KIT | KIT-Bibliothek | Impressum | Datenschutz

Multiscale Simulation of Photoluminescence Quenching in Phosphorescent OLED Materials

Symalla, Franz; Heidrich, Shahriar 1; Friederich, Pascal ORCID iD icon 1; Strunk, Timo; Neumann, Tobias; Minami, Daiki; Jeong, Daun; Wenzel, Wolfgang 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Bimolecular exciton-quenching processes such as triplet–triplet annihilation (TTA) and triplet–polaron quenching play a central role in phosphorescent organic light-emitting diode (PhOLED) device performance and are, therefore, an essential component in computational models. However, the experiments necessary to determine microscopic parameters underlying such processes are complex and the interpretation of their results is not straightforward. Here, a multiscale simulation protocol to treat TTA is presented, in which microscopic parameters are computed with ab initio electronic structure methods. With this protocol, virtual photoluminescence experiments are performed on a prototypical PhOLED emission material consisting of 93 wt% of 4,4ʹ,4ʺ-tris(N-carbazolyl)triphenylamine and 7 wt% of the green phosphorescent dye fac-tris(2-phenylpyridine)iridium. A phenomenological TTA quenching rate of 8.5 × 10$^{-12}$ cm$^{3}$ s$^{-1}$, independent of illumination intensity, is obtained. This value is comparable to experimental results in the low-intensity limit but differs from experimental rates at higher intensities. This discrepancy is attributed to the difficulties in accounting for fast bimolecular quenching during exciton generation in the interpretation of experimental data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000117693
Veröffentlicht am 12.03.2020
Originalveröffentlichung
DOI: 10.1002/adts.201900222
Scopus
Zitationen: 17
Web of Science
Zitationen: 11
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2020
Sprache Englisch
Identifikator ISSN: 2513-0390, 2513-0390
KITopen-ID: 1000117693
HGF-Programm 43.21.04 (POF III, LK 01) Molecular Engineering
Erschienen in Advanced theory and simulations
Verlag Wiley-VCH Verlag
Band 3
Heft 4
Seiten Art. Nr.: 1900222
Vorab online veröffentlicht am 24.02.2020
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page