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1 Summary 

The vascular and neuronal network are closely associated throughout embryonic 

development, in adulthood and during tissue regeneration. Both tissue meshes interact 

through reciprocal cross-talk involving diffusible molecules, thus being important for 

physiological functions in both domains. 

     Ectopic blood vessels are prematurely formed at the level of the spinal cord under certain 

conditions during early zebrafish development, thus demonstrating molecular cross-talk 

between the developing peripheral nervous system and the surrounding vascular network. 

This hyperbranching phenotype revealed a type of angiogenic sprouting form termed 

“tertiary sprouting” and is regulated by Vascular Endothelial Growth Factor (Vegf) aa/Kdrl 

signaling. The onset and extent of spinal cord vascularization is controlled via bimodal 

adjustment of Vegfaa and the soluble form of its decoy receptor Flt1 in the neuronal tissue. 

The endothelial cell-specific molecule 1 (esm1), among others, was significantly deregulated 

during this process in flt1 zebrafish mutants. ESM1 is a structurally distinctive secreted 

proteoglycan upregulated during various pathological conditions of the vascular system and 

is implied a role in angiogenic processes. However, its function during vascular remodeling 

remains elusive.  

     This project has the objective to get insight into the role of Esm1 in remodeling of the 

vascular architecture of the zebrafish trunk. First, esm1 gene expression was quantitatively 

analyzed in models with increased Vegfaa bioavailability during stages of hypersprouting. 

Its spatial expression pattern was investigated using a BAC promoter-reporter construct and 

whole mount in situ hybridization during early zebrafish development. In addition, alterations 

in the trunk vascular pattern were analyzed when esm1 levels were varied in the wildtype 

and Vegfaa gain-of-function models.  

     Esm1 was active in developing blood vessels during formation of the trunk vasculature 

in zebrafish embryos and may be specifically expressed in arterial endothelial cells and in a 

subset of neurons in the spinal cord. In the wildtype, changes in esm1 levels did not affect 

the vascular architecture. However, in Vegfaa-gain-of-function scenarios, spinal cord 

vascularization is altered concurrent to Esm1 abundance. Accordingly, Esm1 is a modulator 

of the Vegfaa/Kdrl signaling cascade by regulating the levels and gradient of Vegfaa in the 

extracellular matrix in the zebrafish. Moreover, esm1 seems to have an anti-proliferative 

effect on endothelial cells attributed to its function as a proteoglycan.  
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2 Zusammenfassung 

Die Netzwerke aus Gefäßen und Nerven sind in der Entwicklung vom Embryo zum 

ausgewachsenen Organismus sowie in der Regeneration nah miteinander verbunden. 

Beide Geflechte interagieren durch wechselseitige Kommunikation mit diffusionsfähigen 

Molekülen, welche für physiologische Funktionen wichtig sind.  

     Während der frühen Zebrafischentwicklung können sich unter bestimmten Bedingungen 

frühzeitig ektopische Blutgefäße auf Hohe des Rückenmarks bilden, was molekulare 

Wechselwirkungen zwischen dem sich entwickelnden peripheren Nervensystem und dem 

umgebendem vaskulären Netzwerk demonstriert. Der Phänotyp der übermäßigen 

Blutgefäßbildung offenbarte eine Art von angiogener Sprossung, auch „tertiäre Sprossung“ 

genannt, welche durch den vaskulären endothelialen Wachstumsfaktor (Vegf) aa/Kdrl 

Signalweg reguliert wird. Der Beginn und Ausmaß der Rückenmarksneugefäßbildung wird 

durch eine bimodale Anpassung von Vegfaa und der löslichen Form seines Lockrezeptors 

Flt1 im neuralen Gewebe kontrolliert. In flt1 Zebrafischmutanten ist unter anderem ist das 

Endothelzell-spezifische Molekül 1 (esm1) während dieses Prozesses signifikant 

dereguliert. ESM1 ist ein Proteoglykan, welches in seiner Struktur besonders ist. Es ist in 

verschiedenen pathologischen Konditionen des vaskulären Systems hochreguliert und 

spielt eine Rolle in angiogenen Prozessen. Seine Funktion mit Bezug auf vaskuläre 

Umformung ist allerdings immer noch schwer definierbar. 

     Das Ziel dieser Untersuchungen ist Einsicht in die Rolle von Esm1 bei der Umgestaltung 

der vaskulären Architektur des Zebrafischrumpfes zu bekommen. Zunächst wurde die 

Genexpression von esm1 quantitativ in Modellen mit erhöhter Vegfaa Bioverfügbarkeit in 

Stadien der übermäßigen Sprossung analysiert. Das räumliche Expressionsmuster wurde 

mittels BAC Reporterkonstrukten und in situ Hybridisierungen während der frühen 

Zebrafischentwicklung untersucht. Des Weiteren wurden die Auswirkungen von 

verschiedenen Expressionsniveaus von esm1 auf das vaskuläre Muster im Wildtyp und in 

Vegfaa Überexpressionsmodellen ermittelt. 

     Esm1 war in sich entwickelnden Blutgefäßen während der Bildung des 

Zebrafischrumpfes aktiv und scheint gezielt in arteriellen Endothelzellen und in einer 

Untergruppe von Neuronen im Rückenmark exprimiert zu sein. Im Wildtyp hatten 

Veränderungen von esm1 keinen Einfluss auf das Gefäßmuster, während sich in Modellen 

mit Vegfaa Überexpression die Rückenmarksgefäßneubildung jedoch übereinstimmend mit 

der Esm1 Verfügbarkeit verändert. Demnach ist Esm1 ein Modulator des Vegfaa/Kdrl 

Signalweges, in dem es das Niveau und den Gradienten von Vegfaa in der extrazellulären 
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Matrix im Zebrafisch reguliert. Des Weiteren scheint esm1 Zellproliferation 

entgegenzuwirken, was seiner Funktion als Proteoglykan zugeschrieben werden kann. 
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3 Introduction 

 

3.1 The vascular system 

Every organ of the body is connected to the vascular system. The highly branched vessel 

network traverses the entire organism (Herbert and Stainier, 2011). The vasculature does 

not only supply the organisms with nutrients and oxygen, but it transports hormones and 

waste products through the vertebrate body and enables immune surveillance (Adams and 

Eichmann, 2010).  

     The blood vessel system is one of the first functional organs to be formed in the early 

development of a vertebrate and is crucially involved in organogenesis (Risau, 1995, 2008). 

Developing and developed organs rely on access to the vessels. Vascular malformations 

belong to the most common causes for embryonic lethality, which emphasizes the 

significance of this network during early developmental stages in mice and zebrafish 

(Feucht, Christ and Wilting, 1997; Krebs et al., 2004). 

 

3.1.1 The development of vascular network 

In the first stages of embryonic development nutrients and oxygen are provided by diffusion. 

With ongoing growth of the organism, a complex system has to evolve to meet the 

physiological requirements to maintain a healthy organism: the cardiovascular network. This 

ends up in hierarchically arranged tube-like structures forming the blood vessel system of 

adult vertebrates. Blood rich in oxygen is transported from the heart towards the tissue via 

arteries, smaller arterioles and capillaries. The capillary network ensures optimal supply of 

the surrounding tissue with nutrients and oxygen. The blood is returned back to the heart 

through small venules and veins (Adams and Eichmann, 2010; Herbert and Stainier, 2011).  

     The vasculature develops in three temporarily distinguishable processes. First, a 

primitive vascular network is formed de novo during vasculogenesis (Flamme and Risau, 

1992; Flamme, Frölich and Risau, 1997). Next, this vascular labyrinth is remodeled into a 

tubular system in the process of angiogenesis (Risau, 1997; Carmeliet, 2003). Last, the 

vessel identity is determined by arterial-venous differentiation (Wang, Chen and Anderson, 

1998; Shin et al., 2001; Eichmann et al., 2005; Herzog, Guttmann-Raviv and Neufeld, 2005; 

Jones, 2011; Niklason and Dai, 2018)  
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3.1.2 Architecture of blood vessels  

Two circulatory systems exist in higher vertebrates: blood vessel and lymphatic network. 

The first is a closed tubular framework, whereas the latter consists of a blind-ended tubular 

network transporting lymph, fluid rich in protein, from tissues towards the veins. In both 

tubular networks the lumen is lined by endothelium. Endothelial cells (ECs) form a highly 

heterogenous cell population with distinct functions and gene expression patterns. Mural 

cells, smooth muscle cells and pericytes attached to the abluminal surface of certain vessels 

assist in vessel stability and blood pressure regulation (Annika, Alexandra and Christer, 

2005; Adams and Alitalo, 2007; Eilken and Adams, 2010). 

     The vasculature consists of arterial and venous blood vessels and capillaries. Arteries 

and veins are made up of three different layers: the tunica intima facing the vessel lumen, 

the tunica externa the outermost abluminal layer and tunica media sandwiched in between. 

These layers harbor different cell types: ECs in the tunica intima, smooth muscle cells in the 

tunica media and fibroblasts in the tunica adventitia (Zhao, Vanhoutte and Leung, 2015). 

The architecture differs between veins and arteries, reflecting their respective function. In 

general, veins can be physiologically and histologically distinguished from arteries due to 

the lower blood pressure, thinner vessel wall and the presence of valves (Kume, 2010; 

Herbert and Stainier, 2011). 

     The blood is pumped from the heart into the aorta and distributed through the entire 

organism through large arteries. Subsequently, the blood reaches the various organs 

through small arteries and arterioles. Next, the blood passes capillaries where nutrients, 

oxygen and carbon dioxide are exchanged. The blood returns to the heart through venules, 

small and large veins. The architecture of blood vessels and the make-up of the vascular 

network are shown in figure 3-1.  

     With various substances, such as nitric oxide and angiotensin II, the vascular tone is fine-

tuned (Pollman et al., 1996). Furthermore, organ perfusion can regulated also through 

sympathetic nerves innervating the arteries (Charkoudian and Rabbitts, 2009). 
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Figure 3-1. The architecture of blood vessels. Arteries, veins and capillaries form the 
vascular network. Arteries and vein are distinct in their make-up which corresponds to their 
respective function. The main layers of arteries and veins are the tunica intima, tunica media 
and tunica externa (from lumen side to the outermost layer). The heart pumps the blood via 
arteries and smaller arterioles towards capillaries, where it flows into the venous circulation 
and is transported through smaller venules and veins back towards the heart. Endothelial 
cells line the lumen, smooth muscle cells habitat the tunica media. The basic structure of 
arteries and veins is comparable, but valves are specific for veins. Modified from: 
https://www.bioexplorer.net/differences-between-arteries-and-veins.html/ 
 

3.1.3 From endothelial precursors to tubular structures: vasculogenesis  

The development of the cardiovascular system is initiated by vasculogenesis, a highly 

regulated process during which a primitive vascular network is formed de novo (Fig. 3-2; 

Adams and Alitalo, 2007). 

     First, mesodermal precursors, so called hemangioblasts, assemble and aggregate, 

thereby forming blood islands along the body axis in the extra embryonic tissue. The cells 

in the center of the blood islands differentiate towards the hematopoietic lineage, whereas 

the outer progenitors are committed to become angiogblasts (Flamme, Frölich and Risau, 

1997). These angioblasts are already specified to become arterial or venous ECs and 

eventually gives rise to primitive tubular structures, the dorsal aorta (DA) and the cardinal 

vein, at or near the site from which they originate (Risau and Flamme, 1995; Zhong et al., 

2001; Coultas, Chawengsaksophak and Rossant, 2005; Roca and Adams, 2007). 

Consequently, the primitive vascular plexus develops without the need of a pre-existing 
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structure. Next, the vascular structure grows and is remodeled in a process called 

angiogenesis (Flamme, Frölich and Risau, 1997). 

 

3.1.4 Expanding the vessel network: angiogenesis 

After vasculogenesis, a highly orchestrated vascular network is established by expansion 

and remodeling of the tubular system. Angiogenesis allows tissue devoid of blood vessels 

to get access to the vascular system (Patan et al., 2001).  

     Angiogenic processes occur during the entire life of an organism. Excessively prevalent 

during the early development of an organism, it proceeds in several physiological (e.g. tissue 

repair and female reproduction cycle) and pathological (e.g. tumor growth) conditions in 

adulthood (Folkman, 1995; Meduri, Bausero and Perrot-Applanat, 2000; Carmeliet, 2003; 

Wang and Olson, 2009).  

     The formation of vascular segments in the embryo and in the adult organism occurs in a 

similar manner. Therefore, increased knowledge about blood vessel growth during 

embryogenesis might aid in understanding pathological conditions in the adult. Research in 

animal models, such as chicken embryos, zebrafish embryos, fetal/neonatal mice, revealed 

new insights into angiogenic processes (Pudliszewski and Pardanaud, 2005; Deryugina and 

Quigley, 2008; Chávez et al., 2016).  

     New vessels are formed from pre-existing ones via different mechanisms: sprouting and 

splitting angiogenesis (intussusception) (Fig. 3-2). The former is characterized through 

outgrowth of ECs (Risau and Flamme, 1995; Flamme, Frölich and Risau, 1997), while the 

latter describes the separation of a tubular structure through insertion of translumen pillars 

(Burri, Hlushchuk and Djonov, 2004). 

     Sprouting of a new vessel is induced under hypoxic conditions, which subsequently 

upregulates angiogenic genes, such as the vascular endothelial growth factor (VEGF). Due 

to intensified levels of VEGF, ECs loosen intercellular junctional contacts and gain motility. 

Ultimately, permeability of the endothelium is improved and vessel sprouting can be initiated 

(Moses, 1997; Mehta and Malik, 2006). The so-called tip cell guides the emerging sprout, 

which is then lengthened through proliferation of adjacent stalk cells. Subsequently, a lumen 

is formed (Gerhardt et al., 2003). The sprouting process is finished when the tip cell fuses 

and anastomoses with the target vessel. Eventually, a functional vascular labyrinth is 

established (Carmeliet, 2003; Burri, Hlushchuk and Djonov, 2004). 

     Splitting angiogenesis is the preferred mechanism in small vessels and capillaries. If 

redundant or inefficient vascular segments are pruned, the angle of bifurcating vessels 
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needs to be modified or existing vessels need to be duplicated (Mentzer and Konerding 

2014). An interstitial tissue column spanning the vessel lumen, the intussusceptive pillar, 

characterizes this type of angiogenesis (Burri, Hlushchuk and Djonov, 2004; Djonov and 

Makanya, 2005; Mentzer and Konerding, 2014). 

 

3.1.5 Arteries and veins: differences between the tubular systems 

Genetics and hemodynamics determine if vessels acquire either arterial or venous identity 

during development (le Noble et al., 2004; Jones, le Noble and Eichmann, 2006). 

     Remodeling of the blood vessel network and establishment of the ultimate vascular 

architecture are predetermined by genetics (Jones, le Noble and Eichmann, 2006). In the 

zebrafish and mouse, VEGF, Notch and EphrinB2 are involved in mechanisms concerning 

differentiation into either vessel type, artery or vein, even before blood circulation starts 

(Hong, Kume and Peterson, 2008; Julius et al., 2008; Swift and Weinstein, 2009; Kume, 

2010).  

     Already angioblasts are committed to become part of the arterial or venous compartment 

(Kume, 2010). These precursors can be specified towards the arterial fate with the activation 

of the Notch signaling cascade through VEGF (Lawson et al., 2001, 2003; Lawson, Vogel 

and Weinstein, 2002). Subsequently, arterial differentiation is engaged through activated 

EphrinB2 gene expression. On the other hand, differentiation towards the venous fate is 

acquired by repression of the Notch signaling through the orphan nuclear receptor COUP 

transcription factor-2, which results in EphrinB4 expression. Those findings are emphasized 

by studies, which demonstrated that arterial identity is prevented by reduced VEGF levels 

(Lawson, Vogel and Weinstein, 2002; Visconti, Richardson and Sato, 2002) and that 

inhibition of Notch stimulates the expression of the venous marker VEGFR-3 in the zebrafish 

(Lawson et al., 2001).  

     Additionally, hemodynamics influence arterial-venous differentiation is hemodynamics. 

Blood flow regulates expression of EphrinB2 and Neuropilin-1 (NRP-1), thereby assisting in 

the decision between arterial or venous identity (le Noble et al., 2004, 2005). 
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Figure 3-2. Vasculogenesis and angiogenesis. Blood vessels are established de novo in 

a process called vasculogenesis. Angioblasts, precursor cells of the blood and vessel 

lineage form blood islands, subsequently develop the primitive vascular plexus. Expansion 

of the vascular labyrinth is achieved by angiogenesis, the formation of blood vessels from 

already existing ones. There are two angiogenic modes: intussusceptive and sprouting 

angiogenesis. While the former occurs mainly in capillaries and can be described as splitting 

of the tubule, the latter is the mode for arteries and veins by which new vascular segments 

emerge by leading tip cells. Modified from: Kolte, McClung and Aronow, 2016 

 

3.1.6 The vascular system makes difference between health and disease 

Deregulated blood vessel development can principally affect any organ and, thus, is 

associated with various diseases. Excessive amount of blood vessels is related to medical 

conditions such as arthritis, cancer, obesity or primary pulmonary hypertension (Gimbrone 

et al., 1972; Carmeliet, 2003). However, excessive regression or pruning of vascular 

segments is found in hypertensive or diabetic patients (Korn and Augustin, 2015). 

Accordingly, in numerous medical conditions attenuation of vascular growth is attempted, 
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for example cancer (Forster et al., 2017) and ailments, when augmentation strategies are 

required to replace traumatized or degenerative tissue (Young and Schäfer, 2015; 

Filipowska et al., 2017; Banfi et al., 2018). The knowledge about how a stable and perfused 

vascular network can be established and its translation to the patient requires still extensive 

research. 

     Learning about the development and maintenance of a proper vascular network is 

crucial. Concerning therapies, a fine regulation of blood vessel growth is needed: increased 

blood vessel supply benefits regeneration but also CVDs or cancer, while decreasing blood 

vessel growth is intended to inhibit cancer metastasis or other pathological diseases 

involving blood vessels.  

 

3.2 The zebrafish vascular system 

 

3.2.1 The zebrafish is a great model organism  

The zebrafish is a multifaceted model organism used in many research fields and acquired 

popularity in the fields of developmental biology, molecular genetics and cancer research 

as well as in toxicology and drug discovery (Rubinstein, 2003; Parng, 2005; Mione and 

Trede, 2010; Etchin, Kanki and Look, 2011; MacRae and Peterson, 2015; Letrado et al., 

2018; Meyers, 2018). Generation of transgenic and mutant lines as well as overexpression 

and disease models makes the fish a versatile animal to study (Nasiadka and Clark, 2012; 

Bradford et al., 2017; Meyers, 2018).  

     Zebrafish are simple in maintenance and breeding and have a generation time of about 

3 months. With one breeding a high number of progeny, which develop ex utero, is obtained 

(Nasiadka and Clark, 2012). Thus, it permits working with many embryos at once that can 

be easily treated with substances. Fast and transparent development favors in vivo and 

time-lapse imaging. Zygotes can be easily manipulated which allows generation of 

transgenic or mutant lines with relatively high efficiency. 

     Physiology and basic anatomical structure, i.e. nervous system and vasculature, is 

comparable between the zebrafish and humans (Becker and Becker, 2008; Gore et al., 

2012). Furthermore, 70% of genes involved in human pathophysiological diseases are 

similar with those of zebrafish (Santoriello and Zon, 2012).  
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3.2.2 Development of the zebrafish trunk vasculature 

The zebrafish trunk vascular system is characterized by vascular segments, so called 

intersegmental vessels (ISVs), running from ventral to dorsal between the somites, the 

developing muscle tissue. On their way they pass the notochord and the neural tube (NT). 

ISVs are ventrally connected to either the DA or posterior cardinal vein (PCV) and join dorsal 

of the neural tube by a structure called dorsal longitudinal anastomotic vessel (DLAV) (Isogai 

et al., 2003; Ellertsdóttir et al., 2010; Wild et al., 2017). The formation of the vascular system 

in the trunk is described in figure 3-3. 

 

 
Figure 3-3. Development of the zebrafish trunk vasculature. (a) Depiction of the entire 
zebrafish embryo transgenic for the blood vessel reporter kdrl. The area in the red square 
illustrates the magnified vasculature of the trunk (Modified from 
https://www.flickr.com/photos/nichd/17104754320). (b) Schematic illustration of the 
zebrafish trunk anatomy (Modified from Mulligan and Weinstein, 2014). (c) Spinning disc 
microscopic images demonstrating the development of the zebrafish trunk vascular system 
visualized by the transgenic reporter kdrl from 24 hpf to 72 hpf. DA, dorsal aorta; DLAV, 
dorsal lateral anastomotic vessel; dpf, days post fertilization; hpf, hours post fertilization; 
ISA, intersegmental artery; ISV, intersegmental vein (in b); ISV, intersegmental vessel (in 



Introduction 

 17 

c); M, muscles; N, notochord, NT, neural tube; PAV, parachordal lymphatic vessel; PCV, 
posterior cardinal vein; Y, yolk. 
 

     The zebrafish trunk vasculature is build up in three distinct events, called primary, 

secondary and tertiary sprouting, as illustrated in figure 3-4 (Isogai et al., 2003; Ellertsdóttir 

et al., 2010; Wild et al., 2017). Arterial ISVs (aISVs) arise during primary sprouting at around 

24 hours post-fertilization (hpf). These vessel segments emerge from the DA and migrate 

dorsally to form a T-shaped structure. Next, adjacent vessels link to each other, resulting in 

the DLAV (Isogai, Horiguchi and Weinstein, 2001; Isogai et al., 2003). Sprouting is regulated 

by Vegfaa expressed in the somites (Ellertsdóttir et al., 2010). Secondary sprouting is 

defined as the remodeling of aISVs into venous ISVs (vISVs). Blood vessel segments 

emanating from the PCV at around 32 hpf migrate dorsally and give rise to either vISVs and 

lymphatic vascular precursors (Isogai et al., 2003; Yaniv et al., 2006). The latter give rise to 

the parachordal lymphatic vessel. The term 'tertiary sprouting' describes spinal cord 

vascularization. Vascular segments connect neighboring ISVs horizontally at the level of the 

neural tube. In the wildtype this phenotype is observed at around 13 days post-fertilization 

(dpf). However, in some Vegfaa-GOF models it is seen as soon as 4 dpf. Moreover, these 

sprouts originate mainly from vISVs (Wild et al., 2017). 

 

3.2.2.1 Mechanism of sprout formation: the tip-stalk cell model 

A functional vascular network is established by well-regulated extrinsic and intrinsic cues. A 

tight control and coordination of EC behavior, including those of sprouts, is indispensable 

for proper expansion and remodeling of the vessel system (Folkman and D’Amore, 1996; 

Carmeliet, 2003). 

     The forming sprout can be divided into a tip cell and stalk cells, which are distinct in 

function and gene expression. A balance between both cell types allows the formation of a 

functional vasculature (Ruhrberg et al., 2002; Gerhardt et al., 2003; Ruhrberg, 2003). The 

subdivision is induced by VEGF (Gerhardt et al., 2003; Blanco and Gerhardt, 2013). Tip 

cells are migrating polarized cells spearheading the forming sprout and eventually 

anastomose with a neighboring vessel. The 'stem' of the sprouting vessel is made up of 

stalk cells. They are proliferative, hence responsible for the growth of the sprout, and 

establish a vascular lumen required for blood circulation (Carmeliet, 2003; Gerhardt et al., 

2003; Burri, Hlushchuk and Djonov, 2004; Blanco and Gerhardt, 2013). Non proliferating, 

quiescent cells are defined as phalanx cells (Geudens and Gerhardt, 2011). 
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Figure 3-4. The distinct physiological sprouting types establish the vascular network 

of the zebrafish trunk. In the process of primary sprouting, intersegmental vessels (ISV) of 

arterial identity (aISV) are formed within the first two days of development. During the 

following day, a sprout originating from the PCV merges with the aISV, thereby altering the 

respective arterial flow to a venous one. Around 13 dpf, sprouts at the region of the neural 

tube emanate from mainly vISVs and establishes a connection to a neighboring vessel. DA, 

dorsal aorta; DLAV, dorsal lateral anastomotic vessel; dpf, days post fertilization; hpf, hours 

post fertilization; aISV, intersegmental artery; vISV, intersegmental vein; NT, neural tube; 

PCV, posterior cardinal vein. 

 

     Tip cells express vascular endothelial growth factor receptor (VEGFR)-2, VEGFR-3 and 

Notch ligand Delta-like 4 (Dll4), Angiopoietin-2, CXCR4 and ESM1 in abundance and are 

responsive to both angiogenic factors such as VEGF-A and classic guidance factors, 

including netrin-1 (Gerhardt et al., 2003; Lu et al., 2004; Tammela et al., 2008; Strasser, 

Kaminker and Tessier-Lavigne, 2010). Stalk cells are enriched in receptors VEGFR-1 and 

Notch (Phng and Gerhardt, 2009; Strasser, Kaminker and Tessier-Lavigne, 2010). A 

summary of the tip-stalk cell model with molecules involved in this process is provided in 

figure 3-5. 
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     How do certain cells become either a tip cell or stalk cell? VEGF-A activates VEGFR-2 

in competing ECs, thereby augmenting Dll4 gene expression (Roca and Adams, 2007; Phng 

and Gerhardt, 2009). Dll4 prevents adjacent ECs from sprout formation through activation 

of the Notch pathway in these cells. This mode is also called lateral inhibition (Gerhardt et 

al., 2003; Jakobsson et al., 2010; Herbert and Stainier, 2011). Accordingly, with increasing 

levels of growth factor, the cell is more likely to acquire a tip cell phenotype and 

simultaneously impedes its neighboring cells to be selected as such (Hellström et al., 2007; 

Siekmann and Lawson, 2007; Suchting et al., 2007). In summary, next to other factors, 

alterations in VEGF gradient or Dll4/Notch signaling in ECs modify the sprouting process 

and eventually affect the development of the vascular network in the zebrafish model. 

 

3.2.2.2 Vascular guidance cues: which way to go? 

Guidance cues direct the developing sprout during migration towards its destination. 

Developmental structures such as somites and the spinal cord but also tissues with low 

oxygen such as wounds, ischemic tissue or tumors are considered as sources (Liang et al., 

2001; Ferrara, 2005; Haigh, 2008; Wild et al., 2017). 

     The tip cell migrates a certain way under guidance of various factors attracting or 

repelling the vascular branch (Cramer, Kay and Zatulovskiy, 2018). Investigations 

demonstrated that these cells sense their environment for directional cues (Gerhardt et al., 

2003; Smet et al., 2009). A study by Phng and colleagues suggested that filopodia are in 

principle dispensable for sprouting but they might enhance guidance efficacy and pace 

(Phng, Stanchi and Gerhardt, 2013).  

     Molecular cues during axon guidance are well studied and evidence exists that their 

directory function can be transferred to the vascular system (Lu et al., 2004; Larrivée et al., 

2009). The Semaphorins/Neuropilin, Ephrin-Eph, Slits/Roundabout and 

Netrin/Unccordinated-5 signaling cascades are examples for signaling partners directing not 

only axons but also blood vessels during physiological or pathological angiogenesis 

(Klagsbrun and Eichmann, 2005). 

     Next to molecular guidance cues, blood flow is a player in sprouting events. 

Hemodynamics might be a necessary condition for sprout formation (Watson et al., 2013). 



Introduction 

 20 

          
Figure 3-5. The tip-stalk cell model. (a) An EC becomes activated and selected as a tip 

cell, which is at the front of the developing sprout. Elongation and lumenization of the 

vascular segment is achieved by proliferation of tip cell adjacent stalk cells (Modified from 

Geudens and Gerhardt, 2011). (b) Tip cells and stalk cells are distinct in their phenotype 

and gene expression profiles. The former senses the environment for cues with filopodia 

and shows increased gene expression for VEGFR-2, VEGFR-3, Dll4, Angiopoietin, CXCR4 

and Esm1. Stalk cells express VEGF-1 and Notch in higher abundance compared to tip 

cells. The growing sprout is attracted towards increasing VEGF-A concentration (Modified 

from Gamboa et al., 2017).  
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3.2.3 Development and function of the zebrafish spinal cord 

In the process of neurulation, the neuroectoderm gets specified and remodeled into the 

neural plate. In most model organisms, neural plate undergoes a folding process to establish 

a NT which will develop into the brain and spinal cord (Hong and Brewster, 2006; Nyholm, 

Abdelilah-Seyfried and Grinblat, 2009). In the zebrafish, however, the neural plate forms into 

a rod-like structure, which develops further into the NT (Nyholm, Abdelilah-Seyfried and 

Grinblat, 2009). 

     With maturation of the NT, radial glia cells arise which are progenitors for several types 

of neurons, oligodendrocytes and astrocytes (Shimojo, Ohtsuka and Kageyama, 2011). 

Eventually, the spinal cord harbors distinct neuronal cells types for example motorneurons, 

sensory neurons and interneurons (Bota and Swanson, 2007). The xenopus beta-tubulin 

promoter xla.tubb is specifically active in mature neurons in the zebrafish (Peri and Nüsslein-

Volhard, 2008). 

 

3.2.4 Friendship between nerves and blood vessels 

 

3.2.4.1 Similarities between the vascular and neuronal network 

The vascular and nervous systems are both highly branched networks and thus share 

anatomical parallels, in particular at the periphery (Larrivée et al., 2009; Tam and Watts, 

2010). Close proximity and similar alignment of nerves and blood vessels let assume a close 

relationship concerning physical and molecular characteristics. Indeed, larger nerves and 

the vasa nervorum are physically connected. The other way round, the vascular tone is 

controlled by innervation of arteries by autonomic nerve fibers (Eichmann and Thomas, 

2013). Thus, a close interaction between the two networks ensure a proper development of 

organs (Larrivée et al., 2009; Tam and Watts, 2010).  

     Molecular similarities are demonstrated by shared guidance cues through which both the 

vascular and neuronal patterning is established. Signaling pathways directing not only 

nerves but also regulate angiogenic processes are Semaphorins, Ephrins, Slit and Netrins 

with their cognitive receptors (Klagsbrun and Eichmann, 2005). 

 

3.2.4.2 Nerves and blood vessels are well conversant 

During growth of the central nervous system (CNS), blood vessels from adjacent tissues get 

incorporated (Ruhrberg and Bautch, 2013). Angioblasts migrate to the CNS and eventually 

build up a perineural vascular plexus. Blood vessels ingress into and subsequently 
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honeycomb the NT during angiogenesis while maintaining the neural architecture. Thus, a 

regulated cross-talk is suggested (Mukouyama et al., 2005; Ruhrberg and Bautch, 2013; 

Tata, Ruhrberg and Fantin, 2015). Furthermore, interactions between ECs and neural cells 

contribute to the blood-brain barrier (Nakao, Ishizawa and Ogawa, 1988; Ruhrberg and 

Bautch, 2013). Such observations let assume that molecular cues secreted from the nervous 

system guide vascular sprouts to their destination and vice versa.  

     In mouse studies was shown that neuronal VEGF is involved in differentiation and 

patterning of arteries. VEGF from the CNS seems to be indispensable for arteriogenesis 

(Mukouyama et al., 2005). Moreover, defects in the nervous system might cause failing 

vasculature (Mukouyama et al., 2002, 2005). In zebrafish, vegfaa is secreted by neurons in 

the spinal cord and guides venous tertiary sprouts in vegfaa GOF scenarios (Wild et al., 

2017).  

     The other way round, blood vessels can steer and pattern neurons. In zebrafish, a 

population of motorneurons comes in close contact to the DA involving the Vegfc/Flt4 

signaling pathway. Flt4 in the axons benefits guidance towards and subsequent alignment 

to the Vegfc expressing DA (Kwon et al., 2013). Another example are vascular-derived 

Endothelins. In the mouse embryo was shown that Endothelins direct axons of a subset of 

sympathetic neurons through Endothelin receptors to the external carotid artery, an 

intermediate target on the way to their final destination. These findings propose a role of 

Endothelins in axonal guidance and growth in the developing nervous system, due to which 

sympathetic neurons differentiate and choose their way through the vascular network to 

innervate their appropriate end organs (Makita et al., 2008). 

     Although a bidirectional communication and interaction was described, examples exist 

in which the neuronal and vascular development is separable. In the zebrafish model, 

neuronal structures i.e. dorsal root ganglia, neuron clusters and axon tracts in the hindbrain 

develop even in the absence of blood vessels in an undisturbed fashion (Miller et al., 2010; 

Ulrich et al., 2011). 

     In summary, depending on the situation, the neuronal and vascular networks interact with 

each other to establish a neuro-vascular pattern. However, separable events have also been 

demonstrated. This knowledge can be exploited for therapeutic approaches. 

 

3.3 The VEGF family – main effectors of vascular guidance 

The family of VEGFs has a role in many physiological and pathophysiological processes. 

Hence, it is of great interest to discern the underlying signaling mechanisms for a future 
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translation into medicine. An overview of the VEGFs and their receptors is presented in 

figure 3-6.  

 

3.3.1 The VEGF ligands 

   VEGFs are secreted glycosylated mitogens, which bind to their receptors as dimers. (Keck 

et al., 1989; Leung et al., 1989; Peretz et al., 1992; Pötgens et al., 1994; Ferrara, Gerber 

and LeCouter, 2003; Gabhann and Popel, 2008; Stuttfeld and Ballmer-Hofer, 2009). The 

general structure is conserved between the various members: eight cysteine residues, of 

which two residues crosslink the monomers by disulfide bridges (Muller et al., 1997). Distinct 

VEGF variants were identified. These variants are generated due to alternative splicing and 

proteolytic cleavage. Eventually, they exert different functions in the formation of blood and 

lymphatic vessels (Muller et al., 1997; Robinson and Stringer, 2001; Lee et al., 2005; Harper 

and Bates, 2008; Iyer, Darley and Acharya, 2010).  

     VEGF-A, also known in general as VEGF, was first described as a vascular permeability 

factor secreted by tumors, which benefitted vascular leakage (Senger et al., 1983; Dvorak, 

2006; Ferrara, 2009; Stuttfeld and Ballmer-Hofer, 2009). Up to date, it is known about seven 

VEGF ligands. VEGF-A, VEGF-B, VEGF-C, VEGF-D and the placental growth factor (PlGF) 

are described in mammals (Roy, Bhardwaj and Ylä-Herttuala, 2006; Ferrara, 2009; Stuttfeld 

and Ballmer-Hofer, 2009). Furthermore, two highly structurally related members, VEGF-E 

and VEGF-F, were identified. The former is expressed in orf viruses and the latter is present 

in snake venom (Takahashi and Shibuya, 2005; Roy, Bhardwaj and Ylä-Herttuala, 2006; 

Stuttfeld and Ballmer-Hofer, 2009).  

     VEGFs bind mainly to VEGFRs, but interactions with other molecules and coreceptors 

such as heparan sulfate proteoglycans (PGs) and NRPs was evidenced, too (Cébe-Suarez, 

Zehnder-Fjällman and Ballmer-Hofer, 2006).  

     In the zebrafish more vegf isoforms are present due to genome duplication. Vegfaa, 

vegfab, vegfba, vegfbb, vegfc, vegfd and plgf were identified (Rossi et al., 2016).  

 

3.3.1.1 VEGF-A 

VEGF-A is the main ligand of the VEGF family exerting biological function. This glycoprotein 

has a molecular weight of 46kDa (VEGF-A165) and binds as a dimer to VEGFR-1 and 

VEGFR-2 (Ferrara and Henzel, 1989; Keck et al., 1989; Leung et al., 1989; Peretz et al., 

1992; Pötgens et al., 1994; Gabhann and Popel, 2008; Harper and Bates, 2008).  

     The human VEGF-A gene is located on 6p21.3 and consists of eight exons separated by 



Introduction 

 24 

seven introns (Houck et al., 1991; Tischer et al., 1991; Vincenti et al., 1996). There exist at 

least nine subtypes of VEGF-A in the human. They are all splice variants of a single gene 

and are either freely diffusible or sequestered in the extracellular matrix (ECM) (Houck et 

al., 1991). The predominant isoforms are VEGF121, VEGF165 and VEGF189, but also 

VEGF145, VEGF148, VEGF162, VEGF165b, VEGF183 and VEGF189 exist (Bates et al., 2002; 

Lange et al., 2003).  

     Some VEGFs, i.e. of VEGF165 and VEGF189, have distinct binding capacity to heparin, 

thus, regulating their bioavailability. Interaction of these isoforms with heparan sulfate PGs 

in the ECM is thought to provide a pool of biologically active growth factor. Exposure to 

heparin and heparinases releases the active mitogens more rapidly, whereas proteolysis 

with subsequent plasminogen activation enables slow liberation from the ECM (Plouët et al., 

1997; Takahashi and Shibuya, 2005). 

     VEGF is expressed in ECs, somites and neurons among other tissues (Freeman et al., 

1995; Ferrara and Davis-Smyth, 1997; Melter et al., 2000; Mukouyama et al., 2002; 

Ruhrberg and Bautch, 2013; Tata, Ruhrberg and Fantin, 2015). 

     Cells response to low levels of oxygen by increasing VEGF levels. In addition to being a 

chemoattractant during blood vessel development, VEGF-A also stimulates EC proliferation 

and tube formation (Risau and Flamme, 1995; Conway, Collen and Carmeliet, 2001; 

Ruhrberg et al., 2002; Gerhardt et al., 2003; Olsson et al., 2006). In mice and zebrafish, 

homozygous loss of VEGF-A results in embryonic lethality due to abnormal blood vessel 

development, emphasizing its indispensability (Carmeliet et al., 1996; Ferrara and Davis-

Smyth, 1997; Zhu et al., 2017).  

     The zebrafish expresses two orthologs for VEGF-A, vegfaa and vegfab. Vegfaa is 

predominantly expressed in somites and neurons of the spinal cord and is the main isoform 

regulating the vascular functions known for VEGF-A in other vertebrate models (Rossi et al., 

2016; Wild et al., 2017). There are two vegfaa isoforms identified in the zebrafish: Vegfaa165 

and Vegfaa121 (Liang et al., 2001). Vegfab seems to be dispensable (Rossi et al., 2016).  

 

3.3.2 The VEGF receptors 

The family of VEGF receptors consists of three members: VEGFR-1, VEGFR-2 and VEGFR-

3, encoded by FLT1, KDR and FLT4, respectively. This group belongs to the superfamily of 

type III receptor tyrosine kinases (RTK) (Shibuya et al., 1990; Matthews et al., 1991; 

Pajusola et al., 1992; Ferrara, 2004; Cébe-Suarez, Zehnder-Fjällman and Ballmer-Hofer, 
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2006).  

     VEGFRs share seven extracellular immunoglobulin (Ig) domains and an intracellular 

split-kinase domain (Herbert and Stainier, 2011; Koch et al., 2011). Upon ligand binding, the 

receptors form homo- or heterodimers, which leads to conformational changes. Eventually, 

the receptor-kinase activity is switched on by autophosphorylation of defined tyrosine 

residues (Olsson et al., 2006). 

     VEGFR-1 mainly acts as a decoy receptor for VEGF-A, thereby reducing its 

bioavailability for VEGFR-2. Accordingly, VEGFR-1 functions as a negative regulator of 

angiogenesis. In addition to VEGF-A, VEGF-B and PlGF bind to this receptor (Hiratsuka et 

al., 1998; Ferrara, Gerber and LeCouter, 2003; Chappell et al., 2009; Iyer, Darley and 

Acharya, 2010; Koch et al., 2011).  

     Many mechanisms and processes in vascular biology involve signaling through VEGFR-

2. Cellular and biological functions with respect to survival and proliferation of ECs, vessel 

permeability and vasculogenesis and angiogenesis are regulated by this receptor. VEGF-A 

and processed forms of VEGF-C and VEGF-D are known ligands for VEGFR-2 (Ferrara, 

Gerber and LeCouter, 2003; Cébe-Suarez, Zehnder-Fjällman and Ballmer-Hofer, 2006; 

Stuttfeld and Ballmer-Hofer, 2009; Koch et al., 2011). 

     Lymphangiogenesis and formation of early venous structures occurs through VEGFR-2 

and VEGFR-3 signaling, induced by binding of VEGF-C and VEGF-D (Tammela et al., 2008; 

Lohela et al., 2009). First being expressed in all endothelia during development, VEGFR-3 

becomes restricted to lymphatic endothelium in the adult, tumor microvasculature and 

wounds (Tammela et al., 2008). 

     VEGF isoform, homo- and heterodimerization between the VEGFR family members, co-

receptors or affinity to ECM molecules modulate signaling. Participation of PGs and NRPs 

in VEGFR signaling depend on the VEGF isoform. PGs and co-receptors vary duration and 

quality of the signaling and aid in formation of a gradient and stabilization of the signaling 

complex (Olsson et al., 2006). 

 

3.3.2.1 VEGFR-2 – a key player in vascular biology 

VEGFR-2 is a highly significant actor in EC biology during development (Shalaby et al., 

1995; Carmeliet, 2003; Olsson et al., 2006). Studies by Cortés and colleagues revealed 

expression of KDR in the hematopoietic and EC lineage in the early human embryo (Cortés 

et al., 1999). Mice deficient for Flk1 (VEGFR-2) do not develop beyond early stages and 

differentiation towards hematopoietic or angiogenic lineage is disrupted (Shalaby et al., 
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1995, 1997). These embryos fail in establishing blood islands and consequently blood 

vessels (Shalaby et al., 1995). 

     VEGFR-2 activates various signaling pathways and modulation at several levels results 

in diverse cellular responses (Koch et al., 2011; Koch and Claesson-Welsh, 2012). 

Biological responses can vary due to the ligand and its isoform, binding of co-receptors, 

homo- or heterodimerization (Olsson et al., 2006). VEGF-A165-mediated VEGFR-2 signaling 

activates a highly interwoven cascade resulting in proliferation, migration, survival and 

permeability (Koch and Claesson-Welsh, 2012). These responses ensure development, 

maintenance and integrity of the three-dimensional tubular structure of blood vessels.  

     The VEGFR-2 signal is transduced through ERK1/2, Akt or p38 MAPK.. Moreover, a 

VEGF-A isoform-specific cellular response was evidenced which depends on 

phosphorylation of distinct cytoplasmic tyrosines (Pan et al., 2007; Kawamura et al., 2008; 

Koch et al., 2011; Fearnley et al., 2014, 2015; Smith et al., 2016). 

     In the zebrafish two VEGFR-2 homologs were identified: Kdr (Kdrb) and Kdr-like (Kdrl, 

Kdra). While the former is the mammalian KDR ortholog, the latter is an additional VEGF 

receptor not present in mammalian model organisms (Bussmann et al., 2008). Kdrl is the 

functional equivalent for VEGFR-2 despite being non-orthologous to the mammalian KDR 

and is expressed in the entire vasculature (Bussmann et al., 2008). 

 

3.3.2.2 Function and role of VEGFR-1 in the development of the vascular system 

VEGFR-1 is another significant player in vascular biology. Biallelic loss of VEGFR-1, also 

known as FLT1, in mice causes abnormal organization of the vascular labyrinth and is 

embryonically lethal (Fong et al., 1995).  

     Binding affinity of VEGF-A for VEGFR-1 is about a 10-fold stronger when compared to 

VEGFR-2 (Park et al., 1994; Hiratsuka et al., 1998; He et al., 1999). Its weak tyrosine kinase 

activity proposed a scavenger function for VEGF-A (Waltenberger et al., 1994). The trans-

membrane domains however, recruits VEGF to the membrane. Consequently, VEGF 

availability for VEGFR-2 is regulated (Hiratsuka et al., 1998, 2005). Accordingly, VEGF-

A/VEGFR-2 signaling can be varied by adjusting levels of either VEGFR-1 or its ligands 

VEGF-B and PlGF.  

     Next, to its function as a VEGF-A sink, VEGFR-1 could transduce signals upon binding 

of VEGF-B or PlGF. VEGF-B is mainly active in the heart and skeletal muscle and improves 

metabolic health, for example insulin resistance in patients with Diabetes mellitus type 2, 

contributes to cardioprotective mechanisms and counteracts ischemic processes (Olofsson 
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et al., 1996; Hagberg et al., 2010; Carmeliet, Wong and De Bock, 2012; Kivelä et al., 2014; 

Rafii and Carmeliet, 2016). Moreover, this ligand was suggested as a survival factor rather 

than being an player in angiogenesis (Zhang et al., 2009). PlGF is expressed on various cell 

types (Carmeliet et al., 2001; Fischer et al., 2008). Its loss of insignificant in healthy 

individuals but becomes relevant in pathological conditions where it is for example involved 

in angiogenic and inflammatory processes in cancer (Fischer et al., 2008).  

     Next to the membrane-anchored VEGFR-1 also a soluble form exists. The freely 

diffusible receptor only carries the extracellular domain of the receptor (Shibuya et al., 1990; 

Matthews et al., 1991; Terman et al., 1992; Kendall and Thomas, 1993). 

     In the zebrafish, VEGFR-1 is known as Flt1. Isoforms, function and ligands are analogous 

to its mammlian counterparts (Hiratsuka et al., 1998; Ferrara, Gerber and LeCouter, 2003; 

Chappell et al., 2009; Iyer, Darley and Acharya, 2010; Koch et al., 2011; Krueger et al., 

2011). Flt1 reporter lines revealed specific expression in arterial ECs and in a subset of 

neurons (Bussmann et al., 2010; Krueger et al., 2011; Wild et al., 2017). Loss-of-function 

(LOF) models prematurely developed hypersprouting at the neuro-vascular interface 

already at 3 dpf. These ectopic sprouts originate exclusively from vISVs. It is hypothesized 

that Vegfaa bioavailability for Kdrl was varied by either missing flt1 function or stronger 

neuronal vegfaa expression in the spinal cord and thus regulating its vascularization (Wild 

et al., 2017). Otherwise, the vascular patterning was unaltered. Furthermore enhanced 

proliferation and increased diameter of ISVs in flt1 zebrafish mutants was reported (Wild, 

2016; Klems, 2017; Wild et al., 2017). 

 

3.3.3 Clinical suitability of VEGFR-2, VEGFR-1 and VEGF-A  

Due to their nature, VEGFRs and their ligands are promising candidates for a variety of 

therapies concerning blood vessels and the nervous system (Shibuya, 2014; Dumpich and 

Theiss, 2015). Depending on the condition, reinforcement or attenuation of blood vessel 

growth is attempted. Regeneration of organs upon severe injuries is assisted by VEGF-A, 

while its inhibition can be deployed for therapies treating cancer or age-related macular 

degeneration (Harding, 2011; Matsumoto and Ema, 2014). Due to great functional plasticity 

in vasculature, therapies are prone to side effects (Roodhart et al., 2008). Thus, the 

treatments value, safety and efficacy have to be pondered against risks.  
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Figure 3-6. VEGFs and their receptors. Six VEGF ligands exist. They bind to one or more 

of the three members of the VEGFR family. VEGF-B and PlGF exclusively bind to VEGFR-

1, while VEGF-A interacts with VEGFR-1 and VEGFR-2. VEGFR-1 can either be 

membrane-bound or freely diffusible (sVEGFR-1). VEGF-C and VEGF-D signal through 

VEGFR-2 or VEGFR-3 while VEGF-E and VEGF-F bind to VEGFR-2. The VEGF/VEGFR 

signaling pathway can be modulated by Neuropilin coreceptors (NRP-1 and NRP-2). Ligand 

binding to VEGFR-1 and VEGFR-2 regulates vasculogenesis and angiogenesis, whereas 

VEGFR-3 is mainly involved in lymphangiogenesis. VEGF, Vascular endothelial growth 

factor; NRP, Neuropilin; PlGF, Placental growth factor. Taken from: Cébe-Suarez, Zehnder-

Fjällman and Ballmer-Hofer, 2006.  

 

3.4 Endothelial cell-specific molecule 1 

 

3.4.1 Proteoglycans are important modulators of cellular responses 

PGs are significant participants in a variety of cellular processes, for example cell 

proliferation, adhesion and migration. They are relevant in pathological conditions, such as 

inflammation, cancer or infection (Perrimon and Bernfield, 2000; Spillmann, 2001; 

Delehedde et al., 2002; Sasisekharan et al., 2002; Sarrazin, Lamanna and Esko, 2011). 

     PGs are composed of a core protein bearing polysaccharide chains of 

glycosaminoglycans (GAGs) and are anchored to the cell surface, bound to components of 
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the ECM or circulating in the blood (Trowbridge and Gallo, 2002; Delehedde et al., 2013). 

PGs interact with other molecules with either the protein core or their GAG. Interaction 

partners include soluble signaling effectors, for example growth factors, cytokines and 

chemokines and structural components of the ECM, such a Fibronectin and collagens as 

well as and membrane-associated proteins, e.g. receptors, integrins (Iozzo, 1998; 

Gallagher, John T. and Lyon, 2000; Whitelock, Melrose and Iozzo, 2008; Lortat-Jacob, 

2009; Mythreye and Blobe, 2009; Kim, Turnbull and Guimond, 2011).  

     Biological functions of PGs are determined by interactions of their glycosaminoglycan 

(GAG) chains with protein ligands, such as cytokines and growth factors (Trowbridge and 

Gallo, 2002; Bishop, Schuksz and Esko, 2007). GAGs have repeating disaccharide units of 

an amino sugar, forming a linear polysaccharide chain, in common. Despite slight variations 

in the basic sugar backbone, individual GAG chains can be distinguished by subsequent 

modifications, for example sulfation of dermatan sulfate PGs, which also determines their 

activity (Taylor and Gallo, 2006). 

     Heparin, heparan sulfate and dermatan sulfate are GAGs able to modify biological 

responses. They regulate enzyme activity and may have a role as signaling molecules upon 

wounding, infection or during tumorigenesis. Bacteria, viral and parasitic virulence factors 

bind GAGs for attachment, invasion and immune system evasion. GAGs are essential for 

growth factors, cytokines, and chemokines acting as stabilizers, cofactors, and/or 

coreceptors (Rostand and Esko, 1997; Schmidtchen, Frick and Björck, 2001; Trowbridge 

and Gallo, 2002).  

 

3.4.2 Endocan – a distinctive proteoglycan 

Endocan is a dermatan sulfate PG secreted by ECs and renal epithelia, especially under 

inflammatory conditions (Bechard et al., 2000; Rocha et al., 2014). It is soluble molecule of 

50 kDa circulating in the blood and takes part in a variety of biological processes related to 

cell adhesion, migration, proliferation and neovascularization (Sarrazin et al., 2006; Kali and 

Rathan Shetty, 2014).  

     ESM1, the gene product, encodes for the core protein of Endocan. Subsequent 

posttranslational modifications with a dermatan sulfate GAG let it be classified as a PG, thus 

called Endocan (Béchard et al., 2001). Both components, the protein core and the GAG 

seem to interact with ECM components, membrane proteins, intracellular molecules and 

soluble mediators, thus modulating cell differentiation, migration and adhesion (Sarrazin et 

al., 2010; Delehedde et al., 2013).  



Introduction 

 30 

     Endocan is a distinctive PG: it is one of the few circulating PGs, has a small molecular 

weight and only one single polysaccharide chain (Sarrazin et al., 2010). The dermatan 

sulfate chain is covalently linked to Serine137 and is negatively charged at physiological pH 

(Sarrazin et al., 2006; Zhang, 2010).  

     ESM1 is proposed as a tip cell marker (Abid et al., 2006; Shin, Huggenberger and 

Detmar, 2008; Rocha et al., 2014; Eilken et al., 2017). More recent studies suggested 

reported an increased abundance in this cell phenotype, but its expression seems not to be 

exclusively restricted to those (del Toro et al., 2010; Geudens and Gerhardt, 2011; Rocha 

et al., 2014).  

 

3.4.3 Endocan and its role in pathological conditions 

Endocan is increasingly abundant in cancer, sepsis or obesity and might be essential in 

inflammation, healing, and tumorigenesis (Lassalle et al., 1996; Scherpereel et al., 2003, 

2006; Filep, 2006; Grigoriu et al., 2006; Janke et al., 2006; Sarrazin et al., 2006, 2010; 

Stéphane et al., 2010; Delehedde et al., 2013).  

     Endocan levels influence all-cause mortality and events in cardiovascular diseases by 

modulating the pathogenesis of vascular disorders, inflammation and endothelial 

dysfunction (Yilmaz et al., 2014). Examples are conditions like hypertension, diabetes 

mellitus, chronic kidney disease and atherosclerosis (Menon, Kocher and Aird, 2011; Balta 

et al., 2014; Yilmaz et al., 2014; Arman et al., 2015). 

     The presence of Endocan in the circulation could provide information about pathological 

angiogenesis (Sarrazin et al., 2006). ESM1 is mainly expressed in tip cells during tumor 

angiogenesis and gene activity seems to be even correlated with invasiveness (Roudnicky 

et al., 2013). It acts as a proliferation and survival factor in tumor cells (Scherpereel et al., 

2003). 

     In summary, Endocan was suggested as a diagnostic and prognosis marker for disease 

progression because it is linked to the severity of disorders and outcome of the respective 

condition (Bechard et al., 2000; Scherpereel et al., 2006; Huang, Tao and Ding, 2009; 

Hatfield et al., 2011; Balta et al., 2013, 2014; Roudnicky et al., 2013; Kali and Rathan Shetty, 

2014). Thus, underlining its importance in pathophysiological events. 
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3.4.4 VEGF-A signaling and ESM1 expression are linked to each other  

Both, VEGF-A and ESM1 are major players during angiogenesis. Accordingly, a link 

between these two molecules is feasible. 

     Studies with cell culture reported a dispensability of ESM1 alone but it seems to 

augments the effects of VEGF-A or VEGF-C (Shin, Huggenberger and Detmar, 2008). 

Additionally, ESM1 was identified as a downstream target in the VEGF-A/VEGFR-2 

signaling cascade, the major signaling pathway for angiogenic processes (Conway, Collen 

and Carmeliet, 2001; Carmeliet, 2003; Shin, Huggenberger and Detmar, 2008; Rocha et al., 

2014; Eilken et al., 2017).  

     Depending on the isoform, a VEGF-A gradient can be formed, thus shaping the vascular 

network (Park, Keller and Ferrara, 1993; Rocha et al., 2014). Moreover, the amount of 

VEGF-A binding to the receptor can be modulated by distinct binding affinities to heparin or 

proteases (Houck et al., 1992; Ferrara, 2010).  

     In the flt1 LOF zebrafish model, esm1 was upregulated at 4 dpf, at a time point, when 

spinal vascularization is ongoing. Tertiary sprout formation is not exclusive for flt1 mutants, 

but are present in other zebrafish Vegfaa GOF models, e.g. von Hippel-Lindau (vhl) mutants 

as well (Wild et al., 2017). It was proposed that in Vegfaa GOF scenarios, more Vegfaa is 

available for Kdrl. Consequently, a highly active Vegfaa/Kdrl signaling results in increased 

angiogenesis visible as ectopic sprouts and esm1 expression is amplified (Wild et al., 2017). 

In homozygous vhl mutants, vegfaa, flt1, kdrl and Fibronectin are intensively expressed 

(Bluyssen et al., 2004; van Rooijen et al., 2011).  

 

3.5 Aim of the work 

The present study was aimed to determine the role of Esm1 in sprouting angiogenesis. 

Esm1 was found to be upregulated in Flt1 deficient fish. Loss of flt1 caused premature 

tertiary sprouting from vISV, proliferation of ECs in the ISVs and increased diameter of vISV 

(Wild, 2016; Klems, 2017). This phenotype was explained with increased Vegfaa 

bioavailability for Kdrl (Wild, 2016). 

     First, the spatial and temporal promoter activity and gene expression of the esm1 during 

early zebrafish development was determined. Promoter activity was assessed using BAC 

transgenesis. Gene expression was studied via real-time PCR and whole mount in situ 

analysis.  

     Second, ectopic sprout formation in two Vegfaa GOF models, flt1 and vhl mutants, was 

investigated in dependency of esm1. The role of esm1 and a possible relationship with Flt1 



Introduction 

 32 

in the development of tertiary sprouts was assessed with knockdown and overexpression 

experiments.  

     Third, an esm1 LOF zebrafish model was established. The entire coding sequence was 

deleted using the CRISPR/Cas9 system. With this model, the effects of esm1 on the 

zebrafish trunk vasculature in both wildtype and flt1 mutants was elucidated. 
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4 Results 

  

4.1 Esm1 is expressed during early zebrafish development and levels are increased 

upon loss of flt1. 

Previous studies revealed elevated esm1 levels in flt1 deficient zebrafish at 4 dpf (Wild et al. 

2017). At this stage, hypersprouting at the level of the spinal cord is already well established 

but still forming. Real-time qPCR analysis should reveal if esm1 gene expression is 

augmented as early as ectopic sprout formation begins at 3 dpf in flt1 mutants and if this 

observation could be transferred to another Vegfaa GOF model, the vhl mutant.  

      Three clutches with 30-50 embryos from crossings of wildtype (reference), homozygous 

flt1ka605 and heterozygous vhlhu2117/+ adult fish were quantitatively analyzed for esm1 gene 

expression at 3 dpf and 4 dpf via real-time qPCR. Details about the sampling, qPCR process 

and data processing are described in section 6.2.3.4.  

     Esm1 gene expression was significantly increased in flt1ka605 mutants at both time points 

examined, while in the pool of vhlhu2117 mutants with siblings enhanced levels were obtained 

at only 4 dpf. The results are depicted in figure 4-1. Thus, esm1 mRNA was present in higher 

abundance in both Vegfaa GOF models during stages of tertiary sprout formation. 

 

                   
Figure 4-1. Esm1 expression is enhanced in Vegfaa GOF models. Esm1 gene expression 

was analyzed in the wildtype and in Vegfaa GOF models at 3 dpf and 4 dpf using real-time 

qPCR. Samples were taken from wildtypes, flt1ka605 mutants and vhlhu217 mutants with 

siblings. dpf, days post fertilization; f.c., fold change; wt, wildtype. 
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4.2 Esm1 mRNA is expressed in developing and developed ISVs 

Esm1 gene expression was altered upon inactivation of flt1, but the identity of expressing 

cells still remained elusive. Analysis of expression domains with whole mount in situ 

hybridization (WISH) provided insight into this issue. 

     An esm1 anti-sense RNA probe complementary bound the sequence from the translation 

start codon until the translation stop codon in the mRNA. The sense probe served as control. 

The esm1 gene and the anti-sense probe target site are illustrated in figure 4-2. 

 

 
Figure 4-2. Target site of the esm1 whole mount in situ probe. Illustration of where the 

RNA WISH probe binds complementary to the esm1 mRNA. The designed probe covers the 

entire coding sequence. bp, base pairs. 

 

     The WISH with the anti-sense probe for the wildtype is presented in figure 4-3d-f and j-l. 

The red rectangles mark the area magnified in d'-f' and j'-l'. The DA (orange arrowhead in 4-

3d') expressed esm1 at 24 hpf. ISVs in the primary sprouting process (Fig. 4-3d' and e') and 

when already developed (Fig. 4-3f' and j') were stained from 24 hpf to 56 hpf (red 

arrowheads).Esm1 mRNA harboring cells were visible during anastomosis of neighboring 

ISVs. At stages older than 56 hpf no specific esm1 expression could be determined (Fig. 4-

3k' and l'). A diffuse staining was also observed in embryos treated with the sense probe and 

should therefore be considered as unspecific background (Fig. 4-3a-c and g-i).  

     Taken together, esm1 was specifically expressed during formation of the trunk vascular 

network, in particular during sprouting of distinct vessels: 24 hpf in the dorsal aorta and from 

24 to 72 hpf in ISVs, with a peak from 36 hpf to 48 hpf. 

     Spatial expression of esm1 upon loss of flt1 is presented in figure 4-4. The areas magnified 

(Fig. 4-4a-f') are indicated in the original picture (Fig. 4-4a-f). At 24 hpf esm1 mRNA in the 

DA (orange arrowhead in Fig. 4-4a') was visible. Staining in the ISV during growth of the 

sprout (Fig. 4-4a' and b') and when already developed (Fig. 4-4c and d') was present from 24 

hpf to 56 hpf (red arrowheads). Esm1 expression at 72 hpf and 96 hpf was not recognized 

(Fig. 4-4e' and f'). The results indicate a commensurable esm1 gene expression profile in flt1 

mutants with that in the wildtype. 
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Figure 4-3. Spatial location of esm1 mRNA in the wildtype. Gene expression was 

determined using WISH from 24 hpf to 96 hpf. a-c and g-i depict the sense probe. The anti-

sense probe is shown in d-f and j-l in which red rectangles indicate the area shown magnified 

in d'-f' and j’-l’. In early development, the DA was still visible and positively stained (d'; orange 

arrowhead). Esm1 mRNA was present developing ISVs (d' and e') and already grown ISVs 

(f' and j') as indicated by red arrowheads. DA, dorsal aorta; hpf, hours post fertilization; ISV, 
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intersegmental vessels. Scale bar 1000 µm. 

 

 
Figure 4-4. Spatial expression of esm1 mRNA in flt1 mutants. Esm1 gene expression in 

the flt1ka604 line was ascertained with the anti-sense RNA WISH probe from 24 hpf to 96 hpf 

with whole mount in situ hybridization. Blue rectangles in a-f mark the area depicted 

magnified in a'-f'. Expression was first seen in the DA (a', orange arrowhead) and then 

retracts into the developing sprout (a', red arrowhead). With the onset of sprouting, staining 

was observed in the developing ISVs (a'-d', red arrowheads) and already grown ISVs (c' and 

d', red arrowhead). hpf, hours post fertilization; ISV, intersegmental vessels. Scale bar 1000 

µm. 

 

     Thus, independent of flt1 functionality, the increase of esm1 levels at 2 dpf as observed 

by qPCR could not be related to mRNA presence in growing number expression domains, 

suggesting that either esm1 expressing cells are cumulated in the positive domains or that 

individual cells had enriched amount of esm1. The absence of signal at 3 dpf and 4 dpf in the 

WISH although present in qPCR, could be explained by the low sensitivity of this method at 

these stages.  
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4.3 Esm1 promoter activity in the vasculature and cells of the spinal cord 

In order to gain a higher resolution and sensitivity for esm1 expression, another approach 

next to mRNA visualization via WISH was adapted for assessing spatio-temporal activity. 

Esm1 promoter activity was investigated to affirm expression to distinctive structures and 

following it in vivo. 

     A BAC containing a 167kb zebrafish genomic fragment including the esm1 gene was 

altered into a promoter reporter construct as described by Bussmann and colleague 

(Bussmann and Schulte-Merker 2011). The esm1 gene is encompassed between segments 

(46 kb upstream and 116 kb downstream). During BAC recombineering, a reporter gene 

expression cassette (mCitrine) was inserted in place of the esm1 start codon, thereby 

disabling the esm1 gene. Furthermore, tol2 sites were cloned into the BAC for stable 

integration of the reporter construct into the genome. Consequently, the tol2 sequences flank 

the entire genomic fragment in BAC. The generation of BAC reporter construct is described 

in 6.2.5 and illustrated in figure 6-1. In the promoter activity experiments the construct 

pTarBAC_Tol2_-46kbEsm1_mCitrine was injected and transgenic embryos referred to as 

TgBAC(esm1:mCitrine). Accordingly, the analyzed embryos were mosaic for the BAC 

reporter construct. 

 

4.3.1 The esm1 promoter is active in the endothelium of various regions 

Esm1 promoter activity in the vascular network in the wildtype was determined. The signals 

seen in various regions of embryos are depicted in figure 4-5. pTarBAC_Tol2_-

46kbEsm1_mCitrine, the esm1 BAC reporter construct, was injected into Tg(kdrl:hsa.HRAS-

mCherry)s916 wildtype fish. Esm1 promoter activity was observed in vessels of the brain 

between 25 hpf and 74 hpf, as indicated by white arrowheads in figure 4-5a. Furthermore, 

the esm1 promoter was active in vessels circumferencing the eye at 74 hpf (Fig. 4-5a, yellow 

arrowhead). Expression of the reporter gene was seen in the heart (white arrowheads) and 

its outflow tract (yellow arrowhead) from the third to the fourth day of development, shown in 

figure 4-5b. Signal was visible in the trunk vasculature (entire ISV, DLAV as indicated by 

white arrowheads) as depicted in figure 4-5c. In addition, an expression domain in the NT at 

3 dpf and 4 dpf was observed, suggesting that esm1 could be expressed by a subset of 

neurons (yellow arrowhead in figure 4-5c). At 74 hpf and 98 hpf, the reporter gene was 

expressed in the subintestinal vasculature supplying the intestinal tract (Fig. 4-5d, white 

arrowheads). These results imply that vessels are a prominent source for esm1. 
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Figure 4-5. Esm1 promoter activity in the heart and blood vessels. Esm1 promoter 

activity (mosaic expression of the pTarBAC_Tol2_-46kbEsm1_mCitrine) in the wildtype was 

observed in the vasculature of the eye and brain from 25 hpf to 74 hpf (a), the heart and its 

outflow tract (b) as well as vessels of the trunk (c) and intestine (d) from 74 hpf to 98 hpf 

(white arrowheads). Cells at the level of the spinal cord were also positive for signal (c; yellow 

arrowhead). The wildtype was in the vascular reporter background Tg(kdrl:hsa.HRAS-

mCherry)s916. Scale bar 200 µm. 

 

4.3.2 Active esm1 promoter in developing and developed trunk vasculature 

Esm1 promoter activity was determined in the wildtype from 24 hpf to 96 hpf as shown in 

figure 4-6. The pTarBAC_Tol2_-46kbEsm1_mCitrine plasmid was injected in the one-cell 

stage into lines transgenic for neuronal Tg(xla.tubb:DsRed)zf148 or vascular 

Tg(kdrl:hsa.HRAS-mCherry)s916. Fluorescent signal of the reporter construct was observed 

in the primary aISV sprout (blue arrowheads, Fig. 4-6a and b) and the entire developed ISV 

(blue arrowheads Fig. 4-6c-e) and remained present in the DLAV (yellow arrowheads in 

Fig.4-6 b' and c-e). Furthermore, activity of the esm1 promoter in the DA was visible (Fig. 4-

6a and e, white arrowhead). 
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Figure 4-6. Esm1 promoter activity during development of the trunk vasculature in 

wildtype. pTarBAC_Tol2_-46kbEsm1_mCitrine was injected into the one-cell stage in 

wildtype transgenic for the neuronal Tg(xla.tubb:DsRed)zf148 or vascular Tg(kdrl:hsa.HRAS-

mCherry)s916 marker. Esm1 reporter gene expression was studied from 24 hpf to 96 hpf. The 

esm1 promoter was active in the entire growing arterial sprout (blue arrowheads in a and b), 

in the DA (white arrowhead in a and e), the entire ISV (blue arrowheads in b' and c-e) and 

DLAV (yellow arrowhead in b' and c-e). DA, dorsal aorta; DLAV, dorsal lateral anastomotic 

vessels; hpf, hours post fertilization; ISV, intersegmental vessel. Scale bar in a, c-e 100 µm 

and in b 50 µm. 

 

4.3.3 Esm1 promoter activity in flt1 mutants is comparable to that in the wildtype and 

is present in the spinal cord vasculature 

Esm1 promoter activity was investigated in the trunk vasculature of flt1 mutants between 1 

dpf to 5 dpf (Fig. 4-7). Mosaic expression of the pTarBAC_Tol2_-46kbEsm1_mCitrine 

construct in the vascular reporter lines Tg(kdrl:hsa.HRAS-mCherry)s916 or Tg(fli1a:nGFP)y7 

revealed esm1 promoter activity in the emerging ISV sprout (Fig. 4-7a white arrowhead), in 

the developed ISV (Fig. 4-7b and c, blue arrowheads) and DLAV (Fig. 4-7b and c, yellow 

arrowheads). 
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Figure 4-7. The esm1 promoter is active in flt1 mutants. pTarBAC_Tol2_-

46kbEsm1_mCitrine was injected into the one-cell stage in flt1 mutant transgenic for the 

vascular markers (Tg(kdrl:hsa.HRAS-mCherry)s916 or Tg(fli1a:nGFP)y7). Embryos were 

analyzed for transgenesis in the trunk vascular network until 125 hpf. Esm1 expression in 

developing and developed ISVs (a-c; blue arrowheads) and DLAV (b and c; yellow 

arrowheads) was seen. In addition, spinal cord vessels emerging from an ISV (white 

arrowhead in d; violet arrowheads in e and g) or already connected to a neighboring ISV 

(white arrowhead in c; violet arrowhead in g'') showed BAC reporter expression. DA, dorsal 
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aorta; DLAV, dorsal lateral anastomotic vessels; hpf, hours post fertilization; ISV, 

intersegmental vessel. Scale bar 100 µm. 

 

     Upon loss of flt1, zebrafish form ectopic blood vessels  originating from vISV at the neuro-

vascular interface in the zebrafish trunk in the process of tertiary sprouting. Moreover, esm1 

is upregulated in flt1 mutants. This knowledge indicates a potential role of esm1 in tip cells 

(Wild et al. 2017). Esm1 promoter activity was observed in the forming (Fig. 4-7 arrowheads 

in d, e and g) and formed tertiary sprout (Fig. 4-7, white arrowhead in c, red arrowheads in f 

and g). Accordingly, in addition to ISVs, esm1 was present in ectopic sprouts in flt1 deficient 

zebrafish embryos. 

 

4.3.4 The esm1 promoter is preferentially active in arterial endothelial cells 

As previously shown, the trunk vasculature expressed esm1. However, the identity of the 

respective vessels remained in question. Esm1 promoter activity in the trunk vasculature of 

pTarBAC_Tol2_-46kbEsm1_mCitrine injected fish was analyzed in wildtype fish transgenic 

for the vascular marker Tg(kdrl:hsa.HRAS-mCherry)s916. The esm1 expression pattern was 

compared to that in lines visualizing arterial, venous or lymphatic endothelium. The results 

are presented in figure 4-8.  

     Identity of esm1 BAC transgenic ISVs was determined at 4 dpf. Mosaic esm1 BAC 

expression was seen over the entire aISV, from the DA and reaching into the DLAV (Fig. 4-

8a and b, blue arrowheads). Esm1 promoter activity in vISVs was mainly restricted to the 

dorsal part (Fig. 4-8a, brown arrowheads), if construct expression was present at all (Fig. 4-

8b). Similar observation was made with the main vessels DA and PCV, in which reporter 

expression was seen mostly in the DA (Fig 4-8b, brown arrowhead) and very seldom in the 

PCV (Fig. 4-8b, white arrowhead) and connecting vessels (Fig. 4-8b, orange arrowhead). 

Quantification strengthened this observation when the numbers of aISVs or vISVs with esm1 

promoter activity were divided to sum of both (Fig. 4-8c). Similar observation was made when 

same measurements were performed for DA and PCV (Fig. 4-8c). Accordingly, esm1 is 

preferentially expressed in vessels of arterial identiy. 

     Due to the low occurrence of esm1 promoter activity in venous vessels, it was compared 

with the distribution of ECs of either arterial or venous identity in ISVs (Fig 4-8d). Zebrafish 

embryos transgenic for both the arterial marker flt1 and venous marker flt4 showed flt1 

expression in aISVs over the entire length and in the DLAV at 4 dpf. vISVs were not always 

composed entirely of vECs because in some were still ECs of arterial identity in the dorsal 

part of the concerning vessel present (white arrowhead, Fig. 4-8d). These results suggest, 



Results 

 42 

that esm1 is supposedly expressed in ECs of arterial identity. 

     Comparison of the BAC reporter gene expression in the PCV and connecting vessels with 

the lymphatic vessel marker lyve1b indicated esm1 promoter activity more likely in lymphatic 

ECs than cells of exclusively venous identity (Fig. 4-8e). 

 

 
Figure 4-8. The esm1 promoter is preferentially active in endothelial cells of arterial 

identity. The BAC esm1 promoter construct pTarBAC_Tol2_-46kbEsm1_mCitrine was 

injected into wildtypes and investigated for fluorescence in either arteries or veins in the trunk 

vascular network at 4 dpf. a and b show the vascular marker Tg(kdrl:hsa.HRAS-mCherry)s916 

in red and esm1 reporter construct expression is visible in green. Esm1 promoter activity was 

observed in the entire aISV (blue arrowheads in a and b), in the DA (brown arrowhead in b) 

and, if present, in the dorsal part of a vISV (brown arrowheads in a). Moreover, the BAC 

reporter was expressed in the PCV (whiet arrowhead in b) and its connecting vessels (b, 

orange arrowhead). c presents a graph which shows quantification of vessels positive for 
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esm1 BAC reporter gene expression. d depicts the distribution of arterial (red fluorescent flt1 

positive cells) and venous ECs (green flt4 marker) in ISVs at 4 dpf. Due to supposedly 

lymphatic cells in b (white and orange arrowheads), its expression was compared with the 

lymphatic reporter line Tg(lyve1b:eGFP)nz150 (e, white arrowheads). aISV, arterial 

intersegmental vessel; DA, dorsal aorta; DLAV, dorsal lateral anastomotic vessels; dpf, days 

post fertilization; vISV, venous intersegmental vessel. Scale bar 100 µm. 

 

4.3.5 Neurons of the spinal cord show esm1 promoter activity  

Esm1 promoter activity at the level of the NT was visible. Moreover, previous studies showed 

that flt1 is expressed in this expression domain as well (Wild et al. 2017). Mosaic esm1 BAC 

reporter construct expression (pTarBAC_Tol2_-46kbEsm1_mCitrine) in neurons of the spinal 

cord was verified and its expression profile compared with that of flt1 in the spinal cord as 

shown in figure 4-9.  

     First, the flt1 expression in neurons of the spinal cord at 4 dpf was examined (Fig. 4-9a). 

The neuronal transgenic line Tg(xla.tubb:DsRed)zf148 visualizes the spinal cord, whereas a 

stable BAC reporter line aided in analysis of flt1 expression. Injection of the esm1 BAC 

promoter construct into the neuronal reporter line showed comparable expression in the 

spinal cord to that of the flt1 expression (Fig. 4-9b, white arrowheads). In figure 4-9c is 

presented the spatial location of esm1 expressing neurons when compared to the vascular 

marker Tg(kdrl:hsa.HRAS-mCherry)s916 (white arrowheads).  

     Conclusively, taking the entire promoter expression profile (predominantly expressed in 

arterial endothelium and in neurons) of esm1 into account, it appeared similar to that of flt1. 

 

4.4 Altered esm1 levels influence degree of ectopic sprouting at the neuro-vascular 

interface in the zebrafish trunk 

Flt1 mutants have a hypersprouting phenotype and elevated esm1 expression (Wild et al. 

2017). In the mouse model, ESM1 is considered a tip cell specific gene and is relevant for 

sprouting (Rocha et al. 2014). Previous data in this work evinced expression domains of 

esm1 in the early embryonic stages. Furthermore, esm1 mRNA levels were significantly 

increased at 3 dpf and 4 dpf in the flt1 LOF model; at a time point when ectopic sprouts arise. 

Apparently, esm1 is involved in the development of vessels and a relationship between 

tertiary sprouting and esm1 was suspected. To test this, esm1 LOF experiments in wildtype 

and flt1 mutants were performed. In addition, the effect of esm1 overexpression on vascular 

patterning in wildtype and flt1 mutants was examined. 

      Quantification of the spinal cord vascular network was performed as described in section 

6.2.12.3.2. This method was applied by colleagues in this lab in previous work (Wild et al. 
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2017). 

 

 
Figure 4-9. Activation of the esm1 promoter in neurons of the spinal cord. The esm1 

promoter construct pTarBAC_Tol2_-46kbEsm1_mCitrine was injected into wildtypes with 

either a neuronal (b, xla.tubb) or vascular reporter (c, kdrl). The observed expression pattern 

was compared to that found in the arterial specific flt1 reporter line (a) at 4 dpf. DA, dorsal 

aorta; DLAV, dorsal lateral anastomotic vessels; dpf, days post fertilization; ISV, 

intersegmental vessel; NT, neural tube. Scale bar 100 µm. 

 

4.4.1 Loss of esm1 rescues hypersprouting in flt1 mutants 

The role of esm1 during hypersprouting in flt1 mutants was assessed by several LOF 

approaches: morpholino mediated knock down of esm1 and generation of an esm1;flt1 

double knock out zebrafish. 

 

4.4.1.1 Morpholino-induced esm1 knock down in flt1 mutants decreases tertiary 

sprouting 

Morpholino (MO)-induced knock down is depicted in figure 4-10. 1 ng of either control or 

esm1-ATG MO was injected into the 1-cell stage embryo and imaged at 4 dpf. Reporter gene 

expression under kdrl promoter enables visualization of the blood vessels and 

Tg(xla.tubb:DsRed)zf148 reports mature neurons. Analysis of both segments (Fig. 4-10b) and 

branching points (Fig. 4-10c) revealed that flt1 mutants injected with esm1 targeting MO 

showed significantly fewer ectopic sprouts when compared to control MO. In contrast, 

wildtype embryos injected with esm1 MO did not display any apparent phenotype.  
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Figure 4-10. Esm1 knock down in the flt1 LOF model attenuates tertiary sprouting. (a) 

Translational knock down (LOF) of esm1 was achieved by injecting esm1-ATG MO into 

wildtype or flt1 mutants. The fish lines were transgenic for kdrl, a blood vessel specific 

reporter (DA, DLAV, ISVs, PCV). Additionally, the wildtype visualizes the neural tube 

(xla.tubb). b and c depict quantifications of the vascular network with regard to segments and 

branching points, respectively. DA, dorsal aorta; DLAV, dorsal lateral anastomotic vessel; 

dpf, day post fertilization; LOF, loss-of-function; MO, morpholino; PCV, posterior cardinal 

vein; wt wildtype. Quantification in b and c: mean±s.e.m., normality: D'Agostino & Pearson 

omnibus, t-test. wt control n=12; wt esm1 MO n=17; flt1 control n=16; flt1 esm1 MO n=18. 
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Scale bar 100 µm. 

 

     The MO dosage was verified in esm1-3721/-3721 mutants. Two concentrations, 1 ng and 3 

ng were injected as presented in figure 4-11. Changes in the trunk vasculature could be 

evaluated and compared to the not injected zebrafish embryos (Fig. 4-11 a) with the vascular 

reporter Tg(kdrl:eGFP)s843. Though no side effects were recognized with 1ng MO (Fig. 4-

11b), the higher concentration resulted in increased diameter in ISVs (blue arrowhead in Fig. 

4-11c) and vessels below the NT, which were otherwise not visible (Fig. 4-11c, white 

arrowhead).  

 

 
Figure 4-11. Verification of the esm1 morpholino dosage in esm1 mutants. 1 ng (b) and 

3 ng (c) esm1 MO was injected into esm1 mutants with a vascular reporter background (kdrl) 

and compared to uninjected control (a) for possible side effects in the vascular system at 4 

dpf. 1 ng did not result in phenotypical alterations. Embryos into which 3 ng of MO was 

introduced showed additional vessels (white arrowhead in c) and ISVs with increased 

diameter (blue arrowhead in c). DA, dorsal aorta; DLAV, dorsal lateral anastomotic vessel; 

dpf, day post fertilization; MO, morpholino; PCV, posterior cardinal vein. Scale bar 100 µm. 

 

4.4.1.2 Generation of esm1 mutants using the CRISPR/Cas9 approach 

The decreased hypersprouting phenotype seen upon esm1 knock down should be confirmed 

with a stable esm1 knock out line. Esm1 mutants were generated using the CRISPR/Cas9 

approach as illustrated in figure 4-12. The esm1 gene consists of three exons. Computational 

analysis of protein domains predicted a signal peptide and a cysteine-rich domain. A deletion 

of the coding sequence was attempted using two sgRNAs targeting the 5' untranslated region 

(UTR) and 3'UTR, respectively. With this approach neither transcription nor translation will 

be initiated and compensation due to remaining protein excluded. The presence of a deletion 

and the genotype was determined with two PCRs, thereby amplifying the wildtype and mutant 

allele in separate reactions. The mutant amplicon was checked and defined via sequencing. 
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An esm1 LOF line with a 3721 bp deletion was generated. A detailed description of the 

generation process is provided in 6.2.9.1.  
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Figure 4-12. Generation and verification of esm1 mutants. (a) Depiction of the esm1 gene 

and its protein domains. The gene consists of three exons. Two protein domains, a signal 

peptide and a cystein-rich domain, were identified using computational analysis. (b) 

Mutations were induced using the CRIPR/Cas9 approach with two sgRNAs, which target the 

3'UTR and 5'UTR of the esm1 gene. The genotype (wildtype, heterozygotic or homozygotic) 

was identified by the size of the amplicons obtained from two Taq PCRs: one for detection of 

the wildtype allele (548 bp; primer 1 and primer 2) and a second amplifies the mutant allele 

(243 bp; primer 1 and primer 3). (c) The mutant amplicon was verified and the resulting 

deletion defined via sequencing. The resulting mutation was a deletion of 3721 bp. Thus, the 

entire coding sequence is missing and consequently no protein was produced. bp, base pairs; 

UTR, untranslated region. 

 

4.4.1.3 Establishment of an esm1;flt1 double mutant line 

In order to obtain more evidence that esm1 affects the sprouting phenotype upon loss of flt1 

function, a line was established in which both esm1 and flt1 are non-functional. For this, 

esm1-3721nt homozygous mutants were crossed with flt1ka604 homozygous fish. Consequently, 

the F0 is heterozygous for both the esm1 and flt1 mutant allele and incross resulted in 

homozygous double mutants (Fig. 4-13).  

 

 
Figure 4-13. Establishing esm1;flt1 double mutants. Homozygous esm1 mutants were 

crossed with animals homozygous for flt1. The progeny, heterozygous for both genes, were 

mated to obtain homozygous mutants for both esm1 and flt1. 

 

The trunk vascular network at the spinal cord level was analyzed in the wildtype, esm1-3721/-

3721, flt1ka604 and in the respective esm1;flt1 double mutant as depicted in figure 4-14. The 

pattern of the vessels was not altered upon loss of esm1. However, loss of flt1 alone or 

simultaneously with esm1 resulted in significant increase of tertiary sprouting when compared 

to either wildtype or esm1 mutant. Spinal cord vascularization was with high significance most 

prominent in flt1 mutants when collated with the other genotypes. 

     In summary, the data of the conducted LOF experiments suggests that esm1 alone does 

not affect the vascular pattern in the trunk. Loss of esm1 in flt1 mutants, however, rescued 

the hypersprouting phenotype to great extent. 
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Figure 4-14. Vascular patterning in esm1 and flt1 LOF models at the level of the spinal 

cord. (a) Depiction of the spinal cord vascular network in the wildtype, esm1 mutant, flt1 

mutant and the esm1;flt1 double mutant. The fish lines were in a Tg(kdrl:eGFP)s843 x 

Tg(xla.tubb:DsRed)zf148 transgenic background, visualizing blood vessels in green and the 

NT in red. Ectopic sprouting was quantified and presented in b and c, respectively. DA, dorsal 

aorta; DLAV, dorsal lateral anastomotic vessel; dpf, day post fertilization; PCV, posterior 

cardinal vein; wt, wildtype. Quantification in b and c: mean±s.e.m., normality: D'Agostino & 

Pearson omnibus, t-test. wt n=28; esm1 n=30; flt1 n=27; esm1;flt1 n=35.  Scale bar 100 µm. 

 

4.4.2 Number of tertiary sprouts is decreased in esm1 mutants upon flt1 knock down  

If indeed, esm1 is an essential part of the tertiary sprouting process initiated in the flt1 

mutants, hypersprouting upon induced decreased flt1 levels should be inhibited in fish with 

dysfunctional esm1. To test this, esm1sa11057 mutants was used as a model in which esm1 

was inactive. This line had a base pair substitution from C to A in the exon 1, which resulted 

in a premature stop codon. Thus, transcription stopped after 240 bp and half of the Esm1 

protein, including the most relevant cysteine-rich protein domain, was missing. The mutation 

is illustrated in figure 4-15. 

     Flt1 levels were decreased in both wildtypes and esm1sa11057 mutants using a MO based 

approach. The lines were transgenic for Tg(kdrl:eGFP)s843 and Tg(xla.tubb:DsRed)zf148. 

Embryos in the one-cell stage were injected with 1 ng of either control of flt1 MO. The vascular 
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pattering was assessed at 4 dpf. A control MO served as monitor for any injection effects. 

Esm1 knock out zebrafish appeared normal as no aberrant vessel patterning was recognized. 

Flt1-ATG MO targeted knock down significantly increased ectopic sprouting in wildtypes. The 

same knock down in esm1sa11057 mutants, also resulted in sprout formation, but to a much 

lesser extend compared to the wildtype. The results are shown in figure 4-16. In conclusion, 

esm1 plays a functional role in tertiary sprouting. 

 

 
Figure 4-15. Graphical illustration of the mutation in the esm1sa11057 line. A substitution 

of a C to an A in exon1 results in a premature stop codon. Only the signal peptide remains in 

the 79 aa partial protein. A, adenosine; aa, amino acids; bp, base pairs; C, cytosine. 

 

4.4.3 Esm1 gain-of-function promotes vascular sprouting 

The previous experiments showed that loss of both esm1 and flt1 results in less tertiary 

sprouts. Overexpression experiments should reveal, if elevated amounts of esm1 could 

enhance hypersprouting at the region of the spinal cord when flt1 was inactive. These 

experiments might also give greater insight into a mechanism, how esm1, Vegfaa 

bioavailability and Flt1 are involved with each other. 

 

4.4.3.1 Elevated esm1 expression under an ubiquitously active promoter results in 

elevated tertiary sprouting  

Overexpression of esm1 was achieved by injecting the pCS2+_esm1 vector into the one-cell 

stage zebrafish embryo. This vector contained a cytomegalovirus (CMV) promoter, which 

was ubiquitously active. As a control, pCS2+ without any insert was injected. 1 nL of a of 50 

ng/µL solution of either plasmid was introduced. The wildtype line was transgenic for both the 

blood vessel reporter Tg(kdrl:eGFP)s843 and neuronal reporter Tg(xla.tubb:DsRed)zf148 while 

the flt1 mutant was transgenic for Tg(kdrl:hsa.HRAS-mCherry)s916 only.  
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Figure 4-16. Hypersprouting upon flt1 knock down is less severe in esm1sa11057 

mutants. The effect of decreased amount of flt1 on tertiary sprouting in esm1sa11057 mutants 

at 4 dpf was studied. (a) flt1 LOF was obtained by injecting flt1 MO into both wildtype and 

esm1sa11057 which have a (kdrl:eGFP;xla.Tubb:DsRed) double transgenic background, with 

kdrl being a blood vessel specific reporter (DA, DLAV, ISVs, PCV) and the xla.Tubb a 

neuronal reporter. The number of segments (b) and branching points (c) was measured and 

thus the degree of tertiary sprouting determined. DA, dorsal aorta; DLAV, dorsal lateral 

anastomotic vessel; dpf, days post fertilization; LOF, loss-of-function; MO, morpholino; PCV, 

posterior cardinal vein; wt, wildtype. Quantification in c and d: mean±s.e.m., normality: 

D'Agostino & Pearson omnibus, t-test, n=12 for wt Control and both esm1sa11057  groups. n=10 

for wt flt1 MO group. Scale bar 100 µm. 
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Figure 4-17. Global increase of esm1 results in augmented tertiary sprouting. The effect 

of augmented amounts of esm1 on tertiary sprouting in flt1 mutants at 4 dpf was studied. 

pCS2+ was a mammalian expression vector containing the ubiquitously active 

cytomegalovirus (CMV) promoter. (a) Global esm1 mRNA expression was obtained by 

introducing pCS2+_esm1 (esm1 GOF CMV) into both wildtype and flt1 mutants. The wildtype 

was in a Tg(kdrl:eGFP;xla.Tubb:DsRed) double transgenic background and the flt1 mutant 

line carries the Tg(kdrl:Hsa.HRAS-mCherry) transgene. The unmodified pCS2+ plasmid was 

used as a control. Changes in the vascular network were quantified as illustrated in b and c. 

DA, dorsal aorta; DLAV, dorsal lateral anastomotic vessel; dpf, days post fertilization; GOF, 

gain-of-function; PCV, posterior cardinal vein; wt, wildtype. Quantification in c and d: 
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mean±s.e.m., normality: D'Agostino & Pearson omnibus, t-test, n=12 for all groups. Scale bar 

100 µm. 

 

4.4.3.2 Esm1 overexpression under a blood vessel specific promoter augments 

number of tertiary sprouts 

Unspecific elevation of esm1 mRNA resulted in a more pronounced hypersprouting and 

previous data revealed the presence of esm1 mRNA in blood vessels. Thus, the effects on 

spinal cord vascularization were tested, when esm1 was increasingly expressed under the 

control of the blood-vessel specific fli1a promoter. Details about the overexpression construct 

and its generation are provided section in 6.2.8. and 6.2.8.1. 

     1 nL of either 0.1% (v/v) DMSO (control) or 50 ng/µL of overexpression plasmid 

fli1a_eGFP-p2a-esm1;cmlc2:eGFP (esm1 GOFBV) solution was injected into wildtypes and 

flt1 mutants at the one cell-stage and the effects on the vascular pattern analyzed at 4 dpf. 

The used fish lines were in a Tg(kdrl:Hsa.HRAS-mCherry)s916 blood-vessel transgenic 

background. DMSO injected animals were used as control.  

     The vascular patterning in the wildtype was not affected when esm1 was present in higher 

abundance. Comparable to esm1 overexpression under the ubiquitously active promoter, 

tertiary sprouting at the level of the spinal cord was distinctively increased in the flt1 LOF 

model, albeit with even higher significance (Fig. 4-18). 

 

4.5 The effects of esm1 on tertiary sprouting was recapitulated in another Vegfaa 

GOF model, the vhl mutant 

Previous data indicate that esm1 functionality alone does not affect the vascular patterning 

in the trunk. However, variation of esm1 levels in the Vegfaa GOF model flt1 mutants resulted 

in a correlating change in spinal cord vascularization. Accordingly, alterations in the vascular 

network at the neuro-vascular interface should be applicable to other Vegfaa GOF scenarios, 

for example the vhl mutant. 

     Effects of esm1 in the vhl LOF model were examined by MO-induced knock down and 

blood vessel-specific overexpression at 4 dpf. 1 nL of either 0.1% (v/v) DMSO (control) or 50 

ng/µL overexpression plasmid fli1a_eGFP-p2a-esm1;cmlc2:eGFP (esm1 GOFBV) solution or 

1 ng esm1-ATG MO (esm1 LOF) of was injected and embryos transgenic for 

Tg(kdrl:Hsa.HRAS-mCherry)s916, a blood-vessel reporter, used for analysis.  
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Figure 4-18. Esm1 overexpressed in blood vessels results in elevated ectopic 

sprouting. The effect of augmented levels of esm1 in flt1 mutants at 4 dpf specifically in the 

blood vessels on tertiary sprouting was studied. (a) The overexpression construct 

fli1a_eGFP-p2a-esm1;cmlc2:eGFP (esm1 GOF BV) was injected into Tg(kdrl:Hsa.HRAS-

mCherry)s916 transgenic lines with either a wildtype or flt1 LOF genotype. The blood vessels 

were visualized by expression of a fluorescent protein under the kdrl promoter (DA, DLAV, 

ISVs, PCV). DMSO injected animals were used as control. Measurements of the number of 

segments (b) and branching points (c) was performed and allows visualization of changes in 

tertiary sprouting. DA, dorsal aorta; DLAV, dorsal lateral anastomotic vessel; dpf; days post 
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fertilization; GOF, gain-of-function; PCV, posterior cardinal vein; wt, wildtype. Quantification 

in b and c: mean±s.e.m., normality: D'Agostino & Pearson omnibus, t-test, n=14 for all groups. 

Scale bar 100 µm. 

 

     The effects of esm1 knock down and overexpression seen in zebrafish with inactive flt1 

could be reproduced in vhl mutants as shown in figure 4-19. Translational block of esm1 

resulted in decreased tertiary sprouting while overexpression lead to an increase in spinal 

cord vascularization. These changes were highly significant. 

     Summarizing the LOF and GOF experiments suggest that 1) esm1 has no major effect in 

wildtype zebrafish embryos, 2) loss of esm1 rescues hypersprouting in two different Vegfaa 

GOF models and 3) gain of esm1 promotes tertiary sprouting. The data suggests, that loss 

of esm1 selectively affects the tertiary sprouting process and indicate, that esm1 plays an 

active role in sprouting when Vegfaa is present in greater abundance. 

 

 
Figure 4-19. Esm1 levels affect spinal cord vascularization in the vhl mutant. (a) Esm1 

levels were either decreased using an ATG MO (knock down) or increased with the blood 

vessel specific overexpression plasmid fli1a_eGFP-p2a-esm1 (GOF BV) in the vhl mutant. 

The effects on the vascular network in the spinal cord were analyzed at 4 dpf. Measurements 

of segments and branching points in the different groups, respectively, is presented in b and 
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c. DA, dorsal aorta; DLAV, dorsal lateral anastomotic vessel; dpf, days post fertilization; MO, 

morpholino; PCV, posterior cardinal vein. Quantification in b and c: mean±s.e.m., normality: 

D'Agostino & Pearson omnibus, t-test. Control n=16; esm1 MO n=10; esm1 GOF BV n=5. 

Scale bar 100 µm. 

 

4.6 The development of the trunk vasculature is not distinctively altered upon loss of 

esm1  

The results of the gene expression and the various LOF and GOF scenarios prompt an effect 

of esm1 on the zebrafish trunk vasculature. Previous data let assume an effective role of 

esm1 only with increased abundance of Vegfaa. A closer look into an esm1 related 

phenotype was intended with a LOF model.  

     The vascular pattern was analyzed in the esm1-3721/-3721 mutant line transgenic for the 

vascular specific reporter Tg(kdrl:eGFP)s843 from 1 dpf to 4 dpf (Fig. 4-20). In this line the 

entire coding sequence was deleted. Consequently, no protein was translated and possible 

compensation mechanisms prevented at the best possible. Compared to the wildtype, no 

change in the vascular architecture was observed. Primary sprouts at 1 dpf developed into 

functional ISVs and DLAV and secondary sprouting successfully formed vISVs. Esm1 

mutants were devoid of tertiary sprouts. Thus, the loss of esm1 alone seemed to have no 

effect on the vascular patterning in the zebrafish trunk. 

     The vascular network in the trunk showed no distinctive phenotype upon loss of esm1. 

Next, an effect of esm1 on an individual ISV was investigated by following parameters: 

diameter, length and nuclei (Fig. 4-21). Vessel morphology was observed in the reporter 

Tg(kdrl:eGFP)s843. The parameters were ascertained in 2 dpf, 3 dpf and 4 dpf old esm1-3721/-

3721 zebrafish embryos and contrasted to the wildtype. The measurement procedures are 

described in 6.2.12.3.1. No morphological changes were perceptible according to any 

parameter at 2 dpf. Following significant changes were found at later stages: at 3 dpf, aISVs 

in esm1 mutants were longer. At the same time point, more nuclei were present in both aISVs 

and vISVs. In 4 dpf old embryos, diameter was decreased in aISVs while vISVs were shorter 

and harbored a more nuclei. Variations in diameter and length affect vascular resistance, 

while the number of nuclei permits statements about cell number, such as were determined 

at 3 dpf and 4 dpf.  

Thus, a physiological role of esm1, to some extend even distinctive to aISVS and vISVs, 

could be assumed. Furthermore, this data let suppose an inhibiting effect of esm1 on cell 

proliferation, especially on vISVs. Further investigations have to validate this observation. 
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Figure 4-20. The trunk vascular pattern in esm1 zebrafish mutants was not altered 
during early development. The arrangement of the trunk vascular network in esm1-3721/-3721 
mutants was compared to that of wildtype zebrafish embryos from 1 dpf to 4 dpf. The fish 
were in the vascular reporter Tg(kdrl:eGFP)s843. aISV, arterial intersegmental vessel; DA, 
dorsal aorta; DLAV, dorsal lateral anastomotic vessel; dpf, days post fertilization; PCV, 
posterior cardinal vein; vISV, venous intersegmental vessel. Scale bar 100 µm 
 

 



Results 

 58 

 

 
Figure 4-21. Trunk vessels show a mild phenotype in esm1 knock out fish. The diameter 

(a), length (b) and the number of nuclei present in ISVs were determined. DA, dorsal aorta; 

DLAV, dorsal lateral anastomotic vessel; dpf, days post fertilization; ISV, intersegmental 

vessel; PCV, posterior cardinal vein; wt, wildtype. Quantification: mean±s.e.m., normality: 

D'Agostino & Pearson omnibus, t-test. For each parameter investigated: wildtype and esm1-

3721/-3721 mutant at 2 dpf and 3 dpf: n=30; wildtype 4 dpf n=29; esm1-3721/-3721 mutant n=30. 
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5 Discussion 

Esm1 is one of the most upregulated genes during the process of tertiary sprouting in flt1 

deficient zebrafish (Wild et al., 2017). ESM1 was formerly described as a tip cell marker and 

competitor for VEGF-A binding on Fibronectin, thus as a putative regulator of VEGF-A 

bioavailability (Shin, Huggenberger and Detmar, 2008; Rocha et al., 2014). These data point 

to an important role of Esm1 in angiogenic processes. In the model organism zebrafish, the 

expression of esm1 in the embryo was not published unto now. Moreover, functional data is 

on this molecule is sparse in general and unpublished in the model organism zebrafish. In 

here, it has been shown that esm1 is predominantly expressed in the developed and 

developing vasculature with probable specificity to arterial ECs as well as a subset of 

neurons in the spinal cord. On functional basis, esm1 is proposed as a necessary but not 

sufficient factor for vascular patterning at the neuro-vascular interface in the zebrafish trunk 

in dependency of Vegfaa. Furthermore, the data let assume an anti-proliferative effect of 

esm1 on endothelial cells. 

 

5.1 Gene expression pattern of esm1 

The dynamic expression pattern of esm1 was studied with three approaches from the first 

until the fourth day of development. 1) qPCR was used to semi-quantitatively investigate 

alterations in esm1 gene expression in two Vegfaa GOF models at 3 dpf and 4 dpf. In this 

time window tertiary sprouting starts and is still ongoing. 2) WISH was used to study mRNA 

location allowing allocation of distinct expression areas and changes in expression domains 

during development. However, WISH is not quantitative. Compared to other methods, the 

sensitivity is rather low, making it likely that low-level expression areas are overseen. 

Furthermore, this method strongly relies on specificity of the probe and minimization of 

background because in general the development of the staining reaction is usually stopped 

as soon as the signal to noise ratio appears optimal. 3) Fluorescent reporter gene analysis 

of esm1 promoter activity visualized individual esm1 expressing cells and might unveil 

putative expression domains overseen in WISH. However, this method relies on the fact that 

the promoter construct used contains, indeed, all relevant regulatory elements. Furthermore, 

the high sensitivity of this strategy allows detection of even low levels of esm1 expression. 

The stability and accumulation of the fluorescent reporter protein venture overseeing 

reduction of expression levels. 
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5.1.1 Esm1 gene expression is enhanced in Vegfaa GOF models  

qPCR data obtained during this work and literature showed increased esm1 gene 

expression with the beginning and onset of spinal cord hypersprouting in Vegfaa GOF 

models at 3 dpf ad 4 dpf. The data let conclude an enhanced esm1 gene activity upon 

binding of Vegfaa to Kdrl. In other models was shown an upregulation of ESM1 expression 

upon binding of VEGF-A to VEGFR-2 (Conway, Collen and Carmeliet, 2001; Carmeliet, 

2003; Shin, Huggenberger and Detmar, 2008; Rocha et al., 2014).  

     ESM1 is present in tip cells in higher abundance. This knowledge can be transferred to 

tip cells spearheading the ectopic sprout zebrafish embryos with inactive flt1 or vhl (Abid et 

al., 2006; Rocha et al., 2014; Eilken et al., 2017). Indeed, promoter activity in the entire 

tertiary sprouts was detected, however, the overexpression in tip cells has to be tested with 

quantitative ISH or a stable reporter line.  

     Taken together, the data substantiate an activation of esm1 gene expression through the 

Vegfaa/Kdrl signaling pathway during angiogenesis also in the zebrafish model. 

 

5.1.2 Esm1 is expressed in the vasculature of zebrafish embryos 

Gene expression profiles about ESM1 in general are sparse. Literature described presence 

of ESM1 gene activity in ECs of mouse retinas and lymph vessels, in continuous cell lines 

of ECs (e.g. HUVEC and HEK) and various kinds of tumors, e.g. glioblastoma and bladder 

(Lassalle et al., 1996; Sarrazin et al., 2006, 2010; Shin, Huggenberger and Detmar, 2008; 

Maurage et al., 2009; Delehedde et al., 2013; Roudnicky et al., 2013; Rocha et al., 2014; 

Yang et al., 2015; Eilken et al., 2017). In zebrafish, expression of esm1 was so far is 

unknown but was expected to be present in ECs during phases of major growth of the 

organism as it happens during early zebrafish development. Therefore, this thesis provides 

the first detailed expression analysis in the zebrafish model.  

     WISH revealed presence of esm1 mRNA predominantly in the developing vasculature. 

The pattern in the DA and developing IVS were commensurable to that characterized in 

blood vessel markers, such as kdrl or fli1a (Herbert, Cheung and Stainier, 2012; Pociute, 

Schumacher and Sumanas, 2019). Comparison of the most dorsal signal alludes remaining 

gene activity in cells of the DLAV, but this expression domain has to be proven with sections 

(Childs et al., 2002; Kwon et al., 2012; Novodvorsky et al., 2015). However, contrasting to 

other vascular marker genes, expression of esm1 decreased after 2 dpf and becomes 

undetectable in WISH. The data connote a relation of esm1 to the development of the trunk 

vasculature because the gene is active at time points where the ISVs are growing or are 
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already developed. Activation of ESM1 gene expression in ECs of both lymphatic and retinal 

blood vessels downstream of the VEGF-A/VEGFR-2 signaling cascade, the major signaling 

pathway for angiogenic processes, was described (Shin, Huggenberger and Detmar, 2008; 

Rocha et al., 2014; Eilken et al., 2017).  

     Surprisingly, in WISH no staining was visible in older stages. Since esm1 transcription 

was verified at day three and four in qPCR, this might be due to methodological reasons. 

Either the probe did not reach into the deeper tissues with increasing size or signal became 

weaker with ongoing development. Either, the WISH protocol could be optimized for both 

increasing embryo size and the probe or another probe target site should be considered. 

However, first in situ on sections could be performed with the already available probe to 

confirm the observed domains and possibly identify additional expression areas. 

     On cellular level, as demonstrated by reporter gene analysis, the esm1 promoter was 

predominantly active in endothelium. Next to the trunk vasculature, the reporter construct 

was active in vessels of the brain, eye and intestine as well as the heart and its cardiac 

outflow tract. Studies with primary cell culture of healthy and tumor material of various 

tissues and mouse retinal endothelium identified ESM1 expression in these anatomical 

regions, however, under conditions where the gene is overexpressed (Abid et al., 2006; 

Shin, Huggenberger and Detmar, 2008; Rocha et al., 2014).  

     ESM1 is known as a tip cell marker due to its high abundance in such but is not exclusive 

for this cell phenotype (del Toro et al., 2010; Geudens and Gerhardt, 2011; Rocha et al., 

2014). In this thesis, no accumulation of esm1 in the tip cells, neither during development of 

the trunk vasculature in wildtype or flt1 mutant embryos nor in forming ectopic sprouts in the 

flt1 LOF model, was observed. This might be due to methodological problems including low 

resolution of WISH and the accumulation of GFP in the reporter fish, but could also reflect 

differences between vertebrate species (mouse vs. zebrafish). 

     Wildtype and flt1 mutants showed analogous esm1 expression pattern at 1 dpf and 2 dpf, 

which is in accordance to literature. An effect of deficient flt1 on the architecture of the trunk 

vascular network until the second day of development was excluded (Wild, 2016; Klems, 

2017; Wild et al., 2017). Promoter activity in the trunk at 3 dpf and 4 dpf was unaltered in 

flt1 deficient zebrafish embryos. Additionally, ectopic sprouts also showed reporter gene 

expression. These data confirm a vessel specific expression of esm1 in the zebrafish model.  

     In summary, esm1 is expressed in the vasculature during ongoing zebrafish development 

but most importantly in the developing and established trunk vascular network.  
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5.1.3 Esm1 is active preferentially in arterial endothelial cells and subset of neurons 

Esm1 activity in a subset of neurons was revealed. Furthermore, esm1 seems to be most 

likely expressed in EC of arterial identity. The specificity of esm1 expression in these 

anatomical region should be confirmed with a stable reporter line. The expression domains 

are quite similar to that found in a BAC flt1 reporter line, where flt1 is active in a subset of 

neurons and a marker for arterial ECs (Wild, 2016; Wild et al., 2017). Also, neurons and 

somites are sources for the ligand Vegfaa (Rossi et al., 2016; Wild et al., 2017). It could be 

hypothesized, that secretion of Esm1 by arteries and neurons might regulate bioavailability 

of Vegfaa for either receptor, Flt1 or Kdrl, by establishing a Vegfaa gradient. Similarities 

between esm1 and flt1 expression pattern could be coincidental or esm1 could be an artery 

specific modulator of Vegfaa response. 

     The proposed esm1 gene expression in lymphatic vessel should be validated with a 

stable reporter line.  

 

5.1.4 BAC transgenesis as an alternative tool to study gene expression 

A BAC harbors a genomic fragment, which is up to 300kb in size (Bussmann and Schulte-

Merker, 2011; Beil et al., 2012). The generation of a reporter line has many benefits when 

compared to mRNA localization via WISH. First, studies can be performed in vivo, and thus 

even enables time-lapse imaging. Second, embryos undergo much less treatments and do 

not need to be fixed. Third, BAC transgenesis is much more sensitive to detection and the 

construct can basically be in any cell of the embryo. Also, studies can be performed, even 

when the promoter regions are still unknown. On the other hand, drawbacks of this approach 

have to be considered. First, transgenesis is inefficient in general and thus the low 

probability of germ line transmission, as well. Second, the recombineering process to obtain 

a BAC reporter construct is elaborate. Third, the BAC is unspecifically integrated into the 

genome, even multiple times (Beil et al., 2012).  

     The BAC CH211-66D12 was identified and recombineered as described by Bussmann 

and colleagues (Bussmann and Schulte-Merker, 2011). This way, a reporter construct for 

esm1 promoter activity was obtained. The size of the sequences upstream and downstream 

of the esm1 gene let assume a high coverage of its promoter. A promoter is a DNA segment 

on which proteins assemble to form a pre-initiation complex for transcription. This DNA 

sequence specifies transcription start sites (TSS) and be up to several thousand base pairs 

upstream of the TSS (Juven-Gershon et al., 2008; Bai and Morozov, 2010; Yella, Kumar 

and Bansal, 2018). In eukaryotes, promoter DNA segments are classified as core promoter, 
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proximal promoters and distal promoter: the first are distinctively positioned in relation to the 

TSS; the second are sequences of 500bp relative to the TSS; the last are further away and 

include enhancer, silencer and insulator sequences (Carninci et al., 2006; Sandelin et al., 

2007; Lenhard, Sandelin and Carninci, 2012; Yella, Kumar and Bansal, 2018). Accordingly, 

the probability that the entirety of the esm1 promoter, which is still unknown for esm1, is 

contained within the BAC is high and thus this molecular tool is suitable for the studies 

performed during this project. However,disadvantages of this method has to be kept in mind, 

and alternative approaches for generation of transgenic lines could be applied, such as 

knock-in of a reporter gene via CRISPR/Cas9 or introducing a construct carrying a core 

promoter sequence only (Beil et al., 2012).  

     The expression profile in the trunk vasculature found by BAC transgenesis was in 

accordance with that of the WISH. Thus, the chosen BAC seems to be reliable. Moreover, 

the fluorescent signals were overlapping with that of the vascular reporter kdrl. Because 

injected embryos were analyzed not all cells become transgenic due to mosaic distribution 

of the reporter construct. Thus, expression is not present in the entire structure, and 

eventually not in the entire embryo. 

 

5.2 Esm1 alone does not influence the vascular architecture in the trunk  

Alteration of esm1 expression did not result in any detectable changes in the patterning of 

vessels in the zebrafish trunk. The number of segments or branching points was unchanged 

in GOF and LOF models. Furthermore, the development of the trunk vasculature in esm1 

knock out zebrafish embryos was not distinctively altered from 1 dpf to 4 dpf. Thus, esm1 is 

neither sufficient nor necessary for primary and secondary sprouting. Accordingly, at these 

stages esm1 should be considered as a vascular specific marker gene with unknown 

function. This is consistent with literature stating that in cell culture loss of ESM1 alone does 

not result in a phenotype (Shin, Huggenberger and Detmar, 2008). 

 

5.3 Esm1 has minor effect on ISV morphology and endothelial cell proliferation 

In zebrafish embryos with inactive esm1 some minor changes in morphological parameters 

affecting vascular resistance were observed. Vascular resistance is related to blood 

pressure and blood flow. Indeed, ESM1 is associated with hypertension, but is 

predominantly known as a marker for cardiovascular conditions rather than affecting blood 

pressure (Celık et al., 2015; Sun et al., 2019). Further studies have to be performed to reveal 

if these variations have considerable effect on zebrafish physiology or if they compensate 
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each other in some way and if these effects can be related to EC identity. Moreover, it has 

taken into consideration that these morphological changes might be attributed to 

pronounced effects of another molecule when esm1 is missing. 

     Increased number of cells in aISVs and vISVs upon loss of esm1 let assume an inhibitory 

effect on cell proliferation. While VEGF-A is known to potentiate cell proliferation, binding 

partners of dermatan sulfate PGs, the family to which Endocan belongs to, include ECM 

components which also have proliferative effect on ECs (Boilly et al., 2000; Trowbridge and 

Gallo, 2002; Olsson et al., 2006). It is likely, that the proliferative effects observed in the 

esm1 mutants can be attributed to an interaction partner in the ECM, for example fibroblast 

growth factor, rather than an effect on Vegfaa signaling because Vegfaa bioavailability was 

to be unaltered. Additional studies have to be performed to elucidate this issue. 

 

5.4 Spinal cord vascularization is modulated by Esm1 when Vegfaa/Kdrl signaling 

is highly active 

The role of esm1 in angiogenesis was analyzed in GOF and LOF experiments. Until now, a 

potential function of esm1 on the trunk vascular system in the zebrafish remained elusive. 

     With regard to esm1 LOF experiments, putative unspecific site effects of antisense 

morpholino and alleged compensatory effects of genetically disrupting esm1 masking 

inactivation phenotypes had to be considered. Therefore, both approaches, morpholino 

based translational block and genetic deletion of esm1, were used in parallel. Any phenotype 

arising by both LOF approaches has to be considered as specific. Concerning GOF 

experiments, plasmid injections of esm1 under the control of either an ubiquitously 

expressed or blood vessel specific promoter yield mosaic overexpression. 

     Augmenting Vegfaa bioavailability in zebrafish was achieved by deficiency of flt1 or vhl 

resulting in a hypersprouting phenotype at 3 dpf and 4 dpf. They are models for physiological 

spinal cord vascularization around 13 dpf. Different approaches were applied to proof a 

relationship between Vegfaa bioavailability and esm1: 1) Esm1 knock down in fish deficient 

for flt1 or vhl. 2) flt1 knock down in esm1sa11057. 3) Ubiquitous and blood vessel specific 

overexpression of esm1 in flt1 or vhl LOF models. 4) esm1;flt1 double mutants. It could be 

hypothesized that with low esm1 levels, Vegfaa bioavailability for Kdrl decreases and 

consequently, ectopic sprouting is diminished. The other way around overexpression of 

esm1 increased spinal cord vascularization in Vegfaa GOF models. Changes in the vascular 

network ventral of the neural tube were not observed. Accordingly, only the degree of tertiary 

sprouting seemed to be affected. The angiogenic process appeared unaffected because no 
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variations in both segments and branching points were recognized. It would be interesting 

to investigate, if esm1 mutants develop hypersprouting at the neuro-vascular interface at 13 

dpf, when it occurs under normal condition. These data could be confirmed even more by 

establishing a stable esm1 GOF line and esm1;vhl double mutants.  

     Previous studies in cell culture and in the mouse model revealed enhanced ESM1 levels 

during angiogenesis, which is requirement in the formation of tertiary sprouts (Shin, 

Huggenberger and Detmar, 2008; Rocha et al., 2014; Eilken et al., 2017). This thesis 

showed in two scenarios of increased Vegfaa bioavailability that esm1 is a major player in 

establishing the trunk vascular pattern. Indeed, ectopic sprouting was largely decreased 

upon deficiency of either flt1 or vhl when esm1 levels were low. As proposed by Wild et al, 

with loss of flt1 or vhl function, more Vegfaa is available to bind to Kdrl and results in a highly 

active Vegfaa/Kdrl signaling. Subsequently, angiogenesis occurs, ectopic sprouts are 

formed and esm1 becomes upregulated (Wild et al. 2017). Relating to this hypothesis, ESM1 

was described a downstream target VEGF-A/VEGFR-2 signaling cascade, thus 

encouraging this hypothesis (Conway, Collen and Carmeliet, 2001; Carmeliet, 2003; Shin, 

Huggenberger and Detmar, 2008; Rocha et al., 2014; Eilken et al., 2017). 

     Loss of flt1 or expression of vegfaa in neurons of the spinal cord enable formation of 

ectopic sprouts (Wild et al., 2017). Simultaneous expression of esm1 and vegfaa in neurons 

might be substantial. With close spatial relation, Esm1 could modulate Vegfaa bioavailability 

with high efficiency and indirectly regulate angiogenesis at the level of the spinal cord (Fig. 

5-1a). The performed esm1 overexpression experiments substantiate the hypothesis. 

     A potential analogy between flt1 and esm1 concerning gene expression in arterial ECs 

and neurons could indicate an alleged governing effect of Esm1 on flt1 positive cells 

concerning Vegfaa signaling transduction. However, reproducibility of the knock down and 

overexpression experiments in vhl mutants let assume that action of Esm1 is attributed to 

the higher abundance of Vegfaa rather than to the absence of flt1. Upon biallelic vhl 

inactivation, vegfaa, flt1 and kdrl are simultaneously upregulated (Bluyssen et al., 2004; van 

Rooijen et al., 2011). As shown in this work, esm1 is another gene with increased activity 

upon loss of vhl function. Accordingly, vhl mutants simulate a Vegfaa GOF scenario and do 

not represent an alternative for inactive flt1. The findings let propose a competition between 

Esm1 and Vegfaa for binding an ECM molecule. Thus, release of Vegfaa, capable of binding 

to Kdrl, into the ECM is modulated. 
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5.4.1.1 Reliability of morpholino experiments 

In this project, a translational knock down was achieved using morpholino. This approach 

has many benefits. Morpholino are stable, able to target the region of interest (splice variant 

knock down or translational knock down) and can easily introduced into the egg cell by 

microinjection. Nonetheless, disadvantages come along with this method. Growth of the 

organism results in dilution of the morpholino and thus, the effect milder over time. 

Furthermore, reported morphant phenotypes were absent in the respective mutant (Law and 

Sargent, 2014; Kok et al., 2015; Rossi et al., 2015; Joris et al., 2017). Thus, morpholino 

have to be used in a moderate concentration and the results taken with caution. Its side 

effects can be evaluated by introducing the morpholino into the corresponding mutant. 

Alternative approaches, for example altered CRISPR/Cas9 method, in which no breaks are 

induced but spatially inhibits translation, should be considered (Liu et al., 2016).  

     In the performed experiments a control morpholino was used to exclude any effects from 

injection. Next to that, the concentrations were always the same and moderately low. Flt1 

knock down was performed in previous studies. According to that, the concentration was 

already determined and their side effects analyzed in the corresponding mutant (Krueger, 

2012; Wild et al., 2017). Similarly, side effects concerning the esm1 morpholino were 

evaluated in this work. The concerning experiments were performed with a reasonable 

amount of morpholino. 

 

5.5 Esm1 affects binding efficiency of Vegfaa to Kdrl  

Endocan and VEGF-A are present in the ECM and in literature a relationship between these 

molecules with a common ECM component was proposed (Trowbridge and Gallo, 2002; 

Rocha et al., 2014). In the following two scenarios are proposed, how Esm1 and Vegfaa 

work together to affect ectopic sprouting in the zebrafish trunk: 1) Esm1 fosters binding of 

Vegfaa to Kdrl through an ECM component. 2) Vegfaa and Esm1 rival for an ECM 

component and more Vegfaa is liberated upon presence of its competitor (Fig. 5-b). In both 

scenarios, angiogenesis is encouraged. Thus, the mode of action could be as follows (Fig. 

5-1c): in the wildtype, binding of Esm1 and Vegfaa to a common ECM component is 

balanced. With loss of Esm1, more Vegfaa will remain bound in the ECM, thus Vegfaa/Kdrl 

signaling will be less active and consequently the vascular pattering unaltered. In Vegfaa 

GOF scenarios, Vegfaa is present in high abundance. Accordingly, bioavailability of Vegfaa 

for Kdrl is increased and angiogenesis is driven as seen by emerging ectopic sprouts. 

Furthermore, esm1 is overexpressed to increase Vegfaa/Kdrl signaling. However, when 
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Vegfaa is present in excess and esm1 is deficient, sprouts will still be formed but in less 

efficient manner. 

     In the wildtype, flt1 is artery specific while vhl is ubiquitously expressed and thus it has 

to be tested if an exclusive expression of esm1 in arterial ECs is of any importance at all or 

if it aids in the formation of a Vegfaa gradient from a vISV to an aISV (Fig.5-1a).  

     Depending on the isoform, a biochemical gradient of freely diffusible VEGF-A could 

develop that might probably be altered by ESM1 through a common binding partner in the 

ECM, such as Fibronectin, as illustrated in figure 5-1a (Park, Keller and Ferrara, 1993; 

Rocha et al., 2014). Thus, affecting sprouting of blood vessels. Fibronectin is increasingly 

expressed in vhl mutants and is proposed as a common binding partner for Vegfaa and 

Endocan (Trowbridge and Gallo, 2002; Bluyssen et al., 2004; van Rooijen et al., 2011; 

Rocha et al., 2014). Further studies should provide proof to confirm rivalry over Fibronectin 

or if other contestants can be identified. 

     ESM1 could dose the amount of freely available VEGF-A in the ECM. In cell culture and 

mouse models distinct binding affinities of VEGF-A to heparin or proteases was described, 

thus modulating the amount VEGF-A for receptor binding (Ferrara, 2010). Binding to VEGF-

A occurs through heparan sulfate PGs (Houck et al., 1992).  

     While direct binding of ESM1 to growth factors and cytokines is feasible, VEGF-A is an 

unlikely binding partner (Trowbridge and Gallo, 2002). ESM1 is a PG interacting through its 

dermatan sulfate chains and while VEGF-A binds heparin sulfate PGs. Furthermore, 

dermatan sulfate chains in ESM1 allow binding to positively charged molecules while charge 

of VEGF-A depends on the splicing form (Ferrara, 2010). Another possibility is protease-

induced VEGF-A liberation independent of heparin (Park, Keller and Ferrara, 1993). This 

knowledge encourages the hypothesis of a common binding partner in the ECM rather than 

direct binding. 

 

5.6 Using Esm1 for treating vascular conditions in medicine 

Any therapies aimed directly at the VEGF-A/VEGFR-2 signaling cascade are closely tied to 

severe side effects (Roodhart et al., 2008). Consequently, alternatives for fine regulation of 

blood vessel growth are needed. A feasible approach is the use of indirect regulators of 

VEGF-A bioavailability for VEGFR-2, such as ligands for the decoy receptor VEGFR-1 or, 

as revealed in this study, ESM1. Due to the blood vessel specificity and its relation to VEGF-

A, ESM1 could be exploited in strategies for augmenting or alleviating blood vessel growth. 

ESM1 might thus be suitable for application in tumor or regenerative therapies. 
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Figure 5-1. Hypothesis how Esm1 modulates bioavailability of Vegfaa for Kdrl. (a) 

Esm1 forms a trend affecting a Vegfaa gradient and thus aiding in formation a vascular 

segment. (b) Two scenarios could of a relationship between Esm1 and Vegfaa are 

reasonable: Either Esm1 facilitates binding of Vegfaa to Kdrl through an ECM component 

or Esm1 and Vegfaa rival over binding to an ECM component, thus liberating Vegfaa for 

Kdrl binding. (c) Mode of action how a possible competition between Esm1 and Vegfaa over 

binding to an ECM molecule could regulating binding of Vegfaa to Kdrl. 
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6 Material and Methods  

 

6.1 Material 

 

6.1.1 Transgenic and mutant zebrafish lines used 

The lines Tg(kdrl:EGFP)S843  (Jin et al., 2005), Tg(kdrl:hsa.-HRAS-mCherry)s916 (Hogan et 

al., 2009), Tg(xla.Tubb:DsRed)zf148 (Peri and Nüsslein-Volhard, 2008), Tg(fli1a:nGFP)y7 

(Kulik et al., 2002), Tg(flt1enh:tdTomato), Tg(flt4:mCitrine)hu7135, TgBAC(flt1:YFP)hu4624 

(Bussmann et al., 2010) and vhlhu2117 (van Impel et al., 2014) and were published elsewhere. 

The lines flt1ka602 and flt1ka604 were generated in this lab in previous work (Wild et al., 2017). 

Details about the lines are listed in table 6-1 and 6-2.   

 

Table 6-1. Zebrafish transgenic reporter lines 

Transgenic line Marked Cells/Tissue Publication  

Tg(fli1a:nGFP)y7 Green fluorescent nuclei of EC and NCCs 

in green 

Kulik et al., 2002 

Tg(flt1enh:tdTomato) 

 

Labeling of non-neuronal, arterial vascular 

endothelium with red fluorescent protein.  

Bussmann et al., 

2010 

Tg(flt4:mCitrine)hu7135 Yellow fluorescence of venous ECs Bussmann et al., 

2010 

Tg(kdrl:eGFP)S843 Green cytosol of blood vessels cells Jin et al., 2005 

Tg(kdrl:hsa.-HRAS-

mCherry)s916 

Red fluorescent labeling of EC 

membranes 

Hogan et al., 

2009 

Tg(lyve1b:eGFP)z150 Labeling of lymphatic vessels with green 

fluorescent protein. 

Okuda et al., 

2012 

Tg(xla.Tubb:DsRed)zf148 Mature neurons labeled with red 

fluorescent protein  

Peri and 

Nüsslein-Volhard, 

2008 

TgBAC(flt1:YFP)hu4624 arterial endothelium and flt1+ specific 

labeling with yellow reporter protein 

Bussmann et al., 

2010 
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Table 6-2. Zebrafish mutant lines  

Mutant line Mutation Publication  

esm1sa11057 point mutation in exon 1, premature stop 

codon 

this work 

flt1ka602 5 bp deletion in exon 3, frame shift 

mutation. 

Wild et al., 2017 

flt1ka604 14 bp deletion in exon 3, frame shift 

mutation. 

Wild et al., 2017 

vhlhu2117 point mutation in exon  van Rooijen et al., 

2011 

 

6.1.2 Solutions and buffer 

In table 6-3 recipes for preparation of solutions and buffers are listed. 

 

Table 6-3. Composition of solutions and buffer  

Solution Composition 

Base solution (50x) 1.25M NaOH; 10mM EDTA; pH 12 

Cas9 working buffer (1x) 20mM HEPES; 15 mM KCI; pH 7.5 

E3 medium (60x) 34.8g NaCl; 1.6g KCl; 5.8g CaCl2 H2O; 9.78g MgCl26 

H2O; in 2l H2O 

Egg water (10x) 7.5ml 60mg/ml (w/v) sea salt stock solution; 2.5ml 0.1% 

methylenblue solution; in 500ml ddH2O 

Hybridization mix 50% (v/v) formamide; 5× SSC; 0.1% (v/v) Tween-20; 

50μg/ml
 
of heparin; 500μg/ml

 
of RNase-free tRNA 

IPTG solution 200 mg/ml dissolved in dH2O 

LB-agar 20g LB medium in 1l H2O; 1.5% (w/v) agar-agar 

LB-media 20g LB in 1l H2O 

Loading buffer (5x) 0.5% (w/v) orange G; 50% (v/v) glycerol; 25mM EDTA; pH 

8.0 

MAB-T (1x) 1x maleic acid buffer; 0.1% (v/v) Tween-20 

Maleic acid buffer (5x) 58g maleic acid; 43.5g NaCl; 37.5g NaOH in 1l dH2O, pH 

7.5 

Neutralization solution (50x) 2M Tris-HCl; pH 5 
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NTMT 0.1M Tris-HCl pH 9.5; 0.1M NaCl; 1% Tween-20; 50mM 

MgCl2 

PBS (10x) 

 

 800g NaCl; 20g KCl; 144g Na2HPO4 · 2H2O; 24 g KH2PO4; 

add up to 10l 

PBT (1x) 1x PBS, 0.1% (v/v) Tween-20 

Pronase solution 1mg/ml in egg water 

PTU (10x) 304mg 1-phenyl-2-thiourea (PTU); 16.66ml E3 stock 

solution (60x); add to 1l with ddH2O 

RNAse A solution 100ng/µl RNAse A in RNase buffer 

RNase buffer HEPES 0.1M pH 7.5; NaCl 0.15M; 0.1% Tween-20 

SOC medium 20mM MgCl2; 20mM MgSO4; 20mM glucose in ddH20 

SSC (20x) 

 

175.3g NaCl; 88.2g trisodium citrate; add up with ddH2O to 

1l; pH 7.  

TAE buffer (1x) 20mM Tris-base; 10mM acetic acid; 0.5mM EDTA; pH 8.0 

Tricaine (25x) 0.4g Tricaine; 2.1ml 1M Tris pH 8.5; add to 100 ml with 

ddH2O 

X-Gal solution 2% (w/v) X-Gal in DMSO 

 

6.1.3 Enzymes, chemicals and kits 

Enzymes are listed in table 6-4. Commercial kits are summarized in table 6-5. 

 

Table 6-4. Enzymes  

Enzyme Provider/Manufacturer 

Cas9 nuclease Integrated DNA Technologies 

GoTaq DNA Polymerase Promega  

LR Clonase II plus Thermo Fisher Scientific 

Phusion HS II DNA Polymerase Thermo Fisher Scientific  

Restriction enzymes Promega 

RNA Polymerases Roche Life Science, Thermo 

Fisher Scientific 

T4 DNA Ligase Promega 

Thermosensitive alkaline phosphatase Promega  
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Table 6-5. Commercial kits  

Product/Kit Manufacturer 

Dig RNA Labeling Kit (SP6/SP7) Roche LIfe Science 

GoScriptTM Reverse Transcription Kit Promega 

mMessage MACHINE SP6 ULTRA transcription Kit Thermo Fisher Scientific 

Monarch DNA Gel Extraction Kit New England Biolabs 

Monarch PCR & DNA Cleanup Kit New England Biolabs 

Plasmid DNA purification NucleoBond® Xtra Midi 

kit 

MACHEREY-NAGEL 

QIAprep Spin Miniprep Kit QIAGEN  

 

RNeasy Mini Kit QIAGEN 

 

6.1.4 Oligonucleotides 

Primer for genotyping, real-time PCR and cloning were purchased from Eurofins Genomics 

and morpholino were acquired from Gene Tools. Primer sequences are listed in table 6-6 

and 6-7 respectively. Details about morpholino sequences are summarized in table 6-8. 

 

Table 6-6. Primer sequences for real-time qPCR or genotyping 

Primer name Primer sequence (5'-3') 

Esm1_3’UTR_rev ATGGGATGCCATATCTGTGAACT 

Esm1_5’UTR_fw  CTGAGCCGCTTCATTCACTG 

Esm1_E1_rev  TTATGCTTTAAATGTAGCACTCGAT 

Flt1_E3_fw CAGCTCAACACACACAGTATTGTTTTA  

Flt1_E3_rev ACACCTGAAGCATCTTACCTGTGA  

Vhl_fw AGTCACGTACACAGTCTTTCTCTCC 

Vhl_rev AACGCGTAGATAGCAATTTCACCAA 

zesm1_E2- E2/3_rev AACCCACTTCATTACCTGCTT CA  

β-actin_fw CTCTTACCTCAGTTACAATTTATA  

β-actin_rev TTCTGTCCCATGCCAACCA  
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Table 6-7. Primer sequences for construct cloning  

Primer name Primer sequence (5'-3') Purpose 

amp_HA1_Cntrl_fw CTGAGATAGGTGCCTCACTG BAC 

amp_HA1_Cntrl_rev ACATTTCCCCGAAAAGTGG BAC 

BAC Esm1 HA1 Cntrl fw CTGAGCCGCTTCATTCACTG BAC 

BAC Esm1 HA2 Cntrl rev  ATTTGTCCGGGCAATTCACG BAC 

Esm1_HA1_mCitrine_fw TCCTCCCCAACACTGCAGACCCGAAGATCGCAT

CCAACCCGCCGCTTGCAACCATGGTGAGCAAG

GGCGAGGAG 

BAC 

Esm1_HA2_Kan_rev GTCTCTCCAAAAAACACCATCAGTACGAACATC

AGGATGGCAAACACACGTCAGAAGAACTCGTCA

AGAAGGCG 

BAC 

Esm1cds_fw TG CGT GTG TTT GCC ATC CTG ATG TTC GTA 

CTG AT 

ISH 

Esm1cds_rev TCA GCG AGG GGT GAG GAA ATT GCG AGC 

GGA GGC CC 

ISH 

kanR_HA2_Cntrl_fw TCCTCGTGCTTTACGGTATC BAC 

mCitrine_HA1_Cntrl_rev GGACACGCTGAACTTGTGG BAC 

pCS2+_Esm1cds_fw GCGGGAATTGGATCCATGCGTGTGTTTGCCATC

CT 

OE 

pCS2+_Esm1cds_rev CTAGTGATTCTCGAGTCAGCGAGGGGTGAGGA

AAT 

OE 

pTarBAC_HA1_Cntrl_fw CTGTCAAACATGAGAATTGGTC BAC 

pTarBAC_HA1_iTol2_fw GCGTAAGCGGGGCACATTTCATTACCTCTTTCT

CCGCACCCGACATAGATCCCTGCTCGAGCCGG

GCCCAAGTG 

BAC 

pTarBAC_HA2_Cntrl_rev GAGAGCCTTCAACCCAGTC BAC 

pTarBAC_HA2_iTol2_rev GCGGGGCATGACTATTGGCGCGCCGGATCGAT

CCTTAATTAAGTCTACTAATTATGATCCTCTAGA

TCAGATC 

BAC 

BAC, BAC recombineering; ISH, in situ hybridization; OE, overexpression 
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Table 6-8. Morpholino 

Morpholino Target Sequence (5'-3') Amount used 

Control  none CTCTTACCTCAGTTACAATTTATA  1 ng 

Esm1 ATG of esm1 ACATCAGGATGGCAAACACACGCAT  1 ng 

Flt ATG of flt1 ATATCGAACATTCTCTTGGTCTTGC  1 ng 

 

6.1.5 Tools for mutant generation 

crRNAs, trcrRNA and Cas9 nuclease were purchased from Integrated DNA Technologies. 

crRNA sequences are shown in table 6-9. 

 

Table 6-9 crRNA target sequences used for CRISPR/Cas9 mutagenesis 

Target gene crRNA sequence (without PAM) 

Esm1_3’UTR AGACAGTAATAATGTTCCCT 

Esm1_5’UTR GCGGGTTGGATGCGATCTTC 

 

6.1.6 Plasmids 

For some experiments, some plasmids were already available for various purposes. Those 

are listed in table 6-10. Plasmids cloned during this work are summarized in table 6-11.  

 

Table 6-10. Plasmids generated elsewhere 

Plasmid Purpose Manufacturer or provider 

BAC CH211-66D12 BAC Recombineering BACPAC Resources 

p3E_polyA Gateway cloning Gift from Kawakami K, NIG, 

Japan 

p5E_fli1a Gateway Cloning Janna Krueger; Max Delbrück 

Center Berlin, Germany 

pCR8GW-iTol2-amp BAC Recombineering Bussmann and Schulte-Merker, 

2011 

pCS2+ Mammalian overexpression Seyfried, S; Max Delbrück 

Center Berlin, Germany 

pCS2+_mCitrine_kanR BAC recombineering Bussmann and Schulte-Merker, 

2011 

PCS2FA tol2 transposase mRNA Kwan et al., 2007 
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pDestTol2CG2 Gateway cloning Gift from Kawakami K, NIG, 

Japan 

pGEM-T Easy TA-Cloning Promega GmbH, Mannheim, 

Germany 

pME_eGFP-p2a_SmaI Gateway cloning Wild et al., 2017 

pRedET BAC Recombineering Bussmann and Schulte-Merker, 

2011 

 

Table 6-11. Plasmids generated in this work  

Plasmid Purpose 

pCS2+_esm1 Overexpression 

pDest_fli1a_eGFP-p2a-esm1cds EC specific overexpression  

pGEMT_esm1cds In situ hybridization 

pME_eGFP-p2a-esm1cds Overexpression 

 

6.1.7 Online tools and softwares 

Sequences were found in genome browsers and then employed for virtual cloning, 

genotyping and finding target sequences for knockdown or mutagenesis applications. 

Furthermore, word processing, image editing, graphical illustration as well as biostatics 

software were exerted for proper description of findings. A summary of is presented in table 

6-12. 

 

Table 6-12. Online tools and softwares used 

Product Description Provider/Source 

Adobe Illustrator CS6 Graphical illustration Adobe Systems 

Adobe Photoshop CS6 Image editing  Adobe Systems 

ChemDraw Professional Graphical illustration PerkinElmer Informatics 

Crispor sgRNA target finding Tefor Infrastructure 

Fiji Image editing and processing Open source 

GraphPad Prism Biostatics  GraphPad Software 

Microsoft Office  Word processing, spreadsheet 

and presentation 

Microsoft  
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NCBI Primer Blast Primer sequence finding tool National Center for 

Biotechnology Information 

NCBI pubmed Publication database  National Center for 

Biotechnology Information 

SnapGene DNA sequence analysis and 

virtual cloning 

GSL Biotech 

UCSC Genome Browser Genome browser University of California 

Santa Cruz 

 

6.2 Methods 

 

6.2.1 Ethics statement 

Zebrafish maintenance and experiments were performed according the German animal 

protection standards and were approved by the Government of Baden-Württemberg, 

Regierungspräsidium Karlsruhe (Akz: 35-9185.81/G-11/19 and 35-9185.82/A-17/19). 

 

6.2.2 Zebrafish methods 

 

6.2.2.1 Maintenance of zebrafish embryos and prevention of melanization  

Female and male zebrafish were placed into a breeding tank overnight (o/n). In this thank 

the fish share the same water and see each other but were physically separated. In the 

morning the partition was removed so that the fish could mate. Fertilized zebrafish eggs 

were collected after spawning and then kept at 28°C in 1x egg water.  

     If experiments required transparent larvae, embryos were transferred into 1x E3 medium 

containing 0.2mM 1-phenyl-2-thiourea (PTU), which disturbs the melanization pathway by 

inhibiting tyrosinases (Whittaker, 1966).  

     For analysis of embryos before hatching, the chorion was removed either manually using 

forceps or enzymatically by incubation in pronase solution  

 

6.2.2.2 Microinjections 

Zebrafish eggs were collected directly after spawning and placed into an injection ramp. The 

ramp was casted by dissolving 2% (w/v) agarose in egg water. The solution was poured into 

a 90mm petri dish and a mold placed into the still liquid agarose. Microinjection needles 
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were prepared from 1mm capillary tubes with filaments (World Precision Instruments) pulled 

in a needle puller (Sutter Instruments Co.).  

     The embryos were injected at the one-cell-stage. 1nl of injection mixture was released 

into the cell by applying pressure with a gas microinjector. Morpholino were injected into the 

yolk, whereas for mutagenesis and transgenesis experiments the solution was injected into 

the egg cell. 

 

6.2.3 Molecular biological methods 

 

6.2.3.1 Polymerase chain reaction  

Polymerase chain reactions were performed with either GoTaq® DNA Polymerase 

(Promega) or Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific) in case proof-

reading was required. The first was chosen for genotyping and the latter for cloning 

purposes. Conditions for the amplification reaction were taken from the manufacturers' 

instructions.  

 

6.2.3.2 Agarose gel electrophoresis 

The separation of nucleic acids as well as analysis of the size of DNA fragments was 

analyzed with agarose gel electrophoresis. 

     Loading buffer was added to the sample. The mixture was then loaded on a 1% (w/v) 

agarose gel and run in 1x TAE buffer at 100V. Visualization of nucleic acids was 

accomplished by addition of Midori Green Advance (Nippon Genetics) staining solution into 

the gel as suggested by the provider and subjecting it to UV-light. 

 

6.2.3.3 RNA extraction and first-strand cDNA synthesis 

Dechorionated embryos were collected at the desired embryonic stage and then shock-

frozen in liquid nitrogen with as less surplus medium as possible. Afterwards, they were 

stored at -20°C until use.  

     Purified total RNA of the zebrafish embryos fish was obtained using the RNeasy Mini Kit 

(Qiagen). The extraction was performed according to the manufacturers' manual.   

     First-strand cDNA was synthesized using the GoScriptTM Reverse Transcription Kit 

(Promega) as described in the instruction of the manufacturer. Between 250-500ng RNA 

was used as template for the reverse transcription process. For cloning purposes Oligo-dT 
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primer were chosen, whereas for real-time qPCR analysis a mixture of Oligo-dT and random 

Hexamer primer were set in in the reaction. 

 

6.2.3.4 Gene expression analysis by real-time qPCR 

One sample batch consists of 30-50 embryos. Three batches per time point were collected, 

RNA extracted and cDNA synthesized. 

     For real-time qPCR analysis cDNA samples were mixed with SYBR® Green PCR Master 

Mix (Thermo Scientific). The reaction was conducted in the CFX Connect real-time PCR 

detection system (Bio-Rad). Gene expression was analyzed with the primer pairs 

zesm1_E2- E2/3_fw/rev and β-actin_fw/rev, respectively.  

     All esm1 expression data was first normalized to the housekeeping gene β-actin. 

Afterwards, the data of the mutants was normalized to the mean of the wildtype sample of 

3 dpf and 4 dpf, respectively. 

 

6.2.3.5 Conventional cloning 

All restriction enzymes, TSAP and the T4 DNA Ligase were purchased from Promega.  

     Linearization of plasmids was required for either cloning purposes or in situ probe 

synthesis. The enzyme was added to a mixture of buffer, recommended by the provider, 1-

2µg plasmid and dH2O. The reaction was performed at the enzyme-specific temperature for 

60-90min. 

     Restriction digests result in phosphorylated plasmid ends. Hence, vector backbones 

were dephosphorylated with thermosensitive TSAP to prevent re-circularization of the 

plasmid. 2µl 10x restriction buffer, 2µg plasmid, 2µl TSAP were added into a total reaction 

volume of 20µl. The reaction was incubated at 37°C for 15min and afterwards stopped at 

74°C for 15min. Next, the DNA was loaded onto an agarose gel and isolated with the 

Monarch® DNA Gel Extraction Kit (New England Biolabs). 

     The vector and the insert were ligated with the T4 DNA ligase according to the instruction 

of the manufacturer.  

     PCR products are blunt-ended and require the addition of 3’ A-overhangs with the Taq 

DNA Polymerase. A-tailing was achieved by mixing purified PCR product, 0.2mM dATP, 1x 

PCR buffer, 1U GoTaq DNA polymerase (Promega). The volume was adjusted to 20µl with 

dH2O and the reaction was incubated at 72°C for 20min. 
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6.2.3.6 Bacterial transformation  

Chemocompetent JM109 cells or One Shot TOP10 Chemically Competent (Thermo Fisher 

Scientific) E. coli cells were used for transformation. The first served for re-transformations 

and products of standard cloning procedures and the latter for transformation of Gateway 

reactions.  

     DNA was added to the cells and the suspension kept on ice for 30min. Subsequently, 

bacteria were heat-shocked at 42°C for 45s and immediately cooled down on ice again for 

2min. The heat shock permeabilizes the cell membrane, thereby enabling access of DNA 

into the cell. The bacteria were added to SOC-medium without antibiotics and then allowed 

to regenerate for 1h at 37°C under agitation at 225rpm. Next, the cells were plated onto LB 

agar plates and incubated o/n at 37°C. For clone selection, the plates were supplemented 

with the respective antibiotic.  

     The pGEMT vector allowed Blue/White selection. For this, agar plates were prepared in 

advance of spreading the cells. 4µl of IPTG solution and 40µl of the X-Gal solution were 

distributed over the surface of the LB agar plate. The cells were put onto the plates when 

the solutions were absorbed for 30min. 

 

6.2.3.7 DNA preparations 

For plasmid preparation either minicultures (4ml) or midicultures (100ml) were used. For 

this, the liquid LB medium supplemented with the appropriate antibiotic was inoculated with 

a single colony and let grown o/n at 37°C under agitation at 300rpm. Afterwards, the culture 

was harvested and the plasmid purified with the Qiaprep Spin Miniprep Kit (Qiagen) or 

Plasmid DNA purification NucleoBond® Xtra Midi kit (MACHEREY-NAGEL). 

     PCR products with a single band were isolated using the Monarch® PCR & DNA Cleanup 

Kit (New England Biolabs). PCR reactions resulting in multiple products were loaded on an 

agarose gel and the band of interest was cut out with a sterilized scalpel under a 

transilluminator and cleaned up with the Monarch® DNA Gel Extraction Kit (New England 

Biolabs). 

     The procedures for extraction, isolation and purification of nucleic acids were performed 

according to the respective instructions of the provider.  

 

6.2.3.8 In vitro transcription 

In situ probes and tol2 transposase mRNA were transcribed in vitro. Prior to in vitro 

transcription, the plasmids were linearized with the adequate restriction enzyme. A summary 
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of the RNA polymerase needed for transcription and the enzyme chosen for vector 

linearization is given in table 6-13. 

     RNA probes for whole mount in situ hybridization (WISH) were generated with the Dig 

RNA Labeling Kit (SP6/SP7) (Roche Life Science). tol2 transposase mRNA was generated 

from the pCS2FA plasmid (Whittaker, 1966) with the mMessage MACHINE SP6 ULTRA 

Transcription Kit (Thermo Fisher Scientific). Transcription was carried out according to the 

manufacturers' manual of the respective kit. 

 

Table 6-13. mRNA generation from different plasmid 

mRNA RNA Polymerase Enyme for linearization 

Esm1_cds WISH probe (AS) SP6 ApaI 

Esm1_cds WISH probe (S) T7 SpeI 

tol2 transposase SP6 BstBI 

 

6.2.4 Staining methods 

 

6.2.4.1 Whole mount in situ hybridization 

Zebrafish embryos were collected at the desired developmental stage. Dechorionized 

embryos were fixed in 4% (w/v) PFA either for 2h at room temperature (RT) or o/n at 4°C. 

Following three washing steps with 1x PBT for 5 min, the fish were dehydrated in an 

ascending series of ethanol (25%, 50%, 75% (v/v) in 1xPBT), after which long-time storage 

in 100% ethanol at -20°C is possible. With the start of the WISH process, the embryos were 

rehydrated by subjecting them to a series of decreasing ethanol concentration until they are 

again in 1x PBT. The dehydration and rehydration permeabilizes the tissue, an important 

step for the procedure, which was further increased by transfer of the fish into acetone for 

7min at -20°C. The embryos were then fixed again in 4% PFA for 20min and incubated in 

hybridization mix. After this pre-hybridization step, the embryos were put in RNA 

probe/hybridization mix solution and hybridization was allowed o/n at 62°C. Subsequently, 

formamid was removed in a descending series of hybridization mix in 2x SSC at the 

hybridization temperature down to 0.2x SSC at RT. Single stranded RNA was digested with 

incubation in RNase A (Thermo Fisher Scientific) solution for 45min. Next, the fish were 

washed in 1x MAB-T. The pH of the solution was regulated by addition of 37.5g NaOH and 

adjusted to pH7.5. Afterwards, non-specific antibody binding was prevented by incubation 
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of the embryos in 2% (w/v) Blocking Reagent in 1x MAB-T for 2 to 3h. Next, the fish were 

incubated with alkaline phosphatase-conjugated antibody anti-digoxigenin-AP, Fab 

fragments (Roche) o/n at 4°C. The antibody was used in a dilution of 1/4000 in blocking 

solution. The embryos were prepared for the subsequent staining reaction by following 

washing steps: 4 times in 1xMAB-T for 30min, twice for 15min in NTMT. For color 

development, BM-Purple (Roche), a colorimetric alkaline phosphatase substrate, was 

added to the fish and the reaction allowed to proceed in the dark at 37°C. 

 

6.2.5 BAC Recombineering 

A BAC was recombineered into a reporter construct to enable analysis of endogenous esm1 

expression using BAC transgenesis.  

     Identification of a suitable BAC, the recombineering and transgenesis process was 

performed as proposed by the group of Schulte-Merker (Kwan et al. 2007). The UCSC 

genome browser helped with the identification of the BAC CH211-66D12 (BACPAC 

Resources) in a pTarBAC2.1 backbone. The clone was confirmed for the esm1 gene with 

the primers BAC Esm1 HA1 Cntrl fw/rev in a colony PCR. Positive clones were transformed 

with the pRedET vector. This vector carries genes for the homology- directed repair system, 

which are essential for the subsequent recombineering steps.  

     The transgenic insertion of the BAC was enabled due to the tol2 transposon system. 

Accordingly, the first recombineering step was the integration of tol2 sites into the BAC 

backbone. For this, a PCR product amplified from the plasmid pCR8GW-itol2-amp (kindly 

provided by S. Schulte-Merker) with the pTarBAC_HA1_iTol2_fw and 

pTarBAC_HA2_iTol2_rev primer was recombineered into the BAC. The insertion was 

checked with a PCR targeting the left tol2 site and the right tol2 site. The primers 

pTarBAC_HA1_control_fw and amp_HA1_control_rev amplified the former, whereas the 

primer pair amp_HA2_control_fw and pTarBAC_HA2_control_rev confirmed the latter site.  

     In the second recombineering step the reporter gene mCitrine was inserted 3' of the ATG 

of esm1. pCS2+_mCitrine_kanR (kind gift from S. Schulte-Merker) plasmid was used as a 

template from which a PCR product with the primers esm1_HA1_mCit_fw and 

esm1_HA2_kanR_rev was generated. Successful recombineering was confirmed with two 

PCRs: the first using the primer pair esm1_HA1_control_fw and Citrine _HA1_control_rev, 

and a second with kanR_HA2_control_fw and esm1_HA2_control_rev. 

     The BAC CH211-66D12 was recombineered as described by Bussmann and colleagues 

(Bussmann and Schulte-Merker, 2011) as illustrated in figure 4-5. The BAC contains a 
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zebrafish genomic fragment of 167kb in size. The esm1 gene is sandwiched between 46kb 

upstream and 116kb downstream sequences. Alteration of the BAC into a reporter construct, 

which can be stably transposed into the genome, required the recombination of tol2 sites 

and a reporter gene (mCitrine). The expression cassettes for the tol2 sites and the reporter 

gene are flanked by homology arms, which are required for homologous recombination into 

the BAC. After recombination of the mCitrine gene, the translation start site of esm1 gene 

in the genomic fragment will be missing. The construct was injected into the one-cell stage 

together with tol2 mRNA and the embryos developed until the desired stage. Eventually, the 

mCitrine gene was expressed upon activation of the esm1 promoter. 

 

6.2.6 Cloning of pGEMT_esm1cds 

pGEMT_esm1cds plasmid was cloned for the purpose to obtain a vector which carries the 

esm1 coding sequence. The resulting vector served as a template for WISH RNA probe 

generation and for further re-cloning purposes. 

     The PCR product was obtained via Phusion PCR with the primer pair Esm1cds_fw/rev. 

The PCR product was purified and, after A-overhangs were added to the ends, cloned into 

the pGEMT-vector (Promega) using the TA-cloning system. 

 

6.2.7 Cloning of pCS2+_esm1cds 

The pCS2+_esm1cds plasmid was cloned for the execution of overexpression experiments. 

The vector contains a cytomegalovirus promoter for ubiquitous expression of the gene of 

interest. 

     The PCR product was obtained via Phusion PCR with the primer pair 

pCS2+_Esm1cds_fw/rev for which the pGEMT_esm1cds served as a template. An adapter 

sequences were included into the primers, which contain restriction sites. Both the amplicon 

and the plasmid pCS2+ were digested with the restriction enzymes BamHI and XhoI. 

Afterwards, the plasmid pCS2+_esm1cds was obtained using conventional cloning.  

 



Material and Methods 

 83 

 
Figure 6-1. Illustration of the BAC recombineering process and establishing 

transgenesis for studying promoter activity. (a) Unmodified BAC clone, 

pTARBAC_CH211-66D12, which harbors a fragment of the zebrafish genome containing 

the esm1 gene flanked by sequences 46kb upstream and 116kb downstream. (a') BAC 



Material and Methods 

 84 

recombineering process as described in Bussmann and Schulte-Merker, 2011. Tol2 sites 

and the reporter gene mCitrine were recombineered into the BAC. The former is needed for 

insertion into the genome, and the latter encodes for a fluorescent protein, which is 

expressed upon promoter activation. Homology arms flanking the sequence to be inserted 

allow homologous recombination. During the homologous recombination step with mCitrine, 

the ATG of the esm1 gene becomes deleted. (a'') the final construct gets injected into the 

zygote at the one-cell stage. Simultaneous introduction of the BAC with tol2 mRNA allows 

stable integration of the reporter construct into the zebrafish genome and thus increased 

transgenesis efficiency. kb, kilo base pairs. 

 

6.2.8 Cloning of pME_eGFP-p2a-esm1cds 

This vector was generated with the purpose of easy identification of transgenic cells. The 

pGEMT-esm1 plasmid was used as template for a Phusion PCR and was performed with 

the primers eGFP-p2a-esm1cds_fw and eGFP-p2a-esm1cds_rev. The primers contain a 

EcoRV and XhoI restriction sites, to render the PCR product and vector compatible for 

cloning. The PCR product was digested with EcoRV and XhoI, whereas the vector 

pME_eGFP-p2a-SmaI was cut with SmaI and XhoI. Subsequent purification, modification 

and ligation of the plasmids were performed in the manner of conventional cloning. 

 

6.2.8.1 Generating fli1a_eGFP-p2a-esm1cds using the Gateway system 

The multisite Gateway technology enables quick and efficient assembly of a gene-like 

sequence in a Tol2 transposon backbone using the Tol2Kit system. This cloning method is 

site-specific and based on recombination events. Clonase II plus (Thermo Fisher Scientific) 

was used according to the manufacturers' instruction. In the reaction p5E_fli1a, pME_eGFP-

p2a-esm1cds, p3E_polyA and pDestTol2CG2 were recombined with the LR Clonase II plus. 

     The construct fli1a_eGFP-p2a-esm1cds enables esm1 overexpression under the control 

of the blood vessel specific fli1a promoter, specific for blood vessels. The fli1a:eGFP-p2a-

esm1 construct harbors two transgenesis markers. The cmlc2:eGFP reporter gene in the 

destination vector pDestTol2CG2 allowed the identification of transgenic fish by a green 

fluorescent heart and thus assessment of the overall transgenesis success. The eGFP-p2a 

system allows tracing of single esm1 overexpressing cells. Upon activation of the fli1a 

promoter, the eGFP-p2a-esm1 fusion gene is expressed specifically in the endothelium. 

Subsequent to its translation, the protein is split at the p2A site. Accordingly, Gfp and Esm1 

are present within in the same cell but can act separately. The eGFP renders the esm1-

overexpressing cell visible (Fig. 4-15). 
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Figure 6-2. The eGFP-p2a system. A gateway expression vector fli1a_eGFP-p2a-

esm1;cmlc2:eGFP was cloned which allows to select for two transgenesis markers: the 

cardiac myocyte specific cmlc2:GFP transgene to screen for the overall transgenesis 

efficiency and the eGFP-p2a system to screen for overexpressing cells. eGFP-p2a-esm1 is 

under the control of the blood vessel specific fli1a promoter. (a) Graphical illustration of the 

eGFP-p2a system. When the fli1a promoter is active, the fusion protein eGFP-p2a-esm1 is 

transcribed and translated. Next, the protein is cleaved at the p2a site. Thus, the eGFP and 

Esm1 proteins are present in the same cell as individual proteins, whereas the first aids in 

visualization of an esm1 overexpressing cell. (b) Microscopic spinning disc image illustrating 

green fluorescent esm1 overexpressing cells (white arrowheads). Scale bar 100 µm. 

 

6.2.9 Generation and verification of esm1 and esm1;flt1 mutants 

 

6.2.9.1 Generation of mutants 

The mutants were generated using the CRISPR/Cas9 system (Kwan et al., 2007). Target 

sites were determined using the genome browser UCSC and crRNA sequences found with 

the Crispor tool.  

     Target specific Alt-RTM CRISPR-Cas9 crRNA and guiding Alt-RTM CRISPR-Cas9 

tracrRNA were purchased from Integrated DNA Technologies. 3µM crRNA and 3µM 

tracrRNA in Nuclease-Free Duplex Buffer (Integrated DNA Technologies) were heated to 

95°C for 5min to allow annealing of both components to single guide sgRNA. Next, Alt-R® 

S.p. Cas9 Nuclease V3 (Integrated DNA Technologies) protein was diluted with Cas9 

working buffer to a working concentration of 0.5µg/µl. Subsequently, the two sgRNAs and 

the diluted Cas9 protein were mixed in a ratio of 1:1: 2 and incubated at 37°C for 10min. 1nl 

of the sgRNA/Cas9 suspension was injected into the one-cell stage zebrafish embryos.  

     F0 generation was raised to adulthood and checked for mutations by genotyping. 



Material and Methods 

 86 

Individuals positive for mutations were outcrossed with a wildtype to identify germline 

transmission founder fishes. If germline transmission was given, heterozygous fish were 

obtained by outcross of the F0 individual with a wildtype. Adult fish of the F1 generation 

were genotyped and heterozygous animals were incrossed to obtain a F2 generation. 

Homozygous animals in the F2 generation were again ascertained by genotyping.  

     sgRNAEsm1_5'UTR targets upstream and sgRNAEsm1_3'UTR binds downstream of the esm1 

coding sequence. As both sgRNAs were injected at once, the entire coding sequence was 

deleted. The resulting line has a deletion of 3721nt.  

     The esm1;flt double mutant line was established by crossing homozygous esm1-3721nt/-

3721nt mutants with flt1ka604/ka604 homozygous fish. The resulting animals were heterozyous 

for each mutation. The esm1+/3721nt flt1+/ka604 line was incrossed and the progeny genotyped 

for esm1-3721nt/-3721nt;flt1ka604/ka604 double homozygous individuals.  

     During the process, both, the esm1 mutants and esm1;flt1 mutants were screened for 

Tg(kdrl:eGFPs843; xla.Tubb:DsRedzf148) double transgenesis. Accordingly, the established 

lines carry a blood vessel and a neuronal reporter. 

 

6.2.10 Genotyping  

The genotype of adult fish was determined via fin biopsy and germline transmission was 

identified on embryos.  

     Genomic DNA was isolated via the HotSHOT (Hot Sodium Hydroxide Tris) method 

(Hwang et al. 2013). 30-60µl 1x Base solution was added to the tissue and subsequently 

boiled for 20min at 95°C. Next, the suspension was neutralized with 1x Neutralization 

solution and centrifuged. 1-5 µL of supernatant were used as template in a Taq PCR. 

     The deletion of 3721nt in the esm1 gene mutant was verified by amplification with the 

primer pair Esm1_5'UTR_fw and Esm1_3'UTR_rev. Due to the relative distance of 3972nt 

in the wildtype, an amplicon was very unlikely to appear. Indeed, no visible PCR product 

was detectable. The amplicon from the mutant, instead was expected to contain 243bp, and 

was easily detectable and verified by sequencing. Heterozygous and homozygous animals 

were distinguished with a second PCR. In the wildtype a region of 548bp was amplified with 

the primers Esm1_5’UTR_fw and Esm1_E1_rev. However, this region does not exist in the 

esm1 homozygous individuals due to the deletion and accordingly, no PCR product was 

visible on the gel.  

Adult individuals of the zebrafish mutants used in this thesis (esm1sa11057, flt1ka602, flt1ka604 

and vhlhu2117) were genotyped using fin biopsy. Details about the lines are presented in table 
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6-2 and primers for genotyping are listed in 6-5. 

 

6.2.11 Microscopy 

Living embryos were either imaged with the Leica TCS SP8 confocal inverted microscope 

(20x or 40x objectives); Leica TCS SP5 confocal microscope (10x or 20x objectives) or with 

the Carl Zeiss Spinning Disk Microscope (10x and 25x objectives). Time lapse images were 

performed with the confocal microscope at 28.5°C. Prior to in vivo imaging the embryos 

were anesthetized with 1x Tricaine (Sigma- Aldrich) and incubated for a few seconds in 25x 

Tricaine solution before they were fixed in the desired position. Therefore, the fish were 

positioned in microscopy dishes (MatTek) with 0.7% (w/v) low-melting NuSieve GTG 

Agarose (Lonza) in E3 medium. After the agarose hardened, 0.7x Tricaine in PTU was 

added to keep up anesthesia during the imaging.  

     Images of WISH stainings were acquired with a Leica MZFLIII microscope and a QICAM 

12-Bit color camera (QImaging). Morphologically and malformed embryos were excluded 

from analysis.  

 

6.2.12 Computational methods 

 

6.2.12.1 Genome browsers, in silico analyses, computational analyses 

Genomic, mRNA and protein sequences, with which were worked with in computational 

studies, were found in the genome browsers NCBI and UCSC.  

     Primers were designed in silico with the online tool NCBI Primer Blast. In silico cloning, 

which was applied for example for restriction enzyme cloning, Gateway cloning and T/A 

cloning, was performed with the SnapGene software.  

 

6.2.12.2 Image processing  

Fiji was used for image processing. This program enables the generation of z projections as 

well as merge and separation of channels in multicolor images. 
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6.2.12.3 Analysis of intersegmental vessels and the vascular network 

 

6.2.12.3.1 Analysis of the diameter, number of nuclei and length of the 

intersegmental vessels 

The diameter was measured at seven different locations along an ISV with Fiji. The average 

of these data points was statistically used as the diameter of the analyzed vessel.  

     The length of an ISV was determined with Fiji. The vessel was divided into segments 

according to the natural shape of the ISV. The length was determined from the DA roof to 

the ventral side of the DLAV, independent of arterial or venous identity. The sum of the 

segments was used as the length of the corresponding vessel in statistics. 

     The transgenic line Tg(kdrl:eGFP)S843 allows to manually count the number of nuclei in 

an ISV. The nuclei can be distinguished by strongly fluorescent ovally shaped structures in 

the vessel. 

 

6.2.12.3.2 Analysis of the vascular network 

Figure 6-3 shows how the vascular network is defined, which area is object for quantification 

and how it is distinct in different genotypes. An area spanning four ISVs was defined at the 

level of the neural tube and the number of connecting vessels (segment) and sprouts 

(branching points) calculated. 

     The vascular network of both DLAV and ISV was assessed with a semi-automated 

analysis using Fiji. Stack projections of the acquired images were generated and a defined 

area of the dorsal part of the ISVs, at the position of the neural tube, was analyzed. In this 

defined area a skeleton of the vasculature was generated. Skeletonization was achieved 

using a Gaussian blur filter followed by a black/white threshold. The number of segments 

and branching points were calculated using the 'analyze skeleton' plugin. 

 

6.2.12.4 Statistical analysis 

The GraphPad Prism 6 software used for statistical analysis. If two groups were compared 

to each other, i.e. data of a morpholino or overexpression experiment, the data sets were 

first tested for normal distribution with the D'Agostino and Pearson test. Significance was 

calculated with either the unpaired parametric students t-test in case of normal distributed 

data sets or with the nonparametric Mann-Whitney U test if the data sets were non-normal 

distributed.  

     Data are represented as mean ± standard error of the mean (s.e.m.). P-values of the 
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calculated significances are indicated as follows: ns (not significant), p>0.05; *, p≤0.05; **, 

p≤0.01; ***, p≤0.001.  

 

 
Figure 6-3. Quantification of the zebrafish vascular network at the neuro-vascular 
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interface. (a) z-stack of an original spinning disc microscope picture. The blue rectangle 

indicates the magnified area used for analysis of the blood vessel network. (b) Blue 

rectangle shows the defined area in which segments (a vessel is connected at each end to 

another one) and branching points (the sprout is joined to only one vascular structure) in the 

ISV and DLAV area will be calculated. (c) Graphical illustration how segments and branching 

points are defined. (d) Overview how the vascular system is arranged differently in the 

wildtype (d) and flt1 mutant (d'). DA, dorsal aorta; DLAV, dorsal longitudinal anastomotic 

vessel; PCV, posterior cardinal vein. Scale bar 100 µm. 
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