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Abstract

We consider an inverse obstacle scattering problem for the Helmholtz equation with obstacles
that carry mixed Dirichlet and Neumann boundary conditions. We discuss far field operators
that map superpositions of plane wave incident fields to far field patterns of scattered waves, and
we derive monotonicity relations for the eigenvalues of suitable modifications of these operators.
These monotonicity relations are then used to establish a novel characterization of the support of
mixed obstacles in terms of the corresponding far field operators. We apply this characterization
in reconstruction schemes for shape detection and object classification, and we present numerical
results to illustrate our theoretical findings.
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1 Introduction

We discuss an inverse obstacle scattering problem for time-harmonic scalar waves governed by the
Helmholtz equation. The goal is to recover the position and the shape of a collection of compactly
supported scattering objects from far field observations of scattered waves. We consider impene-
trable obstacles with mixed Dirichlet and Neumann boundary conditions, i.e., we assume that the
scatterers D = D1 ∪ D2 consist of two components such that D1 ∩ D2 = ∅, where ∂D1 carries
a Dirichlet boundary condition while ∂D2 carries a Neumann boundary condition. The Dirichlet
part D1 and the Neumann part D2 of the scattering objects might consist of several connected
components, and we do neither assume that the number of connected components nor whether they
carry Dirichlet or Neumann boundary conditions are known a priori. Accordingly, qualitative recon-
struction schemes (see, e.g., [3, 6, 9, 8, 30, 31, 35]), which do not make use of topological or physical
properties of the scattering objects, are a natural choice. In addition to shape reconstruction, we
will also show that the type of boundary condition on each connected component of the obstacle
can be classified from scattering data, i.e., we show that the Dirichlet part D1 and the Neumann
part D2 can be recovered separately.

Among qualitative methods for shape reconstruction, the linear sampling method has been suc-
cessfully applied to inverse mixed obstacle scattering problems (see, e.g., [3, 4, 5]). The factorization
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method has been justified under the additional assumption that the Dirichlet part D1 and the Neu-
mann part D2 of the scattering object can be separated a priori (see [18, 19, 31]). We build on and
extend ideas from these works to develop a monotonicity based qualitative shape reconstruction
technique. This monotonicity method is formulated in terms of far field operators that map su-
perpositions of incident plane waves, which are being scattered at the unknown scattering objects,
to the far field patterns of the corresponding scattered waves. It exploits monotonicity properties
of the eigenvalues of suitable modifications of these operators. The main result of this work is a
rigorous characterization of the support of mixed scattering obstacles in terms of the corresponding
far field operators without any additional a priori information. This is a significant extension of the
results in [18, 19, 31].

The monotonicity based approach to shape reconstruction has originally been developed for
the inverse conductivity problem in [14, 26], extending an earlier monotonicity based reconstruction
scheme developed in [37]. The method is related to monotonicity principles for the Laplace equation
established in [28, 29]. It has been further developed in [22, 23, 27], its numerical implementation
has been studied in [11, 12, 13], and recently an extension to impenetrable conductivity inclusions
has been established in [7].

The analysis in [26] has been extended to inverse coefficient problems for the Helmholtz equation
on bounded domains in [24, 25], and in [16] the approach has been generalized to the inverse medium
scattering problem on unbounded domains with plane wave incident fields and far field observations
of scattered waves. An application of the monotonicity method to an inverse crack detection problem
for the Helmholtz equation has recently been considered in [10]. For further recent contributions
on monotonicity based reconstruction methods for various inverse problems for partial differential
equations we refer to [1, 2, 20, 21, 32, 36, 38].

The main idea of the monotonicity method for inverse mixed obstacle scattering that we discuss
in this work, is to compare the real part of the given (or observed) far field operator corresponding to
the unknown scattering obstacles to various virtual (or simulated) probing operators corresponding
to certain probing domains. We show that suitable linear combinations of these operators are
positive definite up to a finite dimensional subspace if and only if the probing domains are contained
inside the support of the scattering objects or if and only if the probing domains contain the unknown
scattering object. This can be translated into criteria and algorithms for shape reconstruction.

This article is organized as follows. In Section 2 we briefly recall the mathematical formulation
of the mixed obstacle scattering problem, and in Section 3 we discuss a factorization of the corre-
sponding far field operator from [18, 19, 31]. In Section 4 we establish the existence of localized wave
functions for the mixed obstacle scattering problem, and in Section 5 we use these localized wave
functions to prove a rigorous characterization of the support of scattering obstacles in terms of the
far field operator. We discuss numerical algorithms based on these theoretical results in Section 6,
and we close with some concluding remarks.

2 Scattering by impenetrable obstacles

We consider the scattering of time-harmonic scalar waves in an unbounded homogeneous background
medium by a collection of impenetrable obstacles carrying Dirichlet and Neumann boundary con-
ditions. Suppose that D = D1 ∪D2 ⊆ R

d, d = 2, 3, is open and Lipschitz bounded with connected
complement R

d \D such that D1 ∩D2 = ∅. The subsets D1 and D2 may consist of finitely many
connected components. Below we will impose Dirichlet boundary conditions on D1 and Neumann
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boundary conditions onD2, and thus we refer to D1 and D2 as the Dirichlet and Neumann obstacles,
respectively.

We assume that the wave motion is caused by an incident field ui ∈ H1
loc(R

d) satisfying the
Helmholtz equation

∆ui + k2ui = 0 in R
d (2.1)

with wave number k > 0 that is being scattered at the obstacle D. The scattered field us ∈ H1
loc(R

d)
satisfies

∆us + k2us = 0 in R
d \D (2.2a)

and the boundary conditions

us = −ui on ∂D1 and
∂us

∂ν
= −∂u

i

∂ν
on ∂D2 (2.2b)

together with the Sommerfeld radiation condition

lim
r→∞

r
d−1

2

(∂us
∂r

(x)− ikus(x)
)

= 0 , r = |x| , (2.2c)

uniformly with respect to all directions x̂ := x/|x| ∈ Sd−1. Throughout, the Helmholtz equation
is to be understood in weak sense, but standard interior regularity results yield smoothness of us

in R
d \D. In particular the Sommerfeld radiation condition (2.2c) is well defined. As usual, we call

a (weak) solution to a Helmholtz equation on an unbounded domain that satisfies the Sommerfeld
radiation condition uniformly with respect to all directions a radiating solution.

Lemma 2.1. Let f ∈ H
1

2 (∂D1) and g ∈ H− 1

2 (∂D2). Then the exterior mixed boundary value
problem

∆w + k2w = 0 in R
d \ (D1 ∪D2) , (2.3a)

w = f on ∂D1 , (2.3b)

∂w

∂ν
= g on ∂D2 , (2.3c)

has a unique radiating solution w ∈ H1
loc(R

d).
Furthermore, the solution has the asymptotic behavior

w(x) = Cd
eik|x|

|x| d−1

2

w∞(x̂) +O(|x|− d+1

2 ) , |x| → ∞ ,

uniformly in all directions x̂ ∈ Sd−1, where

Cd = eiπ/4/
√
8πk if d = 2 and Cd = 1/(4π) if d = 3 , (2.4)

and w∞ ∈ L2(Sd−1) is called the far field pattern of w.

Proof. The unique solvability follows, e.g., immediately from [31, Thm. 3.1] (see also [33, p. 288]),
and the far field asymptotics are, e.g., shown in [9, Thm. 2.6].
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Choosing f = −ui|∂D1
and g = −∂ui/∂ν|∂D2

in Lemma 2.1 proves the existence and unique-
ness of solutions to the scattering problem (2.2). For the special case of a plane wave incident
field ui(x; θ) := eikx·θ, x ∈ R

d, we explicitly indicate the dependence on the incident direc-
tion θ ∈ Sd−1 by a second argument, and accordingly we write us( · ; θ), and u∞( · ; θ) for the
corresponding scattered field and its far field pattern, respectively.

We define the far field operator

Fmix
D : L2(Sd−1) → L2(Sd−1) , (Fmix

D g)(x̂) :=

∫

Sd−1

u∞(x̂; θ)g(θ) ds(θ) , (2.5)

and we note that Fmix
D is compact and normal (see, e.g., [31, Thm. 3.3]). Moreover, the scattering

operator is defined by

Smix
D : L2(Sd−1) → L2(Sd−1) , Smix

D g := (I + 2ik|Cd|2Fmix
D )g ,

where Cd is again the constant from (2.4). The operator Smix
D is unitary, and consequently the

eigenvalues of Fmix
D lie on the circle of radius 1/(2k|Cd|2) centered in i/(2k|Cd|2) in the complex

plane (cf., e.g., [31, Thm. 3.3]).

Remark 2.2. In the special case when D2 = ∅, i.e., when only Dirichlet obstacles are present, (2.3)
reduces to the exterior Dirichlet boundary value problem, and we denote the corresponding far field
operator by F dir

D1
. Similarly, if D1 = ∅, i.e., when only Neumann obstacles are present, then (2.3)

reduces to the exterior Neumann boundary value problem, and we denote the corresponding far field
operator by F neu

D2
. ♦

3 Factorizations of the far field operator

Next we briefly recall three factorizations of the far field operators Fmix
D , F dir

D1
, and F neu

D2
, which

have been used in the traditional factorization method, and that will be applied to develop the
monotonicity based shape characterization in Section 5 below. As usual, the single layer operator
is defined by

SD1
: H− 1

2 (∂D1) → H
1

2 (∂D1) , (SD1
ϕ)(x) :=

∫

∂D1

Φk(x, y)ϕ(y) ds(y) , (3.1)

and the normal derivative of the double layer potential is given by

ND2
: H

1

2 (∂D2) → H− 1

2 (∂D2) , (ND2
ψ)(x) :=

∂

∂ν

∫

∂D2

∂Φk

∂ν(y)
(x, y)ψ(y) ds(y) . (3.2)

Here, Φk denotes the fundamental solution to the Helmholtz equation in R
d.

Remark 3.1. Throughout we denote by 〈·, ·〉 the sesquilinear dual pairing between H− 1

2 (∂Dj) and

H
1

2 (∂Dj), j = 1, 2, which extends the inner product on L2(∂Dj). ♦

3.1 Dirichlet or Neumann obstacles

The first result describes the factorization of the far field operator for Dirichlet obstacles.
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Theorem 3.2. (a) The far field operator F dir
D1

: L2(Sd−1) → L2(Sd−1) can be decomposed as

F dir
D1

= −Gdir
D1
S∗
D1
Gdir

D1

∗
, (3.3)

where Gdir
D1

: H
1

2 (∂D1) → L2(Sd−1) maps f ∈ H
1

2 (∂D1) to the far field pattern w∞ of the
unique radiating solution to the exterior Dirichlet boundary value problem (2.3a) and (2.3b).

(b) Gdir
D1

is compact and one-to-one with dense range in L2(Sd−1).

(c) If k2 is not a Dirichlet eigenvalue of −∆ in D1, then SD1
is an isomorphism.

(d) Let SD1,i be the single layer operator (3.1) corresponding to the wave number k = i. Then SD1,i

is self-adjoint and coercive, i.e., there exists c1 > 0 such that

〈ϕ, SD1,iϕ〉 ≥ c1‖ϕ‖2
H−

1
2 (∂D1)

for all ϕ ∈ H− 1

2 (∂D1) .

(e) The difference SD1
− SD1,i is compact.

Proof. This is shown in [31, Lmms. 1.13–1.14 and Thm. 1.15].

Remark 3.3. An immediate consequence of Theorem 3.2 is that the real part1

−Re(F dir
D1

) =
1

2
Gdir

D1
(SD1

+ S∗
D1

)Gdir
D1

∗

is a compact perturbation of a self-adjoint and coercive operator. This implies that Re(F dir
D1

) has
only finitely many positive eigenvalues. In Theorem 5.3 below we will significantly refine and extend
this observation. ♦

Next we consider the factorization of the far field operator for Neumann obstacles.

Theorem 3.4. (a) The far field operator F neu
D2

: L2(Sd−1) → L2(Sd−1) can be decomposed as

F neu
D2

= −Gneu
D2
N∗

D2
Gneu

D2

∗ ,

where Gneu
D2

: H− 1

2 (∂D2) → L2(Sd−1) maps g ∈ H− 1

2 (∂D2) to the far field pattern w∞ of the
unique radiating solution to the exterior Neumann boundary value problem (2.3a) and (2.3c).

(b) Gneu
D2

is compact and one-to-one with dense range in L2(Sd−1).

(c) If k2 is not a Neumann eigenvalue of −∆ in D2, then ND2
is an isomorphism.

(d) Let ND2,i be the normal derivative of the double layer potential (3.2) corresponding to the wave
number k = i. Then −ND2,i is self-adjoint and coercive, i.e., there exists c2 > 0 such that

−〈ND2,iψ,ψ〉 ≥ c2‖ψ‖2
H

1
2 (∂D2)

for all ψ ∈ H 1

2 (∂D2) .

(e) The difference ND2
−ND2,i is compact.

1As usual the real part of a linear operator A : X → X on a Hilbert space X is the self-adjoint operator given by
Re(A) := 1

2
(A+A

∗).
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Proof. This is shown in [31, Thm. 1.26].

Remark 3.5. An immediate consequence of Theorem 3.4 is that the real part

Re(F neu
D2

) = −1

2
Gneu

D2
(ND2

+N∗
D2

)Gneu
D2

∗

is a compact perturbation of a self-adjoint and coercive operator. This implies that Re(F neu
D2

) has
only finitely many negative eigenvalues. In Theorem 5.4 below we will significantly refine and extend
this observation. ♦

3.2 Mixed obstacles

In the mixed case the obstacle D = D1 ∪ D2 consists of two bounded components and carries
Dirichlet boundary conditions on ∂D1 and Neumann boundary conditions on ∂D2.

Theorem 3.6. (a) The far field operator Fmix
D : L2(Sd−1) → L2(Sd−1) can be decomposed as

Fmix
D = −Gmix

D Tmix
D

∗
Gmix

D
∗
,

where Gmix
D : H

1

2 (∂D1) × H− 1

2 (∂D2) → L2(Sd−1) maps (f, g) ∈ H
1

2 (∂D1) × H− 1

2 (∂D2) to
the far field pattern w∞ of the unique radiating solution to the exterior mixed boundary value
problem (2.3a)–(2.3c). The operator Tmix

D : H− 1

2 (∂D1) ×H
1

2 (∂D2) → H
1

2 (∂D1) ×H− 1

2 (∂D2)
is of the form

Tmix
D =

([
SD1

0
0 ND2

]
+Kmix

D

)
,

and Kmix
D : H− 1

2 (∂D1)×H
1

2 (∂D2) → H
1

2 (∂D1)×H− 1

2 (∂D2) is compact.

(b) Gmix
D is compact and one-to-one with dense range in L2(Sd−1).

Proof. This is shown in [31, Thms. 3.2 and 3.4].

Finally, let B ⊆ R
d be open and Lipschitz bounded. We define the Herglotz operators

HB : L2(Sd−1) → H
1

2 (∂B) , (HBφ)(x) :=

∫

Sd−1

eikx·θφ(θ) ds(θ) , (3.4)

and

∂HB : L2(Sd−1) → H− 1

2 (∂B) , (∂HBφ)(x) :=
∂

∂ν(x)

∫

Sd−1

eikx·θφ(θ) ds(θ) .

From the asymptotic behavior of the fundamental solution Φk we obtain that H∗
Bφ, φ ∈ H− 1

2 (∂B),
is just the far field pattern of the single layer potential

(SLBφ)(x) :=

∫

∂B
Φk(x, y)φ(y) ds(y) , x ∈ R

d \ ∂B .

We will use the relation

H∗
B = Gdir

B SB or equivalently HB = S∗
BG

dir
B

∗
(3.5)

(see [31, p. 18]).
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4 Localized wave functions

In this section we establish the existence of localized wave functions. These are pairs of certain wave
functions such that one component has arbitrarily large norm on some prescribed boundary while
the other component has arbitrarily small norm on some different boundary. These localized wave
functions will be essential in the proof of the monotonicity based shape characterization in Section 5
below.

4.1 Dirichlet or Neumann obstacles

To start with, we consider the case when either only Dirichlet or Neumann obstacles are present.
Let B ⊆ R

d be open and Lipschitz bounded, and let Γ ⊆ ∂B be relatively open. We define the
restriction operator

RΓ : H
1

2 (∂B) → H
1

2 (Γ) , RΓf := f |Γ ,
and we note that the adjoint operator satisfies

R∗
Γ : H̃− 1

2 (Γ) → H− 1

2 (∂B) , R∗
Γf =

{
f on Γ ,

0 on ∂B \ Γ .

Here, H̃− 1

2 (Γ) denotes the dual space of H
1

2 (Γ) (see, e.g., [33, p. 99]). Accordingly, we introduce

HΓ := RΓHB and note that H∗
Γ = H∗

BR
∗
Γ = Gdir

B SBR
∗
Γ . (4.1)

Since (4.1) remains true if we modify ∂B away from Γ, we can w.l.o.g. assume that k2 is not a
Dirichlet eigenvalue of −∆ in B. Then SB and Gdir

B are injective (cf. Theorem 3.2 (b)–(c)), and
since R(R∗

Γ) has infinite dimensional range, this shows that R(H∗
Γ) is infinite dimensional as well.

Theorem 4.1 (Localized wave functions for Dirichlet obstacles). Let D2 = ∅, and let B,D1 ⊆ R
d

be open and Lipschitz bounded such that Rd \D1 is connected. Suppose that B 6⊆ D1. Then, for any
finite dimensional subspace V ⊆ L2(Sd−1) there exists a sequence (ψm)m∈N ⊆ V ⊥ such that

‖HBψm‖
H

1
2 (∂B)

→ ∞ and ‖Gdir
D1

∗
ψm‖

H−
1
2 (∂D1)

→ 0 as m→ ∞ .

The proof of Theorem 4.1 relies on the following lemmas.

Lemma 4.2. Let D2 = ∅, and let B,D1 ⊆ R
d be open and Lipschitz bounded. Suppose that B 6⊆ D1,

and let Γ ⊆ ∂B \D1 be relatively open such that Rd \ (Γ ∪D1) is connected. Then

R(H∗
Γ) ∩R(Gdir

D1
) = {0} .

Proof. Let h ∈ R(H∗
Γ) ∩R(Gdir

D1
). Then there exist fΓ ∈ H̃− 1

2 (Γ) and f1 ∈ H
1

2 (∂D1) such that

h = H∗
ΓfΓ = Gdir

D1
f1 .

Accordingly,
h = v∞Γ = w∞

1 ,
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where vΓ = SLBR
∗
ΓfΓ ∈ H1

loc(R
d \ Γ) and w1 ∈ H1

loc(R
d \D1) are radiating solutions to

∆vΓ + k2vΓ = 0 in R
d \ Γ and ∆w1 + k2w1 = 0 in R

d \D1 ,

respectively. Rellich’s lemma (cf., e.g., [9, Thm. 2.14]) and unique continuation guarantee that
vΓ = w1 in R

d \ (Γ ∪D1). We define w ∈ H1
loc(R

d) by

w :=





vΓ = w1 in R
d \ (Γ ∪D1) ,

w1 on Γ ,

vΓ in D1 .

Then w is an entire radiating solution to the Helmholtz equation, and thus w = 0 in R
d. This

shows that h = w∞
1 = 0.

In the next lemma we quote a special case of Lemma 2.5 in [14].

Lemma 4.3. Let X,Y and Z be Hilbert spaces, and let A : X → Y and B : X → Z be bounded
linear operators. Then,

∃C > 0 : ‖Ax‖ ≤ C‖Bx‖ ∀x ∈ X if and only if R(A∗) ⊆ R(B∗) .

Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. Let D2 = ∅, and let B,D1 ⊆ R
d be open and Lipschitz bounded such that

R
d\D1 is connected, and suppose that B 6⊆ D1. Let V ⊆ L2(Sd−1) be a finite dimensional subspace.

We denote by PV : L2(Sd−1) → L2(Sd−1) the orthogonal projection onto V .
Since B 6⊆ D1, there exists Γ ⊆ ∂B \D1 relatively open such that R

d \ (Γ ∪D1) is connected.
Applying Lemma 4.2 we find that

R(H∗
Γ) ∩R(Gdir

D1
) = {0} ,

and we have seen before that R(H∗
Γ) is infinite dimensional. Using a simple dimensionality argument

(see [25, Lmm. 4.7]) it follows that

R(H∗
Γ) 6⊆ R(Gdir

D1
) + V = R(

[
Gdir

D1
PV

]
) .

Accordingly, Lemma 4.3 implies that there is no constant C > 0 such that

‖HΓψ‖2
H

1
2 (Γ)

≤ C2

∥∥∥∥
[
Gdir

D1

∗

PV

]
ψ

∥∥∥∥
2

H−
1
2 (∂D1)×L2(Sd−1)

= C2
(
‖Gdir

D1

∗
ψ‖2

H−
1
2 (∂D1)

+ ‖PV ψ‖2L2(Sd−1)

)
.

Thus, there exists a sequence (ψ̃m)m∈N ⊆ L2(Sd−1) satisfying

‖HΓψ̃m‖2
H

1
2 (Γ)

→ ∞ and ‖Gdir
D1

∗
ψ̃m‖2

H−
1
2 (∂D1)

+ ‖PV ψ̃m‖2L2(Sd−1) → 0

8



as m→ ∞. We define ψm := ψ̃m − PV ψ̃m ⊆ V ⊥ for any m ∈ N to obtain

‖HΓψm‖
H

1
2 (Γ)

≥ ‖HΓψ̃m‖
H

1
2 (Γ)

− ‖HΓ‖‖PV ψ̃m‖L2(Sd−1) → ∞ ,

‖Gdir
D1

∗
ψm‖

H−
1
2 (∂D1)

≤ ‖Gdir
D1

∗
ψ̃m‖

H−
1
2 (∂D1)

+ ‖Gdir
D1

∗‖‖PV ψ̃m‖L2(Sd−1) → 0

as m→ ∞. Recalling (4.1) we find that

‖RΓ‖‖HBψm‖
H

1
2 (∂B)

≥ ‖HΓψm‖
H

1
2 (Γ)

,

which ends the proof.

Using similar arguments the following result for Neumann obstacles can be shown.

Theorem 4.4 (Localized wave functions for Neumann obstacles). Let D1 = ∅, and let B,D2 ⊆ R
d

be open and Lipschitz bounded such that Rd \D2 is connected. Suppose that B 6⊆ D2. Then, for any
finite dimensional subspace V ⊆ L2(Sd−1) there exists a sequence (ψm)m∈N ⊆ V ⊥ such that

‖HBψm‖
H

1
2 (∂B)

→ ∞ and ‖Gneu
D2

∗ψm‖
H

1
2 (∂D2)

→ 0 as m→ ∞ .

4.2 Mixed obstacles

For the general mixed case, i.e., when both Dirichlet and Neumann obstacles are present, we require
a refined version of the Theorems 4.1 and 4.4, which we call simultaneously localized wave functions
(see also [21], where a similar construction has been used).

To begin with, we define additional restriction operators. Let

RD1
: H− 1

2 (∂D1)×H
1

2 (∂D2) → H− 1

2 (∂D1) , RD1
(f, g) := f , (4.2a)

RD2
: H− 1

2 (∂D1)×H
1

2 (∂D2) → H
1

2 (∂D2) , RD2
(f, g) := g . (4.2b)

Then the adjoint operators satisfy

R∗
D1

: H
1

2 (∂D1) → H
1

2 (∂D1)×H− 1

2 (∂D2) , R∗
D1
f = (f, 0) ,

R∗
D2

: H− 1

2 (∂D2) → H
1

2 (∂D1)×H− 1

2 (∂D2) , R∗
D2
g = (0, g) .

Furthermore, given an open and Lipschitz bounded D1 ⊆ R
d and Γ ⊆ ∂D1 relatively open we define

R̃Γ : H− 1

2 (∂D1) → H− 1

2 (Γ) , R̃Γf := f |Γ .

We note that the adjoint operator satisfies

R̃Γ
∗
: H̃

1

2 (Γ) → H
1

2 (∂D1) , R̃Γ
∗
f =

{
f on Γ ,

0 on ∂D1 \ Γ .

Here, H̃
1

2 (Γ) denotes the dual space of H− 1

2 (Γ) (see, e.g., [33, p. 99]).
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Theorem 4.5. Let B,D1,D2 ⊆ R
d be open and Lipschitz bounded such that R

d \ (B ∪D1 ∪D2)
is connected. Suppose that ∂D1 is piecewise C1 smooth and that D1 6⊆ B. Then, for any finite
dimensional subspace V ⊆ L2(Sd−1) there exists a sequence (ψm)m∈N ⊆ V ⊥ such that

‖(RD1
Gmix

D
∗
)ψm‖

H−
1
2 (∂D1)

→ ∞ and ‖(RD2
Gmix

D
∗
)ψm‖

H
1
2 (∂D2)

+ ‖HBψm‖
H

1
2 (∂B)

→ 0

as m→ ∞.

The proof of Theorem 4.5 relies on the following lemma.

Lemma 4.6. Let B,D1,D2 ⊆ R
d be open and Lipschitz bounded. Suppose that D1 6⊆ B and

R
d \ (B ∪D1 ∪D2) is connected. Let Γ ⊆ ∂D1 \B be relatively open and C1 smooth. Then

R(Gmix
D R∗

D1
R̃Γ

∗
) 6⊆ R

([
Gmix

D R∗
D2

H∗
B

])

and there exists an infinite dimensional subspace Z ⊆ R(Gmix
D R∗

D1
R̃Γ

∗
) such that

Z ∩R
([
Gmix

D R∗
D2

H∗
B

])
= {0} .

Proof. Let h ∈ R(Gmix
D R∗

D1
R̃Γ

∗
)∩R([Gmix

D R∗
D2

H∗
B]). Then there are fΓ ∈ H̃

1

2 (Γ), f2 ∈ H− 1

2 (∂D2)

and fB ∈ H− 1

2 (∂B) such that

h = (Gmix
D R∗

D1
R̃Γ

∗
)fΓ = (Gmix

D R∗
D2

)f2 +H∗
BfB .

Accordingly,
h = w∞

1 = w∞
2 + v∞B ,

where w1, w2 ∈ H1
loc(R

d \ (D1 ∪D2)) and vB = SLBfB ∈ H1
loc(R

d \ ∂B) are radiating solutions to

∆w1 + k2w1 = 0 in R
d \ (D1 ∪D2) , w1 = R̃Γ

∗
fΓ on ∂D1 ,

∂w1

∂ν
= 0 on ∂D2 ,

∆w2 + k2w2 = 0 in R
d \ (D1 ∪D2) , w2 = 0 on ∂D1 ,

∂w2

∂ν
= f2 on ∂D2 ,

∆vB + k2vB = 0 in R
d \ ∂B .

Rellich’s lemma and unique continuation guarantee that w1 = w2 + vB in R
d \ (B ∪D1 ∪D2).

Therefore,
fΓ = w1|Γ = vB |Γ = (SLBfB)|Γ .

Since Γ is C1 smooth,2 this and the smoothness of SLBfB away from ∂B imply that fΓ ∈ C1(Γ).
Without loss of generality we assume that

Γ = {x ∈ R
d | xd = ζ(x′) for all x′ = (x1, . . . , xd−1) ∈ B′

r(0)}

for some C1 function ζ : Rd−1 → R, where B′
r(0) ⊆ R

d−1 denotes the d − 1 dimensional ball of

radius r > 0 around zero. We call u ∈ H
1

2 (Γ) piecewise linear on Γ, if the function uζ given by

uζ(x
′) := u(x′, ζ(x′)) , x′ ∈ B′

r(0) ,

2This is the only argument where we utilize the additional smoothness of Γ ⊆ ∂D1.
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is piecewise linear on B′
r(0) ⊆ R

d−1. Denoting by X ⊆ H
1

2 (Γ) the subspace of piecewise linear

continuous functions on Γ that vanish on ∂Γ,3 we obtain that Z := Gmix
D R∗

D1
R̃Γ

∗
(X) satisfies

Z ∩R
([
Gmix

D R∗
D2

H∗
B

])
= {0} .

Since X is infinite dimensional and Gmix
D R∗

D1
R̃Γ

∗
is one-to-one (see Theorem 3.6 (b)), we find

that Z is infinite dimensional as well.

Now we give the proof of Theorem 4.5.

Proof of Theorem 4.5. Let B,D1,D2 ⊆ R
d be open and Lipschitz bounded such that the comple-

ment Rd \(B ∪D1 ∪D2) is connected. Suppose that ∂D1 is piecewise C1 smooth and that D1 6⊆ B.
Let V ⊆ L2(Sd−1) be a finite dimensional subspace. We denote by PV : L2(Sd−1) → L2(Sd−1) the
orthogonal projection onto V .

Since D1 6⊆ B and ∂D1 is piecewise C1 smooth, there exists Γ ⊆ ∂D1 \ B relatively open
such that Γ is C1 smooth. Combining Lemma 4.6 with a simple dimensionality argument (see [25,
Lmm. 4.7]) we find that

Z 6⊆ R([Gmix
D R∗

D2
H∗

B]) + V = R([Gmix
D R∗

D2
H∗

B PV ]) .

where Z ⊆ R(Gmix
D R∗

D1
R̃Γ

∗
) denotes the subspace in Lemma 4.6, and thus

R(Gmix
D R∗

D1
R̃Γ

∗
) 6⊆ R([Gmix

D R∗
D2

H∗
B]) + V = R([Gmix

D R∗
D2

H∗
B PV ]) .

Accordingly, Lemma 4.3 implies that there is no constant C > 0 such that

‖(R̃ΓRD1
Gmix

D
∗
)ψ‖2

H−
1
2 (Γ)

≤ C2

∥∥∥∥



RD2

Gmix
D

∗

HB

PV


ψ

∥∥∥∥
2

H
1
2 (∂D2)×H

1
2 (∂B)×L2(Sd−1)

= C2
(
‖(RD2

Gmix
D

∗
)ψ‖2

H
1
2 (∂D2)

+ ‖HBψ‖2
H

1
2 (∂B)

+ ‖PV ψ‖2L2(Sd−1)

)
.

Therefore, there exists a sequence (ψ̃m)m∈N ⊆ L2(Sd−1) satisfying

‖(R̃ΓRD1
Gmix

D
∗
)ψ̃m‖2

H−
1
2 (Γ)

→ ∞

and
‖(RD2

Gmix
D

∗
)ψ̃m‖2

H
1
2 (∂D2)

+ ‖HBψ̃m‖2
H

1
2 (∂B)

+ ‖PV ψ̃m‖2L2(Sd−1) → 0

as m→ ∞. We define ψm := ψ̃m − PV ψ̃m ⊆ V ⊥ for any m ∈ N to obtain

‖(RD1
Gmix

D
∗
)ψm‖

H−
1
2 (∂D1)

≥ ‖(R̃ΓRD1
Gmix

D
∗
)ψm‖

H−
1
2 (Γ)

≥ ‖(R̃ΓRD1
Gmix

D
∗
)ψ̃m‖

H−
1
2 (Γ)

− ‖R̃ΓRD1
Gmix

D
∗‖‖PV ψ̃m‖L2(Sd−1) → ∞ ,

‖(RD2
Gmix

D
∗
)ψm‖

H
1
2 (∂D2)

≤ ‖(RD2
Gmix

D
∗
)ψ̃m‖

H
1
2 (∂D2)

+ ‖RD2
Gmix

D
∗‖‖PV ψ̃m‖L2(Sd−1) → 0 ,

‖HBψm‖
H

1
2 (∂B)

≤ ‖HBψ̃m‖
H

1
2 (∂B)

+ ‖HB‖‖PV ψ̃m‖L2(Sd−1) → 0

as m→ ∞. This ends the proof.

3The latter condition ensures that X does not contain any smooth functions except for zero.
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The following result can be shown proceeding similarly to the proof of Theorem 4.5.

Theorem 4.7. Let B,D1,D2 ⊆ R
d be open and Lipschitz bounded such that R

d \ (B ∪D1 ∪D2)
is connected. Suppose that ∂D2 is piecewise C1 smooth and that D2 6⊆ B. Then, for any finite
dimensional subspace V ⊆ L2(Sd−1) there exists a sequence (ψm)m∈N ⊆ V ⊥ such that

‖(RD1
Gmix

D
∗
)ψm‖

H−
1
2 (∂D1)

+ ‖HBψm‖
H

1
2 (∂B)

→ 0 and ‖(RD2
Gmix

D
∗
)ψm‖

H
1
2 (∂D2)

→ ∞

as m→ ∞.

5 Monotonicity based shape reconstruction

Using the localized wave functions developed in the previous section will establish monotonicity
relations for far field operators in terms of the following extension of the Loewner order to compact
self-adjoint operators, which has been introduced in [25]. Let A1, A2 : X → X be compact self-
adjoint operators on a Hilbert space X, and let r ∈ N. We write

A1 ≤r A2

if A2 −A1 has at most r negative eigenvalues. Furthermore, we write A1 ≤fin A2 if A1 ≤r A2 holds
for some r ∈ N.

Remark 5.1. Therewith, Remarks 3.3 and 3.5 can be reformulated as

Re(F dir
D1

) ≤fin 0 and Re(F neu
D2

) ≥fin 0 ,

respectively. ♦

The following result was shown in [25, Cor. 3.3].

Lemma 5.2. Let A1, A2 : X → X be two compact self-adjoint linear operators on a Hilbert space X
with scalar product 〈·, ·〉, and let r ∈ N. Then the following statements are equivalent:

(a) A1 ≤r A2

(b) There exists a finite-dimensional subspace V ⊆ X with dim(V ) ≤ r such that

〈(A2 −A1)v, v〉 ≥ 0 for all v ∈ V ⊥ .

5.1 Dirichlet or Neumann obstacles

In the following we consider the case when either only Dirichlet or Neumann obstacles are present.
We discuss criteria to characterize the support of an unknown scattering obstacle D in terms of the
corresponding far field operator. To begin with, we discuss the case when only Dirichlet obstacles
are present.

Theorem 5.3 (Shape characterization for Dirichlet obstacles). Let D2 = ∅, and let B,D1 ⊆ R
d be

open and Lipschitz bounded such that Rd \D1 is connected.

(a) If B ⊆ D1, then Re(F dir
D1

) ≤fin −H∗
BHB.

12



(b) If B 6⊆ D1, then Re(F dir
D1

) 6≤fin −H∗
BHB.

Proof. (a) Let B ⊆ D1. We define P dir
B→D1

: H
1

2 (∂B) → H
1

2 (∂D1) by P dir
B→D1

f := w|∂D1
, where w ∈

H1
loc(R

d \B) is the unique radiating solution to the exterior Dirichlet boundary value problem
(2.3a)–(2.3b) with D1 replaced by B (and D2 = ∅). Then P dir is a compact linear operator
by standard interior regularity results, and the uniqueness of solutions to the exterior Dirichlet
boundary value problem (see Lemma 2.1) implies that Gdir

B = Gdir
D1
P dir
B→D1

. Recalling (3.5), this
shows that

HB = S∗
B(P

dir
B→D1

)∗Gdir
D1

∗
.

Substituting the factorization (3.3) gives

Re(F dir
D1

) +H∗
BHB = −Gdir

D1

(1
2
(SD1

+ S∗
D1

)− P dir
B→D1

SBSB
∗(P dir

B→D1
)∗
)
Gdir

D1

∗
.

Using Theorem 3.2 (d)–(e) we find that 1
2(SD1

+ S∗
D1

) is a compact perturbation of the self-
adjoint and coercive operator SD1,i, i.e.,

Re(F dir
D1

) +H∗
BHB = −Gdir

D1

(
SD1,i +K

)
Gdir

D1

∗

with some compact self-adjoint operator K. Accordingly,

〈(Re(F dir
D1

) +H∗
BHB)ψ,ψ〉 ≤ −c1‖Gdir

D1

∗
ψ‖2

H−1/2(∂D1)
+

〈
Gdir

D1

∗
ψ,KGdir

D1

∗
ψ
〉

for all ψ ∈ L2(Sd−1), where c1 denotes the coercivity constant of SD1,i (see Theorem 3.2 (d)).
We define the subspace

V := span
{
ψ ∈ L2(Sd−1)

∣∣∣ Gdir
D1

∗
ψ is an eigenvector of K

associated to an eigenvalue larger than c1

}
.

The spectral theorem for compact self-adjoint operators shows that V is finite dimensional.
Accordingly,

〈(Re(F dir
D1

) +H∗
BHB)ψ,ψ〉 ≤ 0 for all ψ ∈ V ⊥ .

(b) Let B 6⊆ D1. We suppose that there exists a finite dimensional subspace V ⊆ L2(Sd−1) such
that

〈Re(F dir
D1

)ψ,ψ〉 ≤ −〈H∗
BHBψ,ψ〉 for all ψ ∈ V ⊥ . (5.1)

Again, using the factorization (3.3) we find that, for all ψ ⊆ V ⊥,

|〈Re(F dir
D1

)ψ,ψ〉| ≤ ‖SD1
+ S∗

D1
‖‖Gdir

D1

∗
ψ‖2

H−
1
2 (∂D1)

≤ C‖Gdir
D1

∗
ψ‖2

H−
1
2 (∂D1)

for some C > 0, and on the other hand

〈H∗
BHBψ,ψ〉 = ‖HBψ‖2

H
1
2 (∂B)

.

Substituting this into (5.1) and applying Theorem 4.1 gives a contradiction.
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The following result for Neumann obstacles can be shown using similar arguments as in the
proof of Theorem 5.3.

Theorem 5.4 (Shape characterization for Neumann obstacles). Let D1 = ∅, and let B,D2 ⊆ R
d

be open and Lipschitz bounded such that Rd \D2 is connected.

(a) If B ⊆ D2, then H∗
BHB ≤fin Re(F neu

D2
).

(b) If B 6⊆ D2, then H∗
BHB 6≤fin Re(F neu

D2
).

5.2 Mixed obstacles

Next we consider the general mixed case, i.e., when both Dirichlet and Neumann obstacles are
present. While the criteria developed in Theorems 5.3 and 5.4 determine whether a certain probing
domain B is contained in the support D of the scattering obstacles or not, the criterion for the
mixed case established in Theorem 5.5 below characterizes whether a certain probing domain B
contains the support D of the scattering obstacles or not.

Theorem 5.5 (Shape characterization for mixed obstacles). Let B,D1,D2 ⊆ R
d be open and

Lipschitz bounded. Assume that k2 is neither a Dirichlet eigenvalue of −∆ in D1 and B nor a
Neumann eigenvalue of −∆ in D2.

(a) If D1 ⊆ B, then −H∗
BHB ≤fin Re(Fmix

D ).

(b) Suppose that Rd \ (B ∪D1 ∪D2) is connected and that ∂D1 is piecewise C1 smooth. If D1 6⊆ B,
then −H∗

BHB 6≤fin Re(Fmix
D ).

(c) If D2 ⊆ B, then Re(Fmix
D ) ≤fin H

∗
BHB.

(d) Suppose that Rd \ (B ∪D1 ∪D2) is connected and that ∂D2 is piecewise C1 smooth. If D2 6⊆ B,
then Re(Fmix

D ) 6≤fin H
∗
BHB.

Remark 5.6. The results in Theorem 5.5 remain true in the special case, when D2 = ∅ and
Fmix
D = F dir

D1
, and also in the special case, when D1 = ∅ and Fmix

D = F neu
D2

. The corresponding
shape characterizations complement the results established in Theorems 5.3 and 5.4. ♦

Proof. (a) Let D1 ⊆ B. It has been shown in [31, Lmm. 3.5] that

Re(Fmix
D ) +H∗

BHB =

[
HB

(∂H)D2

]∗([
ID1

0

0 −N−1
D2,i

]
+K

)[
HB

(∂H)D2

]

with some compact self-adjoint operator K, i.e., Re(Fmix
D ) +H∗

BHB is a compact perturbation
of a self-adjoint and coercive operator. This implies (a).

(b) Let R
d \ (B ∪D1 ∪D2) be connected and let ∂D1 be piecewise C1 smooth. We suppose that

there exists a finite dimensional subspace V1 ⊆ L2(Sd−1) such that

−〈H∗
BHBψ,ψ〉 ≤ 〈Re(Fmix

D )ψ,ψ〉 for all ψ ∈ V ⊥
1 .

Combining Theorem 3.6 (a) with Theorems 3.2–3.4 (d)–(e), we find that

Re(Fmix
D ) =

1

2
(Fmix

D + Fmix
D

∗
) = −Gmix

D

([
SD1,i 0
0 ND2,i

]
+K

)
Gmix

D
∗

14



with some compact self-adjoint operator K. Accordingly, we define the subspace

V2 := span
{
ψ ∈ L2(Sd−1) | Gmix

D
∗
ψ is an eigenvector of K

associated to an eigenvalue with absolute value larger than
c1
2

}
,

where c1 denotes the coercivity constant of SD1,i (see Theorem 3.2 (d)). The spectral theorem
for compact self-adjoint operators shows that V2 ⊆ L2(Sd−1) is finite dimensional, and thus
V ⊥
1 ∩V ⊥

2 = (V1+V2)
⊥ 6= {0} because V1+V2 is finite dimensional as well. Using the restriction

operators RD1
and RD2

from (4.2), we find that, for all ψ ∈ (V1 + V2)
⊥,

0 ≤ 〈Re(Fmix
D )ψ,ψ〉 + 〈H∗

BHBψ,ψ〉
= −〈(Gmix

D R∗
D1

)SD1,i(G
mix
D R∗

D1
)∗ψ,ψ〉 − 〈(Gmix

D R∗
D2

)ND2,i(G
mix
D R∗

D2
)∗ψ,ψ〉

− 〈Gmix
D KGmix

D
∗
ψ,ψ〉 + 〈H∗

BHBψ,ψ〉
≤ −c1‖(RD1

Gmix
D

∗
)ψ‖2

H−
1
2 (∂D1)

+ ‖ND2,i‖‖(RD2
Gmix

D
∗
)ψ‖2

H
1
2 (∂D2)

+
c1
2
‖Gmix

D
∗
ψ‖2

H−
1
2 (∂D1)×H

1
2 (∂D2)

+ ‖HBψ‖2
H

1
2 (∂B)

= −c1
2
‖(RD1

Gmix
D

∗
)ψ‖2

H−
1
2 (∂D1)

+
(
‖ND2,i‖+

c1
2

)
‖(RD2

Gmix
D

∗
)ψ‖2

H
1
2 (∂D2)

+ ‖HBψ‖2
H

1
2 (∂B)

.

Applying Theorem 4.5 with V = V1 + V2 gives a contradiction.

(c) This follows again from [31, Lmm. 3.5].

(d) This can be shown proceeding similarly to the proof of part (b), and using Theorem 4.7 to
obtain a contradiction.

6 Numerical examples

We now work towards numerical implementations of the shape characterizations developed in Sec-
tion 5. The main issue here is that numerical approximations of the operators F dir

D1
, F neu

D2
, Fmix

D , and
HB are necessarily finite dimensional. Accordingly, the question, whether suitable combinations of
these operators as considered in Theorems 5.3–5.5 are positive definite up to some finite dimensional
subspace, needs to be carefully relaxed to obtain reliable numerical algorithms. We present some
preliminary ideas in this direction, restricting the discussion to the two-dimensional case.

6.1 An explicit radially symmetric example

We illustrate the shape characterization results from Theorems 5.3 and 5.5 for the special case
of a single radially symmetric Dirichlet obstacle by an explicit example. Let D2 = ∅, and let
D1 = Br(0) ⊆ R

2 be the disk of radius r > 0 centered at the origin.
We first derive series expansions for the incident and scattered fields and use them to compute

the eigenvalue value decomposition of the far field operator F dir
D1

. The Jacobi-Anger expansion (see,
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e.g., [9, (3.89)]) shows that for each incident direction θ = (cos t, sin t)⊤ ∈ S1 the incident field
satisfies

ui(x; θ) = eikx·θ =
∑

n∈Z

ine−inφxJn(k|x|)eint , x = |x|(cos φx, sinφx)⊤ ∈ R
2 .

A short calculation yields that the scattered field is given by

us(x; θ) = −
∑

n∈Z

in
Jn(kr)

H
(1)
n (kr)

e−inφxH(1)
n (k|x|)eint , x = |x|(cosφx, sin φx)⊤ ∈ R

2 \D1 .

Substituting the asymptotic behavior of the Hankel functions (see, e.g., [9, (3.82)]) into this expan-
sion we find that the far field pattern of us is

u∞(x̂; θ) =
∑

n∈Z

4i
Jn(kr)

H
(1)
n (kr)

e−inφxeint , x̂ = (cos φx, sinφx)
⊤ ∈ S1 .

Let g ∈ L2(S1) with Fourier expansion g(θ) =
∑

m∈Z gme
imt, θ = (cos t, sin t)⊤ ∈ S1. Then the

far field operator F dir
D1

: L2(S1) → L2(S1) from (2.5) satisfies

(F dir
D1
g)(x̂) =

∑

n∈Z

∑

m∈Z

4i
Jn(kr)

H
(1)
n (kr)

(∫ 2π

0
gme

i(n+m)t dt

)
e−inφx

=
∑

n∈Z

8πi
Jn(kr)

H
(1)
n (kr)

gne
inφx ,

x̂ = (cos φx, sinφx)
⊤ ∈ S1. Accordingly, the eigenvalues and eigenvectors of F dir

D1
are given by

(λ
(r)
n , vn)n∈Z with

λ(r)n := 8πi
Jn(kr)

H
(1)
n (kr)

, vn(x̂) :=
1√
2π
einφx , x̂ = (cos φx, sinφx)

⊤ ∈ S1 . (6.1)

Now let B = BR(0) be the disk of radius R > 0 centered at the origin. Then the operator
H∗

BHB : L2(S1) → L2(S1), where HB is the Herglotz operator from (3.4), satisfies

(H∗
BHBg)(θ) =

∫

S1

(∫

∂B
eiky·(φ−θ) ds(y)

)
g(φ) ds(φ)

=

∫

S1

2πRJ0(kR|θ − φ|)g(φ) ds(φ) .
(6.2)

Here we used the integral representation of J0 (see, e.g., [34, 10.9.2]). Writing φ = (cos τ, sin τ) and
substituting the Fourier expansion of g we find that

(H∗
BHBg)(θ) = 2πR

∑

n∈Z

gn

∫

S1

J0(kR|θ − φ|)einτ ds(φ) = 4π2R
∑

n∈Z

gnJ
2
n(kR)e

int

(see, e.g., [9, (3.88)]). Accordingly, the eigenvalues and eigenvectors of the operator H∗
BHB are

given by (µ
(R)
n , vn)n∈Z with

µ(R)
n := 4π2RJ2

n(kR) , vn(x̂) =
1√
2π
einφx , x̂ = (cosφx, sin φx)

⊤ ∈ S1 . (6.3)
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Figure 6.1: Number of positive eigenvalues (left) and number of negative eigenvalues (right) Re(λ
(r)
n )

(dotted), µ
(R)
n (dashed), and Re(λ

(r)
n ) + µ

(R)
n (solid) within range n = 0, . . . , 1000 as function of R.

From (6.1) and (6.3) we conclude that in the special case, when D1 = Br(0) and B = BR(0),

the eigenvalues and eigenvectors of Re(F dir
D1

) +H∗
BHB are given by (Re(λ

(r)
n ) + µ

(R)
n , vn)n∈Z with

Re(λ(r)n ) + µ(R)
n = 8π

Jn(kr)Yn(kr)

|H(1)
n (kr)|2

+ 4π2RJ2
n(kR) ,

vn(x̂) =
1√
2π
einφx , x̂ = (cosφx, sin φx)

⊤ ∈ S1 .

(6.4)

Using the criteria established in Theorem 5.3 and Theorem 5.5 (a)–(b) we obtain that

(a) if R < r, then Re(F dir
D1

) +H∗
BHB has only finitely many positive but infinitely many negative

eigenvalues, and

(b) if R > r, then Re(F dir
D1

) +H∗
BHB has only finitely many negative but infinitely many positive

eigenvalues.

We illustrate how this can be utilized to reconstruct the radius of the scatterer D1 = Br(0) from

observations of F dir
D1

by a numerical example. We evaluate the eigenvalues Re(λ
(r)
n ), µ

(R)
n , and

Re(λ
(r)
n ) + µ

(R)
n with wave number k = 1, radius of the obstacle r = 4, and n = 0, . . . , 1000 in

Matlab using the explicit formulas given in (6.1), (6.3), and (6.4). In Figure 6.1 we show plots of
the number of positive eigenvalues (left plot) and of the number of negative eigenvalues (right plot)

Re(λ
(r)
n ) (dotted), µ

(R)
n (dashed), and Re(λ

(r)
n ) + µ

(R)
n (solid) within the range n = 0, . . . , 1000 as a

function of R.
As suggested by Theorems 5.3 and 5.5 there is a sharp transition in the behavior of the eigen-

values of Re(F dir
D1

) +H∗
BHB at R = r = 4, which can be used to estimate the value of r. In these

plots the contribution of the operator Re(F dir
D1

) dominates in the superposition Re(F dir
D1

)+H∗
BHB as

long as R < r (i.e., B ⊆ D1), while the contribution of the operator H∗
BHB dominates when R > r

(i.e., D1 ⊆ B).
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Figure 6.2: Same as Figure 6.1, but with δ = 0.01 instead of δ = 0.

Using asymptotic expansions for Bessel functions for large order (see [34, 11.19.1–2]) we find
that

Re(λ(r)n ) = −4π
( er
2n

)2n
and µ(R)

n = 2π
R

n

(eR
2n

)2n
as n→ ∞ .

Accordingly, both sequences (Re(λ
(r)
n ))n∈Z and (µ

(R)
n )n∈Z decay rapidly once the value of |n| is

sufficiently large. Since eigenvalues below some threshold are rounded to zero in Matlab, and since

the eigenvalues µ
(R)
n are on average increasing with respect to R, this explains the increasing but

somewhat low numbers of positive eigenvalues of H∗
BHB in the left plot in Figure 6.1. A similar

reasoning explains the seemingly low numbers of negative eigenvalues of Re(F dir
D1

) in the right plot
in Figure 6.1.

In practice the far field data will usually be corrupted by measurement errors, and it will not
be possible to compute the eigenvalues of Re(F dir

D1
) + H∗

BHB with very high precision, as done
in this example so far. To see how this influences the numerical results, we repeat the previous
computations but consider only those eigenvalues that are larger than a threshold δ = 0.01. For

comparison, we note that the largest eigenvalue of Re(F dir
D1

) in this example is Re(λ
(r)
2 ) ≈ 11.03. In

Figure 6.2 we show plots of the number of positive eigenvalues Re(λ
(r)
n ) (dotted), µ

(R)
n (dashed),

and Re(λ
(r)
n ) + µ

(R)
n (solid) within the range n = 0, . . . , 1000 that are larger than δ (left plot) and

of the number of negative eigenvalues that are smaller than −δ (right plot) as a function of R. The
transition in the behavior of the eigenvalues of Re(F dir

D1
) + H∗

BHB at R = r = 4 is not nearly as
pronounced as before. However, a rough estimate of r would still be possible by visual inspection
of these plots, in particular from the plot on the right hand side of Figure 6.2.

6.2 A sampling strategy for Dirichlet or Neumann obstacles

In the special case, when only Dirichlet obstacles are present, the number of positive eigenvalues of
Re(F dir

D1
) +H∗

BHB can be utilized to decide whether a probing domain B ⊆ R
2 is contained in the

support of the scatterer D1 or not. We discuss this approach in the following and comment on the
special case, when only Neumann obstacles are present at the end of this section.
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Let D2 = ∅, and let D1 ⊆ R
2 be open and Lipschitz bounded. We assume that far field

observations u∞(x̂l; θm) are available for N equidistant observation and incident directions

x̂l, θm ∈ {(cosφn, sinφn) ∈ S1 | φn = (n− 1)2π/N , n = 0, . . . , N − 1} , (6.5)

1 ≤ l,m ≤ N . Accordingly, applying the trapezoid rule to (2.5), we find that the matrix

F
dir
D1

:=
2π

N
[u∞(x̂l; θm)]1≤l,m≤N ∈ C

N×N (6.6)

approximates the far field operator F dir
D1

. Assuming that the support of the scatterer D1 is contained
in the disk BR(0) for some R > 0, we require

N & 2kR , (6.7)

where as before k denotes the wave number, to fully resolve the relevant information contained in
the far field patterns (see, e.g., [17]).

We consider an equidistant grid of points

∆ = {zij = (ih, jh) | − J ≤ i, j ≤ J} ⊆ [−R,R]2 (6.8)

with step size h = R/J in the region of interest [−R,R]2. For each zij ∈ ∆ we consider a probing
operator H∗

Bij
HBij with Bij = Bh/2(zij). Applying the trapezoid rule to (6.2) we find that for each

zij ∈ ∆ this operator is approximated by the matrix

TBij =
2π

N

[
πheikzj ·(θm−θl)J0

(kh
2
|θm − θl|

)]
1≤l,m≤N

∈ C
N×N . (6.9)

Therewith, we compute the eigenvalues λ
(ij)
1 , . . . , λ

(ij)
N ∈ R of the self-adjoint matrix

A
dir
Bij

= Re(F dir
D1

) + TBij , −J ≤ i, j ≤ J . (6.10)

For numerical stabilization, we discard eigenvalues with absolute values smaller than some
threshold. This threshold depends on the quality of the given far field data. If there are good
reasons to believe that Adir

Bij
is known up to a perturbation of size δ > 0 with respect to the spectral

norm, then we can only trust in those eigenvalues with magnitude larger than δ (see, e.g., [15,
Thm. 7.2.2]). To obtain a reasonable estimate for δ, we use the magnitude of the non-normal part
of F dir

D1
, i.e., we take δ = ‖(F dir

D1
)∗F dir

D1
− F

dir
D1

(F dir
D1

)∗‖2, since this quantity should be zero for exact
data and be of the order of the data error, otherwise.

The characterization of the support of Dirichlet obstacles in Theorem 5.3 suggests that we count
for each sampling point zij ∈ ∆ the number of positive eigenvalues of Adir

Bij
. We define the indicator

function Idir : ∆ → N,

Idir(zij) = #{λ(ij)n | λ(ij)n > δ , 1 ≤ n ≤ N} , −J ≤ i, j ≤ J . (6.11)

Theorem 5.3 suggests that Idir admits smaller values at test points zij inside the obstacle than for
test points outside of D1.
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Figure 6.3: Exact shape of Dirichlet obstacle (left). Visualization of indicator function Idir for two different
wave numbers k = 1 with N = 32 (middle) and k = 5 with N = 128 (right).
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Figure 6.4: Same as in Figure 6.3, but with 0.1% complex-valued uniformly distributed error on far field
data.

Example 6.1. We consider a single Dirichlet obstacle that has the shape of a kite as sketched in
Figure 6.3 (left), and simulate the corresponding far field matrix F

dir
D1

∈ C
N×N for N observation

and incident directions as in (6.5) using a Nyström method for a boundary integral formulation of
the scattering problem (2.2) for two different wave numbers k = 1 (with N = 32), and for k = 5
(with N = 128) in accordance with the sampling condition (6.7).

In Figure 6.3 we show color coded plots of the indicator function Idir from (6.11) with threshold
parameter δ = 10−14 (i.e., the number of positive eigenvalues of the matrix A

dir
Bij

from (6.10) that are

larger than δ = 10−14 evaluated at each grid point zij ∈ ∆) in the region of interest [−10, 10]2 ⊆ R
2.

The sampling grid ∆ from (6.8) consists of 2J + 1 = 201 grid points in each direction.
The number of positive eigenvalues of the matrix A

dir
Bij

increases with increasing wave number,
and it is larger at test points zij sufficiently far away from the support of the scatterers than at test
points zij inside, as suggested by Theorem 5.3. The lower value always coincides with the number of
positive eigenvalues of the real part Re(F dir

D1
) of the far field matrix from (6.6) that are larger than

the threshold δ. The total number of eigenvalues of Adir
Bij

, j = 1, . . . , J , whose absolute values are

larger than δ is approximately (on average over all grid points) 24 (for k = 1) and 50 (for k = 5).
Depending on the wave number, the lowest level set of the indicator function Idir nicely approx-

imates the support of the scatterer.
The reconstruction algorithm is rather sensitive to noise in the far field data. To see this, we
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Figure 6.5: Exact shape of Neumann obstacle (left). Visualization of indicator function Ineu for two different
wave numbers k = 1 with N = 32 (middle), and k = 5 with N = 128 (right).

repeat the previous computation but add 0.1% complex-valued uniformly distributed error to the far
field matrix F

dir
D1

that we simulate using the Nyström method. We estimate the non-normality error
of the corresponding scattering operator and accordingly we choose δ = 0.1 for the threshold in the
reconstruction algorithm. In Figure 6.4, we show color coded plots of the indicator function Idir from
(6.11) for wave numbers k = 1 (with N = 32), and for k = 5 (with N = 128). The total number
of eigenvalues of Adir

Bij
, j = 1, . . . , J , whose absolute values are larger than δ is approximately (on

average over all grid points) 8 (for k = 1) and 22 (for k = 5).
The reconstruction for k = 5 is better than the reconstruction for k = 1 because more eigen-

vectors are stably propagated into the far field for larger wave numbers (the number of eigenvalues
with absolute values above the threshold δ increases with k). However, despite the low noise level,
the shape of the obstacle is not reconstructed very well. ♦

If only Neumann obstacles are present, i.e., D1 = ∅ and D2 ⊆ R
2 is open and Lipschitz bounded,

then we use the corresponding far field matrix F
neu
D2

∈ C
N×N as in (6.6) and the matrix TBij ∈ C

N×N

from (6.9) to compute for each sampling point zij ∈ ∆ the eigenvalues λ
(ij)
1 , . . . , λ

(ij)
N ∈ R of the

self-adjoint matrix
A

neu
Bij

= −
(
Re(F neu

D2
)− TBij

)
, −J ≤ i, j ≤ J .

The characterization of the support of Neumann obstacles in Theorem 5.4 suggests that we count
for each sampling point zij ∈ ∆ the number of positive eigenvalues of Aneu

Bij
. We define the indicator

function Ineu : ∆ → N,

Ineu(zij) = #{λ(ij)n | λ(ij)n > δ , 1 ≤ n ≤ N} , −J ≤ i, j ≤ J . (6.12)

Theorem 5.4 suggests that Ineu admits smaller values at test points zij inside the obstacle than for
test points outside of D2.

Example 6.2. In the second example, we consider a Neumann obstacle that has the shape of a
peanut as sketched in Figure 6.5. We simulate the corresponding far field matrix F

neu
D2

∈ C
N×N for

N observation and incident directions using a Nyström method for a boundary integral formulation
of the scattering problem (2.2) for two different wave numbers k = 1 (with N = 32), and for k = 5
(with N = 128).
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In Figure 6.5 we show color coded plots of the indicator function Ineu from (6.12) with threshold
parameter δ = 10−14 in the region of interest [−10, 10]2 ⊆ R

2. The equidistant rectangular sampling
grid on the region of interest from (6.8) consists of 201 grid points in each direction.

Again, the number of positive eigenvalues of the matrix ABij increases with increasing wave
number, and it is larger at test points zij sufficiently far away from the support of the scatterers
than at test points zij inside, in compliance with Theorem 5.4. The lower value always coincides
with the number of negative eigenvalues of the matrix Re(F neu

D2
) that are smaller than the threshold

−δ = −10−14. The number of eigenvalues of Aneu
Bij

, j = 1, . . . , J , whose absolute values are larger

than δ = 10−14 is approximately (on average over all grid points) 25 (for k = 1) and 55 (for k = 5).
Depending on the wave number the support of the indicator function Ineu approximates the

support of the scatterer rather well. ♦

6.3 Separating mixed obstacles

We return to the general mixed case, i.e., when both Dirichlet and Neumann obstacles are present.
While the algorithm developed for Dirichlet or Neumann obstacles in the previous subsection de-
termines whether a sufficiently small probing domain B is contained inside the support of the
unknown scattering obstacle D or not, the shape characterization for mixed obstacles established
in Theorem 5.5 describes whether a sufficiently large probing domain B contains the support D
of the scattering objects or not. A corresponding numerical algorithm that implements a similar
criterion for the inverse conductivity problem has recently been proposed in [13]. However, since in
contrast to the inverse conductivity problem, the monotonicity relations in Theorem 5.5 only hold
up to certain finite dimensional subspaces of unknown dimension, an extension of the reconstruction
algorithm from [13] to the mixed inverse obstacle problem is not straightforward.

In the following we consider a reduced problem, and utilize Theorem 5.5 to develop an algorithm
to recover the convex hulls of the Dirichlet obstacle D1 and of the Neumann obstacle D2 separately.
We treat the Dirichlet part first, and comment on the Neumann part below. The idea is to consider
a sufficiently large number of probing disks B = BR(z) ⊆ R

2, where for each center z ∈ R
2 the

radius R > 0 is chosen as small as possible but such that B still completely covers D1. Intersecting
those disks then gives an approximation of the convex hull of D1. To determine the optimal radius R
for each of these disks, we use Theorem 5.5, which (under some additional assumptions) says that

(a) if D1 ⊆ B, then Re(Fmix
D ) +H∗

BHB has only finitely many negative eigenvalues, and

(b) if D1 6⊆ B, then Re(Fmix
D ) +H∗

BHB has infinitely many negative eigenvalues.

Example 6.3. We consider a kite-shaped Dirichlet obstacle and a peanut-shaped Neumann obstacle
as shown in Figure 6.6 (left). We simulate the corresponding far field matrix F

mix
D ∈ C

N×N

analogous to (6.6) for wave number k = 1 and N = 64 observation and incident directions using a
Nyström method for a boundary integral formulation of the mixed scattering problem (2.2).

To begin with, we fix the center z = (15, 0) of a single probing disk B = BR(z) and evaluate
the matrix

A
mix,+
BR(z) = Re(Fmix

D ) + TBR(z)

on a whole interval of radii 0 < R < 40. Here the matrix TBR(z) ∈ C
N×N is defined analogous to

(6.9). As in our previous examples we choose a threshold parameter δ = 10−14, and in Figure 6.6
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Figure 6.6: Left: Exact shape of mixed obstacles (solid), smallest disk around z = (15, 0) containing the

Dirichlet obstacle (dashed). Right: Number of negative eigenvalues of Amix,+
BR(z) smaller than −δ = −10−14 as

function of radius R (solid), smoothing spline (dotted), estimated radius of smallest disk around z = (15, 0)
containing Dirichlet obstacle (dashed).

(right) we show the number of negative eigenvalues of Amix,+
BR(z) that are smaller than −δ as a function

of the radius R (solid).
We observe a similar behavior as for the concentric disks studied in Section 6.1 (cf. the plots

on the right hand side of Figures 6.1 and 6.2). The number of negative eigenvalues of A
mix,+
BR(z)

decreases with increasing R until it becomes stationary up to small oscillations around R ≈ 18. Our
theoretical results suggest that radius R, where this transition from decreasing to almost stationary
appears, corresponds to the radius of the smallest disk that still completely covers the Dirichlet
obstacle D1.

To evaluate this transition numerically, we fit a smoothing spline curve through the number of
negative eigenvalues of Amix,+

BR(z) as shown on the right hand side of Figure 6.6 (dotted). We determine
the point of maximum signed curvature of this smoothing spline and use the corresponding value
of R as approximation of the radius of the smallest disk around z that still completely covers the
Dirichlet obstacle D1. On the right hand side of Figure 6.6 the result of this strategy is shown as a
dashed vertical line, and the corresponding disk BR(z) is shown on the left hand side of Figure 6.6
(dashed). ♦

Similarly, for the Neumann obstacle Theorem 5.5 says that

(c) if D2 ⊆ B, then −(Re(Fmix
D )−H∗

BHB) has only finitely many negative eigenvalues, and

(d) if D2 6⊆ B, then −(Re(Fmix
D )−H∗

BHB) has infinitely many negative eigenvalues.

Introducing
A

mix,−
BR(z) = −

(
Re(Fmix

D )− TBR(z)

)

we can proceed as in Example 6.3 for the Dirichlet obstacle to determine minimal radii of probing
disks BR(z) containing the Neumann obstacle.

Example 6.4. We continue with Example 6.3 and pick 16 evenly spaced points z1, . . . , z16 on a
circle of radius 15 around the origin, which are shown as solid pluses in the two plots on the right
hand side of Figure 6.7. The points zℓ, ℓ = 1, . . . , 16, are the centers of 16 probing disks that are used
to approximate the convex hulls of the Dirichlet obstacle and of the Neumann obstacle separately.
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Figure 6.7: Exact shape of mixed obstacles (left). Visualization of reconstructions of convex hulls of Dirichlet
obstacle (middle) and of Neumann obstacle (right) for k = 1 (with N = 64).
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Figure 6.8: Same as Figure 6.7 but with three obstacles.

For each center zℓ we estimate the radii Rdir
ℓ and Rneu

ℓ of the smallest disks BRdir
ℓ
(zℓ) and BRneu

ℓ
(zℓ)

centered at zℓ that completely cover the Dirichlet obstacle and the Neumann obstacle, respectively.
These estimates are obtained as described in Example 6.3. Therewith we compute approximations

C
dir =

16⋂

ℓ=1

BRdir
ℓ
(zℓ) and C

neu =
16⋂

ℓ=1

BRneu
ℓ

(zℓ)

of the convex hulls of D1 and of D2, respectively. The results are shown in Figure 6.7 (middle and
right). ♦

Example 6.5. We consider another example with two Dirichlet obstacles (kite-shaped and peanut-
shaped) and one Neumann obstacle (an ellipse) as shown in Figure 6.8 (left). We simulate the
corresponding far field matrix F

mix
D ∈ C

N×N for wave number k = 1 and N = 64 observation and
incident directions using a Nyström method, and we apply the reconstruction scheme to approximate
the convex hulls of the Dirichlet obstacles D1 and of the Neumann obstacles D2 with the same
parameters as in the previous example. The reconstructions C dir and C neu are shown in Figure 6.8
(middle and right). ♦

Further numerical experiments show that this algorithm is also very sensitive to noise in the
data.
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Conclusions

Locating and estimating the shape of scatterers based on far field observations is a basic problem in
remote sensing. In this work we have established a monotonicity based shape characterization for
a mixed inverse obstacle scattering problem. Using this technique we have shown that the shape of
Dirichlet and Neumann obstacles are uniquely determined independently by the corresponding far
field operator without additional a priori information. Numerical examples have been presented to
illustrate the potential and limitations of applications of these theoretical results in reconstruction
algorithms. However, the question of how to apply the novel monotonicity principles in an efficient
and robust shape reconstruction algorithm for mixed inverse obstacle problems requires further
research efforts.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID
258734477 – SFB 1173.

References

[1] A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen. Detecting stochastic inclusions in electrical
impedance tomography. Inverse Problems, 33(11):115012, 18, 2017.

[2] T. Brander, B. Harrach, M. Kar, and M. Salo. Monotonicity and enclosure methods for the p-Laplace
equation. SIAM J. Appl. Math., 78(2):742–758, 2018.

[3] F. Cakoni and D. Colton. A qualitative approach to inverse scattering theory, volume 188 of Applied
Mathematical Sciences. Springer, New York, 2014.

[4] F. Cakoni, D. Colton, and P. Monk. The direct and inverse scattering problems for partially coated
obstacles. Inverse Problems, 17(6):1997–2015, 2001.

[5] F. Cakoni, D. Colton, and P. Monk. The electromagnetic inverse-scattering problem for partly coated
Lipschitz domains. Proc. Roy. Soc. Edinburgh Sect. A, 134(4):661–682, 2004.

[6] F. Cakoni, D. Colton, and P. Monk. The linear sampling method in inverse electromagnetic scattering,
volume 80 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

[7] V. Candiani, J. Dardé, H. Garde, and N. Hyvönen. Monotonicity-based reconstruction of extreme
inclusions in electrical impedance tomography. arXiv preprint arXiv:1909.12110, 2019.

[8] D. Colton and A. Kirsch. A simple method for solving inverse scattering problems in the resonance
region. Inverse Problems, 12(4):383–393, 1996.

[9] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied
Mathematical Sciences. Springer, New York, third edition, 2013.

[10] T. Daimon, T. Furuya, and R. Saiin. The monotonicity based method for the inverse crack scattering
problem. arXiv preprint arXiv:1904.03655, 2019.

[11] H. Garde. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact
matrix characterizations. Inverse Probl. Sci. Eng., 26(1):33–50, 2018.

[12] H. Garde and S. Staboulis. Convergence and regularization for monotonicity-based shape reconstruction
in electrical impedance tomography. Numer. Math., 135(4):1221–1251, 2017.

25



[13] H. Garde and S. Staboulis. The regularized monotonicity method: detecting irregular indefinite inclu-
sions. Inverse Probl. Imaging, 13(1):93–116, 2019.

[14] B. Gebauer. Localized potentials in electrical impedance tomography. Inverse Probl. Imaging, 2(2):251–
269, 2008.

[15] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.

[16] R. Griesmaier and B. Harrach. Monotonicity in inverse medium scattering on unbounded domains.
SIAM J. Appl. Math., 78(5):2533–2557, 2018.

[17] R. Griesmaier and J. Sylvester. Uncertainty principles for inverse source problems, far field splitting,
and data completion. SIAM J. Appl. Math., 77(1):154–180, 2017.

[18] N. I. Grinberg. Obstacle visualization via the factorization method for the mixed boundary value
problem. Inverse Problems, 18(6):1687–1704, 2002.

[19] N. I. Grinberg and A. Kirsch. The factorization method for obstacles with a priori separated sound-soft
and sound-hard parts. Math. Comput. Simulation, 66(4-5):267–279, 2004.

[20] B. Harrach and Y.-H. Lin. Monotonicity-based inversion of the fractional Schrödinger equation I.
Positive potentials. SIAM J. Math. Anal., 51(4):3092–3111, 2019.

[21] B. Harrach and Y.-H. Lin. Monotonicity-Based Inversion of the Fractional Schödinger Equation II.
General Potentials and Stability. SIAM J. Math. Anal., 52(1):402–436, 2020.

[22] B. Harrach and M. N. Minh. Enhancing residual-based techniques with shape reconstruction features
in electrical impedance tomography. Inverse Problems, 32(12):125002, 21, 2016.

[23] B. Harrach and M. N. Minh. Monotonicity-based regularization for phantom experiment data in electri-
cal impedance tomography. In New trends in parameter identification for mathematical models, Trends
Math., pages 107–120. Birkhäuser/Springer, Cham, 2018.

[24] B. Harrach, V. Pohjola, and M. Salo. Dimension Bounds in Monotonicity Methods for the Helmholtz
Equation. SIAM J. Math. Anal., 51(4):2995–3019, 2019.

[25] B. Harrach, V. Pohjola, and M. Salo. Monotonicity and local uniqueness for the Helmholtz equation.
Anal. PDE, 12(7):1741–1771, 2019.

[26] B. Harrach and M. Ullrich. Monotonicity-based shape reconstruction in electrical impedance tomogra-
phy. SIAM J. Math. Anal., 45(6):3382–3403, 2013.

[27] B. Harrach and M. Ullrich. Resolution guarantees in electrical impedance tomography. IEEE transac-
tions on medical imaging, 34(7):1513–1521, 2015.

[28] M. Ikehata. Size estimation of inclusion. J. Inverse Ill-Posed Probl., 6(2):127–140, 1998.

[29] H. Kang, J. K. Seo, and D. Sheen. The inverse conductivity problem with one measurement: stability
and estimation of size. SIAM J. Math. Anal., 28(6):1389–1405, 1997.

[30] A. Kirsch. Characterization of the shape of a scattering obstacle using the spectral data of the far field
operator. Inverse Problems, 14(6):1489–1512, 1998.

[31] A. Kirsch and N. Grinberg. The factorization method for inverse problems, volume 36 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2008.

[32] A. Maffucci, A. Vento, S. Ventre, and A. Tamburrino. A novel technique for evaluating the effective
permittivity of inhomogeneous interconnects based on the monotonicity property. IEEE Transactions
on Components, Packaging and Manufacturing Technology, 6(9):1417–1427, 2016.

26



[33] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press,
Cambridge, 2000.

[34] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST handbook of mathematical
functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington,
DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX).

[35] R. Potthast. A survey on sampling and probe methods for inverse problems. Inverse Problems, 22(2):R1–
R47, 2006.

[36] Z. Su, L. Udpa, G. Giovinco, S. Ventre, and A. Tamburrino. Monotonicity principle in pulsed eddy
current testing and its application to defect sizing. In Applied Computational Electromagnetics Society
Symposium-Italy (ACES), 2017 International, pages 1–2. IEEE, 2017.

[37] A. Tamburrino and G. Rubinacci. A new non-iterative inversion method for electrical resistance to-
mography. Inverse Problems, 18(6):1809–1829, 2002. Special section on electromagnetic and ultrasonic
nondestructive evaluation.

[38] A. Tamburrino, Z. Sua, S. Ventre, L. Udpa, and S. S. Udpa. Monotonicity based imaging method in
time domain eddy current testing. Electromagnetic Nondestructive Evaluation (XIX), 41:1, 2016.

27


