3.

Running Time vs. Quality. We use the δ -values to compare the quality of the drawings

with respect to the running time. Each point in Figure 6.15 represents �nal drawings

of graph in one of the classes L,M andH computed by either the A-Shell, Shell or
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Figure 6.16: Size distribution of the North and Community graphs.

Table 6.4: The number of graphs |G| and the mean number of dummies vertices D of graphs

in the classes North and Community.

North Community

|G| D |G| D

L 38 1.5 37 28.7

M 33 11.8 25 44.1

H 29 182 38 53.7

Relax-1 con�guration of the Geometric Planarization Drawing approach. The �gure

compares the mean running time required to compute the �nal drawing against the

smallest δ computed with the introduced methodology; all δ -values are con�rmed on

our veri�cation set. For the class L, all con�gurations achieve small deviation angles

and require on averages less than 2.5 min to compute a drawing. With increasing

complexity of the drawings the relevance of the angle relaxation increases. For classM

the Alternating Shell con�guration has the smallest δ -value but is slower than the

Shell con�guration. For drawings of classH , there is no clear dominance. In classH

the Relax-1 con�guration yields the best results but the Shell con�guration requires

less time. We suggest to use the Shell con�guration for less complex drawings and

when computing time is relevant and for drawings with increasing complexity the

Relax-1 con�guration.
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Table 6.5: Median and mean values of the deviation angle for the di�erent algorithms applied

to ImPrEd as initial drawing.

L +M +H L M H

med mean med mean med mean med mean

North

Initial 38.4 45.6 48.2 56.7 39.9 45.6 30.8 31.1

A-Shell 4.64 9.10 0.04 0.53 5.87 6.86 22.2 22.9

Shell 0.32 8.22 0.04 0.49 3.13 5.02 22.0 22.0

Relax-1 6.37 9.24 0.04 0.91 7.61 9.13 19.2 20.3

Path Repair 10.2 16.9 0.04 0.59 29.5 23.7 30.8 30.5

ImPrEd++ 25.5 19.9 3.07 4.34 26.6 26.0 33.0 33.3

Community

Initial 37.8 38.3 40.3 40.7 36.4 36.9 37.5 37.0

A-Shell 17.1 16.6 13.0 13.2 17.2 17.4 19.0 19.4

Shell 14.5 14.1 10.6 10.7 14.6 14.6 17.0 17.0

Relax-1 15.0 15.4 12.1 12.4 16.5 16.2 17.6 17.9

Path Repair 19.8 21.7 16.5 16.7 19.4 20.8 24.5 27.2

ImPrEd++ 35.4 35.7 37.1 36.2 35.1 34.8 35.4 35.7

6.5.5 North and Community Graphs

In this section we augment our evaluation with a short analysis of two further bench-

mark datasets. The �rst dataset contains 100 randomly selected North graphs
5
, and

the second set contains 100 randomly generated Community graphs, i.e., a set of

graphs that resemble Community structure. The community graphs have been used in

the evaluation for heuristics to minimize crossings in straight-line drawings of graphs

in Chapter 4. Figure 6.16 shows the size distribution of the North and Community

graphs. The North graphs are at most 32-planar and the Community graphs are

at most 9-planar. For the North graphs the class L contains only 1-planar graphs,

H contains the graphs that are at least 7-planar, the remaining graphs belong toM.

In case of the Community graphs the parameters are selected as follows, L andH

contains k-planar graphs with k < 6 and k ≥ 7, respectively, andM contains the re-

maining graphs. Table 6.4 lists the number of graphs and the mean number of dummy

vertices of graphs for both graph classes. We used ImPrEd to compute the initial layout

of the North and Community graphs. Moreover, Relax-1 computes drawings with

signi�cantly smaller deviation angles than the remaining Relax-x con�gurations on

the Rome graphs. Therefore, we abstain from evaluating the Relax-x con�gurations

5graphdrawing.org/data.html

91

plan:http://www.graphdrawing.org/data.html


Chapter 6 Stretching Topological Drawings

104 2 2 2 2 6

76 16 11 16 54 42

44 34 32 31 44 47

L

M

H

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(a) North

58 23 18 19 26 52

56 30 27 31 32 58

52 28 24 28 46 51

L

M

H

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(b) Community

Figure 6.17: The minimum δ for each con�guration (x-axis) such that it has an advantage

over a δ -drawing, factored by the classes L,M, andH (y-axis).

in this section for x , 1. Table 6.5 lists the mean and median values of the deviation

angle of the �nal drawings of the North and Community graphs.

For the Community graphs, we can con�rm that all heuristics, except ImPrEd++,

improve the deviation angles; see Figure 6.19. For graphs in the class L andM of

the North graphs also ImPrEd++ improves the deviation angle of the initial drawing

signi�cantly. Unfortunately, for the classH of the North graphs, we were not able to

show that any heuristic computes drawings with a smaller deviation angle than another

heuristic; refer to Figure 6.18d. Note that this class contains graphs that are k-planar

for values in between 7 and 32. On the other hand, all Community and Rome graphs

at most 13-planar. But observe that the A-Shell, Shell and the Relax-1 con�guration

have a signi�cant advantages over 34
◦
-drawings. For ImPrEd++, we were only able

to show that there is a signi�cant advantage over 47
◦
-drawings, indicating that the

geometric approach computes drawings with a smaller deviation angle compared to

ImPrEd++.

Note that similar to the Rome graphs, we can again observe a tendency of the Shell

con�guration to compute drawings with the smallest deviation angle. Moreover, there

are no clear indications that either the Relax-1 or the Path-Repair con�guration yields

drawings with smaller deviation angle of drawings of graphs with long planarization

paths, i.e., graphs in the classH .

6.5.6 Sample Drawings

For three graphs Figure 6.20 shows the initial drawing and the drawing after the

application of the Shell con�guration of our Geometric Planarization Drawing ap-

proach. Observe that the optimization of the tail and dummy vertices in our Geometric

Planarization Drawing approach can force a vertex v to be close to an edge which

is not incident to v . To increase the readability of the drawings ImPrEd can help to
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Figure 6.18: North: Advantage of each con�guration (x-axis) compared to each con�guration

(y-axis), factored by the classes L,M, andH .

resolve this issue, i.e., to increase the vertex-edge distances. In case that we want to

guarantee, that the deviation angles in the drawings do not change, we apply forces

only to independent vertices, i.e., vertices that are neither a dummy or tail vertices. We

observed that this strategy can be too restrictive, i.e., the vertex-edge distance remains

small, since tail and dummy vertices restrict the movement of the independent vertices.

Thus, we propose the following post-processing strategy, that relies on the assumption

that ImPrEd, with additional planarization forces, does not alter the deviation angles

too much. (i) Replace all planarization paths with an edge from the source to the target

vertex if this edge crosses exactly the same edges as the planarization path . (ii) Apply

ImPrEd with planarization forces on the remaining dummy and tail vertices on the

new drawing. The third column in Figure 6.20 shows examples of drawings that are

obtained by this post-processing strategy.
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Figure 6.19: Community: Advantage of each con�guration (x-axis) compared to each con�g-

uration (y-axis), factored by the classes L,M, andH .

6.6 Conclusion

We presented two approaches for drawing planarizations such that the edges of the

original (non-planar) graph are as straight as possible. Our experiments show that

the Geometric Planarization Drawing approach has an signi�cant advantage over our

adaptation of the force-directed algorithm ImPrEd, in particular in case of instances

with long planarization paths. For instances with short planarization paths, our

approach yields drawings that are almost optimal. Even though the deviation angles

are worse for instances with longer planarization paths, our Geometric Planarization

Drawing approach still signi�cantly improves the deviation angle of the initial drawing.

Concerning future research, it would be interesting to see how our geometric approach

in Section 6.4 performs when additional optimization criteria such as the angular

resolution are incorporated.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.20: (a,d,g) Initial drawings, (b,e,h) Final drawing computed with the Shell con�gura-

tion, (c,f,i) Drawing with the post processing step. Planarization paths are indicated by colors.

(a,b,c) A Rome graph. (d,e,f) A North graph. (g,h,i) A Community graph.
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7 Crossing-Angle Maximization

The crossing angle of a straight-line drawing Γ of a graph G = (V ,E) is the smallest

angle between two crossing edges in Γ. Deciding whether a graphG has a straight-line

drawing with a crossing angle of 90
◦

is NP-hard [ABS12]. We propose a simple

heuristic to compute a drawing with a large crossing angle. The heuristic greedily

selects the best position for a single vertex in a random set of points. The algorithm

is accompanied by a speed-up technique to compute the crossing angle of a straight-

line drawing. We show the e�ectiveness of the heuristic in an extensive empirical

evaluation. Our heuristic was clearly the winning algorithm (Co�eeVM) in the Graph

Drawing Challenge 2017 [Dev+18].

The chapter is based on joint work with Almut Demel, Dominik Dürrschnabel,

Tamara Mchedlidze and Lasse Wulf [Dem+18].

7.1 Introduction

The crossing angle cr-α(Γ) of a straight-line drawing Γ is de�ned to be the minimum

over all angles created by two crossing edges in Γ. The 24th edition of the annual

Graph Drawing Challenge, held during the Graph Drawing Symposium, posed the

following problem: Given a graph G, compute a straight-line drawing Γ on an integer

grid that has a large crossing angle. In this chapter, we present a greedy heuristic

that starts with a carefully chosen initial drawing and repeatedly moves a vertex v
to a random point p if this increases the crossing angle of Γ. This heuristic was the

winning algorithm of the GD Challenge 2017 [Dev+18].

Related Works

A drawing of a graph is called RAC if its minimum crossing angle is 90
◦
. Deciding

whether a graph has a straight-line RAC drawing is an NP-hard problem [ABS12].

Giacomo et al. [Gia+12] proved that every straight-line drawing of a complete graph

with at least 12 vertices has a crossing angle of Θ(π/n). Didimo et al. [DEL11] have

shown that every n-vertex graph that admits a straight-line RAC drawing has at most

4n − 10 edges. This bound is tight, since there is an in�nite family of graphs with

4n − 10 edges that have straight-line RAC drawings. Moreover, they proved that every

graph has a RAC drawing with three bends per edge. Arikishu et al. [Ari+12] showed

that any n-vertex graph that admits a RAC drawing with one bend or two bends per
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Chapter 7 Crossing-Angle Maximization

edge has at most 6.5n and 74.2n edges, respectively. For an overview over further

results on RAC drawings we refer to [DL13a]. Dujmović et al.[Duj+10] introduced the

concept of αAC graphs. A graph is αAC if it admits a drawing with crossing angle of

at least α . For α > π/3, αAC graphs are quasiplanar graphs, i.e., graphs that admit a

drawing without three mutually crossing edges, and thus have at most 6.5n − 20 edges.

Moreover, every n-vertex αAC graph with α ∈ (0,π/2) has at most (π/α)(3n−6) edges.

Besides the theoretical work on this topic, there are a few force-directed approaches

that optimize the crossing angle in drawings of arbitrary graphs [ABS13, Hua+10];

see Section 7.2.1.

Contribution

We introduce a heuristic to increase the crossing angle in a given straight-line draw-

ing Γ (Section 7.3). The heuristic is accompanied by a speed-up technique to compute

the pair of crossing edges in Γ that create the smallest crossing angle. In Section 7.4

we give an extensive evaluation of our heuristic. The evaluation is driven by three

main research questions: i) What is a good parametrization of our heuristic? ii) Does

our heuristic improve the crossing angle of a given initial drawing? iii) What is a good

choice for an initial drawing?

7.2 Preliminaries

Let Γ be a straight-line drawing of a graphG = (V ,E). Denote byn andm the number of

vertices and edges ofG , respectively. Let e and e ′ be two distinct edges ofG . If e and e ′

have an interior intersection in Γ, the function cr-α(Γ, e, e ′) denotes the smallest angle

formed by e and e ′ in Γ. In case that e and e ′ do not intersect, we de�ne cr-α(Γ, e, e ′)
to be π/2. The local crossing angle of a vertex v is de�ned as the minimum angle of the

edges incident to v , i.e., cr-α(Γ,v) = mine,uv ∈E,e,uv cr-α(Γ, e,uv). The crossing angle

of a drawing Γ is de�ned as cr-α(Γ) = mine,e ′∈E,e,e ′ cr-α(Γ, e, e ′). Let ∆x and ∆y be the

di�erence of the x-coordinates and the y-coordinates of the endpoints of e in a drawing

Γ. The slope of e is the angle between e and the x-axis, i.e., slope(Γ, e) = arctan(∆y/∆x)
if ∆x , 0 and otherwise slope(Γ, e) = −π/2.

7.2.1 Force-directed Approaches

In general, force-directed algorithms [Ead84, FR91] compute for each vertex v of a

graph G = (V ,E) a force Fv . A new drawing Γ′ is obtained from a drawing Γ by

displacing every vertex v according to the force Fv . Classically, the force Fv is a linear

combination of repelling and attracting forces, i.e., all pairs of vertices repel each other,

and incident vertices attract each other. It is easy to integrate new forces into this

generic system, e.g., in order to increase the crossing angle. For this purpose, Huang et
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Figure 7.1: Sketches of the forces (blue) F
cos
(v), F

cage
(v) and F

ang
(v).

al. [Hua+10] introduced the cosine force F
cos

. The force-directed approach considered

by Argyriou et al. [ABS13] uses two forces, F
cage

and F
ang

, to increase the crossing

angle. In the following we will describe each force.

Let
−→xy denote the unit length vector from x to y. Let uv,xy be two crossing edges

in Γ and let α be the angle as depicted in Figure 7.1a and let p denote the intersection

point of uv and xy. The cosine force forv is de�ned as F
cos
(v) = k

cos
· cosα · −→yx , where

k
cos

is a positive constant.

The force F
cage
(v) is a compound of two forces F

cage
(v,x) and F

cage
(v,y); refer to

Figure 7.1b. Let lab denote the distance between two points a and b. Let l?vx be the

length of the edgevx in a trianglevxp with side length lvp and lxp , and a right angle at

the point p. Then, F
cage
(v,x) = k

cage
· log(lvx/l

?
vx )
−→vx , where k

cage
is positive constant.

The force F
cage
(v,y) is de�ned symmetrically.

Again, the force F
ang
(v) is a compound of the forces F

ang
(v,x) and F

ang
(v,y). Con-

sider the unit vector ax that is perpendicular to the bisector of
−→uv and

−→yx ; refer

Figure 7.1c. Further, let α ′ be the angle between the
−→uv and

−→yx . Then the force

F
ang
(v,x) is de�ned as k

ang
· sign(α ′ − π/2) · |π/2−α ′ |/α ′ ·ax , where k

ang
is a positive

constant. The force F
ang
(v,y) is de�ned correspondingly.

7.3 Multilevel Random Sampling

Our algorithm starts with a drawing Γ of a graph G and iteratively improves the

crossing angle of Γ by moving a vertex to a better position, i.e., we locally optimize the

crossing angle of the drawing; for pseudocode refer to Algorithm 1. For this purpose,

we greedily select a vertex v with a minimal crossing angle cr-α(Γ,v). More precisely,

let e and e ′ be two edges with a minimal crossing angle in Γ. We set v randomly to be

an endpoint of e and e ′. We iteratively improve the crossing angle of v by sampling a

set S of T points within a square R and by moving v to the position p ∈ S that induces

a maximal local crossing angle. We repeat this process L ∈ N+ times and decrease the

size of R in each iteration.

More formally, denote by Γ[v 7→ p] the drawing obtained from Γ by movingv to the

pointp = (px ,py ) ∈ R
2
. LetRi (p) = [px−s ·b

i/2,py−s ·b
i/2]×[px+s/2,py+s ·b

i/2] ⊂ R2
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Algorithm 1: Random Sampling

Input :Initial drawing Γ, number of levels L ∈ N, number of samples T ∈ N, scaling

factor b ∈ (0, 1), side length s > 0

Output :Drawing Γ
1 while stopping criteria do
2 (e

1
, e

2
) ← crossing edges with smallest crossing angle in Γ

3 v ← random vertex in e
1
∪ e

2

4 for i ← 1 to L do
5 Ri ← square centered at Γ[v] with side length s · bi−1

6 for 1 to T do
7 q ← uniform random position in Ri

8 if cr-α(Γ[v 7→ q],v) > cr-α(Γ,v) then
9 Γ[v] ← q

be a square centered at the point p with a scaling factor b ∈ (0, 1) and initial side length

s > 0. Let p0
be the position of v in Γ and let S0 ⊂ R0(p0) be a set of T points in

R0(p0) chosen uniformly at random. Let pi be a point in S i−1 ∪ {pi−1} that maximizes

cr-α(Γ[v 7→ pi ],v). We obtain a new sample S i by randomly selecting T points

within the square Ri (pi ). Since cr-α(Γ[v 7→ pi ],v) = maxuv ∈E,e ∈E\{uv } cr-α(Γ[v 7→
pi ],uv, e), the function can be evaluated in O(deg(v)|E |) time.

7.3.1 Fast Minimum Angle Computation

The running time of the random sampling approach relies on computing in each

iteration a pair of edges creating the minimum crossing angle cr-α(Γ). More formally,

we are looking for a pair of distinct edges e, f ∈ E that have a minimal crossing

angle in a straight-line drawing Γ, i.e., cr-α(Γ, e, f ) = cr-α(Γ). The well known sweep-

line algorithm [BO79] requires O((n + k) log(n + k)) time to report all k intersecting

edges in Γ. In general the number of intersecting edges can be Ω(m2), but we are

only interested in a single pair that forms the minimal crossing angle. Therefore, we

propose an algorithm, which uses the slopes of the edges in Γ to rule out pairs of edges,

which cannot form the minimum angle.

Assume that we already found two intersecting edges forming a small angle of size

δ > 0. We set t := bπ/δc and distribute the edges into t buckets B
0
, . . . ,Bt−1

such

that bucket Bi contains exactly the edges e with iπ/t ≤ slope(Γ, e) + π/2 < (i + 1)π/t .
Then each bucket covers an interval of size π/bπ/δc ≥ δ . Thus, if there exist edges

e, f with cr-α(Γ, e, f ) < δ , they belong to the same or to the adjacent buckets (modulo

t ). Overall, we consider all pairs of edges in Bi ∪ Bi+1 (mod t ), i = 1, . . . t , and �nd the

pair forming the smallest crossing angle. To �nd this pair we could apply a sweep-line

algorithm to the set Bi ∪ Bi+1
. In general this set can contain Ω(m) edges. Thus, in
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Figure 7.2: The distribution of the sum of number of vertices and edges per graph class. The

plot is scaled such that a bar of full height would contain 40 graphs.

worst case we would not gain a speed up in comparison to a sweep-line algorithm

applied to Γ. On the other hand, in practice we expect the number of edges in a bucket

to be small. If we assume this number to be a constant, the overall running time of the

exhaustive check is linear inm and does not depend on the number of crossings.

Implementation Details. In the case that the slopes in Γ are uniformly distributed, we

expect the number of edges in a bucket to decrease with an decreasing estimate δ . We

set the value δ to be the minimal crossing angle of the r longest edges in Γ. In our

implementation we set r to be 50 if the graph contains at most 5000 edges, otherwise

it is 300.

7.4 Experimental Evaluation

The Random Sampling heuristic has several parameters which allow for many di�erent

con�gurations. In Section 7.4.4, we investigate the in�uence of the con�guration on

the crossing angle of the drawing computed by the Random Sampling approach.

Further, we address the question whether the Random Sampling approach improves

the crossing angle of a given drawing. Our evaluation in Section 7.4.5 answers the

question a�rmatively. Moreover, we expect that the crossing angle of the drawing

computed by the random sampling approach depends on the choice of the initial

drawing. We show that this is indeed the case (Section 7.4.6). We close the evaluation

with a short running time analysis in Section 7.4.7. Our evaluation is based on a

selection of arti�cial and real world graphs (Section 7.4.1), several choices of the initial

drawing; see Section 7.4.2, and a speci�c way to compare two drawing algorithms;

refer to Section 7.4.3.

Setup. All experiments were conducted on a single core of an AMD Opteron Processor

6172 clocked at 2.1 GHz. The server is equipped with 256 GB RAM. All algorithms

were compiled with g++-4.8.5 with optimization mode -O3.
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Figure 7.3: The crossing angle in the drawings of the geometric and topological 1-Planar

graphs after the application of the Random Sampling approach.

7.4.1 Benchmark Graphs

We evaluate the heuristic on the following graph classes, either purely synthetic or

with a structure resembling real-world data. Figure 7.2 shows the size distribution of

these graphs. The color of each class is used consistently throughout the chapter.

Real World. The classes Rome and North (AT&T)
1

are the non-planar subsets of the

corresponding well known benchmark sets, respectively. From each graph class we

picked 100 graphs uniformly at random. The Community graphs are generated with

the LFR-Generator [LFF08] implemented in NetworKit [SSM16]. These graphs

resemble social networks with a community structure.

Arti�cial. For each arti�cial graph we picked the number n of vertices uniformly

at random between 100 and 1000. The Triangulation+X class contains randomly

generated n-vertex triangulations with an additional set of x edges. The number x is

picked uniformly at random between 0.1n and 0.15n. The endpoints of the additional

edge are picked uniformly at random, as well.

The class 1-Planar consists of graphs that admit drawings where every edge has at

most one crossing. We used a geometric and topological procedure to generate these

graphs. For the former consider a random point set P of n points. Let e
1
, . . . , ek be a

random permutation of all pairs of points in P . LetG
0
= (P , ∅). If the drawingGi−1

+ei
induced by P is simple and 1-planar, we de�ne Gi to be this graph, otherwise we set

Gi = Gi−1
. We construct the topological 1-Planar graphs based on a random planar

triangulation G generated with OGDF [Chi+13]. Let v be a random vertex of G and let

v,x ,u,y be an arbitrary 4-cycle. We add uv to G if G + uv is 1-planar. The process is

repeated x times, for a random number x ∈ [0.3n, 0.4n].

1
http://graphdrawing.org/data.html
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Table 7.1: Initial drawings with their identi�ers used throughout the chapter.

Identi�er Algorithm

Random uniform random vertex placement

Fr+Cos FR + Cosine Forces (Section 7.2.1)

Fr+Cage+Ang FR + Cage + Angular Forces (Section 7.2.1)

Stress Stress Majorization [GKN05]

Cr-small Crossing Minimization (Chapter 4)

North Rome Comm. 1-planar Tri.
0
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Stress
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cr-small
Fr+Cage+Ang

Figure 7.4: Crossing angles of the initial drawings.

Experimental work on the crossing minimization in book embeddings [Jon17]

derived di�erent conclusions for the geometric and topological 1-Planar graphs.

Figure 7.3 shows the crossing angle for the geometric and topological 1-Planar

graphs computed with the random sampling approach. The plot suggests that the

distributions do not di�er to much. In order to simplify the following evaluation, we

merge both graph classes and refer to them as 1-Planar graphs. Thus, the 1-Planar

graphs contain 200 graphs where as the other graph classes each consist of 100 graphs.

7.4.2 Initial Drawings

In our evaluation we consider �ve initial drawings of each benchmark graph; refer to

Table 7.1. A random point set P of size n induces a Random drawing of an n-vertex

graph. The Fr+Cos drawings are generated by applying our implementation of the

force-directed method of Fruchtermann and Reingold [FR91] to the Random drawings

with the additional F
cos

force (Section 7.2.1). The Fr+Cage+Ang drawings are simi-

larly computed as the Fr+Cos drawings, the only di�erence is that the F
cos

force is

exchanged by the F
cage

and F
ang

forces. We applied the stress majorization [GKN05] im-

plementation of the Open Graph Drawing Framework (OGDF) [Chi+13] to Random

in order to obtain the Stress drawings. The Cr-small drawings are computed with
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the heuristic introduced by in Chapter 4 in order to decrease the number of crossings

in straight-line drawings. They showed that the heuristic computes drawings with

signi�cantly less crossings than drawings computed by stress majorization. Unfor-

tunately, within a feasible amount of time we were not able to compute Cr-small

drawings for graphs in the classes 1-Planar and Triangulation+X.

A point in Figure 7.4 corresponds to the crossing angle of an initial drawing. The

plot is categorized by graph class. The Random drawings have the smallest crossing

angles. The Stress drawings have larger crossing angles than Cr-small and overall,

Fr+Cos drawings tend to have the largest crossing angles.

Cage and Angular. Consider the angles in the Fr+Cos and Fr+Cage+Ang drawings.

The plot in Figure 7.4. indicates that the cage force produces drawings with the smallest

crossing angles. This is not in accord with the claim of Argyriou et al. [ABS13] that

they obtained drawings with the largest crossing angle using their implementation of

the forces F
cage

and F
ang

. Our results are not necessarily comparable, since we may

have used di�erent constants to scale the forces. Moreover, we start from di�erent

initial drawings. We always start with a random drawing where Argyriou et al. use

an organic layout (SmartOrganic) provided by yEd
2
.

Since our implementation of the force-directed method with F
cage

and F
ang

produces

drawings with smaller crossing angles than with F
cos

, we do only consider F
cos

in the

following evaluation.

7.4.3 Di�erences between Paired Drawings

In order to compare the performance of two algorithms on multiple graphs and to

investigate by how much one of the algorithms outperforms the other, we use concept

of advantages introduced Chapter 3. Observe that we introduced this concept context

of a minimization problem. In this section we aim for a large crossing angle. Thus, we

give a slightly adapted de�nition of advantages in context of a maximization problem.

We denote by Γ{G} the set of all drawings of G. Let G = {G
1
,G

2
, . . . ,Gk } be a

family of (non-planar) graphs, where 1 ≤ k ∈ N. We refer to a set Λ = {Γ
1
, . . . , Γk } as a

family of drawings of G where Γi ∈ Γ{Gi } . Let Λ1
and Λ2

be two families of drawings

of G. We say that Λ1
has an advantage of ∆ > 0 on F if for all Gi ∈ F the inequality

cr-α(Γ1

i ) > cr-α(Γ2

i ) + ∆ holds. For a �nite set G, we say F has relative size at least

p ∈ [0, 1] if |F | ≥ p · |G|.

In order to compare two families of drawings we plot the advantage as a function of

p; refer to Figure 7.6. For each value p the plot contains 5 �ve bars, each corresponding

to a graph class. The height of the bars correspond to advantages ∆ for a set of relative

size p. A caption of a �gure in the form of A vs B indicates that if ∆ is positive, B has

2www.yworks.com
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Table 7.2: Con�gurations of the Random Sampling approach. For each con�guration, the

scaling factor b is 0.2 and the initial side length s is 10
5
.

Levels Sample Size

L T

Sloppy 3 50

Medium 4 175

Precise 5 400

advantage ∆ over A. Correspondingly, if ∆ is negative, A has an advantage of −∆ over

B. Thus, Figure 7.6 shows that for p = 0.1, for each graph class there is a subset F

of relative size 0.1, i.e., F contains at least 10 graphs, such that the set Sloppy has

an advantage of ∆ over Precise on F . In greater detail, Sloppy has an advantage

of 7.9◦ over Precise on the North graphs, 12.9◦ on the Rome graphs, 11.5◦ on the

Community graphs, 1.2◦ on the 1-Planar graphs and 1.2◦ on the Triangulation+X

graphs. On the other side, Precise has an advantage of 12.9◦ over Sloppy on at least

10 North graphs, 15.7◦ on the Rome graphs, 13.8◦ on the Community graphs, 1.1◦ on

the 1-Planar graphs and 0.4◦ on the Triangulation+X graphs. Note that only for

p < 0.5 there can be two disjoint subsets F
1
,F

2
of a graph class of relative size p such

that Precise has an advantage over Sloppy on F
1

and Sloppy has an advantage over

Precise on F
2
.

7.4.4 Parametrization of the Random Sampling Approach

The Random Sampling approach introduced in Section 7.3 has four di�erent parame-

ters, the number of levels L, the size of the sample T , the initial side length s and the

scaling factor b, that allows for many di�erent con�gurations. With an increasing

number T of samples, we expect to obtain a larger crossing angle in each iteration

to the cost of an increasing running time. If we allow each con�guration the same

running time, it is unclear whether it is bene�cial to increase the number of iterations

or to increase the number of samples (T ) and levels (L) per iteration. This motivates

the following question: does the crossing angle of a drawing of an n-vertex graph

computed by the random sampling approach within a given time limit tn increase with

an increasing number of samples and levels? We choose to set the time limit tn to n
seconds. This allows for at least 1.6 · n iterations for each graph in our benchmark

set. Since the parametrization space is infeasibly large, we evaluate three exemplary

con�gurations, Sloppy, Medium and Precise; see Table 7.2.

The plot in Figure 7.5 does not indicate that the distributions of the crossing angle

di�er across di�erent con�gurations signi�cantly; further characteristics are listed

in Table 7.3. With the plot in Figure 7.6 we can con�rm this observation. For each

con�guration there is only a small subset of each class such that the con�guration has
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Figure 7.5: Performance of di�erent con�gurations
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Figure 7.6: Comparison of the Sloppy con�guration to the Medium and Precise con�guration.

The colors indicate the graph as indicated by Figure 7.2.

an advantage over the other con�gurations. For example, for the Rome graphs there

exist at least 10 graphs such that Sloppy has an advantage of 10
◦

over Precise. On the

other hand, there are at least 10 di�erent graphs such Precise has also an advantage

of 10
◦

over Sloppy. For p ≥ 0.5 no con�guration has an advantage over the other, or

it is negligibly small. Thus, we conclude that given a common time limit, increasing

the levels and the sample size does not necessarily increase the crossing angle.

7.4.5 Improvement of the Crossing Angles

In this section, we investigate whether the Random Sampling approach is able to

improve the crossing angle of a given drawing within 2n iterations. Given the same

number of iterations, it is most-likely that we obtain a larger crossing angle of a

drawing if we increase the number of samples. Thus, we use the Precise con�guration

for the evaluation of the above question. We refer to the drawings after the application
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Table 7.3: Characteristics computed by di�erent con�gurations.

graph class algorithm crossing resolution

min mean median max

Community Medium 29.13 51.14 52.23 81.27

Community Precise 32.63 52.01 52.07 78.70

Community Sloppy 28.90 51.12 51.66 75.61

North Medium 20.63 67.12 63.87 90.00

North Precise 22.06 67.82 68.69 90.00

North Sloppy 22.49 65.84 60.00 90.00

Rome Medium 36.58 67.85 60.00 90.00

Rome Precise 37.97 66.43 60.00 90.00

Rome Sloppy 32.52 64.86 59.98 90.00

1-Planar Medium 4.33 9.02 7.36 25.79

1-Planar Precise 3.92 8.60 6.97 26.84

1-Planar Sloppy 4.58 8.71 7.23 22.50

Triangulation+X Medium 5.27 8.94 7.66 22.03

Triangulation+X Precise 4.90 8.55 7.58 20.88

Triangulation+X Sloppy 5.13 8.90 7.55 23.71

of the Random Sampling approach as Random
?

, Fr+Cos
?

, Stress
?

and Cr-small
?

,

respectively. For characteristics of the crossing angles refer to Table 7.4.

The plots in Figure 7.7 indicate that the Random Sampling approach indeed im-

proves the crossing angle of the initial drawings. Figure 7.8 shows the relationship

between the crossing angle of the initial drawing and the �nal drawing. The plots

shows that the Random Sampling approach considerably improves the crossing angle

of the initial drawing. In case of the North graphs there are a few graphs that have an

improvement of at least 70
◦
. There are at least 10 drawings in Random whose crossing

angle is improved by at least 75
◦
; refer to Figure 7.9. For all real world graph classes

and all initial layouts there are 70 graphs in each class, such that the �nal drawing has

an advantage of over 25
◦
.

For Triangulation+X, Fr+Cos
?

has an advantage of at least 11
◦

over Fr+Cos on

at least 90 Triangulation+X. For the remaining initial layouts the corresponding

advantage is at most 7.6◦. Considering the 1-Planar graphs, the corresponding advan-

tages are 14
◦

and 9.7◦. This indicates that within 2n iterations a large initial crossing

angle helps to further improve the crossing angle of 1-Planar and Triangulation+X

graphs. Overall, we observe that the 1-Planar and Triangulation+X classes are

rather di�cult to optimize. This can either be a limitation of our heuristic or the

crossing angle of these graphs are indeed small. Unfortunately, we are not aware of

meaningful upper and lower bounds on the crossing angle of straight-line drawing of
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Table 7.4: Characteristics of the angles in drawings obtained by the Random Sampling

approach. Let x and y be the largest and smallest value in a column C for a given graph class.

We mark a cell in C with the value v in green, if the |x −v | ≤ 2
◦
. For the remaining cells, we

mark the cell blue, if |y −v | ≤ 2
◦
.

graph class layout crossing resolution

min mean median max

Community Fr+Cos
?

49.16 70.63 71.10 88.25

Community Random
?

27.18 37.09 37.24 45.68

Community Cr-small
?

44.09 58.54 58.03 84.61

Community Stress
?

42.89 65.91 63.75 89.09

North Fr+Cos
?

23.82 71.29 78.83 90.00

North Random
?

17.81 55.87 54.51 90.00

North Cr-small
?

18.77 70.55 87.87 90.00

North Stress
?

24.46 70.84 84.68 90.00

Rome Fr+Cos
?

44.52 77.16 81.28 90.00

Rome Random
?

28.14 49.94 47.25 88.43

Rome Cr-small
?

44.19 76.32 84.28 90.00

Rome Stress
?

44.55 77.09 82.70 90.00

1-Planar Fr+Cos
?

13.76 26.55 25.25 53.26

1-Planar Random
?

4.55 6.91 6.02 16.67

1-Planar Stress
?

9.38 15.81 13.85 35.50

Triangulation+X Fr+Cos
?

7.43 18.77 17.24 36.13

Triangulation+X Random
?

4.92 6.79 6.20 15.94

Triangulation+X Stress
?

6.14 11.95 10.41 26.89
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Figure 7.7: Crossing angles before and after applying the Random Sampling approach to the

initial drawings.

these graphs. Nevertheless, we can conclude that our heuristic indeed improves the

initial crossing angle. To which extend our heuristic is able to increase crossing angle

of a drawing depends on the graph class and on the initial drawing itself.

7.4.6 E�ect of the Initial Drawing

The Random Sampling approach iteratively improves the crossing angle of a given

drawing. Given a di�erent drawing of the same graph the heuristic might be able to

compute a drawing with a larger crossing angle. Hence, we investigate whether the

choice of the initial drawing in�uences the crossing angle of a drawing obtained by

the Random Sampling approach with 2n iterations.

For all graph classes, except from North, it is apparent from Figure 7.7 that the

drawings in the set Random
?

have noticeably smaller crossing angles compared to the

remaining drawings. This meets our expectations, since the initial Random drawings

presumably have many crossings [HH10] and thus are likely to have many small

crossing angles; compare the initial crossing angles plotted in Figure 7.7.

109



Chapter 7 Crossing-Angle Maximization

0 30 60 90
Random

0
30
60
90

Ra
nd

om
0 30 60 90

cr-small

0
30
60
90

cr
-s

m
al

l

0 30 60 90
Stress

0
30
60
90

St
re

ss

0 30 60 90
Fr+Cos

0
30
60
90

Fr
+C

os

(a) North

0 30 60 90
Random

0
30
60
90

Ra
nd

om

0 30 60 90
cr-small

0
30
60
90

cr
-s

m
al

l

0 30 60 90
Stress

0
30
60
90

St
re

ss

0 30 60 90
Fr+Cos

0
30
60
90

Fr
+C

os

(b) Community and 1-Planar
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Figure 7.8: Initial crossing angle vs the �nal crossing angle.

Based on the plot in Figure 7.7 and the characteristics in Table 7.4 we make the

following observations. First, on the arti�cial graph classes (1-Planar and Triangu-

lation+X) and Community, Fr+Cos
?

contains the drawings with the largest crossing

angles. Second, for the real world graph classes (North and Rome) neither Fr+Cos
?

,

Cr-small
?

nor Stress
?

clearly contains the drawings with the largest crossing angle.

Finally, Random
?

contains the drawings with the smallest crossing angle, independent

of the graph class. In order to corroborate these observations, we use the plots in

Figure 7.10 and Figure 7.11

Consider the �rst claim. The plots in Fig 7.10b and Figure 7.10c clearly show that

the observation is true when comparing the Fr+Cos
?

drawings to Random
?

drawings.

For the comparison of Fr+Cos
?

to Stress
?

consider the plots in Figure 7.10h and in

Figure 7.10i. For the 1-Planar and Triangulation+X, Fr+Cos
?

contains the drawings

with the largest crossing angles, only with a few exceptions in Triangulation+X.
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Figure 7.9: Advantages of initial drawings versus the drawings after the application of the

Random Sampling approach.

For the Community graphs the plot does not allow for a clear distinction between

the two sets of drawings. Indeed, the plot in Figure 7.11a shows that at least 50

Community graphs have drawings in Fr+Cos
?

with an advantage of 5
◦

over the

corresponding drawings in Stress
?

. When comparing Fr+Cos
?

to Cr-small
?

we

�nd that the drawings of Fr+Cos
?

has an advantage of over 7
◦

over Cr-small
?

on

over 70 Community graphs; see Figure 7.11b. For a subset with at least 10 Community

graphs, the advantage rises to almost 25
◦
. We conclude that Fr+Cos

?
indeed contains

the largest crossing angles with respect to graph classes Community, 1-Planar and

Triangulation+X.

We now turn to the second observation that for the graph classes North and Rome

the drawings in Fr+Cos
?

, Cr-small
?

and Stress
?

have comparable crossing angles.

For this purpose, consider Figure 7.11a, Figure 7.11b and Figure 7.11d. For all p ≥ 0.3,

there is no set of drawings that has a considerable advantage over another set of

drawings. Only for p = 0.1, we �nd that there are 10 North graphs such that Fr+Cos
?

has an advantage of at least 5
◦

over Stress
?

. Vice versa there are 10 di�erent North

graph such that Stress
?

has an advantage of at least 5
◦

degrees over Fr+Cos
?

. The

comparison on the Rome graphs yields similar results. Thus, we conclude that there is

no considerable di�erence between the Fr+Cos
?

and Stress
?

drawings. Based on the

111



Chapter 7 Crossing-Angle Maximization

0 30 60 90
Random

0
30
60
90

Fr
+C

os

(a) Random

0 30 60 90
Random

0
30
60
90

Fr
+C

os

(b) Random

0 30 60 90
Random

0
30
60
90

Fr
+C

os

(c) Random

0 30 60 90
cr-small

0
30
60
90

Fr
+C

os

(d) Cr-small

0 30 60 90
cr-small

0
30
60
90

Fr
+C

os

(e) Cr-small

0 30 60 90
cr-small

0
30
60
90

Fr
+C

os

(f) Cr-small

0 30 60 90
Stress

0
30
60
90

Fr
+C

os

(g) Stress

0 30 60 90
Stress

0
30
60
90

Fr
+C

os

(h) Stress

0 30 60 90
Stress

0
30
60
90

Fr
+C

os

(i) Stress

Figure 7.10: Comparison of the initial layout.

plots in Figure 7.11b and Figure 7.11d we draw the same conclusion for the comparison

of Fr+Cos
?

to Cr-small
?

and Stress
?

to Cr-small
?

.

Based on Figure 7.7 we already observed that the Random
?

drawings contains

drawings the smallest crossing angles. Only for the North class, the plot is not

conclusive. The plot in Figure 7.11c shows that there are at least 70 graph such that

Fr+Cos
?

has an advantage of 4.5◦ over Random
?

. For p = 0.5 the advantage increases

to over 14
◦
.

Overall, we conclude that the Random Sampling approach computes the largest

crossing angle when applied to the Fr+Cos drawings, in particular for the arti�cial

graph classes. This is plausible, since the crossing angles of the initial crossing angles

are already good. As shown in the previous section, depending on the graph class,
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Figure 7.11: Advantages of the Random Sampling approach applied to di�erent initial draw-

ings.

there is a large improvement in the crossing angle, if we start with such an initial

drawing.

Increasing the Number of Iterations. Since the initial crossing angles in Fr+Cos

are larger in comparison to Stress, we investigate in this section, whether we are

able to decrease the advantage of Fr+Cos
?

over Stress
?

if we increase the number

of iterations for Stress
?

. For this purpose, we applied to 4n iterations to the initial

drawings in Stress. We refer to this drawings as Stress
??

and compare them to

Fr+Cos
?

; see Figure 7.12 and Figure 7.12c. We observe that at least 50 of North and

Rome graph have drawings in Stress
??

with a slightly larger crossing angles than in

the corresponding drawing Fr+Cos
?

. On the other hand, Fr+Cos
?

has an even larger

advantage over Stress
??

on the remaining graph classes. Thus, indicating that on the

arti�cial graph classes Fr+Cos indeed is a good choice for an initial drawing for the

Random Sampling approach.

7.4.7 Note on the Running Time

In this section we shortly evaluate the running time of our algorithm on all our graphs.

First, we report the running time of the three con�gurations Sloppy,Medium and
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Figure 7.12: Comparison of 4n random sampling steps in Stress
??

to 2n steps in Fr+Cos
?

.

Precise. Second, we show that the heuristic introduced in Section 7.3.1 improves the

average running time.

The plot in Figure 7.13a contains a point (n, t) for each graph G in our benchmark

set, where n denotes the number of vertices of G and t is the average running time for

a single iteration, i.e., the average time to move a single vertex. We used Random as

initial drawings. The color indicates the con�guration and the lines show the median

and the 0.75-percentile over the set of all running time measurements with respect so

one con�guration. As expected, the plots shows a clear order of the con�gurations:

Sloppy needs less time than Medium, Medium requires less time than Precise.

We now compare the running time of the speed-up technique introduced in Sec-

tion 7.3.1 to a sweep-line approach. For this purpose, we applied two implementations

of the Random Sampling heuristic with the Sloppy con�guration to the Random

drawings. The Sweep implementation uses a sweep-line algorithm to compute the

pair of crossing edges that create the smallest crossing. Bucket uses the algorithm

described in Section 7.3.1. We employ the speed-up technique only for graphs with at

least 1000 edges, we refer to these graphs as large. Fig 7.13b plots the running time

per iteration for n-vertex graphs. The plot in Figure 7.13b uses the same convention as

we used in Figure 7.13a. Bucket has an average running time of 391 ms per iteration

on the large graphs and Sweep has an average running time of 500 ms. On all graphs.

Bucket requires on average 328 ms per iteration.
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(a) Running for the tested con�gurations of the Random Sampling approach.
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Figure 7.13: Average running time per iteration. med. corresponds to the average running

time overall instances. The .75 corresponds to 0.75-percentile.

Note that this time comparison heavily depends on our implementation of Sweep

and Bucket. To show that for large graphs Bucket uses less operations, we compare

the number of crossings in a drawing Γ to the number of edge-pairs that Bucket

compares to �nd the smallest angle in Γ. Note that the number of crossings is a lower

bound for the number of operations of any implementation of the Sweep approach.

In more detail, a data point (P ,C) in Figure 7.14 corresponds to a single graph. We

counted in each iteration the number of crossings Ci of the current drawing and the

number of tested edge-pairs Pi . The valuesC and P correspond to the average of these

values over 2n iterations, i.e., (P ,C) = (
∑

i Pi/(2n),
∑

i Ci/(2n)). Note that the plot uses

a double log-scale. Ideally, P is signi�cantly smaller than C . We observe that for small

instances, the heuristics tests more edge-pairs than the drawing has crossings. With

an increasing number of crossings, the heuristic indeed tests less edge-pairs than

crossings.
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Figure 7.14: Number C of crossings vs number P of tested edge-pairs.

7.5 Conclusion

We designed and evaluated a simple heuristic to increase the crossing angle in a straight-

line drawing of a graph. On our benchmark set our heuristic computes drawings with

larger crossing angles compared to our implementation of force-directed approaches

that are designed to optimize the crossing angle. Further, our evaluation shows that

the performance of our heuristic depends on the initial drawing and on the graph class.

In particular, on real world networks our heuristic is able to compute larger crossing

angles than on arti�cial networks. This can either be a limitation of our heuristic or it

can be a property of the arti�cial graph classes, i.e., the crossing angle of any drawing

of a graph in an arti�cial graph class is small. We are not aware of lower and upper

bounds of the crossing angle of these graphs. Thus, investigating such bounds of the

1-Planar and Triangulation+X graphs is an interesting theoretical question.

(a) (b)

Figure 7.15: (a) Stress drawing of a Rome graph. (b) Drawing after optimizing the crossing

angle. The ratio between the longest and shortest edge is large.
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Figure 7.15 shows that our heuristic does not necessarily compute readable drawings.

Nevertheless, parts of the Random Sampling heuristic are easily exchangeable. For

example, the objective function can be replaced by a linear combination of number

of crossing and the crossing angle, or the sampling region Ri can be replaced by

an arbitrary polygon in order to preserve some properties of the drawings, e.g., the

number of crossings. Thus, future work can be concerned with adapting the Random

Sampling approach with the aim to compute readable drawings.
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8 Inserting an Edge into a
Geometric Embedding

The algorithm to insert an edge e in linear time into a planar graph G with a minimal

number of crossings on e [GMW05], is a helpful tool for designing heuristics that

minimize edge crossings in drawings of general graphs. Unfortunately, some graphs do

not have a geometric embedding Γ such that Γ+e has the same number of crossings as

the embeddingG + e . This motivates the study of the computational complexity of the

following problem: Given a combinatorially embedded graph G and a face f , compute

a geometric embedding Γ with outer face f that has the same combinatorial embedding

as G and that minimizes the crossings of Γ + e . Eades et al. [Ead+15] characterized

the embeddings of G and e that are stretchable when the choice of the face f is free.

In this chapter, we characterize the stretchable embeddings when f is given as part

of the input, thereby we answer an open question of Eades et al. Moreover, we give

polynomial-time algorithms for special cases and prove that the general problem is

�xed-parameter tractable in the number of crossings. Moreover, we show how to

approximate the number of crossings by a factor (∆ − 2), where ∆ is the maximum

vertex degree of G.

This chapter is based on joint work with Iganz Rutter [RR18].

8.1 Introduction

Crossing minimization is an important task for the construction of readable drawings.

The problem of minimizing the number of crossings in a given graph is a well-known

NP-complete problem [GJ83]. A very successful heuristic for minimizing the number

of crossings in a topological drawing of a graph G is to start with a spanning planar

subgraph H of G and to iteratively insert the remaining edges into a drawing of H .

The edge insertion problem for a planar graph G and two vertices s, t ∈ V (G) asks to

�nd a drawing Γ + st of G + st with the minimum number of crossings such that the

induced drawing Γ ofG is planar. The problem comes with several variants depending

on whether the drawing Γ can be chosen arbitrarily or is �xed [GKM08, GMW05]. In

the planar topological case both problems can be solved in linear time. More general

problems such as inserting several edges simultaneously [CH16] or inserting a vertex

together with all its incident edges [Chi+09] have also been studied.

All these approaches have in common that they focus on topological drawings where

edges are represented as arbitrary curves between their endpoints. By contrast, we
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focus on geometric embeddings, i.e., planar straight-line drawings, and the correspond-

ing rectilinear crossing number. In this scenario we are only aware of a few heuristics

that compute straight-line drawings of general graphs; compare Chapter 4, Chapter 5

and [Kob13]. Clearly, if a geometric embedding Γ of the input graph G is provided as

part of the input, there is no choice left; we can simply insert the straight-line segment

from s to t into the drawing and count the number of crossings it produces. If, however,

only the combinatorial embedding and possibly the outer face is speci�ed, but one may

still choose the vertex positions so that this results in a geometric drawing with the

given combinatorial embedding, then the problem becomes interesting and non-trivial.

We call this problem geometric edge insertion.

Contribution and Outline.

In Section 8.2, we recite the characterization of stretchable edges given by Eades et

al. [Ead+15], in case of a combinatorially embedded graph with the choice of the outer

face. They left the characterization of stretchable edges in combinatorially embedded

graphs with a �xed outer face as an open question. We connect this problem to the

stretchability of a single pseudoline in a topologically embedded graph and provide a

characterization of edges stretchable with respect to a �xed outer face.

In Section 8.3 we consider the complexity of the geometric edge insertion problem

for combinatorially embedded graphs of bounded degree where the choice of the outer

face is free. Namely, we give a quadratic-time algorithm for the case that the maximum

degree ∆ of G is at most 5. For the general case, we give a (∆ − 2)-approximation that

runs in linear time. In Section 8.4 we consider combinatorially embedded graphs with

a �xed outer face. We give an e�cient algorithm for testing in special cases whether

there exists a way to insert the edge st so that it does not produce more crossings than

when we allow to draw it as an arbitrary curve. Finally, we give a randomized FPT

algorithm that tests in O(4kn) time whether an edge can be inserted with at most k
crossings (Section 8.5).

8.2 Characterization

The aim of this section is to characterize embeddings of planar graphs and edges st
that allow for a straight-line drawing Γ + st with a minimal number of crossings. Let

G = (V ,E) be a planar graph with a given combinatorial embedding where only the

choice of the outer face is free. Additionally, let s and t be two distinct vertices with

st < E. Denote by G + st the graph G together with the edge st . We want to insert

the edge st into the embedded graph G. That is, we seek a straight-line drawing Γ of

G (with the given embedding) such that st can be inserted into Γ with a minimum

number of crossings. In Γ, the edge st starts at s , traverses a set of faces and ends in t .
Topologically, this corresponds to a path p(Γ) from s to t in the extended dualG?

st ofG ,
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Figure 8.1: (a) The extended dual (green + blue) of the primal graph (black) and the vertices

corresponding to s and t . (b) An st-path p and a p-friendly st-path p ′. The union of both

induces a pseudoline with respect to the embedded primal graph.

i.e., in the dual graph G?
plus s and t connected to all vertices of their dual faces; see

Figure 8.1a. An extended dual G?
st has a topological drawing Γ?st so that each primal

edge crosses its dual edge exactly once in Γ + Γ?st , the position of s and t in Γ and in

Γ?st coincide, and the edge incident to s and t are crossing-free; compare Figure 8.1.

The number of crossings in Γ + st corresponds to the length of the path p(Γ) minus

two. However, not all st-paths in G?
st are of the form p(Γ) for a straight-line drawing

Γ of G. If an st-path p is in the form p(Γ), we say that p is stretchable. In case that we

�x the choice of the outer face o and p has the form p(Γ) for a straight-line drawing Γ
with this particular outer face, we say that p is stretchable with respect to o.

A labeling of G is a mapping l : V → {L,R} that labels vertices as either left or

right. Consider an edge uv of G that is crossed by a path p such that u and v are to

the left and to the right of p, respectively. The edge uv is compatible with a labeling

l if l(u) = L and l(v) = R. A path p of G?
st and a labeling l of G are compatible if l

is compatible with each edge that is crossed by p. A path p is consistent if there is

a labeling of G that is compatible with p. Eades et al. [Ead+15] show the following

result.

Proposition 8.1 (Eades et al. [Ead+15], Theorem 1). An st-path inG?
st is stretchable if

and only if it is consistent.

Eades et al. ask for a characterization of the edge insertion problem in case of

combinatorially embedded graphs with a �xed outer face. For this purpose, consider a

topologically embedded planar graph G = (V ,E) in the Euclidian plane. A (oriented)

closed Jordan curve L is a pseudoline with respect to G if it passes through the outer

face and for each edge e of G, L either entirely contains e or crosses e at most once.
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Theorem 8.2 (Da Lozzo et al. [Da +18], Theorem 10.16 in Chapter 10). For every pair

of a planar embedded graph G and a pseudoline, there is a straight-line drawing Γ of G
and an oriented line L with the following properties:

1. Γ has the same combinatorial embedding and outer face as G,
2. vertices of G to the left of L are to the left of L in Γ,
3. vertices of G to the right of L are to the right of L in Γ,
4. L intersects in Γ the same vertices and edges as L in G, and
5. they do so in the same order.

Before we characterize the stretchable st-paths, we introduce some notations. Two

paths p and p ′ are edge-disjoint if they do not share an edge. Two paths p and p ′ of

an embedded graph are non-crossing if at each common vertex v , the edges of p and

p ′ incident to v do not alternate in the cyclic order around v in the graph induced by

p and p ′. Let f be a face of G and the corresponding dual vertex as f ?. Let p be an

st-path. An st-path p ′ is (p, f )-friendly if (i) p and p ′ are edge-disjoint, (ii) p and p ′ are

non-crossing, and (iii) p ′ contains f ?. An st-path is p-friendly if it is (p,o)-friendly

for the outer face o of an embedded graph G. The de�nition of p-friendly paths and

Theorem 8.2 yields the following characterization of stretchable st-paths.

Theorem 8.3. For a combinatorial embedded graph G and a face f , an st-path p in the

extended dual G?
st is stretchable with respect to f if and only if there is a (p, f )-friendly

st-path p ′ in G?
st .

Proof. We �rst show that, if there is a (p, f )-friendly path p ′ that p is stretchable with

respect to f . Let Γ be a topological drawing ofG with f as the outer face and let Γ?st be

the corresponding drawing ofG?
st . Then, the paths p and p ′ in the drawing of Γ?st de�ne

a curve ρ; compare Figure 8.1. Since each edge of G crosses in Γ ∪ Γ?st its dual edge

exactly once, the curve ρ intersects each edge of G in Γ at most once and s and t are

the only two vertices of G that are on ρ. Since p ′ is (p, f )-friendly, ρ passes through f
which is the outer face of Γ. The paths p and p ′ are only edge-disjoint. Therefore, p and

p ′ can share a set of vertices and ρ may self-intersect. Since p and p ′ are non-crossing,

we can perturb ρ at each intersection point to resolve these intersections. Therefore, ρ
is a pseudoline with respect to Γ. By Theorem 8.2 there is a straight-line drawing of G
with outer face f and a line L such that s and t lie on L and the segment st intersects

the same edges as p and st does so the same order.

Conversely, assume that p is stretchable with respect to f . Then by Theorem 8.2

there is a straight-line drawing of G with outer face f such that the segment st
intersects the same edges as p and in the same order; see Figure 8.2. Let д be the line

that contains the segment st . Each edge of G intersects д at most once. Thus, the

complement of st in д de�nes a path from s to t in G?
st that is edge-disjoint from p,

does not cross p and that contains f . Hence, we �nd a (p, f )-friendly st-path p ′. �
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s t
g

Figure 8.2: The line д through the segment st induces a path in the extended dual.

s
v

t

(a)

s

t

v

(b)

Figure 8.3: Ratio between length of the shortest st path and the length of a shortest consistent

st-path. The solid black edges induce a graph of maximum degree 6. Red vertices have label L,

blue vertices have label R. (a) The shortest path from s to t in G?
st is not consistent.

For an embedded graph with a �xed outer face immediately have the following

corollary.

Corollary 8.4. For an embedded graph G with the outer face o, an st-path p in the

extended dualG?
st is stretchable with respect to o if and only if there is a p-friendly st-path

p ′ in G?
st .

Overall, depending on the setting we now have the following combinatorial tools

to compute straight-line drawings Γ + st with a minimal number of crossings. If the

choice of the outer face is free, we look for a consistent st-path of minimum length,

i.e., for an appropriate {L,R}-labeling of the vertices. If the outer face is �xed, we look

for two edge-disjoint paths p and p ′, while minimizing the length of p and requiring

that p ′ is p-friendly, i.e., it does not cross p and contains the vertex dual to the outer

face of G.

8.3 Bounded Degree

In this section, we study consistent st-paths in combinatorially embedded planar graphs

of bounded degree, i.e., the choice of the outer face is free. The graph in Figure 8.3a

shows that there is a graph with maximum vertex-degree 6 where every shortest

st-path is not consistent. In particular, Figure 8.3b indicates that every consistent

st-path has a linear number of crossings. This motivates the question whether shortest
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ee?

L

R
LR

(a)

f

gv

h

(b)

f

gv

h

(c)

Figure 8.4: (a) Labeling induced by the blue path. An inconsistent path around a degree 3

vertex either visits face f (b) or face д (c) twice.

st-paths in graphs with a smaller bounded degree are consistent. We show that every

shortest st-path in planar graphs of bounded degree 3 is consistent, and that in each

planar graph with vertex degree at most 5, there is a shortest st-path that is consistent.

Finally, we prove that there is a consistent st-path of length (∆ − 2) · l in a graph with

maximum vertex degree ∆ and a shortest st-path of length l in G?
st .

Let p be an st-path in G?
st and let e? be an edge of p. An endpoint u of the primal

edge e of e? is left of e? if it is locally left of p on e; refer Figure 8.4a. A vertex v of

G is left (right) of p if v is left (right) of an edge of p. We now consider a labeling

extended by two more labels LR,⊥. We de�ne the labeling lp induced by p as follows.

Each vertex that is left and right of p gets the label LR. The remaining vertices that

are either left or right of p get labels L and R, respectively. Vertices neither left nor

right of p get the label ⊥. Obviously, there is a labeling l of G compatible with p if and

only if lp does not use the label LR.

Theorem 8.5. Let G be a planar embedded graph of degree at most 3. Then every

shortest st-path in G?
st is consistent.

Proof. Let p be a shortest path in G?
st . Assume that p is not consistent. Then there

is a vertex v that is left and right of p. Let f д be the �rst edge of p that crosses a

primal edge incident to v . If the degree of v is at most 2, then p contains either a loop

or a double edge, contradicting the assumption that p is a shortest path. Therefore,

assume that the degree of v is 3. Without loss of generality, let f ,д and h be the faces

around v in clockwise order; see Figure 8.4b and Figure 8.4c. Since v is left and right

of p, p contains either the edge f h or hд. Thus, p contains either f or д twice. This

contradicts the assumption that p is a shortest path. �

In the following, we denote by p[vi ,vj ], with 1 ≤ i ≤ j ≤ k , the subpath of a path p
from vi to vj , i.e., p[vi ,vj ] = 〈vi ,vi+1

, . . . ,vj 〉.

Theorem 8.6. Let G be a planar embedded graph with maximum degree 5. Then there

is a shortest st-path in G?
st that is consistent.
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s

(a)

e1

e2

e4

e5 v
t

s

e3

f1 f2
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e3
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f1
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f3
f4f5

w

e1

ep

e′p

t

(c)

Figure 8.5: Inconsistent path around (a) a degree-4 vertex and (b,c) a degree-5 vertex. The

shaded region depicts the region ρ.

Proof. Let p be a shortest st-path in G?
st . We call an edge ep of p good if the vertices

left and right of it do not have label LR in the labeling lp induced by p. We say a su�x

p[x , t] of p, with x ∈ V (p), is good if all its edges are good.

Our proof strategy is to incrementally increase the length of the longest su�x of p
that is good. If p is not consistent, then let ep denote the last edge of p that is not good.

Then an endpoint v of the primal edge corresponding to ep has label LR. Without loss

of generality, we may assume that v lies left of ep . Since lp (v) = LR, there is an edge

e ′p of p that has v to its right. By the choice of ep , it follows that e ′p lies before ep on p.

We now distinguish cases based on the degree of v .

Case 1, deg(v) ≤ 3: If deg(v) ≤ 3, then we �nd as in Theorem 8.5 that p enters or

leaves a face twice, which contradicts the assumption that it is a shortest st-path.

Case 2, deg(v) = 4: If deg(v) = 4, we denote the edges around v in clockwise

order as e
1
, . . . , e

4
such that e ′p crosses e

1
, i.e., e ′p = e?

1
. Moreover, we denote the faces

incident to v in clockwise order as f
1
, . . . , f

4
where f

1
is the starting face of e ′p ; see

Figure 8.5a.

Since e ′p = f
1
f
2

and no face has two incoming or two outgoing edges of p, it follows

that ep = f
4
f
3

crosses e
3
. Since p is a shortest path, it follows that f

2
= f

4
, i.e.,

p[f
1
, f

2
] = p[f

1
, f

4
] = 〈f

1
, f

2
〉. Let p ′ be the path obtained from p by replacing the

subpath p[f
1
, f

4
] by the edge e?

4
that crosses e

4
, i.e., e?

4
= f

1
f
4
; see the thick red path

in Figure 8.5a. By construction, it is lp′(v) = L. Observe that p ′[f
4
, t] = p[f

4
, t] lies

inside the region ρ bounded by p[f
1
, f

4
] and a curve connecting f

1
and f

4
that crosses

e
4
. The only vertex inside this region whose label changed is v . Therefore, the path

p ′[f
1
, t] consists of good edges, and we have thus increased the length of the su�x of

the shortest path that consists of good edges.

Case 3, deg(v) = 5: Now assume that deg(v) = 5. We denote the edges around v
as e

1
, . . . , e

5
in clockwise order such that e ′p crosses e

1
. We further denote the faces

incident to v in clockwise order as f
1
, . . . , f

5
such that e ′p starts in f

1
. Since no face
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α

β1

β2

γ1

γ1

γ2

(a)

hK

hK−1

t

hK−1

(b)

Figure 8.6: (a) A problematic face γ
1
. (b) The faces hK−1

and hK are not problematic.

has two incoming or two outgoing edges, it follows that either ep crosses e
4

from f
5

to

f
4

(Figure 8.5b) or ep crosses e
3

from f
4

to f
3

(Figure 8.5c).

If ep crosses e
4
, then we obtain p ′ by replacing p[f

1
, f

5
] by the single edge that

crosses e
5
; see thick red path in Figure 8.5b. As in the degree-4 case, we �nd that

f
2
= f

5
and v is a cutvertex and that p ′[f

1
, t] consists of good edges. Therefore, in

case that ep crosses e
4
, we increased the length of the longest su�x consisting of good

edges.

We now consider the case that ep crosses e
3
. Consider the path q obtained from p

by replacing the subpath p[f
2
, f

3
] with the edge e?

2
that crosses e

2
, i.e., e?

2
= f

2
f
3
; see

Figure 8.5c. Let e
2
= vw . Since w and t lie in the same region bounded by p[f

2
, f

4
]

and f
2
f
3
, the su�x q[f

2
, t] is good if only if lp (w) = ⊥ or lp (w) = L. Thus, before we

construct the path p ′ from p, we �rst rebuild p to a path that satis�es this condition.

Claim 7. There is a shortest st-path p ′′ such that p ′′ crosses e
3
, lp′′[f

2
,t ](w) = ⊥ or

lp′′[f
2
,t ](w) = L, and the su�x p ′′[f

2
, t] is good.

Assume that the claim is true. Then, �rst, let p ′′ with the properties of the claim.

Afterwards, we obtain the path p ′ from p ′′ as described by replacing p ′′[f
2
, f

3
] by the

edge e?
2

. Then, in all cases, we increase the length of the su�x of the shortest path

consisting of good edges. Eventually, we thus arrive at a shortest path whose edges

are all good and that hence is consistent. Thus, to �nish the proof of the theorem, it is

only left to prove the claim.

Proof of the Claim. Observe that, if lp[f
2
,t ](w) = ⊥ or lp[f

2
,t ](w) = L, p already meets

the requirements for p ′′, i.e., we set p ′′ := p. Thus, we restrict our attention to the case

that lp[f
2
,t ](u) = lp[f

2
,t ](w) = R, where u is the endpoint of e

3
distinct from v . We �rst

give a formal de�nition of the structure that forbids us to reroute p via the edge e?
2

dual

to vw . Afterwards, we locally modify p in order to reduce the number of problematic

cases.
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Let γ
1
,γ

2
be two distinct faces that share two edges αβ

1
,αβ

2
on their boundary and

such that p[γ
1
, t] = γ

1
· p[γ

2
, t] and p crosses αβ

1
; see Figure 8.6a. We say the face γ

1
is

problematic with respect to p if lp[γ
1
,t ](β1

) = lp[γ
1
,t ](β2

).

Recall that f
2
= f

4
and that p[f

2
, t] = f

2
· p[f

3
, t], where the edge f

2
f
3

is dual to

e
3
. Recall that e

2
= vw and e

3
= vu. If f

2
is not problematic, then by de�nition

lp[f
2
,t ](u) , lp[f

2
,t ](w). Hence, p is already the desired path.

Assume that f
2

is problematic with respect to p. Let h
1
,h

2
, . . . ,hK be the faces of

G that are crossed by p[f
2
, t] in this order, i.e., h

1
= f

2
= f

4
,h

2
= f

3
. Note that t lies

on the boundary of hK and that p does not cross an edge incident to t . Therefore,

hK and hK−1
are not problematic with respect to p; compare Figure 8.6b. Since f

2
is

problematic, there is maximum number k , for 1 ≤ j < K − 1, such that the �rst k faces

h
1
,h

2
, . . . ,hk are problematic with respect to p but hk+1

is not problematic. Initially,

let pk+1
= p. In the following we describe how to obtain an st-path pj from pj+1

while

ensuring the following invariants:

(i) pj is a shortest st-path,

(ii) pj [s,hj ] = pj+1
[s,hj ],

(iii) pj [hj , t] is good, and

(iv) hj is not problematic with respect to pj .

Thus, we eventually arrive in the case that h
1
= f

2
is not problematic with respect

to p
0

and p
0
[f

2
, t] is good. Hence, we set p ′′ = p

0
to prove the claim. Thus, we now

consider the case that hj is problematic and hj+1
is not problematic with respect to

pj+1
.

Let αβ
1
,αβ

2
be the edges incident to hj and hj+1

such that αβ
1

is crossed by

pj+1
[hj , t]; see Figure 8.7a. Let δ

0
,δ

1
, . . . ,δd , with d < 5, be the neighbors of β

2

in clockwise order, where δ
0
= α . Moreover, denote by f δi the face that contains β

2
δi

and β
2
δi+1

on its boundary, where we set d + 1 := 0. Observe that f δ
0
= hj . Moreover,

since hj is problematic, i.e., β
2
δ

0
(and β

1
δ

0
) are on the boundary of hj+1

, it follows

that f δd = hj+1
. Without loss of generality, assume that β

1
lies to the right of the path

pj+1
[hj , t], i.e., lpj+1

[hj ,t ](β1
) = R. Since hj is problematic it follows that β

2
has label R,

i.e., lpj+1
[hj ,t ](β2

) = R. Thus, there is an edge β
2
δi that is crossed by pj+1

[hj , t]. Observe

that since pj+1
is a shortest path, this edge can neither be βδ

0
nor β

2
δ

1
as otherwise

pj+1
[hk , t] would visit hk twice. We distinguish cases based on whether β

2
δ

2
, β

2
δ

3
or

β
2
δd is crossed by pj+1

[hk , t]; see Figure 8.7.

Case 3.1, β
2
δd is crossed: As observed before, we have that f δd = hj+1

. Then,

the edge dual to β
2
δ

0
is a short cut for the path pj+1

[hj+1
, t]; compare Figure 8.7d. A

contradiction to the assumption that pj+1
is a shortest path.

Case 3.2, β
2
δ

2
is crossed: We obtain pj from pj+1

by replacing the path pj+1
[hj , f

δ
1
]

by the edge dual to β
2
δ

1
; see thick red path in Figure 8.7b. Sincepj+1

[hj , f
δ

1
] is a shortest-

path that contains the edge dual to αβ
1
, it follows that pj has the same length as pj+1

.

By construction, we have thatpj [s,hj ] = pj+1
[s,hj ]. Note thatpj [hj+1

, t] = pj+1
[hj+1
, t]
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t
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2
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β2
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γ
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2
δ

3
is crossed
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δ3
δ4

α = δ0
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hj+1

γ

(d) β
2
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Figure 8.7: Case distinction on the edges β
2
δi that are crossed by the path pj+1

[hj+1
, t]. (c) The

region bounded by δ
4
, β

2
,δ

3
and the green polyline depicts the region ϕ. (d) The red edge is a

short cut for pj+1
.

is good by invariant (iii). Let δ
1
γ , with γ , β

2
, be the edge incident to δ

1
that lies on

the boundary of hj . In order to prove that pj [hj , t] is good and hj is not problematic

with respect to this path, we su�ces to show the following properties with respect to

pj [hj , t]:

(P1) α has label ⊥,

(P2) β
2

has label R,

(P3) δ
1

has label L, and

(P4) γ has label ⊥.

For property (P1) consider the vertex α . Since f δd = hj+1
it follows immediately

that pj+1
[hj+1
, t] and pj [hj+1

, t] do not cross an edge incident to α . Thus, the label of α
with respect to pj [hj , t] is by construction ⊥.
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For property (P2) recall that we assumed that β
2

has label R with respect pj+1
[hj+1
, t].

Moreover, pj+1
[hj+1
, t] is, due to our invariant, good. Hence, by construction of pj , β2

has label R with respect to pj [hj , t].

Let ρ be the region bounded by pj+1
[hj , f

δ
1
] and the edge dual to β

2
δ

1
that contains t .

The vertex δ
1

lies, by the de�nition of ρ, outside of ρ and has therefore label L with

respect to pj [hj , t]. For the vertex γ we distinguish the two cases γ , α and γ = α . In

case that α = γ , it follows by Property (P1) that γ has the correct label. In case that

α , γ , we have that γ lies outside of ρ and therefore we have that γ has label ⊥ with

respect to pj [hj , t]. This concludes the proof of Property (P3) and (P4).

To conclude the proof, note that no vertex in the induced labeling by the pathpj [hj , t]
has label LR. Thus, pj [hj , t] is indeed good. Moreover, we have that lpj [hj ,t ](α) ,
lpj [hj ,t ](δ1

) and lpj [hj ,t ](β2
) , lpj [hj ,t ](γ ). Hence, hj is not problematic with respect to

pj [hj , t].

Case 3.3, β
2
δ

3
is crossed: Recall thatpj+1

[hj , t] does not cross the edge β
2
δd . Hence,

we have that d = 4. We obtain pj from pj+1
by replacing the path pj+1

[hj , f
δ

3
] by the

edges dual to αβ
2

and δ
4
β

2
; see thick red path in Figure 8.7c. Since pj+1

[hj , t] crosses

the edges dual to αβ
1

and β
2
δ

3
, and pj+1

is a shortest st-path, we have that |pj+1
| = |pj |,

i.e., pj is a shortest st-path. By construction we have that pj+1
[s,hj ] = pj [s,hj ]. Note

that pj [f
δ

3
, t] = pj+1

[f δ
3
, t] is good by invariant (iii). Hence to �nish this case we will

prove the following properties:

(Q1) α has label R,

(Q2) β
2

has label L,

(Q3) δ
1

has label ⊥,

(Q4) β
1

has label ⊥,

Since δ
3

and δ
4

are on the boundary of hj+1
, there is a path q from δ

3
to δ

4
that

is on the boundary of hj+1
. Let ϕ be the region that does not contain α and that is

bounded by q and the edges δ
4
β

2
, β

2
δ

3
. Since f δ

4
= hj+1

and p is a shortest st-path, it

follows that ϕ entirely contains pj [f
δ

3
, t] in its interior. Thus, Property (Q1) follows

immediately from the construction of pj . Since ϕ does not contain an edge incident to

β
2

in its interior, Property (Q2) follows by construction of pj . Moreover, the region

does neither contain δ
1

nor β
1
. Thus, the label of both vertices with respect to pj [hj , t]

is ⊥. Therefore, Properties (Q3) and (Q4) hold.

Since the labeling induced by pj [hj , t] does not contain LR, pj [hj , t] is good. More-

over, we have that lpj [hj ,t ](β1
) , lpj [hj ,t ](β2

) and, regardless of whether the edge β
2
δ

1

lies on the boundary of hj+1
, we have that lpj [hj ,t ](α) , lpj [hj ,t ](δ1

). Therefore, hj is

not problematic with respect to pj . /

This �nishes the proof of the theorem. �
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Figure 8.8: Inconsistent path around a degree k vertex. The shaded blue region depicts the

region ρ.

Theorem 8.7. Let G = (V ,E) be a planar embedded graph with maximum vertex-

degree ∆ and let p be a shortest st-path in G?
st with s, t ∈ V . Then there is a consistent

path of length at most (∆ − 2)|p |.

Proof. Let p be an st-path in G?
st . Assume that p is not consistent. Then there is a

shortest pre�x p
2
= p[s, f

2
] = p[s, f

1
] · f

1
f
2

of p that is not consistent; refer to Figure 8.8.

Let v be a vertex incident to the primal edge of f
1
f
2

with lp
2

(v) = LR. Without loss of

generality let f
1
, f

2
, . . . , fk be the faces around v in counterclockwise order, i.e., v lies

left of f
1
f
2
.

Since p
2

is not consistent, there exists a second edge of p
2

that crosses a primal edge

incident to v . Let e be the last edge of p[s, f
1
] that crosses a primal edge incident to

v . Since p
2

is the shortest inconsistent pre�x of p, v lies right of e , i.e., e = fi+1
fi for

some i with 2 < i ≤ k − 1. Moreover, let fj be the �rst vertex in clockwise order from

fi that lies on the path p[f
2
, t]. Note that such a vertex fj exists, since at the latest f

2

satis�es the condition.

Let q be the path fi fi−1
· · · fj . We obtain a path p ′ from p by replacing p[fi , fj ] by q,

i.e., p ′ = p[s, fi ] · q · p[fj , t]. Note that, since fj is the �rst vertex in clockwise order

on p[f
2
, t], p ′ is a simple path. Since q does not contain the edges fk f1 and f

1
f
2
, and

p[fi , fj ] contains at least one edge, the path p ′ has length at most |p | + (k − 2) − 1. We

claim that the pre�x p ′j = p
′[s, fj ] is consistent.

Then, since p ′[fj , t] is a subpath of p[f
2
, t] and p ′[s, fj ] is consistent, it follows that

we have decreased the maximum length of a su�x of the path whose removal results

in an inconsistent path. Since this su�x has initially length at most |p |, we inductively

�nd a consistent st-path of length at most (∆ − 2)|p |.
It remains to prove that p ′[s, fj ] is consistent. Since p[s, f

2
] is the shortest inconsis-

tent pre�x ofp, the pre�xp[s, f
1
] is consistent. Therefore,v is right ofp[s, fi ] = p

′[s, fi ].
By construction, v is right of q. Thus, we have lp′j (v) = R. The only vertices w of G

with lp′j (w) = LR can be neighbors of v , as otherwise p[s, f
1
] would not be consistent.

Consider the region ρ enclosed by the path p[fi , f1] and f
1
, fk , fk−1

, . . . , fi that

contains v; refer to Figure 8.8. The pre�x p[s, f
1
] = p ′[s, f

1
] lies outside of ρ and the
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path q lies entirely in the interior of ρ. Moreover, in case that vw is crossed by p ′[s, fi ],
w lies outside of ρ. On the other hand, if q crosses an edge vw , then w lies inside ρ.

Thus, in both cases we immediately get that lp′j (w) = L. Therefore, the pre�x p ′[s, fj ]

is consistent. �

8.4 Stretchable Shortest st-paths

In Section 8.3 we showed that every shortest st-path in the extended dual G?
st of a

graph G with vertex degree at most 3 is consistent. For every graph of maximum

degree 5, there is a shortest st-pathG?
st that is consistent. On the other hand, Figure 8.3

shows that, starting from degree 6, there are graphs whose shortest st-paths are not

consistent. In this section we investigate the problem of deciding whether the extended

dual G?
st of a planar graph G = (V ,E) with a �xed combinatorial embedding and a

�xed outer face contains a shortest st-path that is consistent. As a consequence of

Proposition 8.1 and Theorem 8.3 this problem is in NP.

Theorem 8.3 shows that �nding a consistent st-path p in G?
st is closely related to

�nding two edge-disjoint paths inG . Especially, we are interested in two edge-disjoint

paths where the length of one is minimized. Eilam-Tzore� [Eil98] proved that this

problem is in general NP-complete. In planar graphs the sum of the length of two

vertex-disjoint paths can be minimized e�ciently [KS10]. In general directed graphs

the problem isNP-hard [FHW80]. Finding two edge-disjoint paths in acyclic directed

graphs is NP-complete [EIS75].

The closest relative to our problem is certainly the work of Eilam-Tzore�. In fact

their result can be modi�ed to show that it is NP-hard to decide whether a graph

contains two edge-disjoint st-paths such that one of them is a shortest path. We study

this problem in the planar setting, i.e., G is a planar embedded graph with outer face o,

with the additional restriction that s and t lie on a common face o
sp

of the subgraph

G
sp

of G?
st that contains all shortest paths from s to t in G?

st .

Thus, we now consider the problem of �nding a stretchable shortest st-path as an

edge-disjoint path problem inG?
st . Our proof strategy consists of three steps. Step 1) We

�rst show that the problem is equivalent to �nding two edge-disjoint paths p and q in

a directed graph

−→
G st such that p is directed and q is undirected. Step 2) We modify

−→
G st such that p is a path in a speci�c subgraph G

sp
and q lies in the subgraph G

sp
.

These two graphs may share an edge set Ê such that each edge in Ê can be an edge of

p or of q. Moreover, we �nd pairs of edges e and e ′ in Ê such that the path p in G
sp

(the path q in G
sp

) contains either e or e ′. Step 3) Finally, we use these properties to

reduce our problem to 2-SAT.

We begin with Step 1. Let

−→
G st = (V

′ ∪ {s, t},E ′) be directed graph. A path p =

〈v
1
,v

2
, . . . ,vk 〉 in

−→
G st is a directed path if vivi+1

∈ E ′ for each 1 ≤ i < k . It is
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s

t

(a)

s

t

(b)

Figure 8.9: (a) The graph G?
st is the union of the blue shortest-path graph G

sp
(without the

directions) and the red exterior graph G?
st . (b) The modi�ed graph

−→
G st after Step 1.

undirected if either vivi+1
∈ E ′ or vi+1

vi ∈ E ′, for each 1 ≤ i < k . The directed

graph

−→
G st is st-friendly if G?

st contains a stretchable shortest st-path if and only if

−→
G st contains a directed st-path p and an undirected p-friendly path p ′. We obtain

an st-friendly graph

−→
G st = (

−→
V ,
−→
E ) from G?

st as follows. Denote by G
sp

the directed

acyclic graph that contains all shortest paths from s to t in G?
st = (V ,E). If an edge

uv ∈ E is an edge of G
sp

, we add it to

−→
G st . For all remaining edges uv , we add a

subdivision vertex x to

−→
G st and add the directed edges xu,xv to

−→
G st in this direction.

We claim that

−→
G st is st-friendly.

Proposition 8.8. The graph

−→
G st is st-friendly.

Proof. Let p be a shortest st-path in G?
st that is stretchable with respect to o. By

Theorem 8.3 there is a p-friendly st-path p ′ in G?
st , i.e., p and p ′ are edge-disjoint and

non-crossing, and p ′ contains o?. By construction, p corresponds to a directed path in

G
sp

and p ′ corresponds to an undirected path in

−→
G st .

Conversely, due to the directions of the edges xv,xu, every directed st-path q in

−→
G st is a directed path in G

sp
, and therefore it is a shortest st-path in G?

st , i.e., p := q. If

there is an undirected p-friendly path q′, we obtain a path p ′ from q′ by contracting

edges incident to split vertices x . Hence,

−→
G st is st-friendly. �

We consider the following special case, where s and t lie on the outer face o
sp

of the

subgraph G
sp

of

−→
G st . We denote by pµ and pλ the upper and lower st-path of G

sp
on
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s′ t′

(a)

s′ t′

(b)

Figure 8.10: (a) The undirected path p ′ (red) uses vertices in the interior of G
sp

. (b) Since the

paths p (blue) and p ′ are not crossing, p ′ can be rerouted such that it does not use interior

vertices.

v

v′

s tx zy

pµ

pλ

(a)

v

s tx z

pλ

pµ

a bc

(b)

Figure 8.11: (a) The red directed path can be circumvented with the blue directed path via

vertex v . (b) The red path consists of avoidable edges.

the boundary of o
sp

. A vertex v of

−→
G st is an interior vertex if v it lies in the exterior of

o
sp

. An edge uv of G
sp

is an interior edge if u and v are interior vertices. An edge e of

G
sp

is a chord if both its endpoints lie on o
sp

but e is not an edge on the boundary of o.

Lemma 8.9. For a directed st-path p and an undirected p-friendly st-path p ′, there is
an undirected p-friendly st-path p ′′ that does not use interior vertices of G

sp
.

Proof. If p ′ does not use interior vertices of G
sp

, p ′ already satis�es the conditions for

the path p ′′ and we set p ′′ := p ′. Therefore, consider a p-friendly path p ′ that contains

interior vertices ofG
sp

. By the de�nition of p-friendly paths, p and p ′ are non-crossing.

Therefore there are two distinct vertices u,v on pλ or on pµ , say pµ , such that the inner

vertices of p ′[u,v] lie in the interior of G
sp

; refer to Figure 8.10. Moreover, since p ′

and p are non-crossing, the region enclosed by p ′[u,v] and pµ [u,v] does not contain a

vertex of p in its interior. Therefore, we obtain p ′′ by iteratively replacing pieces in

the form of p ′[u,v] by pµ [u,v]. Note that this operation preserves the property of p ′

that p ′ contains o?, since o? can not be an interior vertex of G
sp

, and is edge-disjoint

from p. Hence, p ′′ is p-friendly. �

This �nishes Step 1, and we continue with Step 2. In the following we iteratively

simplify the structure of G
sp

while preserving the st-friendliness of

−→
G st . Due to
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f1
f2 f ′

1
f ′
2

e
e′

Figure 8.12: Interior partners decoded by color of a 2-edge connected component of the

shortest path graph G
sp

. Note that if p contains the edge e it also contains the edge e ′.

Lemma 8.9, the graph G
sp
/e , obtained from contracting an edge e of G

sp
, is st-friendly,

if e is an interior edge. This may generate a separating triangle xyz. Let v be a vertex

in the interior of xyz and let p be a directed st-path that contains v . Then, p contains

at least two vertices of x ,y, z. Hence, p can be rerouted using an edge of xyz. Thus, the

graph after removing all vertices in the interior of xyz is st-friendly. After contracting

all interior edges of G
sp

, each neighbor of an interior vertex of G
sp

lies either on pλ or

on pµ . The remaining edges are edges on pλ ∪ pµ and chords.

Consider three vertices x ,y, z that lie in this order on pλ (pµ ) and two interior

vertices v and v ′, with xv,v ′y,vz ∈
−→
E ; refer to Figure 8.11a. Note that v and v ′ can

coincide. Then, every directed st-path p that contains y also contains x and z. Hence,

p can be rerouted through the edges xv,vz and as a consequence of Lemma 8.9, the

graph G
sp
− v ′y is st-friendly. Analogously, if G

sp
contains the edge yv ′, G

sp
− yv ′

remains st-friendly. We call such edges circumventable.

We refer to edges of a subpath pλ[x , z] (pµ [x , z]) as avoidable if there exists an

interior vertex v with xv,vz ∈
−→
E (Figure 8.11b). If there exists a directed path p that

uses an avoidable edge ab it can be rerouted by replacing the corresponding path

pλ[x , z] with the edges xv,vz. Thus, we can split the edge ab with a vertex c and we

direct the resulting edges from c towards a and b, respectively, and remove the edge

ab from

−→
G st . Finally, we iteratively contract edges incident to vertices with in- and

out-degree 1, and we iteratively remove vertices of degree at most 1, except for s and t .

Since all interior edges of G
sp

are contracted, circumventable interior edges are

removed and avoidable edges are replaced, each 2-edge connected component of G
sp

is an outerplanar graph whose weak dual (excluding the outer face) is a path; compare

Figure 8.12. Each face f of G
sp

, with f , o
sp

, contains at least one edge eλ of pλ and

one edge eµ on pµ . Moreover, every directed st-path contains either eλ or eµ . We refer

to the edge sets Ef ,λ = E(f ) ∩ E(pλ) and Ef ,µ = E(f ) ∩ E(pµ ) as interior partners.

Property 8.10. Choosing a directed st-path in G
sp
is equivalent to choosing for each

face f of G
sp
one of the interior partners Ef ,µ or Ef ,λ such that the following condition

holds. Let f
1
, f

2
be two adjacent faces that are separated by a chord e that ends at pλ (pµ )
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s

t

x

(a)

s

t

xλ

xµ

(b)

Figure 8.13: Splitting the vertex x into two copies xλ and xµ ensures that the red and blue

paths do not cross.

x

u1
u2

u3

(a)

x

u1
u2

u3y

(b)

Figure 8.14: Splitting of a vertex x on the outer face o that is incident to an exterior edge uix .

such that f
1
is right of e (left of e), then the choice of Ef

2
,µ (Ef

2
,λ) implies the choice of

Ef
1
,µ (Ef

1
,λ).

In the following, we modify the exterior of

−→
G st , i.e., G

sp
=
−→
G st − E(G

sp
) where

degree-0 vertices are removed, with the aim to obtain an analog property for the

choice of the undirected path. We refer to edges of G
sp

as exterior edges. A vertex in

V (G
sp
) \V (G

sp
) is an exterior vertex.

Since the undirected path is not allowed to cross the directed path, we split each cut

vertex x ofG
sp

into an upper copy xµ and a lower copy xλ ; see Figure 8.13. We reconnect

edges of pλ and pµ incident to x to xλ and xµ , respectively. Exterior edges incident to x
that are embedded to the right of pλ are reconnected to xλ . Likewise, edges embedded

to the left of pµ are reconnected to xµ . Note that this operation duplicates bridges of

G
sp

. Thus, we forbid the undirected path to traverse these duplicates. Observe that

after this operation the outer face o
sp

of G
sp

is bounded by a simple cycle.
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v

v′

x y
z

s t
p

p′

(a)

s
tosp

(b)

Figure 8.15: (a) If the undirected path p ′ (red) contains z, it can be rerouted along the path

highlighted in light red so that it use vertex v . (b) The color coding of the faces indicate the

exterior partners.

Let x be a vertex on o
sp

that is incident to an exterior edge uix . In this case, we

insert a vertex y to

−→
G st and we remove each exterior edge uix from

−→
G st and insert

as a replacement edges yx and uiy; see Figure 8.14. We refer to the edge yx as a

barrier. Since the barrier yx is directed from y to x , the modi�cation preserves the

st-friendliness of

−→
G st . We now exhaustively contract exterior edges that are not

barrier edges, and remove vertices in the interior of separating triangles. In case of a

contraction of an edge ao? that is incident to the vertex dual to the outer face o of G,

we remove a and reconnect its edges to o?.

Recall that s and t lie on the outer face o
sp

of the subgraph G
sp

of

−→
G st . Let v be

an exterior vertex such that its neighbor x comes before its neighbor y on pi with

i = λ, µ; refer to Figure 8.15a. Let z be a vertex between x and y on pi that is connected

to a vertex v ′ such that the edge v ′z (zv ′) lies in the interior of the region bounded

by yvx and pi [x ,y]. Consider a directed st-path p in G
sp

and an undirected p-friendly

st-path p ′ in

−→
G st that contains v ′. Due to Lemma 8.9 we can assume, that p ′ does

not contain an interior vertex of G
sp

. Thus, it contains x and y. We obtain a new

path p ′′ by replacing the subpath p ′[x ,y] by vx ,vy. Since vx ,vy are exterior edges,

p ′′ and p are edge-disjoint and non-crossing. Thus, the graph

−→
G st −v

′z (

−→
G st − zv

′
)

is st-friendly. After removing all such edges, for any two neighbors x and y of an

exterior vertex v , the paths o
sp
[x ,y] and o

sp
[y,x] each contains either s or t . Hence,

the region bounded by yvx and o
sp
[x ,y] contains a second exterior vertex v ′ if and

only if o
sp
[x ,y] contains either s or t .

Hence, the dual of G
sp
+ E(o

sp
), with the dual vertex of complement o

sp
of o

sp
and

multi-edges removed, is a caterpillar C; refer to Figure 8.15b. In case that s or t is

incident to an exterior vertex v , we can assume that the undirected path p ′ contains

the edge sv (vt ). Thus, for simplicity, we now assume that neither s nor t is connected
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o?
ab c
xy z

s t

(a) a ∈ V (pµ ) and x ∈ V (pλ)

a x zb
o?s t

(b) a,x ∈ V (pµ )

Figure 8.16: Every path (thick green path) that contains the outer face contains either the

edges ac and yx (orange), or the edges ba and xz (green).

to an exterior vertex. Let a and b be the vertices in C whose primal faces are incident

to s and t , respectively. Then every undirected st-path in G
sp
+ E(o

sp
) from s to t

traverses the primal faces of the simple path q from a to b in C . Let f be a primal face

of a vertex on q. Since we inserted the barrier edges to

−→
G st , every face contains at

least one edge eλ of pλ and one edge eµ of pµ . Therefore, every undirected st-path

in G
sp
+ E(o

sp
) either contains eλ or eµ . We refer to the sets Ef ,λ = E(f ) ∩ E(pλ) and

Ef ,µ = E(f ) ∩ E(pµ ) as exterior partners.

Property 8.11. Choosing an undirected st-path inG
sp
+E(o

sp
) is equivalent to choosing

for each face f , o
sp
of G

sp
+ E(o

sp
) one of the exterior partners Ef ,λ or Ef ,µ .

This �nishes Step 2, and we proceed to Step 3. The problem of �nding a directed

st-path p and an undirected st-path p ′ in

−→
G st reduces to a 2-SAT instance as follows.

For each exterior and interior partner we introduce variables xf and xд , respectively,

where f and д correspond to the faces of the partners. If xf is true, p ′ contains the edge

of Ef ,λ , otherwise it contains Ef ,µ . The conditions on the choice of p in Property 8.10

can be formulated as implications. Let Ef ,µ an Ef ,λ be exterior partners and let Eд,µ
and Eд,λ be interior partners. In case that Ef ,λ ∩ Eд,λ , ∅, either p can contain edges

of Eд,λ or p ′ can contains edges of Ef ,λ but not both. Thus, xf and xд are not allowed

to be true at the same time, i.e., xf = xд .

Finally, we have to ensure that p ′ contains the vertex o? that is dual to the outer

face o. Let ao? and xo? be the two edges incident to o?. Without loss of generality,

assume that a lies on pµ . We distinguish two cases based on whether x is on pλ or

on pµ ; refer to Figure 8.16. First assume that x is on pλ . Let ba,ac and yx ,xz be the

edges incident to a and x , respectively, that lie on pµ or pλ . Every p-friendly st-path p ′

that contains o?, contains ba and xz, or yx and ac . Thus, let Efba,µ and Efac ,µ be the

edge set that contains the edges ba and ac , respectively. Analogously, let Eдyx ,λ and

Eдxz,λ be the set that contains yx ,xz, respectively. Hence, we have that xfba = xдxz or

xfac = xдyx .
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Now consider the case that a and x both lie on pµ . Then let ba and xz be the edges

on pµ such that b precedes a and z succeeds x . Every path that contains o? contains

ba and bz. Let Ef ,µ and Eд,µ be the sets that contain ba an bz, respectively. Then, we

have that xf = xд = true.

Hence, we have the following Theorem.

Theorem 8.12. If s and t lie on the outer face ofG
sp
, it is decidable in polynomial time

whether

−→
G st has a directed st-path p and a p-friendly st-path p ′.

Together Corollary 8.4 and Theorem 8.12 prove the following corollary.

Corollary 8.13. If s and t lie on the outer face ofG
sp
, it is decidable in polynomial time

whether G?
st contains a shortest st-path that is stretchable with respect to the outer face

of G.

8.5 Parametrized Complexity of Short Consistent st-Paths

In this section we show that edge insertion can be solved in FPT time with respect

to the minimum number of crossings of a straight-line drawing of G + st where G
is drawn without crossings and has the speci�ed embedding. Let l be an arbitrary

labeling ofG . Observe that l de�nes a directed subgraph ofG?
st by removing each edge

whose dual edge has endpoints with the same label and by directing all other edges e
such that the endpoint of its primal edge left of e has label L and its other endpoint

has label R. We denote this graph by G?
st (l); edges incident to s or t are outgoing from

s and incoming to t , respectively. Obviously, a shortest st-path in G?
st (l) is compatible

with l , and thus a corresponding drawing exists. Clearly, given the labeling l a shortest

st-path in G?
st (l) can be computed in linear time by a BFS.

Now assume that the length of a shortest consistent path in G?
st is k . We propose a

randomized FPT algorithm with running time O(4kn) for �nding a shortest consistent

path in G?
st , based on the color-coding technique [Cyg+15].

The algorithm works as follows. First, we pick a random labeling of G by labeling

each vertex independently with L or R with probability 1/2. We then compute a

shortest path in G?
st (l). We repeat this process 4

k
times and report the shortest path

found in all iterations.

Clearly the running time is O(4kn). Moreover, each reported path is consistent, and

therefore the algorithm outputs only consistent paths. It remains to show that the

algorithm �nds a path of length k with constant probability.

Consider a single iteration of the procedure. If the random labeling l is compatible

with p, then the algorithm �nds a path of length k . Therefore the probability that our

algorithm �nds a consistent path of length k is at least as high as the probability that p
is compatible with the random labeling l . Let VL,VR ⊆ V denote the vertices of V that
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are left and right of p, respectively. Clearly it is |VL |, |VR | ≤ k . A random labeling l
is consistent with p if it labels all vertices in VL with L and all vertices in VR with R.

Since vertices are labeled independently with probability 1/2, it follows that Pr[p is

consistent with l] = (1/2) |VL | · (1/2) |VR | ≥ (1/2)2k = (1/4)k .

Therefore, the probability that no path of length k is found in 4
k

iterations is at

most (1− (1/4)k )4
k
, which is monotonically increasing and tends to 1/e ≈ 0.368. Thus

the algorithm succeeds with a probability of 1 − 1/e ≈ 0.632. The success probability

can be increased arbitrarily to 1 − δ , δ > 0 by repeating the algorithm log(1/δ ) times.

The probability that each iteration fails is then bounded from above by (1/e)log 1/δ =

1/e log 1/δ = δ . E.g., to reach a success probability of 99%, it su�ces to do log 100 ≤ 5

repetitions. The algorithm can be derandomized with standard techniques [Cyg+15].

Theorem 8.14. There is a randomized algorithm A that computes a consistent path

of length k if one exists with a success probability of 1 − δ . The running time of A is

O(log(δ−1)4kn).

8.6 Conclusion

We have shown that the problem of �nding a short consistent st-paths inG?
st is tractable

in special cases and �xed-parameter tractable in general. Whether G?
st has a short

st-path stretchable with respect to a given outer face is equivalent to the question of

whether G?
st has two edge-disjoint and non-crossing st-paths, where the length of one

path is minimized and the other contains the vertex dual to the outer face. Surprisingly,

this is related to yet another purely graph theoretic problem: does a directed graph G
have two edge-disjoint paths where one is directed and the other is only undirected?

By the result of Eilam-Tzore� [Eil98] the former problem is in general NP-hard. For

planar graphs the computational complexity of these problems remains an intriguing

open question.

In Section 8.3 we showed that for each planar graph of maximum vertex degree 5

and for each pair s, t , there is a consistent shortest st-path. It is open whether this

statement remains true if one asks for shortest st-paths that are stretchable with

respect to the outer face. In this chapter, we only considered planar graphs with a �xed

combinatorial embedding. Allowing for arbitrary embeddings opens new perspectives

on the problem and is interesting future work.
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9 Drawing Planar Clustered
Graphs on Disks

Let G = (V ,E) be a planar graph and letV be a partition of V . We refer to the graphs

induced by the vertex sets in V as clusters. Let DC be an arrangement of pairwise

disjoint disks with a bijection between the disks and the clusters. Akitaya et al. [AFT18]

give an algorithm to test whether (G,V) can be embedded ontoDC with the additional

constraint that edges are routed through a set of pipes between the disks. If such an

embedding exists, we prove that every clustered graph and every disk arrangement

without pipe-disk intersections has a planar straight-line drawing where every vertex

is embedded in the disk corresponding to its cluster. This result can be seen as an

extension of the result by Alam et al. [Ala+15] who solely consider biconnected clusters.

Moreover, we prove that it is NP-hard to decide whether a clustered graph has such

a straight-line drawing, if we permit pipe-disk intersections, even if all disks have unit

size. This answers an open question of Angelini et al. [Ang+14].

The research of this chapter was initiated in the Bachelor thesis of Nina Zim-

bel [Zim17]. This chapter is based on joint work with Tamara Mchedlidze, Ignaz Rutter

and Nina Zimbel [Mch+19b, Mch+19c].

9.1 Introduction

We study whether a clustered planar graph C has a planar straight-line drawing on a

prescribed set of disks where each edge is allowed to intersect the boundary of each

disk at most once. More formally, a (�at) clustering of a graph G = (V ,E) is a partition

V = {V
1
, . . . ,Vk } of the vertex set V . We refer to the pair C = (G,V) as a clustered

graph and the graphs Gi = (Vi ,Ei ) induced by Vi as clusters. The set of edges Ei of

a cluster Gi are intra-cluster edges and the set of edges with endpoints in di�erent

clusters are inter-cluster edges. A disk arrangement DC = {D1
, . . . ,Dk } of C is a set of

disks in the plane together with a bijective mapping µ(Vi ) = Di between the clusters

V and the disks D.

A pipe pi j of two clusters Vi ,Vj is the convex hull of the disks Di and D j , i.e., the

smallest convex set of points containing Di and D j ; see Figure 9.1. Observe that the

boundary of pi j is composed of two line segments ui j ,bi j and two circular arcs. We

refer to a topological planar drawing of G, i.e., the drawing of each edge is a curve, as

an embedding of G. A DC-framed embedding of G is an embedding of G where each

vertex v ∈ Vi lies in the interior of the disk Di and each edge uv , with u ∈ Vi and

v ∈ Vj , lies entirely in the pipe of Vi and Vj .
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Di

Dj

pij

(a) (b) (c)

Figure 9.1: (a) The light-blue region shows the pipe pi j of the disks Di and D j . An edge in a

DC-framed straight-line drawing intersects the boundary of a pipe at most two times. Thus,

the DC-framed embedding described in (b) does not correspond to DC-framed straight-line

drawing. The drawing in (c) is not homeomorphic to (a), since the edge in (c) intersects di�erent

parts of the boundaries of the pipes.

Given a cluster planar graph C, a disk arrangement DC of C and a DC-framed

embedding ψ , Godau [God95] proves that it is NP-hard to decide whether G has a

DC-framed straight-line drawing Γ such thatψ is homeomorphic to Γ. The gadgets in

the proof contain disks of size 0, i.e., the positions of some vertices are �xed. Moreover,

there are disks that are entirely contained in a larger disk, i.e., there exist two disk

di ,dj , i , j with di ⊂ dj . Angelini et al. [Ang+14] consider the case where G is not

embedded but all disks have unit size. More formally, they show that given a planar

graph G, it is NP-hard to decide whether G has a DC-framed straight-line drawing.

For unit disks, they leave the computational complexity of the question whether a

DC-framed embedding has a corresponding DC-framed straight-line drawing as an

open question. Banyassady et al. [Ban+17] show that this problem isNP-hard in case

that G is the intersection graph of DC , i.e., each vertex corresponds to a disk and two

vertices are joined by an edge if the intersection of the corresponding disks is not

empty.

The computational complexity of the following problem has not been considered:

Given a cluster planar graph C = (G,V), a set of pairwise disjoint disks D and a

DC-framed embeddingψ , does C admit a DC-framed straight-line drawing of C that

is homeomorphic toψ . Thereby, we consider two DC-framed embeddingsψ ,ψ ′ of C

to be homeomorphic if (i)ψ andψ ′ have the same combinatorial embedding and the

same outer face, (ii) each edge e ofG crosses a line segment ui j (bi j ) of a pipe pi j inψ if

and only if it crosses the respective line segment inψ ′, (iii) and it does so in the same

order. Observe that every edge in a DC-framed straight-line drawing intersects the

boundary of a pipe at most twice; see Figure 9.1. Thus, in the following we assume as

a necessary condition that an edge in a DC-framed embedding crosses the boundary

of a pipe at most twice.

Related Work. Feng et al. [FCE95] introduced the notion of clustered graphs and

c-planarity. A graph G together with a recursive partitioning of the vertex set is
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Gi

Figure 9.2: The clusterGi cannot be augmented with edges such thatGi becomes biconnected.

considered to be a clustered graph. An embedding of G is c-planar if (i) each cluster

c is drawn within a connected region Rc , (ii) two regions Rc ,Rd intersect if and only

if the cluster c contains the cluster d or vice versa, and (iii) every edge intersects

the boundary of a region at most once. They prove that a c-planar embedding of

a connected clustered graph can be computed in O(n2) time. It is an open question

whether this result can be extended to disconnected clustered graphs. Many special

cases of this problem have been considered [BR16].

Eades et al. [Ead+06] prove that every c-planar graph has a c-planar straight-line

drawing where each cluster is drawn in a convex region. Angelini et al. [AFK11]

strengthen this result by showing that every c-planar graph has a c-planar straight-

line drawing in which every cluster is drawn in an axis-parallel rectangle. The result

of Akitaya et al. [AFT18] implies that in O(n logn) time one can decide whether an

abstract graph with a �at clustering has an embedding where each vertex lies in a

prescribed topological disk and every edge is routed through a prescribed topological

pipe. In general they ask whether a simplicial map φ of G onto a 2-manifold M is a

weak embedding, i.e., for every ϵ > 0, φ can be perturbed into an embeddingψϵ with

| |φ −ψϵ | | < ϵ .

Alam et al. [Ala+15] prove that it is NP-hard to decide whether an embedded

clustered graph has a c-planar straight-line drawing where every cluster is contained

in a prescribed (thin) rectangle and edges have to pass through the interval common

for both rectangles. Further, they prove that all instances with biconnected clusters

always admit a solution. Their result implies that graphs of this class haveDC-framed

straight-line drawings.

Ribó [Rib06] shows that every embedded clustered graph where each cluster is a

set of independent vertices has a straight-line drawing such that every cluster lies in a

prescribed disk. In contrast to our setting Ribó allows an edge e to intersect a disk of a

cluster Gi that does not contain an endpoint of e .

Contribution. We say that a disk arrangement DC is pipe-disk intersection free if

each pipe pi j that contains an edge (i.e, (Vi ×Vj ) ∩E , ∅) does not have an intersection

with a diskdk , wherek , i, j . In Section 9.2, we prove that if the disk arrangementDC is

pipe-disk intersection free and each pair of disks is disjoint, then every clustered planar

graph (G,V) with a DC-framed embeddingψ has a DC-framed planar straight-line

drawing homeomorphic toψ . Taking the result of Akitaya et al. [AFT18] into account,
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our result can be used to test whether an abstract clustered graph with connected

clusters has a DC-framed straight-line drawing. The example in Figure 9.2 shows that

in general clusters cannot be augmented to be biconnected, if the embedding is �xed.

Hence, our result is generalization of the result of Alam et al. [Ala+15]. In Section 9.3,

we show that the problem is NP-hard in the case that the disk arrangements is not

pipe-disk intersection free. More speci�cally, we show that the problem isNP-hard in

case of arrangements of unit disks and as well as in the case of axis-aligned unit squares.

This answers the aforementioned open question of Angelini et al. [Ang+14]. From

now on we refer to a DC-framed straight-line drawing of G simply as a DC-framed

drawing of G.

9.2 Drawing on Disk Arrangements that are Pipe-Disk

Intersection Free

Let C = (G,V) be a clustered planar graph, letDC be a disk arrangement with pairwise

disjoint disks that is pipe-disk intersection free, and letψ be a DC-framed embedding

of C. In this section we prove that C has a DC-framed drawing that is homeomorphic

toψ . We prove the statement by induction on the number of intra-cluster edges. In

Lemma 9.1 we show that we can indeed reduce the number of intra-cluster edges

by contracting intra-cluster edges. In Lemma 9.2, we prove that the statement is

correct if the outer face of C is a triangle and C is connected, i.e., each cluster Gi is

connected. In Theorem 9.3 we extend this result to clustered graphs whose clusters

are not connected.

A triangleT in an embedded planar graphG is separating if the interior and exterior

of T each contain a vertex of G. Let e = uv be an intra-cluster edge of G that is not

an edge of a separating triangle. We obtain a contracted clustered graph C/e of C by

removingv fromG and connecting the neighbors ofv to u. We obtain a corresponding

embedding ψ/e from ψ by routing the edges vw ∈ E,w , u close to the original

drawing of uv .

Lemma 9.1. Let C = (G,V) be a connected clustered planar graph, DC be a disk

arrangement with pairwise disjoint disks that is pipe-disk intersection free and let ψ
be DC-framed embedding of C. Let e be an intra-cluster edge that is not an edge of a

separating triangle. Then C has aDC-framed drawing that is homeomorphic toψ if C/e
has a DC-framed drawing that is homeomorphic toψ/e .

Proof. Let e = uv and denote by u
0
,u

1
, . . . ,uk the neighbors of u and denote by

v
0
,v

1
, . . . ,vl the neighbors of v in C in clockwise order; see Figure 9.3a. Without loss

of generality, we assume that u
0
= v and v

0
= u. Since e is not an edge of a separating

triangle the set I := {u
2
, . . . ,uk−1

} ∩ {v
2
, . . . ,vl−1

} is empty. Denote by u the vertex
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u v

u1

u2

u3

. . .

uk = v1
v2

v3

vl

. . .

x

(a)

u

u1

u2

u3

v2
v3

vl

. . .rv

. . .
uk = v1

(b)

u

u1

u2

u3

. . .
uk = v1

v2
v3

vl

. . .rv
v

(c)

Figure 9.3: (a) Since uv is not an edge of a separating triangle edges xu, xv do not exist. (b)

Moving u within disk du preserves the embedding of G/uv . (c) Drawing of G obtained from

(b) by placing v in rv .

obtained by the contraction of e . Let Gi be the cluster of u and v , and let Di be the

corresponding disk in DC .

Consider a DC-framed drawing Γ/e of C/e homeomorphic toψ/e; see Figure 9.3b.

Then there is a small disk Du ⊂ Di around u such that for every point p in Du moving

u to p yields a DC-framed drawing that is homeomorphic toψ/e .

We obtain a straight-line drawing Γ of C from Γ/e as follows; see Figure 9.3c. First,

we remove the edges uvi from Γ/e . The edges uu
1
,uuk partition Du into two regions

ru , rv such that the intersection of rv with uui is empty for all i ∈ {2, . . . ,k − 1}. We

place v in rv and connect it to u and the vertices v
1
, . . . ,vl . Since rv is a subset of Du

and I = ∅, we have that the new drawing Γ is planar. Since v is placed in rv , the edge

uv is in between uu
1

and uuk in the rotational order of edges around u. Hence, Γ is

homeomorphic toψ . Finally, Γ is aDC-framed drawing since, Du is entirely contained

in Di and thus are u and v . �

Lemma 9.2. Let C be a connected clustered graph with a triangular outer face T , let
DC be a disk arrangement with pairwise disjoint disks that is pipe-disk intersection free,

and letψ be a DC-framed embedding of C. Moreover, let ΓT be a DC-framed drawing

of T . Then C has a DC-framed drawing that is homeomorphic toψ with the outer face

drawn as ΓT .

Proof. We prove the theorem by induction on the number of intra-cluster edges.

First, consider the case that every intra-cluster edge of C is an edge on the boundary

of the outer face. Note that there are at most three vertices in the interior of a single disk.

Thus, C is either a triangle as depicted in Figure 9.4a and Figure 9.4b, or each cluster

is a single vertex. Since DC is pipe-disk intersection free, the graph in Figure 9.4a and

Figure 9.4b C does not contain any further vertices. Let Γ be the drawing obtained

from ΓT by placing every vertex that does not lie on the outer face on the center

point of its corresponding disk. Since DC is a pipe-disk intersection free and ΓT is
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(a) (b) (c)

Figure 9.4: Instances with a triangular outer face that do not contain contractable intra-cluster

edges.

convex, the resulting drawing is planar and thus a DC-framed drawing of C that is

homeomorphic to the embeddingψ .

Let S be a separating triangle of C that splits C into two subgraphs C
in

and C
out

so

that C
in
∩ C

out
= S and the outer face of C

out
and C coincide. Note that C

in
and C

out

are connected as otherwise C itself would not be connected. Then by the induction

hypothesis C
out

has the DC-framed drawing Γ
out

with the outer face drawn as ΓT and

C
in

has aDC-framed drawing Γ
in

with the outer face drawn as Γ
out
[S], where Γ

out
[S] is

the drawing of S in Γ
out

. Then we obtain a DC-framed drawing of C by merging Γ
in

and Γ
out

.

Consider an intra-cluster edge e that does not lie on the boundary of the outer face

and is not an edge of a separating triangle. Then by the induction hypothesis, C/e has

a DC-framed drawing with the outer face drawn as ΓT . It follows by Lemma 9.1 that

C has a DC-framed drawing homeomorphic toψ . �

Theorem 9.3. Every clustered graph C with a DC-framed embedding ψ has a DC-

framed drawing homeomorphic toψ if the disk arrangement DC is pairwise disjoint and

pipe-disk intersection free.

Proof. We obtain a clustered graph C′ from C by adding a new triangleT to the graph

and assigning each vertex of T to a newly constructed cluster. Let ΓT be a drawing of

T that contains all disks in DC in its interior. We obtain a new disk arrangement D ′
C

from DC by adding a su�ciently small disk for each vertex of ΓT . The embeddingψ
together with ΓT is a D ′

C
-framed embeddingψ ′ of C′.

According to Feng et al. [FCE95] there is a simple connected clustered graph C′′

that contains C′ as a subgraph whose embeddingψ ′′ is DC-framed and containsψ ′.
By Lemma 9.2 there is a DC-framed drawing Γ′′ of C′′ homeomorphic toψ ′′ with the

outer face drawn as ΓT . The drawing Γ′′ contains a DC-framed drawing of C. �
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9.3 Drawing on Arrangements with Pipe-Disk

Intersections

In this section we study the following problem referred to as DC-framed Drawings

with Pipe-Disk Intersections. Given a planar clustered graph C = (G,V), a disk

arrangementDC with pairwise disjoint disks that is not disk-pipe intersection free, and

aDC-framed embeddingψ of C, is there aDC-framed drawing Γ that is homeomorphic

toψ ?

Note that if the disks DC are allowed to overlap and G is the intersection graph

of DC , the problem is known to be NP-hard [Ban+17]. Thus, in the following we

require that the disks do not overlap, but there can be pipe-disk intersections. By Alam

at al. [Ala+15] it follows that the problem restricted to thin touching rectangles instead

of disks is NP-hard. Their reduction heavily relies on the fact that the rectangles

are thin. We strengthen this result and prove that in case that the rectangles are

either axis-aligned unit squares or unit disks and are not allowed to touch the problem

remains NP-hard.

To prove NP-hardness we reduce from Planar Monotone 3-SAT [BK12]. For

each literal and clause we construct a clustered graph C with an arrangement of disks

(squares) DC of C such that each disk (square) contains exactly one vertex. We refer

to these instances as literal and clause gadgets. In order to transport information from

the literals to the clauses, we construct a copy and inverter gadget. For each gadget

we �rst construct an arrangement of unit squares and state its important properties

in this case. This is followed by the corresponding arrangement of unit disks. We

emphasize the di�erences that have to be dealt with to preserve the properties of

the gadgets when considering unit disks instead of unit squares. The design of the

gadgets is inspired by Alam et al. [Ala+15], but the restriction to unit disks and squares

rather than thin touching rectangles, requires a more complex construction and a

careful placement of the geometric objects. The green and red regions in the �gures

of the gadget correspond to positive and negative drawings of the literal gadget. The

green and red line segments indicate that for each truth assignment of the variables

our gadgets indeed have DC-framed straight-line drawings. Negative versions of the

literal and clause gadget are obtained by mirroring vertically. Hence, we assume that

variables and clauses are positive. Each gadget covers a set of checkerboard cells. This

simpli�es the assembly of the gadgets in the �nal reduction. Note that in the following

constructions all squares and disks will be of unit size. Moreover, we consider only

axis-aligned squares.

9.3.1 Regulator

A line l separates the euclidean plane in two half planes ha and hb and we denote by

ha the complement of ha . These half planes are spanned by l . We say that l supports
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u

ha hb

v

h

O
R

B

l
q

Figure 9.5: Regulator gadget

ha (hb ). Let B be an axis-aligned square that contains a vertex v in its interior and let

ha ,hb be two half planes whose supporting lines have a unique intersection point q
that lies in the interior of B; see Figure 9.5. We describe the construction of a gadget

that restricts the feasible placements of v in a DC-framed drawing by a half plane

h that excludes a placement of v in ha ∩ hb but allows for a placement in ha ∩ B or

hb ∩ B. Since q lies in the interior of B, there is a half plane h that does not contain q
and for each i = a,b, h ∩ hi ∩ B is not empty, but h ∩ ha ∩ hb = ∅.

Let h,ha ,hb and B as described before. We construct a regulator gadget of v in B
with respect to ha and hb as follows. Let lh be the supporting line of h. We create

two axis-aligned squares R and O such that R,O and B intersect lh in this order and

h neither intersects the interior of R nor the interior of O . Place a vertex u in R and

route an edge uv through h ∪ R ∪ B. In case that h instead of ha and hb is given, we

refer to the gadget as the regulator of v with respect to a (single) half plane h.

Lemma 9.4. LetW be a regulator gadget of v in B with respect to ha and hb . For every
point pv ∈ h ∩ B there is a DC-framed drawing Γ such that v lies on pv . There is no

DC-framed drawing ofW such that v lies in h ∩ B.

Proof. By construction ofW , there is for every point pv ∈ h∩B aDC-framed drawing

Γ such that v lies on pv .

The supporting line lh of h intersects the boundary of R and does not intersect the

interior of O . Let r and o be points in the intersection of lh with R and O , respectively.

Since Γ is homeomorphic toW the edge uv intersects lh on the ray starting in o in

the direction towards r . Therefore, u and v lie on di�erent sides of lh . Since u ∈ R, it

follows that v ∈ h. �
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R2

R3

R4

Cp1 v3

(a)

α1α2

α3α4

(b)

Figure 9.6: (a) The literal gadget. (b) The positive regions Pi are depicted in green and the

negative regions Ni are red. The grey regions Qi are infeasible. The green / red squared

indicate that there are positive and negative realizations of the literal gadget.

We refer to the intersection h ∩ B as the regulated region of v in B. Thus, by the

construction ofW , the regulated region Q has a non-empty intersection with ha ∩ B
and hb ∩ B. Thus, by the lemma for each placement of v in Q ∩ hi ∩ B, i = a,b, there

is a DC-framed drawing. On the other hand, since h ∩ ha ∩ hb ∩ B = ∅, there is no

DC-framed drawing such that v lies in ha ∩ hb ∩ B.

9.3.2 Literal Gadget

In this section we construct a clustered graph C with an arrangement of squares DC
that models a literal u. The positive literal gadget is depicted in Figure 9.6a. We obtain

the negative literal gadget by mirroring vertically.

The center block is a unit squareC with corners α
1
,α

2
,α

3
,α

4
in clockwise order. For

each corner αi of C consider a line li that is tangent to C in αi , i.e, li ∩C = {αi }. Let

pi be the intersection of the lines li−1
and li where l

0
= l

4
; refer to Figure 9.6a. Let

R
1
, . . . ,R

4
be four pairwise non-intersecting squares that are disjoint fromC such that

Ri contains pi in its interior. We add a cycle v
1
v

2
v

3
v

4
v

1
to the graph such that vi ∈ Ri .

We refer to the vertex vi as the cycle vertex of the cycle block Ri . For each i , let ηi be a

half plane that contains Ri+1
but does not intersect C . Within ηi we place a regulator

Wi of vi with respect to hi−1
and hi , where hi is the half plane spanned by li that does

not contain C . This �nishes the construction.

We now show that there exist two disjoint regions Pi and Ni in Ri that correspond

to a positive and negative drawing of the literal gadget. Consider R
1

and its two

adjacent squares R
4

and R
2
. Let Qi be the regulated region of Ri with respect toWi .

Then the intersection I
1

:= h
4
∩ h

1
∩ Q

1
, ∅. We refer to I

1
as the infeasible region
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li

αi

Chi vi

vi+1

Ri

Ri+1

Figure 9.7: Since vi does not lie in hi ∩ Ri (green) and li is tangent to C , vi+1
lies in the

hi+1
∩ Ri+1

(red).

of R
1
. The intersection h

1
∩ Q

1
is the positive region P

1
of R

1
. The region h

4
∩ Q

1
is

the negative region N
1
of R

1
. Regions P

1
,N

1
, I

1
are by construction not empty. The

positive, negative and infeasible region of Ri , i , 1 are de�ned analogously.

Property 9.5. If Γ is a DC-framed drawing of a literal gadget, then no cycle vertex vi
lies in the infeasible region of Ri . Moreover, either each cycle vertex vi lies in the positive

region Pi or each vertex vi lies in the negative region Ni .

Proof. Consider a DC-framed drawing Γ with an edge vivi+1
such that vi lies in Pi ,

i.e., vi lies in hi ∩ Ri ; see Figure9.7. We show that vi+1
lies in Ni+1

. If vi+1
lies in hi ,

then vi and vi+1
lie on the same side of li . Since li is tangent to αi , vivi+1

intersects C .

It follows that vi+1
lies in hi and therefore in the negative region Ni+1

.

Assume that v
1

lies in its infeasible region I
1
, then v

2
lies in N

2
by the above

observation. Likewise, v
3
,v

4
,v

1
lie in N

3
,N

4
,N

1
, respectively. This contradicts N

1
∩

I
1
= ∅. Similarly, we get that each vertex vi , i , 1, cannot lie in the invisible region

Ii . Thus, each vi either lies in Pi or in Ni . Moreover, if one vi lies in Ni the above

observation yields that all of them lie in their negative region. �

The green and red squares in Figure 9.6a indicate that there is a positive and a

negative realization of the literal gadget, i.e., there is a DC-framed drawing of the

literal gadget where all cycle vertices lie either in a positive or in a negative region. In

order to simplify the following constructions, we �x the position of the green and red

squares as depicted. We refer to these positions as the positive and negative placement

of the vertices vi and denote them by p+X ,i and p−X ,i . To reduce the notation, we drop

the index i and simply refer to p+X and p−X as the positive and negative placements of

the literal X . Thus, the literal gadget has the following property.

Property 9.6. The positive and negative placements induce a DC-framed drawing of

the literal gadget, respectively.
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R1

R2

R3

R4

C

Figure 9.8: The literal gadget with unit disks. The endpoints of the blue segment in the

interior of the central disk C are the points βi .

Unit Disks

The construction of the literal gadget with unit disks follows the same principle as

the construction using unit squares; see Figure 9.8. Only instead of the four corners

αi we choose four points βi that are equally distributed along the boundary of the

central disk. The position of the disk Ri have to be adjusted so that the it contains the

intersection of the tangents of the central disks in the points βi−1
and βi .

9.3.3 Copy and Inverter Gadget

In this section, we describe the copy and inverter gadget; see Figure 9.9. The copy

gadget connects two positive or two negative literal gadgets X and Y such that a

drawing of X is positive if and only if the drawing of Y is positive. Correspondingly,

the inverter gadget connects a positive literal gadget X to a negative literal gadget Y
such that the drawing of X is positive if and only if the drawing of Y is negative. The

construction of the inverter and the copy gadget are symmetric.

Let X and Y be two positive literal gadgets whose center blocks are aligned on the

x-axis with a su�ciently large distance. We construct the copy gadget that connects

X and Y as follows. Let RX and RY be the two cycle blocks of the literal gadgets X
and Y , respectively, with minimal distance on the x-axis. For A ∈ {X ,Y }, let PA and

NA be the positive and negative regions of RA. Since PA and NA are convex and their

intersection is empty, there exists a half plane hA that contains NA but not PA, and

vice versa. In a reversed manner, we call hA a positive half-plane h+Z of A if it contains

the negative region NA, otherwise it is negative and we denote it by h−A.

Consider a positive half-plane h+X of X and a negative half-plane h−Y of Y ; refer to

Figure 9.9a. We create two non-intersecting squares O+X and O−Y that are contained in

the intersection of h+X and h−Y such that a corner of O+X and O−Y lie on the supporting
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line of h+X and h−Y , respectively. Recall that we denote the complement of a half-plane

h by h. Let I be the intersection of the supporting lines of h+X and h−Y . We place a

square B with a vertex b in interior so that the intersection I lies in the interior of

B. Additionally, we add a regulator of b with respect to h+X and h−Y to exclude the

intersection h+X ∩ h−Y as feasible placement of b. We route the edges bvX and bvY
through RX ∪ h

+
X ∪ B and RY ∪ h

−
Y ∪ B respectively. This construction ensures that in

aDC-framed drawing a placement of the vertex vX in the positive region PX excludes

the possibility that the vertex vY lies in the negative region NY . In order to ensure

that vX cannot lie at the same time in NX as vY in PY , we construct a square B′ with

respect to a negative half-plane h−X of X and a positive half-plane h+Y of Y analogously

to B. If the distance between X and Y is su�ciently large, we can ensure that the

intersection of B and B′ is empty. In the construction of the inverter gadget the square

B is constructed with respect to h+X and h+Y , and B′ with respect to h−X and h−Y . We

refer to the corresponding gadgets as copy and inverter gadget. We say that the copy

and inverter gadget connect two literals.

Property 9.7. Let Γ be a DC-framed drawing of two positive (negative) literals gadgets

X and Y connected by a copy gadget. Then the DC-framed of X in Γ is positive if and

only if the DC-framed drawing of Y is positive.

Proof. By Property 9.5 the vertices vX and vY of X and Y cannot lie in the infeasible

regions ofX andY , respectively. Thus, similar to the proof of Lemma 9.5 we can assume

for the sake of contradiction that the vertex b of the block B lies in the intersection of

h+X and h−Y . Thus, vertex vX lies in the negative region of RX and vY in the positive

region of RY . But then vertex b ′ of the block B′ lies in h−X and h+Y . However, this is not

possible due to the regulator of b ′. �

The same argumentation is applicable to the inverter gadget.

Property 9.8. Let Γ be a DC-framed drawing of a positive literal gadget X and a

negative literal gadget Y connected by an inverter gadget. Then the DC-framed drawing

of X in Γ is positive if and only if the DC-framed drawing of Y is negative.

The green and red squares in Figure 9.9b and in Figure 9.10 indicate that for a

positive and a negative placement of X there is DC-framed drawing of copy and

inverter gadget, respectively. Thus, the copy and inverter gadget have the following

property.

Property 9.9. The positive (negative) placement of two literals gadgets X ,Y induces a

DC-framed straight-line drawing of a copy [inverter] gadget that connects X and Y .
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Figure 9.11: Observation

Unit Disks

Squares have the property that there is a set of tangents through a corner point of the

square. On the other hand, at each point on the boundary of a disk the tangent to the

disk is unique. The following observation helps to show that this restriction does not

invalidate the correctness of the unit-disk gadgets.

Observation 9.10. Let A and B be two disks and let P be a non-empty subset of A; see
Figure 9.11. Moreover, let p ∈ P and q ∈ B. Let i be the intersection of the segment pq
and the supporting line of a half plane h that contains q and such that h ∩ P = ∅. Let C
be a disk such that pq is tangent toC in the point i . Let Q be the set of points in B so that

for each q′ ∈ Q there is a point p ′ ∈ P such that the segment p ′q′ does not intersect C .
Then Q is a strict subset of h ∩ B.

Recall that, for A = X ,Y , let p+A and p−A be the positive and negative placements of

X and Y . Denote by h+A and h−A the positive and negative half-planes, respectively, of

the disk DA; see Figure 9.12. Moreover, let q+ and q− be points in h+X ∩ B and h−Y ∩ B.

Let O+X (O−Y ) be a disk such that p+Xq
+

(p−Yq
−

) is tangent to O+X (O−Y ) in intersection of

p+Xq
+

(p−Yq
−

) with the supporting line of h+X (h−Y ). The disks O−X and O+Y are positioned

accordingly. The regulators of B and B′ and Observation 9.10 ensure X has a positive

DC-framed drawing if and only if Y has a positive DC-framed drawing.

9.3.4 Clause Gadget

We construct a clause gadget with respect to three positive literal gadgets X ,Y ,Z
arranged as depicted in Figure 9.13. The negative clause gadget, i.e., a clause with

three negative literal gadgets, is obtained by mirroring vertically.

We construct the clause gadget in two steps. First, we place a transition block TA
close to each literal gadgetA ∈ {X ,Y ,Z }. In the second step, we connect the transition

block to a vertex k in a clause block K such that for every placement of k in K at least

one drawing of the literal gadgets has to be positive.
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X
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k

K

Figure 9.13: Clause gadget.

Consider the literal gadget X and let RX be the rightmost cycle block of X . Let

h−X be a negative half-plane of RX , i.e., h−X contains the positive region but not the

negative region; refer to Figure 9.14. We now place a transition block TX such that the

intersection TX ∩ h
−
X has small area. Recall that p+X and p−X denote the positive and

negative placements of X , respectively. Let q−X be a point in TX ∩ h
−
X . Note that, in the

following l− and l+ denote lines and not the half-planes left or right of a line l . Let i
be the intersection point of the supporting line l−X of h−X and the line segment p−Xq

−
X .

We place a square QX such that l−X is tangent to QX at point i . We place a transition

vertex tX in the interior of TX and route the edge vX tX through h−X ∪TX ∪ RX , where

vX ∈ RX .
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X

TX
QX

h−Xq−X

h′

q+Xi

Figure 9.14: DC-framed drawings of the transition block of literal X

f−X

f−Y

nZ

nY

nX

q∅

f−Z

(a)

f−X

f−Y

f−Z

nZ

nY

nX

iX,Z

iY,Z

iX,Y

(b)

Figure 9.15: (a) Initial placement of q∅ and the corresponding half planes h−A. (b) Setting after

perturbing h−A. The green segments indicate that each q+A,A = X ,Y ,Z can be connected with a

line segment to each intersection iX ,Y , iX ,Z , iY ,Z .

Observe that q−X allows for a negative drawing of X ; see Figure 9.14. Let l+X be a

line that is tangent to QX and that contains p+X . Then each point on l+X that lies in

the interior of TX allows for a positive drawing of X . Let q+X be the point on l+X that

maximizes the distance to q−X . We refer to q+X and q−X as the positive and negative

placements of tX , respectively. Further, if X has a negative drawing, then tX lies in

the region h−X ∩TX . In order to reduce the visibility of tX in case that X is negative,

we place a regulator gadget of TX with respect to a half plane h′ as follows. Let h′ be

a half plane that contains q−X and q+X and reduces the possible positions of tX in this

case to h′ ∩ h−X ∩TX ; see Figure 9.14. In the following, we refer to h′ ∩ h−X ∩TX as the

negative region of TX . The transition blocks of Y and Z are constructed analogously

with only minor changes.

Let K be the clause block as depicted in Figure 9.13. Further, let q∅ be a point in the

interior of K . Let f −A , for A ∈ {X ,Y ,Z }, be half planes such that the supporting lines
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OX

nX

h−X q+X iY,Z

Figure 9.16: Intersection pattern near square OX .

of all three half planes intersect at q∅ and such that f −A does not contain the negative

region NA of the transition block TA; see Figure 9.15. Recall that q−A denotes the

negative placement of tA in the transition block TA. Let nX and nY be two lines whose

intersection lies in the interior of f −X ∩ f
−
Y ∩K and that contain q−X and q−Y , respectively.

Moreover, denote by nZ a line that contains q−Z with a non-empty intersection with

f −Z ∩ K . We position a square OA that is tangent to nA at point nA ∩ l−A, where l−A
is the supporting line of f −A and such that the intersection of the interior of OA and

f −A is empty. By construction of OA all three literals gadgets X ,Y ,Z have negative

DC-framed drawings if and only if k lies on q∅. Slightly perturbing the positions of

the squares OA ensures that the intersection f −X ∩ f −Y ∩ f −Z is empty. Denote by iB,C ,

for B,C ∈ {X ,Y ,Z } with B , C , the intersection of nB and nC . To ensure that there

are the necessary positive and negative drawings, the perturbation operation has to

ensure that the intersection of the line through q+X and iX ,Y with nB and f −X has the

pattern as depicted in Figure 9.16 and correspondingly for the literals Y and Z . Thus,

the clause gadget has the following property.

Property 9.11. There is no DC-framed drawing of the clause gadget such that the

DC-framed drawing of each literal gadget is negative. For all remaining combinations of

positive and negative drawings of the literal gadgets X ,Y and Z there is a DC-framed

drawing of the clause gadget.

Unit Disks

We utilize Observation 9.10 twice to ensure the correctness of the clause gadget with

unit disks. First, recall that the square QX in Figure 9.14 is positioned such that QX is

tangent to the supporting line of h−X and the line l− that contains p−X and q−X , in point

i . Replacing QX by a disk Q ′X that such that the disk is tangent to l− in point i ensures

that q−X corresponds to negative drawing of X . Moreover, by Observation 9.10 the set

of points that possibly allow for a negative drawing is a subset of h−X ∩Q
′
X . The disks

Q ′Y ,Q
′
Z are constructed analogously.
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K
OX

OY

OZ

TZ

QZ
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QY

TX
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Figure 9.17: DC-framed drawings of the clause gadgets.

Second, recall the construction of the square OA for A = X ,Y ,Z . The disk O ′A that

corresponds to the square OA is placed such that the line nA is tangent to O ′A in the

intersection of nA with the supporting line of the half place f −A . Figure 9.18 shows the

�nal clause gadget with unit disks.

9.3.5 Reduction

A 3-SAT instance (U ,C) on a setU of n boolean variables andm clausesC is monotone

if each clause either contains only positive or only negative literals. It is planar if

the bipartite graph GU ,C = (U ∪ C, {uc | u ∈ c or u ∈ c with u ∈ U and c ∈ C}) is
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Figure 9.18: Clause Construction
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x ∨ y ∨ z

z
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Figure 9.19: Example of planar monotone 3-SAT instance with a corresponding rectilinear

representation.

planar. A rectilinear representation of a monotone planar 3-SAT instance is a drawing of

GU ,C where each vertex is represented as an axis-aligned rectangle and the edges are

vertical line segments touching their endpoints; see Figure 9.19a. Further, all vertices

corresponding to variables lie on a common line l , the positive and negative clauses

are separated by l . The problem Monotone Planar 3-SAT asks whether a monotone

planar 3-SAT instance with a given rectilinear representation is satis�able. De Berg

and Khosravi [BK12] proved that Monotone Planar 3-SAT is NP-complete. We use

this problem to show that theDC-framed Drawings with Pipe-Disk Intersections

problem is NP-hard.

In the following a diskdk is an obstacle of a pipepi j , for i, j with i, j , k , ifdk∩pi j , ∅.
The obstacle number of a pipe pi j is the number of obstacles of pi j . The obstacle number

of a disk arrangement DC is the maximum obstacle number over all pipes pi j with

Vi ×Vj ∩ E , ∅.

Theorem 9.12. The problem DC-framed Drawings with Pipe-Disk Intersections

with axis-aligned unit squares and unit disks is NP-hard even when the clustered graph

C has maximum vertex degree 5 and its obstacle number is 2.

Proof. Let (U ,C) be a planar monotone 3-SAT instance with a rectilinear representation

Π. Let l be a horizontal or vertical line that intersects Π. The line l splits Π into two

drawings ΠL and ΠR that are left and right of l , respectively. For a positive factor x ,

we obtain from Π a new rectilinear representation by moving ΠR x units to the right.

We �ll the resulting gap between ΠL and ΠR with in�nitely many copies of l ∩Π. This

operation of stretching the drawing at line l allows us to do the following necessary

modi�cations.

In the following we modify Π to �t on a checkerboard of O(|C |) rows and columns

where each column has width d and every row has height d . A row or column is
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odd if its index is an odd number, otherwise it is even. The pair (i, j) refers to the

cell in column i and row j. We align all vertices corresponding to variables in the

rectilinear representation in row 0 so that the leftmost variable vertex is in column

1; refer to Figure 9.19b. The width of each rectangle ru of variable u is increased to

cover 2 · nu − 1 columns, where nu is the number of occurrences of u and ū in C . To

ensure that each ru starts in an odd column, we increase the distance between two

consecutive variables so that the number of columns between the variables is odd and

is at least three. Since we are able to add an arbitrary number of columns between two

consecutive variables, we can assume without loss of generality that no two edges

of the rectilinear representation share a column and that their columns are odd. We

adapt the rectangle of a clause so that it covers �ve rows and at least six columns, and

so that its left and right sides are aligned with the leftmost and rightmost incoming

edges, respectively. Note that the positive clauses lie in rows with positive indices

and the negative clauses in rows with negative indices. Each operation adds at most a

constant number of columns and rows per vertex and per edge to the layout. Thus,

the width and height of the �nal layout is in O(|C |). Further, it can be computed in

time polynomial in |C |.

In the following we construct a planar embedded graph C and an arrangement

of squares DC of C. We use the modi�ed rectilinear layout to locally replace the

variable by a sequence of positive and negative literals connected by either a copy or

an inverter gadget. Clauses are replaced with the clause gadget and then connected

with a sequence of literals and copy gadget to the respective literal in the variable.

Observe that the literal gadget is constructed so that all its squares �t in a larger

square S . The copy and inverter gadget together with two literals is constructed so

that they �t in rectangle three times the size of S . The clause gadget �ts in a rectangle

of width six times the size of the square S and its height is �ve times the height of S .

We assume that the size of the square S and the size of the squares of the checker-

board coincide. Let r = 0 be the row that contains the variable vertices. Every column

contains at most one edge of the rectilinear representation. Thus, we place a positive

literal gadget in cell (i, r ) if the edge in column i connects a variable u to a positive

clause. Otherwise, we place a negative literal gadget in cell (i, r ). Since every edge of

the rectilinear representation lies in an odd column, we can connect two literals of the

same variable by either a copy or inverter gadget depending on whether both literals

are positive or negative, or one is positive and the other negative.

We substitute an edge e of the rectilinear representation that connects a variable to

a positive clause as follows. Let i be the column of e . If the cell (i, re ) is covered by

e and re is odd, we place a positive literal gadget in cell (i, re ). The copy gadget can

be rotated in order to connect a literal gadget in cell (i, re ) to a literal gadget in a cell

(i, re + 2).
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Let Rc be the rectangle that corresponds to the positive clause c in the modi�ed

rectilinear representation. We insert a clause gadget in Rc and justify it on the right

of it so that the literal gadget Z lies in an odd column. Note that by the construction

of clause gadget this �xes the position of the corresponding literal gadgets X and Y .

Finally, the literal gadget X ,Y and Z can be connected to their variables x ,y and z
as depicted in Figure 9.19b. A negative clause is obtained by vertically mirroring the

construction of a positive clause.

We now argue that the embedding of the graph C is planar and that the pairwise

intersections of squares in the arrangement DC are empty. Observe that, every

gadget is entirely embedded in the modi�ed rectilinear representation. Recall that the

rectilinear representation is planar and all gadget are placed in disjoint cells. Therefore,

the pairwise intersection of squares in DC is empty. Moreover, each literal gadget is

planar embedded in a single cell, each clause is embedded in a rectangle that covers

�ve rows and six columns, and �nally each copy and inverter gadget together with its

two literal gadget is embedded in either a single row and 3 columns or in 3 rows and a

single column. Thus, since the modi�ed rectilinear representation is planar and the

pairwise intersections of squares inDC are empty, the graph C has a planar embedding.

Finally, the maximal vertex degree of the literal gadget is three, the maximal degree

a clause gadget is four. Connecting two literal gadgets by copy or inverter gadget

increases the maximum vertex degree of C to �ve. Further, the obstacle number of

the clause gadget is one and the obstacle number of the literal, copy and the inverter

gadget is two.

It is left to show that the layout can be computed in polynomial time. As already ar-

gued the modi�ed rectilinear representation Π of the monotone planar 3-SAT instance

can be computed polynomial time. Moreover, the height and width of Π is linear in

|C |. Thus, we inserted a number of gadgets linear in |C |. Further, the coordinates of

each gadget are independent of the instance (U ,C), thus overall the representation

of the �nal arrangement DC is polynomial in |U | and |C |. Placing a single gadget

requires polynomial time, thus overall the clustered graph C and the arrangementDC
of squares can be computed in polynomial time.

Correctness. Assume that (U ,C) is satis�able. Depending on whether a variable

u is true or false, we place all cycle vertices on a positive placement of a positive

literal gadget and on the negative placement of negative literal gadget of the variable.

Correspondingly, if u is false, we place the vertices on the negative and positive

placements, respectively. By Property 9.6, the placement induces aDC-framed drawing

of all literal gadgets. Property 9.9 ensures that the copy and the inverter gadgets have

a DC-framed drawing. Since at least one variable of each clause is true, there is a

DC-framed drawing of each clause gadget by Property 9.11.
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Now consider the clustered graph C has aDC-framed drawing. Let X and Y be two

positive literal gadgets or two negative literal gadgets connected with a copy gadget.

By Property 9.7, a drawing of X is positive if and only if the drawing of Y is positive.

Property 9.8 ensures that the drawing of a positive literal gadget X is positive if and

only if the drawing of the negative literal gadget Y is negative, in case that both are

joined with an inverter gadget. Further, Property 9.5 states that each cycle vertex lies

either in a positive or negative region. Thus, the truth value of a variable u can be

consistently determined by any drawing of a positive or negative literal gadget ofu. By

Property 9.11, the clause gadget has no DC-framed drawing of the clause gadget such

that all literal gadgets have a negative drawing. Thus, the truth assignment indeed

satis�es C . �

9.4 Conclusion

We proved that every clustered planar graph with a pipe-disk intersection free disk

arrangement DC and with a DC-framed embeddingψ has a DC-framed straight-line

drawing homeomorphic toψ . In case of arrangements of unit disks and unit squares

with pipe-disk intersections the problem becomes NP-hard. This answers an open

question of Angelini et al. [Ang+14]. We are not aware whether the problem is known

to be in NP. Due to the geometric nature of the problem, we ask whether techniques

developed by Abrahamsen et al. [AAM18] can be used to prove ∃R-hardness. The

cycles in the literal and copy gadget are crucial for our reduction. Thus, we ask whether

the problem becomes tractable for restricted graph classes, e.g., trees, outerplanar

graphs, or planar graphs that have maximum vertex degree 4.
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10 Aligned Drawings of
Planar Graphs

Let G be a graph that is topologically embedded in the plane and let A be an arrange-

ment of pseudolines intersecting the drawing of G . An aligned drawing of G and A is

a planar polyline drawing Γ of G with an arrangement A of lines so that Γ and A are

homeomorphic to G and A. We show that if A is stretchable and every edge e either

entirely lies on a pseudoline or it has at most one intersection with A, then G and

A have a straight-line aligned drawing. In order to prove this result, we strengthen

a result of Da Lozzo et al. [Da +18], and prove that a planar graph G and a single

pseudoline C have an aligned drawing with a prescribed convex drawing of the outer

face. We also study the less restrictive version of the alignment problem with respect

to one line, where only a set of vertices is given and we need to determine whether

they can be collinear. We show that the problem is NP-complete but �xed-parameter

tractable.

This chapter is based on joint work with Tamara Mchedlidze, Ignaz Rutter and Peter

Stumpf [Mch+19a, MRR18a, MRR18b].

10.1 Introduction

Two fundamental primitives for highlighting structural properties of a graph in a

drawing are alignment of vertices such that they are collinear, and geometric separation

of unrelated graph parts, e.g., by a straight line. Both these techniques have been

previously considered from a theoretical point of view in the case of planar straight-line

drawings.

Da Lozzo et al. [Da +18] study the problem of producing a planar straight-line

drawing of a given embedded graph G = (V ,E) (i.e., G has a �xed combinatorial

embedding and a �xed outer face) such that a given set S ⊆ V of vertices is collinear.

It is clear that if such a drawing exists, then the line containing the vertices in S is

a simple curve starting and ending at in�nity that for each edge e of G either fully

contains e or intersects e in at most one point, which may be an endpoint. We call such

a curve a pseudoline with respect to G. Da Lozzo et al. [Da +18] show that this is a full

characterization of the alignment problem, i.e., a planar straight-line drawing where

the vertices in S are collinear exists if and only if there exists a pseudoline L with

respect toG that contains the vertices in S . However, the computational complexity of

deciding whether such a pseudoline exists is an open problem, which we consider in

this chapter.
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(a) (b) (c)

Figure 10.1: (Pseudo-) Lines are depicted as blue curves, edges are black. The color of the

cells indicates the bijection ϕ between the cells ofA and A. Aligned drawing (b) of a 2-aligned

planar embedded graph (a). (c) A non-stretchable arrangement of 9 pseudolines (blue and

black), which can be seen as a stretchable arrangement of 8 pseudolines (blue) and an edge

(black solid).

Likewise, for the problem of separation, Biedl et al. [BKM98] considered so-called

HH -drawings where, given an embedded graph G = (V ,E) and a partition V = A ·∪ B,

one seeks a y-monotone planar polyline drawing of G with few bends in which A and

B can be separated by a line. Again, it turns out that such a drawing exists if there

exists a pseudoline L with respect toG such that the vertices in A and B are separated

by L. As a side-result Cano et al. [CTU14] extend the result of Biedl et al. to planar

straight-line drawings with a given star-shaped outer face.

The aforementioned results of Da Lozzo et al. [Da +18] show that given a pseudoline

L with respect to G one can always �nd a planar straight-line drawing of G such that

the vertices on L are collinear and the vertices contained in the half-planes de�ned by

L are separated by a line L. In other words, a topological con�guration consisting of a

planar embedded graph G and a pseudoline with respect to G can always be stretched.

In this chapter, we initiate the study of this stretchability problem with more than one

given pseudoline.

More formally, a pair (G,A) is a k-aligned graph if G = (V ,E) is a planar embedded

graph andA = {C
1
, . . . ,Ck } is an arrangement of (pairwise intersecting) pseudolines

with respect toG . In case that every pair of distinct pseudolines intersect at most once,

we refer to A as a pseudoline arrangement. If the number k of pseudolines is clear

from the context, we drop it from the notation and simply speak of aligned graphs. For

1-aligned graphs we write (G,C) instead of (G, {C}). Let A = {L
1
, . . . ,Lk } be a line

arrangement and Γ be a planar drawing of G. A tuple (Γ,A) is an aligned drawing of

(G,A) if and only if the arrangement of the union of Γ and A is homeomorphic to the

arrangement of the union of G and A. A (pseudo)-line arrangement divides the plane

into a set of cells C
1
,C

2
, . . . ,C` . If A is homeomorphic to A, then there is a bijection

ϕ between the cells of A and the cells of A. If (Γ,A) is an aligned drawing of (G,A),

then it has the following properties; refer to Figure 10.1(a-b). (i) The arrangement
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of A is homeomorphic to the arrangement of A (i.e., A is stretchable to A), (ii) Γ is

homeomorphic to the planar embedding of G, (iii) the intersection of each vertex v
and each edge e with a cell C of A is non-empty if and only if the intersection of v
and e with ϕ(C) in (Γ,A), respectively, is non-empty, (iv) if an edge uv (directed from

u to v) intersects a sequence of cells C
1
,C

2
, . . . ,Cr in this order, then uv intersects in

(Γ,A) the cells ϕ(C
1
),ϕ(C

2
), . . . ,ϕ(Cr ) in this order, and (v) each line Li intersects in

Γ the same vertices and edges as Ci inG , and it does so in the same order. We focus on

straight-line aligned drawings. For brevity, unless stated otherwise, the term aligned

drawing refers to a straight-line drawing throughout this chapter.

Note that the stretchability of A is a necessary condition for the existence of an

aligned drawing. Since testing stretchability is NP-hard [Mnë88, Sho91], we assume

that a geometric realization A of A is provided. Line arrangements of size up to

8 are always stretchable [P80], and only starting from nine lines non-stretchable

arrangements exist; see the Pappus con�guration [Lev26] in Figure 10.1c. This �gure

also illustrates an example of an 8-aligned graph with a single edge that does not have

an aligned drawing. It is conceivable that in practical applications, e.g., stemming from

user interactions, the number of lines to stretch is small, justifying the stretchability

assumption.

The aligned drawing convention generalizes the problems studied by Da Lozzo et al.

and Biedl et al. who focused on the case of a single line. We study a natural extension

of their setting and ask for alignment on general line arrangements.

In addition to the strongly related works mentioned above, there are several other

works that are related to the alignment of vertices in drawings. Ravsky and Verbit-

sky [RV11] used the fact that 2-trees have a drawing with at leastn/30 collinear vertices

to show that at least

√
n/30 vertices of a 2-tree can be �xed to arbitrary positions.

Dujmović [Duj17] shows that every n-vertex planar graph G = (V ,E) has a planar

straight-line drawing such that Ω(
√
n) vertices are aligned, and Da Lozzo et al. [Da

+18] show that in planar treewidth-3 and planar treewidth-k graphs, one can align

Θ(n) and Ω(k2) vertices, respectively. Chaplik et al. [Cha+16] study the problem of

drawing planar graphs such that all edges can be covered by k lines. They show that it

is NP-hard to decide whether such a drawing exists. The computational complexity

of deciding whether there exists a drawing where all vertices lie on k lines is an

open problem [Cha+17]. Drawings of graphs on n lines where a mapping between

the vertices and the lines is provided have been studied by Dujmović et al. [DL13b,

Duj+11].

Contribution & Outline. After introducing notation in Section 10.2, we �rst study

the topological setting where we are given a planar graph G and a set S of vertices

to align in Section 10.3. We show that it is NP-complete to decide whether S is

alignable. On the positive side, we prove that this problem is �xed-parameter tractable

(FPT) with respect to |S |. Afterwards, in Section 10.4, we consider the geometric
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Table 10.1: Families of aligned graphs that always have an aligned drawing are marked with

X. The symbol 7 indicates that for this particular class, there is an aligned graph that does not

have an aligned drawing.

alignment complexity k drawable

(0,⊥,⊥) ≥ 1 X – Planarity

(0, 0, 0) ≥ 1 X – Theorem 10.1

(1, 0,⊥) ≥ 1 X – Theorem 10.19

(1, 0, 0) 2 X – Theorem 10.27

(1, 1, 0) 2 7 – Theorem 10.2

(1, 0, 0) k open

(⊥,⊥, 2)

≥ 8 7 – Figure 10.1(c)(⊥, 3,⊥)

(4,⊥,⊥)

setting where we seek an aligned drawing of an aligned graph. Based on our proof

strategy in Section 10.4.1, we strengthen the result of Da Lozzo et al. and Biedl et al.

in Section 10.4.2, and show that there exists a 1-aligned drawing of G with a given

convex drawing of the outer face. In Section 10.4.3 we consider k-aligned graphs with

a stretchable pseudoline arrangement, where every edge e either entirely lies on a

pseudoline or intersects at most one pseudoline, which can either be in the interior

or an endpoint of e . We utilize the result of Section 10.4.2 to prove that every such

k-aligned graph has an aligned drawing, for any value of k . Already in Section 10.2

we prove that not every 2-aligned graph has an aligned drawing. In Section 10.4.4, we

show that special subclass of 2-aligned graphs always have an aligned drawing. In

the preliminaries we de�ne the alignment complexity of an aligned graph. It is a triple

that indicates how many intersections an edge has with the pseudoline arrangement

depending on the number of endpoints that lie on a pseudoline. Table 10.1 summarizes

the results of our chapter.

10.2 Preliminaries

Let A be a pseudoline arrangement with k pseudolines C
1
, . . . ,Ck and (G,A) be an

aligned graph with n vertices. The set of cells in A is denoted by cells(A). A cell is

empty if it does not contain a vertex ofG . Removing from a pseudoline its intersections

with other pseudolines gives its pseudosegments.

LetG = (V ,E) be a planar embedded graph with vertex setV and edge set E. We call

v ∈ V interior if v does not lie on the boundary of the outer face of G. An edge e ∈ E
is interior if e does not lie entirely on the boundary of the outer face of G. An interior

edge is a chord if it connects two vertices on the outer face. A point p of an edge e is an
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(a) (1, 0,⊥) (b) (1, 0, 0) (c) (2, 1, 0)

Figure 10.2: Examples for the alignment complexity of an aligned graph.

interior point of e if p is not an endpoint of e . A triangulation is a biconnected planar

embedded graph whose inner faces are all triangles and whose outer face is bounded

by a simple cycle. A triangulation of a graph G is a triangulation that contains G as a

subgraph. A k-aligned triangulation of (G,A) is a k-aligned graph (GT ,A) with GT
being a triangulation ofG . A graphG ′ is a subdivision ofG ifG ′ is obtained by placing

subdivision vertices on edges of G. For an abstract graph G and an edge e of G the

graph G/e is obtained from G by contracting e and merging the resulting multiple

edges and removing self-loops. Routing the edges incident to e close to e yields a

planar embedding of G/e in case of a planar embedded graph G . A k-wheel is a simple

cycle C with k vertices on the outer face and one additional interior vertex that has

an edge to each vertex in C . Let Γ be a drawing of G and let C be a cycle in G. We

denote with Γ[C] the drawing of C in Γ. Let T be a separating triangle in G and let V
in

and V
out

be the vertices in the interior and exterior of T , respectively. We refer to the

graphs induced by T ∪V
in

and T ∪V
out

as the split components of T and denote them

by G
in

and G
out

.

A vertex is Ci -aligned (or simply aligned to Ci ) if it lies on the pseudoline Ci . A

vertex that is not aligned is free. An edge e is Ci -aligned (or simply aligned) if it

completely lies on Ci . Let E
aligned

be the set of all aligned edges. An intersection vertex

lies on the intersection of two pseudolines Ci and C j . A non-aligned edge is i-anchored
(i = 0, 1, 2) if i of its endpoints are aligned to distinct pseudolines. An C-aligned

edge is i-anchored (i = 0, 1, 2) if i of its endpoints are aligned to distinct pseudolines

which are di�erent from C. For example, the single aligned edge in Figure 10.2a is

1-anchored. Let Ei be the set of i-anchored edges; note that, the set of edges is the

disjoint union E
0
·∪ E

1
·∪ E

2
. An edge e is (at most) l-crossed if (at most) l distinct

pseudolines intersect e in its interior. A 0-anchored 0-crossed non-aligned edge is also

called free. A non-empty edge set A ⊂ E is l-crossed if l is the smallest number such

that every edge in A is at most l-crossed.

The alignment complexity of an aligned graph describes how “complex” the rela-

tionship between the graph G and the pseudoline arrangement C
1
, . . . ,Ck is. It is

formally de�ned as a triple (l
0
, l

1
, l

2
), where li , i = 0, 1, 2, indicates that Ei is at most

li -crossed or has to be empty, if li = ⊥. For example, an aligned graph where every
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Figure 10.3: The black edges and vertices and the blue pseudoline arrangement is the input

graph (G,A). The green and black graph together depict the modi�ed graph before the

triangulation step.

vertex is aligned and every edge has at most l interior intersections has the alignment

complexity (⊥,⊥, l). For further examples we refer to Figure 10.2.

Theorem 10.1. Every k-aligned graph (G,A) of alignment complexity (0, 0, 0) with a

stretchable pseudoline arrangement A has an aligned drawing.

Proof. We modify the graph (G,A) as follows; see Figure 10.3. We place a vertex

on each intersection of two or more pseudolines (if the intersection is not already

occupied). In case that k is at least two, every unbounded cell C of A has two

pseudosegments of in�nite length. We place a vertex on each of them at in�nity and

connect them by an edge routed through the interior of C.

Further, let u and v be two C-aligned vertices, that are consecutive along C. If uv
is not already an edge of G, we insert it into G and route it on C. Note that, since

(G,C) does not contain edges that cross a pseudoline, the resulting graph is again an

aligned graph of alignment complexity (0, 0, 0). The boundary of every cell is covered

by aligned edges. Thus, we can triangulate (G,A) without introducing intersections

between edges and a pseudoline.

We obtain an aligned drawing of the modi�ed graph as follows. Note that the only

interaction between two cells are the aligned vertices and edges on their common

boundary, i.e., there are no edges crossing the boundary. Hence, for every pseudoseg-

ments of A we place the aligned vertices on it, arbitrarily (but respecting their order)

on the corresponding line segment in A. Since, every cell is covered by aligned edges,

we can draw the interior of two cells independently from each other. More formally,

the vertex placements of the vertices of the pseudolines prescribes a convex drawing

of the outer face of the graph GC , i.e., the graph induced by the vertices in the interior

or on the boundary of a cell C. Thus, we obtain a drawing Γ of G by applying the

result of Tutte [Tut63] to each graph GC , independently. �

We prove that the 2-aligned graph in Figure 10.4a does not have an aligned drawing.

Theorem 10.2. There is a 2-aligned graph of alignment complexity (⊥, 1,⊥) that does

not have an aligned drawing.
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Figure 10.4: (a) A 2-aligned graph that does not have an aligned drawing. (b) We have

λ
1
/λ

2
= tan(α) < tan(β) = |y

1
|/(λ

2
+ |x

1
|).

Proof. Assume that the aligned graph in Figure 10.4a has an aligned drawing. For

i = 1, . . . , 4 let (xi ,yi ) be the point for vi , let λi be the distance of ui to the origin

O and let λ
5
= λ

1
. Since u

2
v

1
intersects the y-axis above u

1
, edge u

2
v

1
has a steeper

slope than the segment u
2
u

1
; see Figure 10.4b. We obtain λ

1
/λ

2
< |y

1
|/(λ

2
+ |x

1
|) and

therefore |x
1
| < λ

2
/λ

1
· |y

1
|. Analogously, we obtain

|xi | <
λi+1

λi
· |yi |, i = 1, 3 |yi | <

λi+1

λi
· |xi |, i = 2, 4. (10.1)

Sincevi+1
wi , withv

5
= v

1
, are embedded as straight lines, we further get estimation

(2) that |yi | < |yi+1
| for i = 1, 3 and |xi | < |xi+1

| for i = 2, 4 and x
5
= x

1
. By multiplying

the left and the right sides we obtain |x
1
| · |y

2
| · |x

3
| · |y

4
|

(10.1)

< |y
1
| · |x

2
| · |y

3
| · |x

4
| ·
λ

2
λ

3
λ

4
λ

1

λ
1
λ

2
λ

3
λ

4

=

|y
1
| · |x

2
| · |y

3
| · |x

4
|
(2)
< |y

2
| · |x

3
| · |y

4
| · |x

1
|. A contradiction. �

10.3 Complexity and Fixed-Parameter Tractability

In this section, we deal with the topological setting where we are given a planar

embedded graph G = (V ,E) and a subset S ⊆ V . We ask for a straight-line drawing

of G where the vertices in S are collinear. According to Da Lozzo et al. [Da +18], this

problem is equivalent to deciding the existence of a pseudoline C with respect to

G passing exactly through the vertices in S . We refer to this problem as pseudoline

existence problem and the corresponding search problem is referred to as pseudoline

construction problem. Using techniques similar to Fößmeier and Kaufmann [FK97], we

can show that the pseudoline existence problem is NP-hard.

175



Chapter 10 Aligned Drawings of Planar Graphs

Let G? +V be the graph obtained from the dual graph G? = (V?,E?) of G = (V ,E)
by placing every vertex v ∈ V in its dual face v? and connecting it to every vertex on

the boundary of the face v?.

Lemma 10.3. Let G = (V ,E) be a 3-connected 3-regular planar graph. There exists a
pseudoline through V with respect to the graph G? +V if and only if G is Hamiltonian.

Proof. Recall that the dual of a 3-connected 3-regular graph is a triangulation with a

single combinatorial embedding.

Assume that there exists a pseudoline C through V with respect to G? +V . Then

the order of appearance of the vertices of G? +V on C de�nes a sequence of adjacent

faces in G?
, i.e., vertices of the primal graph G that are connected via primal edges.

This yields a Hamiltonian cycle in G.

Let C be a Hamiltonian cycle of G and consider a simultaneous embedding of G
and G? + V on the plane, where each pair of a primal and its dual edge intersects

exactly once. Thus, the cycle C crosses each dual edge e at most once and passes

through exactly the verticesV . There is a vertexv on the cycleC such thatv lies in the

unbounded face of G? +V . Thus, the cycle C can be interpreted as a pseudoline C(V )
inG? +V through all vertices inV by splitting it in the unbounded face ofG? +V . �

Since computing a Hamiltonian cycle in 3-connected 3-regular planar graphs is

NP-complete [GJT76], we get that the pseudoline construction problem is NP-hard.

On the other hand, we can guess a sequence of vertices, edges and faces ofG , and then

test in polynomial time whether this corresponds to a pseudoline C with respect to G
that traverses exactly the vertices in S . Thus, the pseudoline construction problem is

in NP. This proves the following theorem.

Theorem 10.4. The pseudoline existence problem is NP-complete.

In the following, we show that the pseudoline construction problem is �xed-para-

meter tractable with respect to |S |. To this end, we construct a graph Gtr = (V tr,Etr)

and a set S tr ⊆ V tr
with |S tr | ≤ |S | + 1 such that Gtr

contains a simple cycle traversing

all vertices in S tr
if and only if there exists a pseudoline C that passes exactly through

the vertices in S such that (G,C) is an aligned graph.

We observe that if the vertices S of a positive instance are not independent, they

can only induce a linear forest, i.e., a set of paths, as otherwise, there is no pseudoline

through all the vertices in S with respect to G . We call the edges on the induced paths

aligned edges. An edge that is not incident to a vertex in S is called crossable, in the

sense that only crossable edges can be crossed by C, otherwise C is not a pseudoline

with respect to G. Let S
ep
⊆ S be the subset of vertices that are endpoints of the paths

induced by S (an isolated vertex is a path of length 0). We construct Gtr
in several

steps; refer to Figure 10.5.
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vvinf

voutf

e
ve

e′ ue′

Figure 10.5: The black and red edges depict a single face of the input graph G. Red and

blue edges build the transformed graph Gtr
. Red round vertices are vertices in S , red squared

vertices illustrate the set S tr
, the �lled red square is a vertex in S and S tr

. Blue dashed edges

sketch the clique edges between clique vertices (�lled blue).

Step 1 LetG ′ be the graph obtained fromG by subdividing each aligned edge e with a

new vertex ue and let S tr
be the set consisting of all isolated vertices in S and the

new subdivision vertices. Additionally, we add to G ′ one new vertex o that we

embed in the outer face of G and also add to S tr
. Observe that by construction

|S tr | ≤ |S | + 1. Finally, subdivide each crossable edge e by a new vertex ve . We

call these vertices traversal nodes and denote their set by T = S
ep
∪ {ve | e is

crossable} ∪ {o}. Intuitively, a curve will correspond to a path that uses the

vertices in S
ep

to hop onto paths of aligned edges and the subdivision vertices

of crossable edges to traverse from one face to another. Moreover, the vertex

o ∈ S tr
plays a similar role, forcing the curve to visit the outer face.

Step 2 For each face f of G ′ we perform the following construction. Let T (f ) denote

the traversal nodes that are incident to f . For each vertex v ∈ T (f ) we create

two new vertices v in

f and vout

f , add the edges vv in

f and vvout

f to G ′, and draw

them in the interior of f . Finally, we create a clique C(f ) on the vertex set

{v in

f ,v
out

f | v ∈ T (f )}, and embed its edges in the interior of f .

Step 3 To obtain Gtr
remove all edges of G ′ that correspond to edges of G except

those that stem from subdividing an aligned edge of G.

Lemma 10.5. There exists a pseudoline C traversing exactly the vertices in S such that

(G,C) is an aligned graph if and only if there exists a simple cycle in Gtr
that traverses

all vertices in S tr
.

Proof. SupposeC is a cycle inGtr
that visits all vertices in S tr

. Without loss of generality,

we assume that there is no face f such thatC contains a subpath from v in

f via v to vout

f
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(a)

ue

v

voutf

voutf ′

vinf ′

voutf ′′

vinf
vinf ′′

(b)

Figure 10.6: (a) A pseudoline (thick green) traversing a path of aligned edges (thin red). (b) A

path (thick green) in Gtr
visiting consecutive vertices in S tr

(red squared).

(or its reverse) for some vertex v ∈ T (f ) \ S
ep

, as otherwise we simply shortcut this

path by the edge v in

f v
out

f ∈ C(f ).

Consider a path P of aligned edges in G that contains at least one edge; refer to

Figure 10.6. By de�nition,C visits all the subdivision vertices ue ∈ S
tr

of the edges of P ,

and thus it enters P on an endpoint of P , traverses P and leaves P at the other endpoint.

All isolated vertices of S are contained in S tr
, and therefore C indeed traverses all

vertices in S (and thus also all aligned edges). As described above, Gtr
is indeed a

topological graph, and thus C corresponds to a closed curve ρ that traverses exactly

the vertices in S and the aligned edges.

We now show that ρ can be transformed to a pseudoline with respect to G . Let e be

a non-aligned edge ofG that has a common point with ρ in its interior; see Figure 10.7.

Thus,C contains the subdivision vertexve . In particular, this implies that e is crossable.

Moreover, from our assumption on C , it follows that C enters ve via v in

f or vout

f and

leaves it viav in

f ′ orvout

f ′ , where f and f ′ are the faces incident to e , and it is f , f ′ as we

could shortcut C otherwise. Therefore, ρ indeed intersects e and uses it to traverse to

a di�erent face of G. Moreover, since e has only a single subdivision vertex in Gtr
and

C is simple, it follows that e is intersected only once. Thus ρ is a curve that intersects

f

f ′ e

(a)

voutf ′

vinf ′

vinf

voutf

ve

(b)

Figure 10.7: (a) A pseudoline (thick green) passing through a non-aligned edge. (b) A path

(thick green) in Gtr
traversing a subdivision vertex ve (blue non-�lled square). Black (dashed)

segments are edges of G.
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α

β
γ

δ

Figure 10.8: Resolving an intersection by exchanging the intersecting segments (red) with

non-intersecting segments (green).

all vertices in S , traverses all aligned edges, and crosses each edge of G (including the

endpoints) at most once. Moreover, ρ traverses the outer face since C contains o.

The only reasons why ρ is not necessarily a pseudoline with respect to G are that it

is a closed curve and it may cross itself. However, we can break ρ in the outer face and

route both ends to in�nity, and remove such self-intersections locally as follows; see

Figure 10.8. Consider a circle D around an intersection I that neither contains a second

self-intersection nor a vertex, nor an edge of G . Let α , β,γ ,δ be the intersections of D
with C. We replace the pseudosegment αγ with a pseudosegment αβ , and βδ with a

pseudosegment γδ . We route the pseudosegments αβ and γδ through the interior of

D such that they do not intersect. Thus, we obtain a pseudoline C with respect to G
that contains exactly the vertices in S .

For the converse assume that C is a pseudoline that traverses exactly the vertices in

S such that (G,C) is an aligned graph. The pseudoline C can be split into three parts

C
1
, C

2
and C

3
such that C

1
and C

3
have in�nite length and do not intersect with G,

and C
2

has its endpoints in the outer face ofG . We transform C into a closed curve C′

by removing C
1
,C

3
and adding a new piece connecting the endpoints of C

2
without

intersecting C
2

or G. Additionally, we choose an arbitrary direction for C′ in order to

determine an order of the crossed edges and vertices.

We show thatGtr
contains a simple cycle traversing the vertices in S tr

. By de�nition

C′ consists of two di�erent types of pieces; see Figure 10.6. The �rst type traverses a

path of aligned edges between two vertices in S
ep

. The other type traverses a face ofG
by entering and exiting it either via an edge or from a vertex in S

ep
; see Figure 10.9. We

show how to map these pieces to paths inGtr
; the cycleC is obtained by concatenating

all these paths.

Each piece of the �rst type indeed corresponds directly to a path in Gtr
; see Fig-

ure 10.6. Consider now a piece π of the second type traversing a face f ; refer to

Figure 10.9. The piece π enters f either from a vertex in S
ep

or by crossing a crossable

edge e . In either case, T (f ) contains a corresponding traversal node u. Likewise, T (f )
contains a traversal node v for the edge or vertex that C′ intersects next. We map π to

the path uu in

f v
out

f v in Gtr
. By construction, paths corresponding to consecutive pieces
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of C′ share a traversal node, and therefore concatenating all paths yields a cycle C in

Gtr
. Moreover, C is simple, since C′ intersects each edge and each vertex at most once.

Note thatC contains at least one edge of the outer face (as C′ traverses the outer face),

and we modify C so that it also traverses the special vertex o.

It remains to show thatC contains all vertices in S tr
. There are three types of vertices

in S tr
; the subdivision vertices of aligned edges, the isolated vertices in S , and the

special vertex o. The latter is in C by the last step of the construction. The isolated

vertices in S are traversed by C′ and contained in S
ep

, and they are therefore visited

also by C . Finally, the subdivision vertices of aligned edges are traversed by the paths

corresponding to the �rst type of pieces, since C′ traverses all aligned edges. �

Theorem 10.6 (Wahlström [Wah13]). Given an n-vertex graphG = (V ,E) and a subset
S ⊆ V , it can be tested inO(2 |S |poly(n)) time whether a simple cycle through the vertices

in S exists. If a�rmative the cycle can be reported within the same asymptotic time.

Theorem 10.7. The pseudoline construction problem is solvable in O(2 |S |poly(n)) time,

where n is the number of vertices.

Proof. LetG = (V ,E)with S ⊆ V be an instance of the pseudoline construction problem.

By Lemma 10.5 the pseudoline construction problem is equivalent to determining

whether Gtr
contains a simple cycle visiting all vertices in S tr

. Since the size of Gtr
is

O(n2) and it can be constructed in O(n2) time, and |S tr | ≤ |S | + 1, Theorem 10.6 can be

used to solve the latter problem in the desired running time. �

We note that indeed the construction of Gtr
only allows leaving a path of aligned

edges at an endpoint in S
ep

. Therefore, a single vertex in S tr
for each path of aligned

edges would be su�cient to ensure thatC traverses the whole path. Thus, by removing

for each path all but one vertex from S tr
we obtain an algorithm that is FPT with

respect to the number of paths induced by S .

(a)

voutf

vinfuin
f

uout
f

v

u

(b)

Figure 10.9: (a) A pseudoline piece π (thick green) passing through a face f . (b) Path (thick

green) in Gtr
corresponding to π .
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Theorem 10.8. The pseudoline construction problem is solvable in O(2Ppoly(n)) time,

where n is the number of vertices and P is the number of paths induced by the vertex set

S to be aligned.

10.4 Drawing Aligned Graphs

We show that every aligned graph where each edge either entirely lies on a pseudoline

or is intersected by at most one pseudoline, i.e., alignment complexity (1, 0,⊥), has

an aligned drawing. For 1-aligned graphs we show the stronger statement that every

1-aligned graph has an aligned drawing with a given aligned convex drawing of the

outer face. We �rst present our proof strategy and then deal with 1- and k-aligned

graphs.

10.4.1 Proof Strategy

Our general strategy for proving the existence of aligned drawings of an aligned graph

(G,A) is as follows. First, we show that we can triangulate (G,A) by adding vertices

and edges without invalidating its properties. We can thus assume that our aligned

graph (G,A) is an aligned triangulation. Second, we show that unless G has a speci�c

structure (e.g., a k-wheel or a triangle), it contains an aligned or a free edge. Third, we

exploit the existence of such an edge to reduce the instance. Depending on whether

the edge is contained in a separating triangle or not, we either decompose along that

triangle or contract the edge. In both cases the problem reduces to smaller instances

that are almost independent. In order to combine solutions, it is, however, crucial to

use the same arrangement of lines A for both of them.

In the following, we introduce the necessary tools used for all three steps on k-

aligned graphs of alignment complexity (1, 0,⊥). Recall, that for this class (i) every

non-aligned edge is at most 1-crossed, (ii) every 1-anchored edge is 0-crossed, and

(iii) there is no edge with its endpoints on two pseudolines.

Lemmas 10.9 – 10.12 show that every aligned graph of alignment complexity (1, 0,⊥)

has an aligned triangulation with the same alignment complexity. If G contains a

separating triangle, Lemma 10.13 shows that (G,A) admits an aligned drawing if both

split components have an aligned drawing. Finally, with Lemma 10.14 we obtain a

drawing of (G,A) from a drawing of the aligned graph (G/e,A) where one particular

edge e is contracted.

Lemma 10.9. Let (G,A) be a k-alignedn-vertex graph of alignment complexity (1, 0,⊥).

Then there exists a biconnected k-aligned graph (G ′,A) that contains G as a subgraph.

The set E(G ′) \ E(G) has alignment complexity (1, 0,⊥) and does not contain aligned

edges. The size of E(G ′) \ E(G) is in O(nk + k3).
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Proof. Our procedure works in two steps. First, we connect disconnected components.

Second, we assure that the graph is biconnected by inserting edges around a cut-vertex.

Initially, we place a vertex in every cell that does not contain a vertex in its interior.

Consider a cell C of A that contains two vertices u and v that belong to distinct

connected components Gu and Gv . We refer to two vertices u,v that lie in the interior

or on the boundary of C as C-visible if there is a curve in the interior of C that

connects u to v and that does not intersect G except at its endpoints. In the following,

we exhaustively connect C-visible pairs of vertices of distinct connected components

of G. If u and v are C-visible, we simply connect them by an edge e . In case that both

vertices are aligned, we have to subdivide the edge e with a vertex to avoid introducing

2-anchored edges to the graph. Assume that u,v are not C-visible. Consider any curve

ρ in the interior of C that connects u and v . Then ρ intersects a set of edges of G
either in their interior or in a vertex. Thus, there are two edges e

1
and e

2
consecutive

along ρ, that belong two distinct connected components. Since e
1

and e
2

are at most

1-crossed, there is an endpoint of e
1

and an endpoint of e
2

that are C-visible and thus

can be connected by an edge. Overall it is su�cient to add a linear number of edges to

join distinct connected components that have vertices in a common cell.

By construction, every cell contains at least one free vertex. Thus, in order to

connect the graph we consider two cells C
1
,C

2
with a common boundary. Assume

that there is a vertex u on the common boundary. In this case, the previous step

ensures that there is a path from u to every vertex that lies in the interior or on the

boundary of C
1

or C
2
. Hence, consider the case where no vertex lies on the common

boundary of the two cells. Moreover, the common boundary does also not contain an

edge, since this edge would be 2-anchored or l-crossed, l ≥ 2. Similar to the previous

step, we can connect two arbitrary vertices of C
1

and C
2

with a curve ρ that intersects

the common boundary. If this curve does not intersect an edge we can simply connect

the two vertices with an edge. Otherwise, at least in one cell C′ ∈ {C
1
,C

2
} the curve

intersects at least one edge. Therefore, there is an edge e ′ that comes immediately

before the intersection of ρ with the boundary of C′. Since every edge is at most

1-crossed, there are two vertices in C
1

and C
2

that can be connected by an edge. Due

to the previous step, we can assume that the vertices in the interior of each cell are

connected by a path. Thus, we add at most one edge for each pair of adjacent cells.

Since there are O(k2) cells we add O(k2) vertices and edges to G, i.e., the size of G is

O(n + k2).

We now assume that G is connected but not biconnected and has n′ ∈ O(n + k2)

vertices. Consider a single cut vertexv ; refer to Figure 10.10. We consider the common

arrangement F of A and G , i.e., a face can be restricted by pseudosegments of A and

edges ofG . Let Fv be the set of faces in F with v on their boundary. We place a vertex

vf in every face f of Fv . Let f and f ′ be two distinct faces of Fv with a common edge

ϵ on their boundary. If ϵ is an edge uv of G, we insert the edges uvf and uvf ′ . Since
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Figure 10.10: Green edges and vertices are added around a cut-vertex v to connect the

connected components (black) incident to v . (a) v is an intersection vertex. (b) v is a free

vertex.
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Figure 10.11: Black lines indicate a face f ofG . Light green edges or vertices are newly added

into f . Blue lines denote the pseudoline arrangement. (a) Isolation of an intersection. (b-c)

Isolation of an aligned vertex or edge. (d) Isolation of a pseudosegment.

uv is at most 1-crossed, the new edges are as well at most 1-crossed. If ϵ corresponds

to a pseudosegment, we insert the edge vf vf ′ such that it crosses ϵ . Since vf and vf ′
are free vertices, the edge is by construction 1-crossed.

This procedure adds O(k + degv) vertices and edges around v , since at most k
pseudolines intersect in a single point. The degree of vertices adjacent tov is increased

by at most 2. Thus, the size of G increases to O(n′k). Thus, we have that the size of G
is O(nk + k3). �

Lemma 10.10. Let (G,A) be a biconnected k-aligned n-vertex graph of alignment

complexity (1, 0,⊥). There exists a k-aligned triangulation (GT = (VT ,ET ),A) of f
whose size is O(nk + k3). The set E(GT ) \ E(G) has alignment complexity (1, 0,⊥) and

does not contain aligned edges.

Proof. We call a face non-triangular if its boundary contains more than three vertices.

An aligned vertex v or an aligned edge e is isolated if all faces with v or e on their

boundaries are triangles. A pseudosegment s is isolated if s does not intersect the

interior of a simple cycle. Our proof distinguishes four cases. Each case is applied

exhaustively in this order.
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1. If the interior of f contains the intersection of two or more pseudolines, we split

the face so that there is a vertex that lies on the intersection.

2. If the boundary of a face has an aligned vertex or an aligned edge, we isolate

the vertex or the edge from f .

3. If the interior of a face f intersects a pseudoline C, then it subdivides C into a

set of pseudosegments. We isolate each of the pseudosegments independently.

4. Finally, if none of the previous cases apply, i.e., neither the boundary nor the

interior of f contains parts of a pseudoline, the face f can be triangulated with

a set of additional free edges.

Let Af be the arrangement of A restricted to the interior of f .

1. Let f be a non-triangular face whose interior contains an intersection of two

or more pseudolines; see Figure 10.11a. We place a vertex on every intersec-

tion in the interior of f . We obtain a biconnected graph G
1

with the appli-

cation of Lemma 10.9. Since there are O(k2) intersections, the size of G
1

is

O
(
(n + k2)k + k3

)
= O(nk + k3).

2. Let f
1

be a non-triangular face of G
1

with an aligned vertex or an aligned edge

uv on its boundary. Further, the interior of f
1

does not contain the intersection

of a set of pseudolines; see Figure 10.11b and 10.11c. In case of an aligned vertex

we simply assume u = v . Since G is biconnected, there exist two edges xu, vy
on the boundary of f

1
. Let C

1
, . . . ,Cl ∈ cells(Af

1

) be cells with u or v on their

boundary, such that Ci is adjacent to Ci+1
, i < l . Since f

1
does not contain 2-

anchored edges, at most one of the verticesu andv can be an intersection vertex.

Thus, l is at most 2k . We construct an aligned graph (G
2
,A) from (G

1
,A) as

follows. We place a vertex qi in the interior of each cell Ci , i ≤ l . Let q
0
= x and

ql+1
= y. We insert edges ei = qiqi+1

, i = 0, . . . , l in the interior of f
1

so that the

interior of ei crosses the common boundary of Ci and Ci+1
exactly once and it

crosses no other boundary. Thus, if the edge ei is either incident to x or to y, it at

most 1-anchored and 0-crossed. Otherwise, it is 0-anchored and 1-crossed. The

added path splits f into two faces f ′, f ′′ with a unique face f ′ containing u and

v on its boundary. If w ∈ {u,v} is on the boundary of cell Ci , we insert an edge

wqi . Each edge wqi is 1-anchored and 0-crossed. Let Ci and Ci+1
be two cells

incident to w . Then, the vertices w,qi ,qi+1
form a triangle. If u , v , there is a

unique cell Ci incident to u and v . Hence, the vertices u,v,qi form a triangle.

Moreover, for 1 ≤ i ≤ l , every edge uqi and vqi is incident to two triangles.

Therefore, f ′ is triangulated. By construction, we do not insert aligned vertices

and edges, thus the number of aligned edges and aligned vertices of f ′′ is one

less compared to f
1
. Hence, we can inductively proceed on f ′′.

Assume the aligned vertex v is an intersection vertex. Thus, isolating v uses

O(k) additional vertices and edges. Therefore, all intersection vertices can be

isolated with O(k3) vertices and edges.
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Now consider an aligned vertex v that is not an intersection vertex. In this case

v is incident to at most two cells. We can isolate all such vertices with O(n)
vertices and edges. The same bound holds for aligned edges. Finally, we obtain

an aligned graph (G
2
,A) of size O(nk + k3).

3. Let f
2

be a non-triangular face of G
2

whose interior intersects a pseudoline C

and has no aligned edge and no aligned vertex on its boundary. Further, the

interior of f
2

does not contain the intersection of two or more pseudolines.

Then the face f
2

subdivides C into a set of pseudosegments; see Figure 10.11d.

We iteratively isolate such a pseudosegment S. Since f
2

does not contain the

intersection of two or more pseudolines in its interior, there are two distinct cells

C
1
∈ cells(Af ) and C

2
∈ cells(Af ) with S on their boundary. Since f

1
neither

contains an aligned vertex nor an aligned edge and G is biconnected, there are

exactly two edges e
1
= vw and e

2
= xy with the endpoints of S in the interior

of these edges and v,x and w,y on the boundaries of C
1

and C
2
, respectively.

Since f
2

does not have an l-crossed edge, l ≥ 2, and every 1-crossed edge is

0-anchored, the vertices v , w , x , y are free. We construct a graph G ′ by placing

a vertex u on s and inserting edges uv , uw , ux uy, vx and wy. We route each

edge so that the interior of an edge does not intersect the boundary of a cell

Ci , i = 1, 2. Thus, the edges vx and wy are free and the others are 1-anchored

and 0-crossed.

Every edge in G
2

is at most 1-crossed, thus the number of pseudosegments is

linear in the size of G
2
. Therefore, we add a number of vertices and edges that

is linear in the size of G
2
.

Thus, we obtain an aligned graph (G
3
,A) of size O(nk + k3).

4. If none of the cases above applies to a non-triangular face f
4

of G
3
, then neither

the interior nor the boundary of the face intersects a pseudoline Ci . Thus, we

can triangulate f
4

with a number of free edges linear in the size of f
4
. Thus, in

total we obtain an aligned triangulation (GT ,A) of (G,A) of size O(nk + k3).

�

Observe that the correctness of the previous triangulation procedure only relies

on the fact that every non-triangular face contains at most 1-crossed edges. While

Lemma 10.10 is su�cient for our purposes, for the sake of generality, we show how

to isolate l-crossed edges. This allows us to triangulate biconnected aligned graphs

without increasing the alignment complexity.

Theorem 10.11. Every biconnected k-aligned n-vertex graph (G,A) of alignment com-

plexity (l
0
, l

1
, l

2
) has an aligned triangulation (GT ,A). The alignment complexity of

E(GT ) \ E(G) is (max{l
0
, 1}, l

1
, l

2
) and the size of this set is O(nk + k3).

Proof. For l ≥ 1, we iteratively isolate l-crossed edges uv from a non-triangular face f
as sketched in Figure 10.12. Let C

0
,C

1
, . . . ,Cl ∈ cells(A) be the cells in f that occur
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C0
Cl

u

x
Cl−1

v

Figure 10.12: An l-crossed edge uv in a (grey) face f and a pseudoline arrangement (blue).

The green edges isolate the edge uv .

in this order along uv . If one of these vertices is free, say v , we place a new vertex x in

the interior of Cl−1
. We insert the two edges ux ,xv and route both edges close to uv .

This isolates the edge uv from f . Notice that the edge xv is 0-anchored and 1-crossed

and the edge ux (l − 1)-crossed. In case that l
0
≥ 1, the alignment complexity of the

new aligned graph is (l
0
, l

1
, l

2
). Otherwise, the alignment complexity is (1, l

1
, l

2
). If u

and v are aligned, we place x on the boundary of Cl−1
and Cl and route the edges ux

and vx as before. The alignment complexity is not a�ected by this operation. The face

uvx is triangular and therefore the edge uv is processed as above at most twice.

This procedure introduces a new (l − 1)-crossed edge. Repeating the process l − 2

times generates a new face f ′ from f where edge uv is substituted by a path of at

most 1-crossed edges. To isolate all l-crossed edges in (G,A), we add O(kn) vertices

and edges.

By isolating all l-crossed edges in this way, we obtain an aligned graph where every

non-triangular face is bounded by at most 1-crossed edges. The proof of Lemma 10.10

handles all non-triangular faces independently. For the correctness of the triangulation

it is su�cient to ensure that every non-triangular face does neither contain 2-anchored

edges nor l-crossed edges. Thus, we can apply the methods used in the proof of

Lemma 10.10 to triangulate (G,A) with O(nk + k3) additional vertices and edges. �

We now return to the treatment of aligned graphs with alignment complexity

(1, 0,⊥). To simplify the proofs, we augment the input graph with an additional

cycle in the outer face that contains all intersections of A in its interior, and we add

subdivision vertices on the intersections of Ci -aligned edges with pseudolines C j , i , j .
A k-aligned graph is proper if (i) every aligned edge is 0-crossed, (ii) for k ≥ 2, every

edge on the outer face is 1-crossed, (iii) the boundary of the outer face intersects every

pseudoline exactly twice, and (iv) the outer face does not contain any intersection

of A.

An aligned graph (G
rs
,A) is a rigid subdivision of an aligned graph (G,A) if and

only if G
rs

is a subdivision of G and every subdivision vertex is an intersection vertex
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with respect to A. We show that we can extend every k-aligned graph (G,A) to a

proper k-aligned triangulation.

Lemma 10.12. For every k ≥ 2 and every k-aligned n-vertex graph (G,A) of alignment

complexity (1, 0,⊥), let (G
rs
,A) be a rigid subdivision of (G,A). Then there exists a

proper k-aligned triangulation (G ′,A) of alignment complexity (1, 0,⊥) such that G
rs
is

a subgraph of G ′. The size of G ′ is in O(nk2 + k4). The set E(G ′) \ E(G
rs
) has alignment

complexity (1, 0,⊥) and does not contain aligned edges.

Proof. We construct a rigid subdivision (G
rs
,A) from (G,A) by placing subdivision

vertices on the intersections of Ci -aligned edges with pseudolines C j , i , j. The

number n
rs

of vertices of G
rs

is in O(n + k2).

We obtain a proper biconnected k-aligned graph (Gb ,A) by embedding a simple

cycle C in the outer face of G
rs

and applying Lemma 10.9. In order to construct C , we

place a vertexvc in each unbounded cell c ofA and connect two verticesvc andvc ′ if the

boundaries of the cells c and c ′ intersect. The size nb ofGb isO(n
rs
k +k3) = O(nk +k3).

We obtain a proper k-aligned triangulation (G ′,A) of Gb with the application of

Lemma 10.10. The size n′ ofG ′ is inO(nbk+k
3) = O((nk+k3)k+k3) = O(nk2+k4). �

The following two lemmas show that we can reduce the size of the aligned graph

and obtain a drawing by merging two drawings or by geometrically uncontracting an

edge.

Lemma 10.13. Let (G,A) be a k-aligned triangulation. Let T be a separating triangle

splitting G into subgraphs G
in
,G

out
so that G

in
∩G

out
= T and G

out
contains the outer

face of G. Then, (i) (G
out
,A) and (G

in
,A) are k-aligned triangulations, and (ii) (G,A)

has an aligned drawing if and only if there exists a common line arrangementA such that

(G
out
,A) has an aligned drawing (Γ

out
,A) and (G

in
,A) has an aligned drawing (Γ

in
,A)

with the outer face drawn as Γ
out
[T ].

Proof. It is easy to verify that (G
out
,A) and (G

in
,A) are aligned triangulations. An

aligned drawing (Γ,A) of (G,A) immediately implies the existence of an aligned

drawing (Γ
out
,A) of (G

out
,A) and (Γ

in
,A) of (G

in
,A).

Let (Γ
out
,A) be an aligned drawing of (G

out
,A). Since (Γ

out
,A) is an aligned drawing,

(Γ
out
[T ],A) is an aligned drawing of (T ,A). Let (Γ

in
,A) be an aligned drawing of

(G
in
,A) with the outer face drawn as Γ

out
[T ]. Let Γ be the drawings obtained by

merging the drawing Γ
out

and Γ
in

. Since (Γ
out
,A) and (Γ

in
,A) are aligned drawings on

the same line arrangement A, (Γ,A) is an aligned drawing of (G,A). �

Let e = uv be an edge of G and assume that v is contracted onto u in the graph

G/e . For a �xed edge e = uv , let fe a function that maps the edges of E(G) \ {u,v} to

E(G/e) that maps an ed
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Figure 10.13: Unpacking an edge in a drawing Γ′ of G/e (a) to obtain a drawing Γ of G (b).

Lemma 10.14. Let (G,A) be a proper k-aligned triangulation of alignment complexity

(1, 0,⊥) and let e be an interior 0-anchored aligned edge or an interior free edge ofG that

does not belong to a separating triangle and is not a chord. Then (G/e,A) is a proper
k-aligned triangulation of alignment complexity (1, 0,⊥). Further, (G,A) has an aligned

drawing if (G/e,A) has an aligned drawing.

Proof. We �rst prove that (G/e,A) is a proper k-aligned triangulation. Consider a

topological drawing of the aligned graph (G,A). Let c be the vertex in G/e obtained

from contracting the edge e = uv . We place c at the position of u. Thus, all the edges

incident to u keep their topological properties. We route the edges incident to v close

to the edge uv within the cell from which they arrive to v in (G,A). Since e is not an

edge of a separating triangle, G/e is simple and triangulated.

Consider a free edge e . Observe that the triangular faces incident to e do not contain

an intersection of two pseudolines in their interior, since (G,A) does not contain

l-crossed edges, for l ≥ 2. Therefore, (G/e,A) is an aligned triangulation. Since e is

not a chord, (G/e,A) is proper. Further, u and v lie in the interior of the same cell,

thus, the edges incident to c have the same alignment complexity as in (G,A).
If e is aligned, it is also 0-crossed, since (G,A) is proper. Since e is also 0-anchored,

the triangles incident to e do not contain an intersection of two pseudolines and

therefore (G/e,A) is a proper aligned triangulation. The routing of the edges incident

to c , as described above, ensures that the alignment complexity is (1, 0,⊥).

Let (Γ′,A) be an aligned drawing of (G/e,A). We now prove that (G,A) has an

aligned drawing. Let Γ′′ denote the drawing obtained from Γ′ by removing c together

with its incident edges and let f denote the face of Γ′′ where c used to lie. Since G/e
is triangulated and e is an interior edge and not a chord, f is star-shaped and c lies

inside the kernel of f ; see Figure 10.13. We construct a drawing Γ of G as follows. If

one of vertices u and v lies on the outer face, we assume, without loss of generality,

that vertex to be u. First, we place u at the position of c and insert all edges incident
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to u. This results in a drawing of the face f ′ in which we have to place v . Since u is

placed in the kernel of f , f ′ is star-shaped. If e is a free edge, the vertex v has to be

placed in the same cell as u. We then place v inside f ′ su�ciently close to c so that

it lies inside the kernel of f ′ and in the same cell as u. All edges incident to v are at

most 1-crossed, thus, (Γ,A) is an aligned drawing of (G,A).

Likewise, if e is an C-aligned edge, then v has to be placed on the line L ∈ A
corresponding to C. In this case, also c and therefore u lie on L. Since e is an interior

edge, there exist two triangles uv,vx ,xu and uv,vy,yu sharing the edge uv . Since, e
is not part of a separating triangle, x and y are on di�erent sides of L. Therefore the

face f ′ contains a segment of the line L of positive length that is within the kernel of

f ′. Thus, we can place v close to u on the line L such that the resulting drawing is an

aligned drawing of (G,A). �

Note that contracting a 1-anchored aligned edge can result in a graph (G/e,A) with

an alignment complexity that does not coincide with the alignment complexity of

(G,A). Further, for general alignment complexities there is an aligned graph (G,A)
and an 1-anchored aligned edge e such that (G/e,A) is not an aligned graph.

10.4.2 One Pseudoline

We show that every 1-aligned graph (G,R) has an aligned drawing (Γ,R), where R is a

single pseudoline and R is the corresponding straight line. Using the techniques from

the previous section, we can assume that (G,R) is a proper 1-aligned triangulation.

We show that unless G is very small, it contains an edge with a certain property. This

allows for an inductive proof to construct an aligned drawing of (G,R).

Lemma 10.15. Let (G,R) be a proper 1-aligned triangulation without chords and with

k vertices on the outer face. IfG is neither a triangle nor a k-wheel whose center is aligned,
then (G,R) contains an interior aligned or an interior free edge.

Proof. We �rst prove two useful claims.

Claim 1. Consider the order in which R intersects the vertices and edges of G. If

vertices u and v are consecutive on R, then the edge uv is in G and aligned.

Proof of the Claim. Observe that the edge uv can be inserted intoG without creating

crossings. Since G is a triangulation, it therefore already contains uv , and further,

since every non-aligned edge has at most one of its endpoints on R, it follows that

indeed uv is aligned. This proves the claim. /

Claim 2. If (G,R) is an aligned triangulation without aligned edges and x is an interior

free vertex of G, then x is incident to a free edge.

Proof of the Claim. Assume for a contradiction that all neighbors of x lie either on

R or on the other side of R. First, we slightly modify R to a curve R ′ that does not
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Figure 10.14: Transformation from a red vertex (a) to a gray vertex (b).

contain any vertices. Assume v is an aligned vertex; see Figure 10.14. Since there are

no aligned edges, R enters v from a face f incident to v and leaves it to a di�erent

face f ′ incident to v . We then reroute R from f to f ′ locally around v . If v is incident

to x , we choose the rerouting such that it crosses the edge vx .

Notice that if an edge e intersectsR in its endpoints, thenR ′ either does not intersect

it or intersects it in an interior point. Moreover, e cannot intersect R ′ twice as in such

a case R would pass through both its endpoints. Now, since G is a triangulation and

the outer face of G is proper, R ′ corresponds to a simple cycle in the dual G?
of G,

and hence corresponds to a cut C of G. Let H denote the connected component of

G −C that contains x and note that all edges of H are free. By the assumption and the

construction of R ′, x is the only vertex inH . Thus, R ′ intersects only the faces incident

to x , which are interior. This contradicts the assumption that R ′ passes through the

outer face of G and �nishes the proof of the claim. /

We now prove the lemma. Assume that G is neither a triangle nor a k-wheel whose

center is aligned. If G is a k-wheel whose center is free, we �nd a free edge by Claim 2.

Otherwise, G contains at least two interior vertices. If one of these vertices is free, we

�nd a free edge by Claim 2. Otherwise, all interior vertices are aligned. Since G does

not contain any chord, there is a pair of aligned vertices consecutive along R. Thus by

Claim 1 the instance (G,R) has an aligned edge. �

Theorem 10.16. Let (G,R) be a proper aligned graph and let (ΓO ,R) be a convex aligned
drawing of the aligned outer face (O,R) of G. There exists an aligned drawing (Γ,R) of
(G,R) with the same line R and the outer face drawn as ΓO .

Proof. Given an arbitrary proper aligned graph (G,R), we �rst complete it to a bi-

connected graph and then triangulate it by applying Lemma 10.9 and Lemma 10.10,

respectively.

We prove the claim by induction on the size of G . If G is just a triangle, then clearly

(ΓO ,R) is the desired drawing. If G is the k-wheel whose center is aligned, placing the
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vertex on the line in the interior of ΓO yields an aligned drawing of G. This �nishes

the base case.

If G contains a chord e , then e splits (G,R) into two graphs G
1
,G

2
with G

1
∩G

2
= e .

It is easy to verify that (Gi ,R) is an aligned graph. Let (ΓiO ,R) be a drawing of the

face of ΓO ∪ e whose interior contains Gi . By the inductive hypothesis, there exists an

aligned drawing of (Γi ,R) with the outer face drawn as (ΓiO ,R). We obtain a drawing Γ
by merging the drawings Γ

1
and Γ

2
. The fact that both (Γ

1
,R) and (Γ

2
,R) are aligned

drawings with a common line R and compatible outer faces implies that (Γ,R) is an

aligned drawing of (G,R).

If G contains a separating triangle T , let G
in

and G
out

be the respective split com-

ponents with G
in
∩G

out
= T . By Lemma 10.13, the graphs (G

in
,R) and (G

out
,R) are

aligned graphs. By the induction hypothesis there exists an aligned drawing (Γ
out
,R)

of the aligned graphs (G
out
,R) with the outer face drawn as (ΓO ,R). Let Γ[T ] be the

drawing ofT in Γ
out

. Further, (G
in
,R) has by induction hypothesis an aligned drawing

with the outer face drawn as Γ[T ]. Thus, by Lemma 10.13 we obtain an aligned drawing

of (G,R) with the outer face drawn as ΓO .

If G is neither a triangle nor a k-wheel, by Lemma 10.15, it contains an interior

aligned or an interior free edge e . Since e is not a chord and does not belong to a

separating triangle, by Lemma 10.14, (G/e,R) is an aligned graph and by the induction

hypothesis it has an aligned drawing (Γ′,R) with the outer face drawn as ΓO . It thus

follows by Lemma 10.14 again that (G,R) has an aligned drawing with the outer face

drawn as ΓO . �

10.4.3 Alignment Complexity (1, 0,⊥)

We now consider k-aligned graphs (G,A) of alignment complexity (1, 0,⊥), i.e., every

edge with two free endpoints intersects at most one pseudoline, every 1-anchored

edge has no interior intersection with a pseudoline, and 2-anchored edges are entirely

forbidden. In this section, we prove that every such k-aligned graph has an aligned

drawing. As before we can assume that (G,A) is a proper aligned triangulation. We

show that if the structure of the graph is not su�ciently simple, it contains an edge

with a special property. Further, we prove that every graph with a su�ciently simple

structure indeed has an aligned drawing. Together this again enables an inductive

proof that (G,A) has an aligned drawing. Figure 10.15 illustrates the statement of the

following lemma.

Lemma 10.17. For k ≥ 2 let (G,A) be a proper k-aligned triangulation of alignment

complexity (1, 0,⊥) that neither contains a free edge, nor a 0-anchored aligned edge, nor

a separating triangle. Then (i) every intersection contains a vertex, (ii) every cell of the

pseudoline arrangement contains exactly one free vertex, (iii) every pseudosegment is

either covered by two aligned edges or it intersects a single edge.
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Figure 10.15: All possible variations of vertices and edges in Lemma 10.17.

Proof. The statement follows from the following sequence of claims. We refer to an

aligned vertex that is not an intersection vertex as a �exible aligned vertex.

Claim 1. Every intersection contains a vertex.

Assume that there is an intersection I that does not contain a vertex. Since (G,A)
is proper, every aligned edge of G is 0-crossed. Thus, no edge of G contains I in its

interior. Moreover, since (G,A) is a proper triangulation, the outer face of G does not

contain intersections of A. Hence, there is a triangular face f of G that is not the

outer face and that contains I . Thus, f either has a 2-anchored edge, a 1-anchored

l
1
-crossed edge, l

1
≥ 1, or an l

0
-crossed edge, l

0
≥ 2, on its boundary. This contradicts

that (G,A) has alignment complexity (1, 0,⊥).

Claim 2. Every cell contains at least one free vertex.

Proof of the Claim. Let C be a cell of A. Assume that the boundary of C is neither

covered by 1-aligned edges nor crossed by an edge. Since (G,A) is proper, there is

a face f of G that entirely contains C in its interior. Further, G is triangulated and

therefore, f is a triangle. But every triangle that contains a cell C in its interior either

has a 2-anchored edge, a 1-anchored l
1
-crossed edge, l

1
≥ 1, or an l

0
-crossed edge,

l
0
≥ 2, on its boundary. The alignment complexity of (G,A) excludes these types

of edges, thus, there is either a 1-crossed edge with an interior intersection with the

boundary of C, or C is covered by 1-anchored aligned edges.

If there is an edge e with an interior intersection with the boundary of C, one

endpoint of e lies in the interior of C. Thus, in the following we can assume that

(a)

B

(b)

u

w
x

y
v

(c)

Figure 10.16: Illustrations for the proof of Lemma 10.17.

192



Drawing Aligned Graphs Section 10.4

no such edges exist. Therefore, the boundary of C is covered by 1-anchored aligned

edges. There are two possibilities to triangulate the interior of the cell, either by edges

routed through the interior of C with endpoints on the boundary of C or with interior

vertices. The former is not possible, since such a non-aligned edge would either be

2-anchored or have both of its endpoints on the same pseudoline. Since (G,A) is an

aligned graph of alignment complexity (1, 0,⊥), it does not contain such edges. Thus,

every proper aligned triangulation of the graph induced by edges on the boundary of

C contains a vertex in the interior of C. /

Claim 3. Every cell contains at most one free vertex.

Proof of the Claim. The following proof is similar to Claim 2 in the proof of

Lemma 10.15. Let C be a cell and assume for the sake of a contradiction that C

contains more than one vertex in its interior; see Figure 10.16a. These vertices are

connected by a set of edges to adjacent cells. If C contains a vertex v or an edge e on

its boundary, we reroute the corresponding pseudolines close to v and e , respectively,

such that v and e are now outside of C; refer to Figure 10.16b. Let C′ be the resulting

cell, it represents a cut in the graph with two componentsA and B, where C′ contains B
in its interior. It is not di�cult to see that the modi�ed pseudolines are still pseudolines

with respect to G. Since (G,A) neither contains 2-anchored edges, nor 1-anchored

l
1
-crossed edges, l

1
≥ 1, nor l

0
-crossed edges, l

0
≥ 2, every edge of (G,A ′) intersects

the boundary of C′ at most once. Further, G is a triangulation and therefore, B is

connected and since it contains at least two vertices it also contains at least one free

edge, contradicting our initial assumption. /

Claim 4. Every �exible aligned vertex is incident to two 1-anchored aligned edges.

Proof of the Claim. Let v be a �exible aligned vertex that lies on a pseudosegment S

ofA; refer to Figure 10.16c. Since k ≥ 2, S is either incident to one or two intersection

vertices. Let u be an intersection vertex incident to S and let S be on the boundary of

the cells C
1
,C

2
. First, we will show that u is adjacent to a vertex x in the interior of C

1

and a vertex y in the interior of C
2
, respectively. Depending on whether S is incident

to one or two intersection vertices, the edgeux helps to �nd either a separating triangle

or a 4-cycle that each contains v in its interior.

We initially show that the graph contains the edge ux . Since G is triangulated there

is a fan of triangles around u. Further, all edges in (G,A) are at most 1-crossed, hence

we �nd a vertex x ′ in the interior of C
1
. Due to Claim 3 and Claim 4 the vertex in the

interior of C
1

is unique. Thus, we have that x ′ is equal to x and therefore G contains

the edge ux . Correspondingly, we �nd a vertex y in the interior of C
2

adjacent to u.

Consider the case whereS contains only a single intersection vertex, i.e,S intersects

the outer face of G. Since (G,A) is proper (edges on the outer face are 1-crossed), G
contains the edge xy. Thus, we �nd a triangle with the vertices x ,y andu that contains

v in its interior. This contradicts the assumption that G does not have a separating
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triangle. Therefore, if S is incident to a single intersection, there is no �exible aligned

vertex that lies in the interior of S.

Now consider the case where S is incident to two intersection vertices u and w . As

shown before, the verticesu,w are each adjacent to the free vertices x andy. Therefore,

vertices u,w,x ,y build a 4-cycle containing v in its interior. Since G does not contain

a separating triangle, it cannot contain the edge xy. Moreover, v is the only vertex in

the interior of S, as otherwise, we would �nd a free aligned edge. Finally, since (G,A)
is an aligned triangulation, the vertex v is connected to all four vertices and thus v is

incident to two 1-anchored aligned edges. /

Claim 1 proves that (G,A) has Property (i). Claim 2 and Claim 3 together prove

that Property (ii) is satis�ed. Since (G,A) is an aligned triangulation, Property (iii)

immediately follows from Property (ii) and Claim 4. �

Lemma 10.18. Let (G,A) be a proper k-aligned triangulation of alignment complexity

(1, 0,⊥) that does neither contain a free edge, nor a 0-anchored aligned edge, nor a sepa-

rating triangle. LetA be a line arrangement homeomorphic to the pseudoline arrangement

A. Then (G,A) has an aligned drawing (Γ,A).

Proof. We obtain a drawing (Γ,A) by placing every free vertex in its cell, every aligned

vertex on its pseudosegment and every intersection vertex on its intersection. Accord-

ing to Lemma 10.17 every cell and every intersection contains exactly one vertex and

each pseudosegment is either crossed by an edge or it is covered by two aligned edges.

Observe that the union of two adjacent cells of the arrangementA is convex. Thus, this

drawing of G has an homeomorphic embedding to (G,A) and every edge intersects

in (Γ,A) the line L ∈ A corresponding to the pseudoline C ∈ A in (G,A) �

We prove the following theorem along the same lines as Theorem 10.16.

Theorem 10.19. Every k-aligned graph (G,A) of alignment complexity (1, 0,⊥) with

a stretchable pseudoline arrangement A has an aligned drawing.

Proof. Let (G,A) be an arbitrary aligned graph, such thatA is a stretchable pseudoline

arrangement, let us denote by A the corresponding line arrangement. By Lemma 10.12,

we obtain a proper k-aligned triangulation (GT ,A) that contains a rigid subdivision

ofG as a subgraph. Assume that (GT ,A) has an aligned drawing (ΓT ,A). Let (Γ′,A) be

the drawing obtained from (ΓT ,A) by removing all subdivision vertices v and merging

the two edges incident to v at the common endpoint. Recall that a subdivision vertex

in a rigid subdivision of (G,A) lies on an intersection inA. Hence the drawing (Γ′,A)
is a straight-line aligned drawing and contains an aligned drawing (Γ,A) of (G,A).

We now show that (GT ,A) indeed has an aligned drawing. We prove this by

induction on the size of the instance (GT ,A). If (GT ,A) neither contains a free edge,

nor a 0-anchored aligned edge, nor a separating triangle, then, by Lemma 10.18 there

is an aligned drawing (ΓT ,A).
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If G contains a separating triangle T , let G
in

and G
out

be the respective split com-

ponents with G
in
∩ G

out
= T . Since the alignment complexity of (G,A) is (1, 0,⊥),

triangle T is intersected by at most one pseudoline C. It follows that (G
out
,A) is a

k-aligned triangulation and that (G
in
,C) is a 1-aligned triangulation. By the induction

hypothesis there exists an aligned drawing (Γ
out
,A) of (G

out
,A). Let Γ

out
[T ] be the

drawing of T in Γ
out

. By Theorem 10.16, we obtain an aligned drawing (Γ
in
,L) with T

drawn as Γ
out
[T ]. Moreover, since the drawing of T is �xed and is intersected only by

line L, (Γ
in
,A) is an aligned drawing. Thus, according to Lemma 10.13, there exists an

aligned drawing of (G,A).

If GT does not contain separating triangles but contains either a free edge or a

0-anchored aligned edge e , let GT /e be the graph after the contraction of e . Observe

that, since (GT ,A) is proper, every edge on the outer face is 1-crossed, and therefore

every chord is `-crossed, ` ≥ 1. Thus, e is an interior edge of (GT ,A) and is not a

chord. Therefore, by Lemma 10.14, (GT /e,A) is a proper aligned triangulation. By

induction hypothesis, there exists an aligned drawing of (GT /e,A), and thus, by the

same lemma, there exists an aligned drawing of (GT ,A). �

Figure 10.17: Placement of a subdivision vertex to obtain a 2-aligned graph of alignment

complexity (1, 0,⊥).

Theorem 10.20. Every 2-aligned graph has an aligned drawing with at most one bend

per edge.

Proof. We subdivide 2-crossed, 2-anchored or 1-crossed 1-anchored edges as depicted

in Figure 10.17. Thus, we obtain a 2-aligned graph (G ′,A) of alignment complexity

(1, 0,⊥). Applying Theorem 10.19 to (G ′,A) yields a one bend drawing of (G,A). �

10.4.4 Aligned Drawings of Counterclockwise Aligned Graphs

In this section, we consider aligned drawings of 2-aligned graphs (G,A), i.e., A =

{X,Y} where X and Y are two intersecting pseudolines with respect to G. For

convenience, we denote a 2-aligned graph as (G,XY). Recall that, the aligned graph

in Figure 10.18a does not have an aligned drawing. The crux is that the source of

the red edges are free and the source of green edges are aligned. In the following we
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(a) (b) (c)

e

f

(d)

Figure 10.18: (a) This 2-aligned graph does not have an aligned drawing. (b,c) The green

curve indicates the Jordan curve that completes the black edge. The edge in (b) is an edge of a

ccw-aligned graph. The edge depicted in (c) is forbidden in ccw-aligned graphs. (d) A comb of

edges e, f .

introduce so-called counterclockwise aligned graphs and show that they have aligned

drawings.

We orient each non-aligned edge uv of an aligned graph (G,XY) such that it can

be extended to a Jordan curve, i.e., a closed simple curve, Cuv with the property that it

intersects each pseudoline exactly twice and has the origin to its left. A counterclockwise

aligned (ccw-aligned) graph is a 2-aligned graph of alignment complexity (1, 1, 0)whose

orientation does not contain 1-anchored 1-crossed edges with a free source vertex.

We prove that every ccw-aligned graph has an aligned drawing. To prove this

statement we follow the same proof strategy as before with minor modi�cations. In

particular, we have to ensure that there is a proper ccw-aligned triangulation. Then in

Lemma 10.23 we show that for each aligned graph (G,XY) there is a reduced aligned

graph (GR ,XY) (i.e., it does neither contain (i) separating triangles, (ii) free edges,

and (iii) aligned edges that are not incident to the intersection of X and Y) with the

property that (G,XY) has an aligned drawing if (GR ,XY) has an aligned drawing. In

contrast to aligned graphs of alignment complexity (1, 0,⊥) the size of (GR ,XY) is

not bounded by a constant. Thus, the main contribution of this section is Lemma 10.26

that states that each reduced instance has an aligned drawing.

We �rst introduce some further notations. We refer to the intersection of X and

Y as the origin O. The curves X,Y divide the plane into four quadrants Q
1
, . . . ,Q

4

in counterclockwise order. These quadrants naturally correspond to the regions

Q
1
, . . . ,Q

4
bounded by the linesX and Y . Additionally to the prior de�nition of proper

k-aligned graphs (Section 10.4.1), we now require that there is a degree-4 vertex o on

the origin that is incident to four aligned edges. Moreover, we require that the outer

face is bounded by 2-anchored edges instead of 1-crossed edges. Thus, in the following

a 2-aligned graph (G,XY) is a proper 2-aligned triangulation if each inner face is a

triangle, the boundary of the outer face is a 4-cycle of 2-anchored edges, the outer

face does not contain the origin and there is a degree-4 vertex o on the origin incident

to four aligned edges. We refer to a reduced proper ccw-aligned triangulation as a
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w1

w2

w′
2

u′

v

u

v′

w′
1

(a) (b) (c)

Figure 10.19: (a) The (black) separating edges are isolated by the green edges. (b) The black

edges are removed and the red edges are obtained by the triangulation. (c) Final graph, after

removing edges in the interior of a quadrangle u,w
1
,v,w

2
and reinserting the black edges.

reduced aligned triangulation. We refer to 1-anchored 1-crossed and 2-anchored edges

as separating. The region within a quadrant that is bounded by two separating edges e
and f is an edge region; see Figure 10.18d. An inclusion-minimal edge region is a comb.

Lemma 10.21. Let (G,XY) be a ccw-aligned graph. Then there is a ccw-aligned tri-

angulation (G ′,XY) that contains (G,XY) as a subgraph. Moreover, the outer face of

(G ′,XY) is bounded by 4-cycleC of 2-anchored edges and the outer face does not contain

the origin in its interior.

Proof. Let (G
2
,XY) be the graph that is constructed from (G,XY) as follows. First,

add a 4-cycleC of 2-anchored edges in the outer face such that the new outer face does

not contain the origin. For each separating edge uv of G add two vertices w
1
,w

2
and

the edgesuw
1
,w

1
v anduw

2
,w

2
v . Route and direct the edges according to Figure 10.19a.

Finally, remove the edge uv . Eventually, we arrive at an aligned graph of alignment

complexity (1, 0,⊥). With the application of Lemma 10.9 and Lemma 10.19 we obtain

a triangulated aligned graph (G
3
,XY) of alignment complexity (1, 0,⊥). We remove

edges in the interior of each quadrangle u,w
1
,v,w

2
and reinserted the original edge

uv . Finally, we remove all edges and vertices in the region bounded byC that does not

contain the origin. This yields the desired aligned graph (G ′,XY). �

Since no free edge of an ccw-aligned graph is incident to a triangle that contains the

intersection in its interior, the following lemma can be proven along the same lines as

Lemma 10.14.

Lemma 10.22. Let (G,XY) be a ccw-aligned graph and let e be an interior free edge or

an aligned edge that is neither an edge of a separating nor a chord and does not contains

the origin, then (G/e,XY) is a ccw-aligned graph and (G,XY) has an aligned drawing

if (G/e,XY) has an aligned drawing.

With the tools introduced in Section 10.4.1 we can now prove the following lemma.
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(G′
R,XY) :

(GR,XY) :

(a)

v

u

v v v

u u u

v

u

v

u

(b)

Figure 10.20: Red edges are removed from (GT ,XY) and green added to (GP ,XY)

Lemma 10.23. For every ccw-aligned graph (G,XY) there is a reduced aligned triangu-
lation (GR ,XY) such that (G,XY) has an aligned drawing if (GR ,XY) has an aligned

drawing.

Proof. By Lemma 10.21 there is a aligned triangulation (GT ,XY) of (G,XY) with the

outer face bounded by 4-cycle of 2-anchored edges. Moreover, an aligned drawing of

(GT ,XY) contains an aligned drawing of (G,XY).
By the application Lemma 10.13 and Lemma 10.22, we obtain a reduced aligned

triangulation (G ′R ,XY) from (GT ,XY) by either splitting (GT ,XY) into two aligned

graphs at a separating triangle T , or by contracting free or aligned edges that are not

incident to o. Note that, again by the same lemmas, we have that that (GT ,XY) has

an aligned drawing if (G ′R ,XY) has an aligned drawing

In order to obtain a proper aligned triangulation (GR ,XY) from (G ′R ,XY) we

perform the reduction depicted in Figure 10.20. If there is an aligned edge that contain

the origin in its interior, we place a subdivision vertex on this edge and inserted edges

as depicted in Figure 10.20a. Note that in this case an aligned drawing of (GR ,XY)

contains an aligned drawing of (G ′R ,XY).
Consider the case that there is a vertex v on the origin that is incident to a free

vertex u. We obtain a new aligned graph (GR ,XY) by exhaustively applying the

reductions depicted in Figure 10.20b. Since the black polygon (compare Figure 10.20b)

in an aligned drawing of (GR ,XY) is star-shaped and its kernel contains the vertex v ,

(G ′R ,XY) has an aligned drawing if (G ′R ,XY) has an aligned drawing. �

The following lemma describes the structure of reduced triangulations.

Lemma 10.24. Let (GR ,XY) be a reduced aligned triangulation and let o be the vertex
on the origin. Then in (GR −o,XY) the pseudolinesX andY alternately intersect vertices

and edges, and each comb contains at most one vertex.

Proof. Assume that there are two consecutive aligned vertices u and v . Since G is

triangulated and u and v are consecutive, G contains the edge uv . This contradicts the

assumption that (G,XY) does not contain aligned edges.
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ue

f

Qi ρi

(a)

e

f

Qi ρi

u

(b)

Figure 10.21: The curve ρi (a) and its modi�cation in (b).

The following modi�cation helps us to prove that there are no two consecutive

edges along a pseudoline and that no comb contains two free vertices.

Let ρi be the parts of X and Y that are on the boundary of the quadrant Qi , see

Figure 10.21. We modify ρi as follows. We �rst, join the endpoints of ρi in the in�nity

such that it becomes a simple closed curve. Let u be a vertex that lies on ρi . We reroute

ρi such that u now lies outside of ρi . Since G is triangulated and ρi only intersects

edges, ρi corresponds to a cycle in G?
and therefore to a cut Ci in G. Note that each

edge of a connected component in G −Ci is a free edge.

Now assume that there are two distinct edges e, f that consecutively cross a pseu-

doline L ∈ XY. By the premises of the lemma there is a vertex that lies on the origin

O. Hence both e and f cross L on the same side with respect to O. Since e and f are

distinct and (G,XY) is ccw-aligned, there is a quadrant Qj such that Qj contains two

distinct vertices u andw incident to e and f , respectively. SinceG is triangulated and e
and f are consecutive along L, u andw are vertices in the same connected component

of G −Cj . Therefore, (G,XY) contains a free edge. A contradiction.

Consider a comb C in a quadrant Qi that contains two distinct vertices u and v in

its interior. Since G is triangulated and C is inclusion-minimal (it does not contain

another edge-region), u and v belong to the same connected component of G − Ci .

Therefore (G,XY) contains a free edge. �

We call a comb closed if its two separating edges have the same source vertex.

Lemma 10.25. For every reduced aligned triangulation (GR ,XY) there is a reduced

aligned triangulation (G ′′R ,XY) where no closed comb contains a vertex such that

(GR ,XY) has an aligned drawing if (G ′′R ,XY) has an aligned drawing.

Proof. By Lemma 10.24 we know that each comb contains at most one vertex. We

apply induction over the number of closed combs that contain a vertex. Let v be a free

vertex in a closed comb with separating edges uw
1
, uw

2
. Then we obtain an aligned

graph (G ′R ,XY) by contracting edge uv in the embedding. Since (GR ,XY) is reduced

ccw-aligned, all edges outgoing from the free vertex v are 1-anchored 0-crossed or

0-anchored 1-crossed. In (G ′R ,XY) they are now 2-anchored 0-crossed or 1-anchored

1-crossed with free target vertex. Since there is no other vertex in the comb and
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Figure 10.22: (a) Placement of a free vertex v in quadrant Q
2
. It may be placed within the

gray triangle. (b) Example for the observations with u ′
1
= x

3
and u ′

2
= x

4
.

o
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Figure 10.23: The vertex o and the half-lines Hi and the vertices mi , ri for i = 1, . . . , 4. All

remaining edges and vertices lie in the green area.

the comb is closed, v only has uv as incoming edge which is contracted. Therefore

(G ′R ,XY) is ccw-aligned. Assume that (G ′R ,XY) has an aligned drawing. Since v is a

free vertex, we obtain an aligned drawing of (G,XY) by placing v close to u within in

its closed comb. By Lemma 10.23 we obtain a reduced aligned triangulation (G ′′R ,XY)
from (G ′,XY) such that (G ′R ,XY) has an aligned drawing if (G ′′R ,XY) has an aligned

drawing. In the construction the number of closed combs that contain a vertex is not

increased. This concludes the induction. �

We can now show that each reduced instance has an aligned drawing which is the

core of our contribution.

Lemma 10.26. Every reduced aligned triangulation has an aligned drawing.

Proof. By Lemma 10.25 we can assume that in our triangulation (G,XY) the closed

combs contain no vertices. By Lemma 10.24 we know that each comb contains at most

one vertex and no vertex if it is closed. The main problem is to draw the 1-crossed

edges. For those, we place each free vertex v close to the right boundary of its comb.
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This allows to draw the incoming edges. Since (G,XY) is ccw-aligned, the target of

each 1-crossed edge vu is free and allows to draw vu.

We construct the aligned drawing (Γ,XY ) as follows. Let o be the vertex on the

origin. We call the sources of separating edges corners. First place o and all corners

on XY in the order induced from XY. For i = 1, . . . , 4, letHi be the half-pseudoline

that is the right boundary of quadrant Qi . Let mi denote the vertex on Hi that is

adjacent to o and let ri denote the vertex incident to the outer face onHi . Note that

mi , ri are corners. We write u <i v if u lies between o and v onHi where u, v may be

vertices and intersections of edges withHi . Note that <i is a linear order. De�ne Hi
correspondingly for XY ; see Figure 10.23. The indices formi , Qi , etc. are considered

mod 4. In the following, we denote by uv the line through two distinct points u, v .

Now consider a free vertex v in some quadrant Qi ; see Figure 10.22a. It lies in a comb

that is bounded by two separating edges u
1
w

1
, u

2
w

2
with u

1
<i u2

onHi . Note that

we have u
1
, u

2
since the comb contains v and is thus not closed. We place v within

the triangle bounded by mi+1
u

2
, mi−1

u
1

and Hi . Note that v lies in Qi and between

the two lines T
1
, T

2
through u

1
, u

2
that are orthogonal to Hi . We will show that the

intersections of 1-crossed edges with Hi and the corners on Hi respect the order <i .

Finally, we place for i = 1, . . . , 4 the vertices on Hi that are neither o nor a corner

arbitrarily on Hi respecting the order <i . This �nishes the construction (edges are

placed accordingly).

We next show that the vertices and edges of G appear along X and X (respectively

Y and Y) in the same order. Consider the free vertex v and the separating edges u
1
w

1
,

u
2
w

2
as de�ned above. Let mi−1

= x
1
<i−1

· · · <i−1
xk = ri−1

denote the corners on

Hi−1
. The following three observations imply that all 1-crossed edges with target v

cross Hi in the correct order between u
1

and u
2
; refer to Figure 10.22b.

1. mi−1
v and ri−1

v cross Hi between u
1

and u
2
.

2. x
1
v, . . . ,xkv intersect Hi in the same order as x

1
, . . . ,xk lie onHi−1

.

3. Let v ′ be a free vertex in Qi−1
. Let u ′

1
w ′

1
, u ′

2
w ′

2
be the separating edges of the

comb containing v ′. Then v ′v crosses Hi between u ′
1
v ∩ Hi and u ′

2
v ∩ Hi .

For Observation 1, note that v lies in the triangle bounded by Hi ,mi−1
u

1
andT

2
. For

Observation 2, note that x
1
v, . . . ,xkv cross pairwise in v and thus not in quadrant

Qi−1
. These two observations imply that x

1
v, . . . ,xkv cross Hi−1

between u
1

and u
2
.

For Observation 3 note now that v ′ lies in the triangle bounded by Hi−1
, u ′

2
mi and the

line T ′
1

through u ′
1

that is orthogonal to Hi−1
.

We now show that all 1-crossed edges with target v cross Hi in the correct order

between u
1

and u
2
. By Observations 2, 3 the 1-crossed edges with target v cross Hi

between mi−1
v ∩ Hi and ri−1

v ∩ Hi . With Observation 1, they cross Hi between u
1

and u
2
. By Observation 2, we know that the 1-anchored 1-crossed edges with target
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Chapter 10 Aligned Drawings of Planar Graphs

v cross Hi in the correct order. By Observations 2, 3, we obtain that each pair of a

0-anchored 1-crossed and a 1-anchored 1-crossed edge cross Hi in the correct order.

Since the sources of 0-anchored 1-crossed edges with target v lie in di�erent combs,

they lie pairwise on di�erent sides of some edge x jv by Observation 3. Observation 2

then yields their correct ordering.

Since the corners on Hi respect <i and all 1-crossed edges have free target vertices

(as the triangulation is ccw-aligned), this implies that the intersections of 1-crossed

edges with Hi and the corners on Hi respect the order <i . By construction, we placed

the vertices onHi that are not corners such that they also respect order <i . Thus, X ,

Y intersect the vertices and edges in the same order as X, Y.

We next show that our embedding is planar by showing that there is no location

where edges cross. Since the order of intersections with XY is correct, there are no

crossings on X ∪ Y . This leaves us with the quadrants. Since the separating edges of

Qi appear in the same order onHi andHi+1
, they also appear in the same order on

Hi and Hi+1
. Thus, separating edges of the same quadrant do not cross each other.

We further obtain the same combs for (Γ,XY ). Consider again a free vertex v in Qi
and the corresponding separating edges u

1
w

1
, u

2
w

2
; see Figure 10.22a. Since v lies in

the triangle bounded by Hi , T1
andmi+1

u
2
, it also lies in the comb bounded by u

1
w

1
,

u
2
w

2
. Hence, every free vertex lies in the correct comb. Let e be an edge incident

to v . Then its other end vertex does not lie within the comb of v . It must therefore

intersectHi between u
1

and u
2

if it is incoming, and it must intersectHi+1
between

u
1
w

1
∩ Hi+1

and u
2
w

2
∩ Hi+1

if it is outgoing. Since we have the same order on Hi
and Hi+1

respectively, edge e crosses neither u
1
w

1
nor u

2
w

2
and thus not the interior

of any other comb in Qi . This means that 1. There are no crossings on separating

edges in the corresponding quadrants. And that 2. Only edges incident to the free

vertex v in a comb intersect the interior of that comb. Those edges are all adjacent

in v and do not cross. We obtain that there are no crossings on X ∪ Y , no crossings

on separating edges in the corresponding quadrants and no crossings within combs.

Hence, our embedding is planar.

Since there are no free edges and the order of intersections with XY is �xed, the

order of incident edges around a free vertex is also �xed. For a vertex u on XY we

note that each adjacent free vertex is in another comb and therefore the order of

incident edges around u is also �xed. Therefore, our embedding Γ induces the same

combinatorial embedding as the embedding of G. �

From Lemma 10.23 and Lemma 10.26 we directly obtain our main theorem.

Theorem 10.27. Every ccw-aligned graph (G,XY) has an aligned drawing.
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Conclusion Section 10.5

10.5 Conclusion

In this chapter, we showed that ifA is stretchable, then everyk-aligned graph (G,A) of

alignment complexity (1, 0,⊥) has a straight-line aligned drawing. As an intermediate

result, we showed that a 1-aligned graph (G,R) has an aligned drawing with a �xed

convex drawing of the outer face. We showed that the less restricted version of this

problem, where we are only given a set of vertices to be aligned, is NP-hard but

�xed-parameter tractable.

There is a 2-aligned graph of alignment complexity (1, 1, 0) that does not have an

aligned drawing. Every 2-aligned graph of alignment complexity (1, 0, 0), and the

more general ccw-aligned graphs, have aligned drawings. Table 10.1 summarizes these

results. It is open whether this result can be extended to k-aligned graphs of alignment

complexity (1, 0, 0).

Overall, we state the following open questions.

1) What are all the combinations of line numbers k and alignment complexities C
such that for every k-aligned graph (G,A) of alignment complexity C there exists

a straight-line aligned drawing provided A is stretchable?

2) Given ak-aligned graph (G,A) and a line arrangementA homeomorphic toA, what

is the computational complexity of deciding whether (G,A) admits a straight-line

aligned drawing (Γ,A)?
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11 Conclusion and
Open Problems

In this thesis, we studied geometric graph drawing algorithms from a theoretical

and practical perspective. The algorithms in Part I are concerned with crossings in

geometric drawings, in particular with the number of crossings. In Part II, we studied

whether topological planar embeddings can be stretched to geometric drawings while

satisfying prescribed constraints.

In Part I, we introduced and evaluated algorithms that compute drawings with a

small number of crossings in small and large graphs; see Chapter 4 and Chapter 5. In

Chapter 6, we traded the requirement that the edges have to be straight-line segments

for a smaller number of crossings and studied algorithms that stretch a topological

drawing with few crossings to a drawing where the edges are as straight as possible.

For all these approaches, we were able to show that the quality of the drawings is

considerably better than the quality of drawings obtained by energy-based approaches.

It is unclear how close the computed drawings are to an optimal solution. In case of

the number of crossings in geometric drawings, a study of the relationship between

the values cr(Γ) and cr(Γ?) would be of interest, where Γ is a drawing computed by a

heuristic and Γ? is a drawing with a minimum number of crossings. This question

can be approached from two directions. One is to compute an optimal solution for

each graph in the benchmark set. The other direction is to prove bounds for cr(Γ?)
for special graph classes and then to apply the heuristic to these graphs. The facts

that the geometric crossing minimization problem is ∃R-complete [Bie91], the 700

references in Vrt’o’s [Vrt14] online-bibliography to papers studying crossings and that

the geometric crossing number of the complete graph on n vertices is only known for

n ≤ 27 and n = 30 [Aic19], indicate that these sort of problems are indeed challenging.

Nevertheless, we think the following questions are worth considering. Given a planar

graph G = (V ,E) and a set X of additional edges, i.e., E ∩ X = ∅, is it �xed-parameter

tractable in |X | to compute the geometric crossing number ofG +X? Or more speci�c,

is the problem tractable if G is a planar triangulation (i.e., the class Triangulation+X

in benchmark set used in Part I), or when X contains only a single edge? Can we prove

bounds for the geometric crossing number of these instances?

A popular recent research trend is to consider beyond planar graphs, e.g., k-planar
graphs that have a drawing with at most k crossings per edge. These problems are often

studied from a topological perspective. For 1-planar graphs there is a polynomial-time

algorithm that either reports that an embedded 1-planar graph does not have 1-planar

geometric drawing or it returns a 1-planar geometric drawing [Hon+12]. Thus, for
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Chapter 11 Conclusion and Open Problems

1-planar graphs there is a baseline for our crossing-minimization heuristics, if we

do not consider the number of crossings in geometric drawings but the maximum

number of crossings per edge in a geometric drawing, i.e., the local crossing number of a

drawing. Hence, with the aim to provide further indications that the vertex-movement

approach is indeed a powerful graph drawing heuristic, we ask the following question:

Can the vertex-movement approach be successfully applied to compute geometric

drawings with a small local crossing number?

The �rst problem in Part II considers the previously stated problem of computing

crossing-minimal geometric drawing of a graph G + X from a restricted perspective.

In the setting in Chapter 8, we are given a topologically embedded graph G and a

single additional edge e , i.e., X = {e}. The problem asks for a geometric drawing Γ
that has the same combinatorial embedding and outer face asG and such that the edge

e can be embedded as straight-line segment in Γ with a minimum number of crossings.

We solved this problem for special cases. The general computational complexity of

the problem remains open, i.e., is the problem NP-complete or in P? Moreover, the

question whether a crossing-minimal topological drawing E + e of G + e , where the

drawing E of G is planar, has a geometric drawing Γ + e with the same number of

crossings, and E and Γ have the same combinatorial embedding, is closely related to

an edge-disjoint-path problem: Are there two non-crossing edge-disjoint st-paths p
and p ′ in a planar graph such that the length of p is minimized? For general graphs

this problem is NP-complete [Eil98]. For planar graphs we solved this problem if all

shortest paths from s to t have a speci�c structure. The computational complexity of

this problem for general planar graphs is an intriguing unsolved problem.

The paths p and p ′ together correspond to a pseudoline L with respect to a planar

graph G. In Chapter 10, we proved that every 1-aligned graph (G,L) has an aligned

drawing with the prescribed convex drawing of the outer face. A natural extension

of the geometric edge-insertion problem is to ask whether a planar graph G has a

geometric drawing such that two distinct edges e
1

and e
2

can be inserted into the

drawing with a minimal number of crossings. In Chapter 10 we showed that not every

2-aligned graph has an aligned drawing. Therefore, in case that e
1

and e
2

share an

endpoint, it is not su�cient to ask for a 2-aligned graph (G,XY) such that two rays

of XY have a minimal number of crossings. Thus, we ask for a characterization of

topologically embedded graphs G + {e
1
, e

2
} that are stretchable.

We introduced the alignment complexity of an aligned graph (G,A) as a concept

to describe the interplay of the edges of G with the pseudoline arrangement A. We

proved that every aligned graph (G,A) of alignment complexity (1, 0,⊥) has an aligned

drawing. If the number of pseudolines is restricted to two, then every aligned graph

of aligned complexity (1, 0, 0) has an aligned drawing. Whether this is true for general

aligned graphs of alignment complexity (1, 0, 0) is an open question. Answering this

would entirely settle the following question: Given an alignment complexity C , does
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every graph G of alignment complexity C have an aligned drawing? In case that not

every graph of alignment complexityC has an aligned drawing, it is certainly possible

that there are graphs of alignment complexity C that have an aligned drawing. Thus,

a natural question is to ask for the computational complexity of deciding whether

an aligned graph has an aligned drawing. Since the problem is closely related to the

stretchability of pseudoline arrangements, it would not be too surprising if the problem

turned out to beNP-hard. Therefore, it might be more promising to �x the alignment

complexity, i.e., given a �xed alignment complexity C , is there a polynomial-time

algorithm that decides whether an aligned graph of alignment complexity C has an

aligned drawing?
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