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Abstract Random forests frequently achieve state-of-the-art predictive perfor-
mance. However, the logic behind their predictions cannot be easily understood,
since they are the result of averaging often hundreds or thousands of, possi-
bly conflicting, individual predictions. Instead of presenting all the individual
predictions, an alternative is proposed, by which the predictions are explained
using association rules generated from itemsets representing paths in the trees
of the forest. An empirical investigation is presented, in which alternative ways
of generating the association rules are compared with respect to explainability,
as measured by the fraction of predictions for which there is no applicable rule
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and by the fraction of predictions for which there is at least one applicable
rule that conflicts with the forest prediction. For the considered datasets, it can
be seen that most predictions can be explained by the discovered association
rules, which have a high level of agreement with the underlying forest. The
results do not single out a clear winner of the considered alternatives in terms
of unexplained and disagreement rates, but show that they are associated with
substantial differences in computational cost.

1 Introduction

Random forests are frequently shown to achieve state-of-the-art predictive
performance (Caruana and Niculescu-Mizil, 2006; Delgado et al, 2014).
This performance, however, comes with a cost that is shared with many other
high-performing techniques; the logic behind their predictions cannot be easily
understood. For a random forest, this is a consequence of forming predictions
by averaging, often involving hundreds or thousands of possibly conflicting
predictions of individual trees in the forest. In this study, we will investigate
means of enabling the understanding the random forest predictions through
approaches that aggregate information from predictions of the individual trees.
In particular, we consider approaches that represent paths from roots to leaves
in the trees as itemsets, which enables the use of frequent itemset mining and
association rule discovery techniques to analyse the predictions. The idea of
representing forests as itemsets and generating association rules from them was
originally proposed in (Deng, 2019). However, in that study, the focus was
on providing descriptive summaries of forests and to generate interpretable
classifiers using the discovered rules. The idea of explaining predictions of the
original forest, which is the focus of this study, was not considered.

The main contributions of the study are:

• The idea of explaining random forest predictions with association rules
is proposed.

• Different approaches to generating association rules to explain predictions
are suggested.
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• An empirical investigation of the explainability of the rules generated by
the alternative approaches is presented, where novel performance metrics
are suggested and employed.

In the next section, we provide some pointers to, and briefly discuss, related
work. In Sect. 3, we describe how association rule mining is proposed to explain
random forest predictions, and present different approaches to generating the
rules. In Sect. 4, we present results from an empirical investigation comparing
the different approaches using two proposed metrics. Finally, in Sect. 5, we
discuss the findings and point out directions for future work.

2 Related work

2.1 Association rule mining

The problem of mining association rules was first described by Agrawal et al
(1993) for market basket transaction data. Given a database of transactions (or
more generally, sets of items, or itemsets), the problem is to find association
rules of the form - → . , where - and . are disjoint itemsets. Association rules
can be used to predict the occurrence of an item (or a set of items) based on the
occurrences of other items in the itemsets. The strength of an association rule is
measured in terms of its support, i.e., fraction of itemsets for which both - and
. are subsets, and confidence, i.e., fraction of the itemsets containing - that also
contain . (Tan et al, 2005). Association rule mining aims to discover all rules
in the database that satisfy some minimum levels of support and confidence. Liu
et al (1998) first proposed integrating association rule mining with classification,
by which first frequent class association rules (CARs), i.e., association rules with
a class label as the consequent (. ), are discovered using the Apriori algorithm
(Agrawal and Srikant, 1994), from which a subset of rules is selected and
ordered according to support. During classification, the first applicable rule in
the ordered set is chosen. In order to allow for handling large datasets, more
efficient approaches have been proposed, such as CMAR (Li et al, 2001) and
MCAR (Thabtah et al, 2005).
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2.2 Interpreting opaque models

Rule extraction was introduced for enabling understanding artificial neural
networks (ANNs), see Andrews et al (1995). When extracting rules from ANNs,
the original approach, called decompositional or open-box, was to generate rules
for individual units within a trained ANN, and then combine these into a rule
set. Two well-known open-box algorithms are RX (Lu et al, 1995) and Subset
(Fu, 1991). In pedagogical (or black-box) rule extraction, the ANN is used to
label the training instances, before some standard learning algorithm performs
the actual induction of a transparent model, e.g., a rule set, a decision tree or
a decision list. Two representative black-box algorithms are TREPAN (Craven
and Shavlik, 1996) and G-REX (Johansson et al, 1997). Since black-box rule
extraction algorithms can be applied to any opaque model, including ensembles,
most modern rule extractors use that approach, see Huysmans et al (2006).

The need for getting some insights into random forests was already addressed
in the original work by Breiman (2001), in which an approach to calculating
the variable importance was proposed, which measures the effect on predictive
performance when permuting the values for each variable. This approach has
been further developed, see e.g., (Strobl et al, 2008; Henelius et al, 2014). It
should be noted that these approaches highlight what features have the highest
impact, but do not explain how they affect the predictions.

The inTree (interpretable tree) framework proposed in (Deng, 2019) provides
an interpretable view of tree ensembles, such as random forests, by employing
association rule mining to itemsets generated from each path from a root to
a leaf in the forest, where each condition on the path and the prediction in
the leaf becomes an item in the itemset. In addition to suggesting that the
itemsets are summarized by association rules, with specified levels of support
and confidence, an approach to generating an interpretable classifier by selecting
a subset of the rules was presented. The latter can be seen as a form of rule
extraction, which however contrasts to previous approaches by the use of the
original dataset when generating the classifier, rather than a dataset labeled by
the opaque model. Hence, this approach aims for high accuracy rather than high
fidelity to the underlying forest.

Another approach, addressing a similar problem, was proposed by Friedman
et al (2008), by which sets of rules are extracted from the trees in a forest that
are used as features in a linear model, for which interpretability is enhanced
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by employing the Lasso. Again, the approach is hence not used for explain-
ing predictions of the original forest, but rather to provide an interpretable
approximation of it.

2.3 Explaining predictions

One of the more well-known approaches to explain predictions of opaque
models is LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro
et al, 2016). It employs a mapping from the original feature space into an
interpretable feature space, and explains a prediction in this space by creating
an interpretable model from instances that are sampled in the region around the
instance to be predicted, using the underlying opaquemodel to label the instances.
DALEX (Biecek, 2018) utilizes a similar approach to construct explanations for a
certain prediction, where the model is complemented with a wide variety of plots
to further enhance interpretability of the generated local model. In (Lundberg
and Lee, 2017), a unified framework for interpreting model predictions is
presented, capturing LIME as well as additional approaches. However, it should
be noted that the explanations provided by these approaches agree only locally
with the opaque model, i.e., in some specific region surrounding the test instance,
while the explanations provided by the approaches considered in this study are
not conditioned on any such (implicit) region, other than what is explicitly stated
in the discovered rules.

3 Methods

In this section, we first describe four approaches to generating itemsets from
random forests that are considered in this study. We then describe how the
itemsets are to be analysed using association rule mining. Finally, we describe
how the discovered rules are used to explain predictions of new test instances.
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3.1 Approaches to generating itemsets

All considered approaches for generating itemsets are based on the original
idea proposed in (Deng, 2019), by which each path from a root of a tree in a
forest to a leaf is represented by an itemset, where the items correspond to the
conditions, i.e., triples consisting of a feature (variable), operator and value,
encountered on the path, together with the prediction (class label) of the leaf
node. See Figure 1, for an example of a tree and the corresponding itemsets that
are generated from it.

Figure 1: Representing paths as itemsets.

In this study, we consider binary classification trees with categorical features
only with no missing values. Hence, numerical features have to be discretized
(binned), and, as a consequence, the operators of the conditions are limited to
equality (=) and inequality (≠). Moreover, following the recommendation by
Kliegr et al (2018) that “artificial learning systems should refrain, wherever
feasible, from the use of negation in the discovered rules that are to be presented
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to the user”, we have here chosen to eliminate conditions involving inequality
from the generated itemsets. In addition to increased interpretability, this
operation also leads to the consequence that the average size of the itemsets are
approximately halved, which has a positive effect on the computational cost
when finding rules. However, this may on the contrary have a negative effect on
the possibility of actually finding any rules with high confidence.
The four considered alternative approaches to generating itemsets are:

Alternative 1: One itemset per leaf. This approach is the same as used
in the inTree system (Deng, 2019), i.e., one itemset is generated for each leaf in
the forest. The resulting collection of itemsets is represented by a bag, i.e., there
may be duplicate itemsets in case the same path appears in multiple trees in the
forest. The size (B) of the bag of itemsets generated by this approach is B = C · ;,
where C is the number of trees in the forest and ; is the average number of leafs
in the trees. The average size of the itemsets is 0 = 3 + 1, where 3 is the average
length of the paths from the roots to the leafs in the forest (the itemsets contain
3 conditions on average plus one class label).
It should be noted that the itemsets generated by this approach do not reflect

the frequencies of training instances falling into the leafs of the trees. This
means that a particular subset of conditions that are shared by a relatively large
proportion of the training instances may be represented by fewer itemsets than
another subset of conditions, shared by fewer training instances, simply because
there are more paths including the latter subset. Taken to the extreme, a vast
majority of the training instances may be represented by a single itemset, while
a small minority of the training instances may be represented by a very large
number of itemsets. This means that support and confidence calculated from
itemsets generated by this approach are not directly connected to coverage, in
terms of training instances, and hence may reflect the underlying class probabil-
ity distribution poorly when explaining predictions using these rules.

Alternative 2: One itemset per tree prediction. The second approach aims
for remedying the potential weakness of not encoding frequencies by the first
approach, simply by making a prediction for each training instance, using the
random forest generated from the same set of instances. Again, each path from
a root in a tree to a leaf will correspond to an itemset. Since each leaf in the
forest will include at least one training instance, the set of itemsets considered
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by this approach will be the same as the set of itemsets generated by the first
approach. However, as we consider multi-sets (bags) of itemsets, there will be a
significant difference; a leaf will by the second approach be represented by the
same number of (identical) itemsets as the number of training instances that fall
into that leaf, hence encoding the frequencies by duplicating itemsets. It should
be noted that the second approach hence may lead to substantially larger bags,
which may incur a large additional computational cost during association rule
discovery. Only in the special case, where each leaf corresponds to exactly one
training instance will the bags be of the same size. This special case, however,
does not occur in practice, i.e., almost surely, as each tree is generated from a
bag of the training instances, leading to that the out-of-bag instances will fall
into already occupied leafs, when predictions are made for these. The size of
the bag of itemsets generated by this approach is hence B = C · =, where = is the
number of training instances. The average size of the itemsets is the same as for
the first approach, i.e., 0 = 3 + 1.

Alternative 3: One itemset per training instance. It should be noted that
the two first approaches only consider predictions made by the individual trees,
and in particular do not consider the forest predictions, i.e., the averaged vote of
the trees involved in a prediction. Since we are aiming for explaining predictions
of forests, rather than individual trees, a natural alternative to the above approach
is to consider the union of itemsets of the leafs involved in a prediction, but
where all class labels obtained from the individual leafs are replaced by the
single class label with the highest predicted probability according to the forest.
By this approach, there will be only one itemset per training instance, i.e., B = =.
The average size of the itemsets will however increase, and an upper bound of
this size is 0 ≤ C · 3 + 1. However, the average itemset size will typically be
smaller than the bound, since different paths may share conditions.

Alternative 4: One itemset per training instance, excluding disagreement.
Many forest predictions are formed from individual tree predictions where
possibly a substantial part of the trees are not in agreement with the majority
vote. This is the case in particular when dealing with multiclass problems, where
often only a minority is supporting the forest prediction. Including itemsets
corresponding to paths from such disagreeing predictions can be expected to
make the task of finding high-confidence association rules more difficult. The
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fourth, and final, proposed strategy is hence to modify the previous approach by
forming itemsets by taking the union of only the individual itemsets for which
the class label is the same as the forest prediction. Similarly to the previous
approach, there will be only one itemset per training instance, i.e., B = =, and
the bound of the average size of the itemsets will be the same, i.e., 0 ≤ C · 3 + 1.
However, the actual average is reduced compared to the previous, when there
is a low level of agreement and an overlap of conditions among the individual
trees.

3.2 Association rule mining and filtering

From the itemsets generated by the above approaches, association rules are
searched for with specified levels of confidence and support. The reason for
focusing on confidence rather than other notions of interestingness (Bayardo
and Agrawal, 1999; Geng and Hamilton, 2006) is that we want to find rules
that are in agreement with the forest predictions, rather than e.g., have a high lift
with respect to one of the class labels. The association rules are here restricted
to have a (single) class label in the consequent, and to have a set of conditions
(variable, operator and value triples) in the antecedents.

Similar to previous approaches for generating classifiers from association
rule minining, such as CBA (Liu et al, 1998), a filtering step is employed to
produce a small set of rules with as high confidence as possible. More precisely,
a rule is kept if there for some training instance is no other applicable rule with
higher confidence or with the same confidence and higher support.

3.3 Explaining predictions

The above approaches for generating itemsets can be directly applied also to
(test) instances that have not been included in the training set. For a single test
instance, the two first approaches will result in a set of itemsets, corresponding
to all paths from a root to a leaf into which the test instance falls. For the
third and fourth approach, only a single itemset will be generated, which is
obtained by merging the itemsets generated from the individual trees, but with
the individual class labels replaced by the predicted class label. In addition, the
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fourth approach includes only itemsets from trees that agree with the forest
prediction.
Each previously discovered association rule may then be applied to the test

instance, as represented by one or more itemsets. We say that a rule is applicable
with respect to a test instance, if and only if, the antecedents of the rule is a
subset of an itemset of the test instance. It can further be checked whether the
consequent of an applicable association rule agrees with the forest prediction
of an instance. If that is the case, we say that the rule can explain the forest
prediction. It should be noted that for some test instances there may be no
applicable rule, and such instances are referred to as unexplained. In the extreme
case, no association rules with specified levels of support and confidence can
be found, resulting in the fact that no predictions can be explained. Note also
that for some test instances, there may be multiple applicable rules. If more
than one rule have the same consequent as the forest prediction, they may be
considered as alternative explanations. Any applicable rule having a class label
in the consequent that differs from the forest prediction is considered to be
disagreeing.

Clearly, the levels of support and confidence, and the approach for generating
itemsets, may have an impact on the extent to which (test) predictions can be
explained as well as the level of (dis)agreement among applicable rules. In the
next section, we will empirically investigate these effects on some standard
datasets.

4 Empirical investigation

4.1 Experimental setup

Eight classification datasets from theUCIMachine Learning Repository (Dheeru
and Karra Taniskidou, 2017) were used in the experiment: Car evaluation, Ecoli,
Glass, Iris, Thyroid, Pima Indians diabetes, Tic-tac-toe endgame and Wine. The
number of classes ranges from two to seven, the number of attributes from 4
to 13 and the number of instances from 150 to 1728 instances. Real-valued
features were binned into 10 categories of equal size.

The following two performance metrics were used: i) fraction of test instances
for which there are no applicable rules (unexplained), and ii) fraction of
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test instances for which there is at least one applicable rule with a different
consequent (class label) than the forest prediction (disagreement). Each dataset
was randomly split into 50% training instances and 50% test instances and
random forests with 100 trees were generated from the training instances. The
reported results are averages of ten repetitions.
The same set of confidence values were considered for all four approaches;
{0.8, 0.9, 1.0}. However, as the number of itemsets produced by the approaches
differ (except for the third and fourth approach), feasible support values differ
between the approaches, e.g., using a support of less than 0.5% is not meaningful
for the two latter approaches as the rules would be allowed to cover single
training instances for some of the datasets, while this is still a too high value
to allow any rules to be found by the two first approaches, i.e., these would
leave all test instances unexplained. In order to obtain a wide spread in the
unexplained and disagreement rates for all approaches, the following support
values (in absolute numbers) were considered: {10, 15, 20} for alternative 1,
{25, 50, 75} for alternative 2, and {5, 10, 15} for alternative 3 and 4.
The random forest algorithm together with the above approaches to explain

predictions were implemented in Python 3.6.6, using the following libraries:
Pandas 0.23.4, Numpy 1.15.1, sharedmem 0.3.5 and mlxtend 0.13.0, and the
experiments were executed on a HP Zbook 15 with an Intel Xeon CPU E3-
1505M v5 (2.80GHz, 4 physical cores) and 32 GB PM, using Ubuntu 18.04. A
re-implementation of the random forest algorithm was preferred to the standard
Scikit-learn implementation (Pedregosa et al, 2011), to simplify handling
of categorical features and extraction of paths from predictions. Although
sharing some underlying ideas with the R package inTrees (https://CRAN.R-
project.org/package=inTrees), the two implementations are completely indepen-
dent. The source code is available upon request from the first author.

https://CRAN.R-project.org/package=inTrees
https://CRAN.R-project.org/package=inTrees
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4.2 Experimental results

4.2.1 Empirical findings

(a) Car. (b) Ecoli.

(c) Iris. (d) Thyroid.

(e) Tic-tac-toe. (f) Wine.

Figure 2: Unexplained and disagreement rates.
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(g) Glass. (h) Pima.

Figure 2: Unexplained and disagreement rates.

In Figure2, the unexplained and disagreement rates are shown for the three
alternative approaches, using the various parameter settings for support and
confidence, for the eight datasets. One can see that the investigated parameter
values allow for various trade-offs between the unexplained and disagreement
rates. There is no clear winner in the sense that one method dominates the others,
i.e., appears on the Pareto front on all datasets; although for some datasets the
third and fourth approach outperform the others for almost all parameter settings.
For disagreement rates of up to around 10%, less than 20% of the instances
are left without explanation for six of the datasets (for Ecoli, a slightly higher
unexplained rate is observed, while for Glass, it is substantially higher).

Table 1: Averages over all parameter settings and results.

Alt. Itemsets Itemset size Freq. itemsets Unfiltered Filtered Unexplained Disagreed Time
1 5559.57 3.49 1111.15 42.91 27.35 0.27 0.11 84.07
2 28412.50 3.10 970.85 66.88 39.62 0.22 0.18 220.62
3 284.13 8.48 2477.51 355.83 23.21 0.34 0.07 4.93
4 284.13 8.40 2475.03 356.99 23.12 0.34 0.05 4.99

The perhaps most noticeable difference between the approaches is the number
of itemsets that are generated and the associated computational cost to process
them. In Table 1, the average results over all parameter settings and datasets
are shown, where the first three columns, following the one indicating the
alternative, show the average number of itemsets, the average number of items
in the itemsets and the average number of frequent itemsets. The following two
columns (unfiltered and filtered) refer to the number of discovered association
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rules before and after filtering, respectively. The last column (Time) shows
the average total computation time in seconds, involving all model building
and rule generation steps as well as the application of rules to explain the
predictions. It should be noted that the reported times are affected by the actual
implementation and the (lack of) considered optimizations, so any comparison
based on the reported times should be made with some caution. However, as
the computational cost is directly related to the number of itemsets, and their
average sizes, the reported times can be seen as a confirmation of the cost
associated with these numbers.

4.2.2 Example rules

To illustrate the result of explaining random forest predictions with association
rules, we present some example rules, generated by alternative 4 with a minimum
support of five instances and confidence of 1.0, on two of the datasets, Tic-tac-toe
and Pima Indians Diabetes, for which a random half is used for training and the
other half for testing, similar to the above experiment.
Tic-tac-toe is a well known board game where each player in turn place

their symbols, either ’o’ or ’x’, on the board, i.e., a 3 x 3 grid, with the aim of
getting three symbols in a row, horizontally, vertically or diagonally. Table 2
shows the top rules for the two classes; ’win for x’ (positive) and ’no win for
x’ (negative). In addition to the antecedents and consequents, also the number
of training instances for which the corresponding rule is the first applicable is
shown (Count).

Table 2: Association rules for Tic-tac-toe.

Antecedents Consequent Count
top-left-sq. = x, middle-middle-sq. = x, bottom-right-sq. = x positive 50
top-right-sq. = x, bottom-left-sq. = x, middle-middle-sq. = x positive 45
top-right-sq. = x, top-left-sq. = x, top-middle-sq. = x positive 42
...
top-left-sq. = o, middle-middle-sq. = o, bottom-right-sq. = o negative 24
top-left-sq. = o, top-right-sq. = o, top-middle-sq. = o negative 23
top-middle-sq. = o, bottom-middle-sq. = o, middle-middle-sq. = o negative 21
...
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It should be noted that capturing the true target function using a single decision
treewould require hundreds of leaf nodes, due to the replication problem (Bagallo
and Haussler, 1990), i.e., the difficulty of expressing disjunctive concepts using
trees. In contrast, all instances of the positive class can be defined using only
eight association rules, which are easily discovered from itemsets generated
by any of the approaches considered in this study. Similarly, the eight cases
where three ’o’ appear in a row are also found. However, since the negative
class also contains instances where none of the symbols appear in a row,
providing a complete definition is challenging also when using association
rules. This is illustrated by some incorrect rules (predicting the negative class)
occasionally being "discovered" in addition to the 16 correct ones. For some
test instances, there are multiple applicable rules that all agree with the (correct)
forest predictions. It is also worth noting that in this domain, for which the
shortcomings of single decision trees is not completely remedied by using
forests, which here contain more than 9 000 leaf nodes, the discovered rules
occasionally (correctly) disagree with the forest prediction.

The second dataset used to illustrate the explanation facility is Pima Indians
Diabetes, which includes the following attributes: number of times pregnant,
plasma glucose concentration after 2 hours in an oral glucose tolerance test
(gtt), diastolic blood pressure (mm Hg) (dbp), triceps skin fold thickness (mm)
(skin-thick), 2-Hour serum insulin (mu U/ml) (2-hour-ins), body mass index
(bmi), diabetes pedigree function (dpf) and age. The instances are labeled ’no
diabetes’ and ’diabetes’. In Table 3, selected association rules are presented for
both classes. Note that the numerical features have been discretized and hence
the categorical feature values correspond to intervals.

Table 3: Association rules for Pima Indians Diabetes.

Antecedents Consequent Count
dbp = (61.0, 73.2], gtt = (159.2, 179.1] diabetes 8
gtt = (139.3, 159.2], 2-hour-ins = (-0.846, 84.6], dpf = (0.312, 0.546] diabetes 7
age = (39.0, 45.0], 2-hour-ins = (84.6, 169.2] diabetes 6
...
bmi = (20.13, 26.84], age = (20.94, 27.0] no diabetes 48
bmi = (20.13, 26.84], skin-thick = (9.9, 19.8] no diabetes 7
dpf = (0.0757, 0.312], gtt = (79.6, 99.5] no diabetes 23
...
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Examining the first association rule in Table 3, the first condition refers
to blood pressure, which here is in the normal range according to National
Heart Foundation of Australia (2016), while the second condition concerns the
outcome of a glucose tolerance test, see (Carrillo, 2013) for details, for which
the considered values are far above what is typically considered normal (less
than 140 mg/dL). Hence, the first rule seems to provide a relevant indication of
diabetes. The second association rule also utilizes the second attribute, again
with values that are higher than what is considered to be normal. Also the
second and third conditions of this rule are consistent with known indications of
diabetes, see (Saxena P, 2011) and (Smith et al, 1988), respectively. The first
condition of the third association rule, stating that the age is between 39 and 45 is
almost inline with the known risk factor of being 45 years of age or older (United
States Department of Health and Human Services (HHS), 2016), while the
second condition again is indicative of diabetes. The remaining three rules define
subgroups of the population with low risk of diabetes, again consistent with
known risk factors (United States Department of Health and Human Services
(HHS), 2016). Again, this example shows that the predictions of a practically
opaque random forest, containing more than 10 000 leaf nodes, can be explained
using a set of fairly easily interpretable rules, providing the user the possibility
to reason about a prediction, possibly question or confirm it, and in the best
case, also to gain novel insights.

5 Concluding remarks

We have investigated the use of association rule mining to explain random forest
predictions. Four different approaches to representing the predictions using
itemsets have been proposed and results from an empirical investigation have
been presented, measuring the extent to which test instances can be explained by
the discovered rules. The performance of the four approaches differs in terms of
the unexplained and disagreement rates, but not consistently over the considered
datasets. However, there is a substantial difference in computational cost, where
the approaches representing each instance with a single itemset, i.e., alternative
3 and 4, are one to two orders of magnitude faster than the other approaches.
There are a number of possible directions for future work. One concerns

the generation of itemsets without requiring the random forest to be trained
on discretized numerical features, as discretization may have a negative effect
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on predictive performance and therefore normally should be avoided. How to
effectively handle missing values is another open question. Another direction
for future work is to investigate additional ways of representing the itemsets,
in particular more refined ways of combining itemsets obtained from multiple
trees, rather than simply merging them. Approaches that aim for optimizing
the performance metric of interest, e.g., some specific trade-off between the
unexplained and disagreement rates, can also be expected to further enhance
performance. More extensive empirical investigations are needed, including
assessment of the discovered rules by end-users in different domains, in order
to verify that the provided explanations indeed are useful, but also to gather
additional requirements on systems for explaining opaque models. Finally, left
for future research is also how to extend the investigated approaches to explain
predictions for other types of forest, such as regression forests (Breiman, 2001),
forests of probability estimation trees (Boström, 2012), forests of survival
trees (Hothorn et al, 2004; Ishwaran et al, 2008), quantile regression forests
(Meinshausen, 2006) and generalized random forests (Athey et al, 2019). In
contrast to forests of classification trees, the contribution of each path is not
bounded by a finite set of labels for these other types of forest, and hence
alternative approaches are required to explain their predictions.
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