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AN ANNULUS MULTIPLIER AND APPLICATIONS TO THE LIMITING
ABSORPTION PRINCIPLE FOR HELMHOLTZ EQUATIONS WITH A

STEP POTENTIAL

RAINER MANDEL AND DOMINIC SCHEIDER

Abstract. We consider the Helmholtz equation −∆u + V u − λu = f on Rn where the
potential V : Rn → R is constant on each of the half-spaces Rn−1×(−∞, 0) and Rn−1×(0,∞).
We prove an Lp−Lq-Limiting Absorption Principle for frequencies λ > max V with the aid
of Fourier Restriction Theory and derive the existence of nontrivial solutions of linear and
nonlinear Helmholtz equations. As a main analytical tool we develop new Lp−Lq estimates
for a singular Fourier multiplier supported in an annulus.

1. Introduction

In this paper we are interested in the Limiting Absorption Principle (LAP) for the Helmholtz
equation on Rn involving a step potential of the form

(1) V (x, y) =

{
V1 if x ∈ Rn−1, y > 0,

V2 if x ∈ Rn−1, y < 0

where V1 6= V2 are two fixed real numbers. We will without loss of generality assume V1 > V2
in the following. Examples for elliptic problems involving interfaces modelled by potentials of
this kind can be found in [14, Theorem 1], [15, Theorem 2] or [28]. To explain the motivation
behind our study, we recall the interesting phenomenon called “double scattering”. In the
context of the Schrödinger equation it means that for sufficiently regular and fast decaying
right hand sides f the unique solution of the initial value problem

i∂tψ −∆ψ + V ψ = f in Rn, ψ(0) = ψ0,

with V as in (1) splits up into two pieces as t→ ±∞ that correspond to the two different val-
ues of V at infinity. This phenomenon is mathematically understood in the one-dimensional
case n = 1 [24, Theorem 1.2], see also [12, 13]. One byproduct of our results is that such
a splitting into two pieces may as well be observed for the solutions of the corresponding
Helmholtz equations in Rn which are obtained through the Limiting Absorption Principle,
see for instance the formula (16) where the two parts f(x, y)1(0,∞)(±y) of the right hand side
contribute differently to the LAP-solution of the Helmholtz equation. Notice that solutions
u of such Helmholtz equations provide monochromatic solutions ψ(x, t) = eiλtu(x) of the
Schrödinger equation where λ belongs to the L2-spectrum of the selfadjoint operator −∆+V
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2 RAINER MANDEL AND DOMINIC SCHEIDER

with domain H2(Rn). We prove our LAP in the topology of Lebesgue spaces in order to
treat both linear and nonlinear Helmholtz equations. As far as we can see, the more classical
results in weighted L2 spaces resp. B(Rn), B∗(Rn) (for the definition, cf. [4, page 4]) by
Agmon [1–3] and Agmon-Hörmander [4] do not apply in the nonlinear setting.

Being interested in the LAP for the Helmholtz operator −∆ + V we fix the notation

R(µ) := (−∆ + V − µ)−1 for µ ∈ C \ σ(−∆ + V ).

A computation reveals σ(−∆ + V ) = [min{V1, V2},∞) = [V2,∞). We aim to prove a LAP
that is as strong as the corresponding known result for the constant potential where V1 = V2.
In that case, R(µ) is bounded from Lp(Rn) to Lq(Rn) where (p, q) ∈ D and

D =

{
(p, q) ∈ [1,∞]× [1,∞] :

1

p
>
n+ 1

2n
,

1

q
<
n− 1

2n
,

2

n+ 1
≤ 1

p
− 1

q
≤ 2

n

}
if n ≥ 3,

D =

{
(p, q) ∈ [1,∞]× [1,∞] :

1

p
>
n+ 1

2n
,

1

q
<
n− 1

2n
,

2

n+ 1
≤ 1

p
− 1

q
<

2

n

}
if n = 2.

This is a consequence of results by Kenig-Ruiz-Sogge, Gutiérrez (n ≥ 3) and Evéquoz (n = 2)
that we recall in Theorem 5 along with the bibliographical references. For step potentials of
the kind (1) we manage to prove the same result provided that the Restriction Conjecture is
true. We refer to Section 3 for more information on that topic. Given that this conjecture
is open for n ≥ 3, our LAP relies on the best approximation to the Restriction Conjecture,
which is due to Tao (Theorem 8). Accordingly, we deal with exponents coming from the set

D̃ =

{
(p, q) ∈ [1,∞]× [1,∞] :

1

p
>

1

p∗(n)
,

1

q
<

1

q∗(n)
,

2

n+ 1
≤ 1

p
− 1

q
≤ 2

n

}
if n ≥ 3,

D̃ =

{
(p, q) ∈ [1,∞]× [1,∞] :

1

p
>

1

p∗(n)
,

1

q
<

1

q∗(n)
,

2

n+ 1
≤ 1

p
− 1

q
<

2

n

}
if n = 2,

where p∗(n) =
2(n+ 2)

n+ 4
, q∗(n) =

2(n+ 2)

n
.

In particular, D̃ = D in the case n = 2 because of p∗(n) = 2n
n+1

= 4
3
, q∗(n) = 2n

n−1 = 4 and

D̃ ( D in the case n ≥ 3 because of p∗(n) < 2n
n+1

, q∗(n) > 2n
n−1 . Our main result is the

following.

Theorem 1. Let n ∈ N, n ≥ 2, let V be given by (1) and λ > V1 > V2. Then for all
(p, q) ∈ D̃ the resolvent estimate

sup
0<|ε|≤1

‖R(λ+ iε)‖Lp(Rn)→Lq(Rn) <∞

holds. Moreover, the resolvent operators R(λ+ iε) converge to nontrivial operators R(λ± i0)
as ±ε ↘ 0 in the weak topology of bounded linear operators from Lp(Rn) to Lq(Rn). If the
Restriction Conjecture is true, then the same holds for exponents (p, q) ∈ D.

In particular, our resolvent estimates for n = 2 coincide with the corresponding estimates for
the constant potential whereas the ones for n ≥ 3 cover a smaller range of parameters. For
the important class of selfdual exponents p = q′, however, our Theorem 1 is optimal since
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it gives 6 ≤ q < ∞ for n = 2 and 2(n+1)
n−1 ≤ q ≤ 2n

n−2 for n ≥ 3. Let us mention that our
result only covers frequencies in the range λ > V1 > V2 and thus not all frequencies in the
(essential) spectrum. We believe that the same estimates can be proved for the remaining
frequencies λ ∈ (V2, V1] in the spectrum with some technical work. Especially regarding the
treatment of Schrödinger or wave equations, uniform estimates with respect to all λ ∈ C
would be very helpful and remain a challenging task for the future.

As an application of Theorem 1 we consider Helmholtz Equations on Rn involving the po-
tential V from (1). We start with linear problems of the form

(2) −∆u+ V u− λu = f in Rn

where f ∈ Lp(Rn). Theorem 1 allows, for (p, q) ∈ D̃, to define the outgoing solution u+ :=
R(λ+ i0)f ∈ Lq(Rn) of this equation. Notice that in the context of Helmholtz equations the
word “outgoing” is used to distinguish u+ = R(λ+ i0)f from the corresponding “incoming”
solution u− := R(λ − i0)f = u+, see [4, Definition 6.5]. Combining this with local elliptic
regularity theory we obtain the following result.

Corollary 1. Let n ∈ N, n ≥ 2, (p, q) ∈ D̃, let V be given by (1) and λ > V1 > V2. Then
for any f ∈ Lp(Rn) the Helmholtz equation (2) has a nontrivial “outgoing” resp. “incoming”
strong solution u+ (resp. u−) ∈ Lq(Rn) ∩ W 2,p

loc (Rn) obtained by the Limiting Absorption
Principle, and there holds an estimate of the form

‖u−‖Lq(Rn) + ‖u+‖Lq(Rn) . ‖f‖Lp(Rn).
If the Restriction Conjecture is true, then the same holds for (p, q) ∈ D.

Here the symbol . is used in the sense that there exists some constant C > 0 depending
only on the parameters V1, V2, n, p, q, λ such that ‖u−‖Lq(Rn) + ‖u+‖Lq(Rn) ≤ C‖f‖Lp(Rn). The
description of the appropriate radiation conditions for “outgoing” resp. “incoming” solutions
remains open and we believe that, here, the results for the ranges λ ∈ (V2, V1), λ = V1 and
λ ∈ (V1,∞) will be different. Moreover, it would be nice to provide a reasonable definition
of a Herglotz wave. Recall that in the case V1 = V2 = 1, Herglotz waves are given by
x 7→

∫
|ξ|=1

g(ξ)e−ix·ξ dσ(ξ) for square integrable densities g on the sphere. These solutions to

the Helmholtz equation (2) for f = 0 are of central interest in scattering theory.

In our final result we use the Limiting Absorption Principle from Theorem 1 to prove the
existence of solutions to nonlinear Helmholtz equations following the dual variational ap-
proach developed by Evéquoz and Weth [20, Theorem 1.2]. We refer to [19, 21, 33, 34, 36]
for related results and other approaches to nonlinear Helmholtz equations with constant or
periodic potentials.

Corollary 2. Let n ∈ N, n ≥ 2, let V be given by (1) and assume λ > V1 > V2. Let
Γ ∈ L∞(Rn) satisfy Γ > 0 on Rn and Γ(x, y) → 0 as |(x, y)| → ∞. Then the nonlinear
Helmholtz equation

−∆u+ V u− λu = Γ|u|q−2u in Rn(3)

has a nontrivial solution in Lq(Rn)∩W 2,r
loc (Rn) for all r <∞ provided that 2(n+1)

n−1 ≤ q < 2n
n−2 .



4 RAINER MANDEL AND DOMINIC SCHEIDER

We stress that this result covers the physically relevant special cases of the cubic and quintic
nonlinearities for n = 3. More refined dual variational techniques as in [16, 18, 20] might be
applicable as well to get one or even infinitely many solutions for larger classes of nonlinear-
ities. For the proof of Corollary 2 we concentrate on an adaptation of [20, Theorem 1.2] in
order to keep the technicalities at a moderate level. Let us mention that the integrability
properties of the solution at infinity are actually slightly better, which can be proved along
the lines of [20, Theorem 4.4] with the aid of a bootstrap procedure.

In the proof of Theorem 1 we will use Fourier restriction theory for estimates related to small
frequencies, whereas our estimates for intermediate frequency ranges require different tools
from Harmonic Analysis that we believe to be interesting in themselves. For instance, we
encounter linear operators of the form

(4) Tλ,αh := F−1d
(

1A(·)e−λ
√
|·|2−a2(| · |2 − a2)−αm(| · |)Fdh(·)

)
where α ∈ {0, 1

2
}, m ∈ C([a, b]), λ ≥ 0 and A = {ξ ∈ Rd : a ≤ |ξ| ≤ b} is an annulus with

radii b > a > 0. The dimensional parameter will be d = n−1. If m is sufficiently smooth and
λ = 0, we expect such operators to behave like so-called Bochner-Riesz operators of negative
order – a connection that we will highlight below. Their mapping properties are quite well
but, as far as we know, not completely understood, especially for 0 ≤ α < 1

2
. In our context,

however, m is only 1
2
-Hölder continuous and thus we cannot build upon on existing literature

about these operators. We first present our result dealing with the one-dimensional case,
which will be used in the proof of our LAP in the case n = d+ 1 = 2. For completeness, we
provide an optimal result under the stonger assumption m ∈ C1([a, b]).

Theorem 2. Let α ∈ [0, 1), 0 < a < b <∞, λ ≥ 0 and m ∈ C1([a, b]). Then Tλ,α : Lp(R)→
Lq(R) is bounded whenever 1

p
− 1

q
≥ α, 1

p
> α, 1

q
< 1−α. This range of exponents is optimal

under the given conditions and

‖Tλ,αh‖Lq(R) . (1 + λ)2α−
2
p
+ 2
q ‖h‖Lp(R).

For m ∈ C([a, b]) this estimate holds whenever 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1
p
− 1

q
≥ α.

In the higher-dimensional case d ≥ 2 the matter is more complicated. For our purposes it
will be sufficient to prove such estimates for exponents (p, q) belonging to the set

(5) Dα :=

{
(p, q) ∈ [1,∞]2 :

1

p
>

1

2
+
α

2d
,

1

q
<

1

2
− α

2d
,

1

p
− 1

q
≥ 2α

d+ 1

}
(0 < α < 1)

assuming that the symbol m is continuous. In the case α = 0 we set D0 := [1, 2]× [2,∞].

Theorem 3. Let d ∈ N, d ≥ 2, α ∈ [0, 1), 0 < a < b < ∞, λ ≥ 0 and m ∈ C([a, b]). Then
Tλ,α : Lp(Rd)→ Lq(Rd) is bounded for all (p, q) ∈ Dα and we have

‖Tλ,αh‖Lq(Rd) . (1 + λ)γ‖h‖Lp(Rd) for all λ ≥ 0

for some γ = γα,p,q,d ≤ 0. If additionally 1
p
− 1

q
≥ 2

d+2
is assumed then

γ ≤ 2α− 2 +
1

p
− 1

q
and γ < 2α− 2 +

1

p
− 1

q
if ( p = 1 or q =∞ ).(6)
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Remark 1.

(a) We do not know whether Dα is the optimal range for α ∈ (0, 1) under the given
assumptions on the symbol m. In case m ∈ C1([a, b]) it is certainly not because
boundedness also holds whenever 1

p
− 1

q
≥ d−1+2α

2d
, 1
p
> d−1+2α

2d
, 1

q
< d+1−2α

2d
. In

particular, this is true for the exponents q = ∞, d+α
2d
≥ 1

p
> d−1+2α

2d
, none of which is

covered by Theorem 3. The proof of this result is a straightforward generalization of the
proof of Theorem 2 to the higher-dimensional case. The pointwise bound for the kernel

|Kλ(z)| . |z|α−1 for |z| ≥ 1 + λ2 from (26) then generalizes to |Kλ(z)| . |z|α− d+1
2 .

(b) The proof actually yields an explicit expression for the decay rate γ, which, however,
might not be optimal. For that reason we only highlight the important aspect for us,
which is (6). The assumption 1

p
− 1

q
≥ 2

d+2
= 2

n+1
is designed for our application in

the context of the LAP from Theorem 1.

(c) The condition m ∈ C([a, b]) can be relaxed to m ∈ L∞([a, b]) in the non-endpoint case
1
p
− 1

q
> 2α

d+1
. Technically, this is due to the fact that the operators Tλ,s from (28) are

still well-defined for 0 ≤ Re(s) < 1 (but not for Re(s) = 1). Adapting the interpolation
procedure from the Proof of Theorem 3 accordingly, one obtains the result. Moreover,
the assumption m ∈ C([a, b]) can be replaced by a continuity assumption near |ξ| = a
(keeping the boundedness assumption) without changing the result.

As indicated above, Theorem 3 can be extended to certain exponent pairs (p, q) ∈ [1,∞] ×
[1,∞] not belonging to Dα provided that m is sufficiently smooth. One example for such an
improvement was given in part (a) of the previous remark. The question of optimal ranges
of exponents is challenging even in special cases. For instance, let us assume λ = 0, m ≡ 1
and A = {ξ ∈ Rd : 1 ≤ |ξ| ≤ 2} where d ≥ 2. Then the operators Tα := T0,α are given by

Tαh = F−1d
(
1A(·)(| · |2 − 1)−αFdh

)
.

Their mapping properties are identical to those of so-called Bochner-Riesz operators with
negative index. The only difference is that the annulus A is replaced by a ball and the
singularity of the Fourier multiplier at the inner radius of the annulus now occurs at the
boundary of the unit ball B ⊂ Rd. More precisely, these operators are given by

T̃αh := F−1d
(
1B(·)(1− | · |2)−αFdh

)
.

An alternative description as a convolution operator can be found in [8, p.225]. In the
case α = 0 this is the ball multiplier which is bounded from Lp(Rd) to Lq(Rd) whenever
1 ≤ p ≤ 2 ≤ q ≤ ∞. It is known that the operator T̃0 is bounded on Lp(Rd) only for p = 2.
This is a famous result from 1971 due to Fefferman [23]. Up to our knowledge, it is not
known what the optimal range of exponents for the ball multiplier is. In the case α ∈ (0, 1)
the optimal region is contained in the set

Dα :=

{
(p, q) ∈ [1,∞]2 :

1

p
− 1

q
≥ 2α

d+ 1
,

1

p
>
d− 1 + 2α

2d
,

1

q
<
d+ 1− 2α

2d

}
,

see [8, Theorem (iv)]. A standing conjecture is that Dα in fact coincides with the optimal
region, see [32, Conjecture 2]. In the two-dimensional case d = 2 the conjecture is true:
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Börjeson [8, Theorem (i)] proved the corresponding estimates except for the critical line
1
p
− 1

q
= 2α

d+1
and the missing piece was proved by Bak [6, Theorem 1]. In the higher-

dimensional case d ≥ 3 it is true for (d+1)(d−1)
2(d2+4d−1) < α < 1 if d is odd and (d+1)(d−2)

2(d2+3d−2) < α < 1 if d

is even [32, Theorem 2.13]. We refer to [10, Theorem 1.1], [7, Theorem 4], [8, Theorem (iii)]
and [26, Theorem 1] for earlier results in this direction. When restricted to radially symmetric
functions Dα is optimal in all space dimensions and for all α ∈ [0, 1). In the case α = 0
this follows from [29, Theorem 2] and [31], while for α ∈ (0, 1) this result can be found
in [9, Theorem 1]. For estimates in the case α = 0 and p = q with respect to mixed norms
we refer to [11].

In addition to Theorem 3 we will need estimates for the operators Sλ : Lp(Rd)→ Ls(A) and
their adjoints S∗λ : Ls

′
(A)→ Lp

′
(Rd) given by

Sλh := 1A(·)e−λ
√
|·|2−a2m(| · |)Fdh(·),

S∗λg := F−1d
(

1A(·)e−λ
√
|·|2−a2m(| · |)g(·)

)
.

(7)

Theorem 4. Let d ∈ N, 0 < a < b < ∞, λ ≥ 0 and m ∈ L∞([a, b]). Then the operators
Sλ : Lp(Rd)→ Ls(A), S∗λ : Ls

′
(A)→ Lp

′
(Rd) are bounded provided that 1 ≥ 1

p
≥ 1

2
, 1 ≥ 1

s
≥ 1

p′

and we have

‖Sλh‖Ls(A) . ‖h‖Lp(Rd)(1 + λ)
2
s′−

2
p
−β.

where β = 0 if d = 1 and, for sufficiently small ε > 0,

β = min

{
d− 1

p
− d− 1

s′
,
2(d+1

p
− d−1

s′
− 1)

p∗(d)′
− ε,

2
p∗(d)′

(1
p
− 1

2
)

1
p∗(d)
− 1

2

− ε, 2

p′

}
if d ≥ 2.(8)

If the Restriction Conjecture is true, then the same estimate holds for p∗(d) replaced by 2d
d+1

.

The outline of this paper is the following. In Section 2 we first derive a representation formula
for the functions R(λ + iε)f,R(λ ± i0)f that are of interest in Theorem 1. As a main tool
we use one-sided Fourier transforms. In Section 3 we complete the list of required tools from
Harmonic Analysis, state all the essential estimates (Propositions 3, 4, 5, 6) and combine
them in order to prove Theorem 1. The application to nonlinear PDEs from Corollary 2 is
demonstrated as well. In the Sections 4, 5, 6 we subsequently prove Theorem 2, Theorem 3
and Theorem 4. The Propositions are proved in the following four sections.

Before starting our analysis let us fix some notation and conventions. For p ∈ [1,∞], we write
Lp(Rd) for the (classical) Lebesgue space of complex-valued p-integrable functions. The cor-
responding standard norms are denoted by ‖·‖Lp(Rd). Moreover, we write p′ = p

p−1 ∈ [1,∞] for

the conjugate exponent. The inner product in L2(Rd) is 〈f, g〉L2(Rd) =
∫
Rd f(x)g(x) dx. The

d-dimensional Fourier transform is given by Fdg(ξ) = (2π)−d/2
∫
Rd g(x)e−ix·ξ dx with inverse

F−1d h(ξ) = (Fdh)(−ξ) where g, h : Rd → R are sufficiently regular. At some points it will be
convenient to slightly abuse the notation by writing F−1d (g(ξ))(x) in place of F−1d (g)(x). The
space of complex-valued Schwartz functions is S(Rn). The sphere of radius µ in Rd is given
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by Sd−1µ = {ξ ∈ Rd : |ξ| = µ} along with its canonical surface measure σµ. The corresponding

Lebesgue spaces is denoted by Ls(Sd−1µ ), s ∈ [1,∞].

2. The representation formula

In this section we derive a representation formula for the outgoing solution of the Helmholtz
equation (2) where V is the step potential from (1), i.e.,

V (x, y) =

{
V1 if x ∈ Rn−1, y > 0,

V2 if x ∈ Rn−1, y < 0
with V1 > V2.

To this end we solve the perturbed Helmholtz equation

(9) −∆uε + V (x, y)uε − (λ+ iε)uε = f in Rn

where λ > V1 > V2 and ε > 0. We define the one-sided Fourier transforms of f ∈ S(Rn) via

(F±n f)(ξ, η) := (Fnf±)(ξ, η) where f±(x, y) := f(x, y) · 1(0,∞)(±y).

Proposition 1. For all v ∈ S(Rn) and ξ ∈ Rn−1, η ∈ R we have

F+
n (−∆v)(ξ, η) = (|ξ|2 + η2)(F+

n v)(ξ, η) + (2π)−
1
2 (iηFn−1[v(·, 0)](ξ) + Fn−1[v′(·, 0)](ξ)) ,

F−n (−∆v)(ξ, η) = (|ξ|2 + η2)(F−n v)(ξ, η)− (2π)−
1
2 (iηFn−1[v(·, 0)](ξ) + Fn−1[v′(·, 0)](ξ)) .

Moreover, ran(F+
n ), ran(F−n ) are L2(Rn)-orthogonal to each other and Fn = F+

n +F−n . Here
we denote ∂yv(x, y) =: v′(x, y).

We only comment on the orthogonality property. For f, g ∈ S(Rn) Plancherel’s identity
implies

〈F+
n f,F−n g〉L2(Rn) = 〈Fnf+,Fng−〉L2(Rn) = 〈f+, g−〉L2(Rn) = 0

since the supports of f+, g− intersect only in a null set. We introduce µj :=
√
λ− Vj > 0

and the complex-valued functions νj,ε : Rn−1 → C via

νj,ε(ξ)
2 = µ2

j − |ξ|2 + iε = λ− Vj − |ξ|2 + iε and Im(νj,ε(ξ)) > 0.

Notice that νj,ε(ξ)→ νj(ξ) as ε↘ 0 where

νj(ξ) :=

{
(µ2

j − |ξ|2)
1
2 if |ξ| ≤ µj,

i(|ξ|2 − µ2
j)

1
2 if |ξ| ≥ µj.

(10)

Later we will need the following elementary estimate:

(11) 1 + |ξ| . |νj(ξ)|
√

1 + |∇νj(ξ)|2 . 1 + |ξ| (ξ ∈ Rn−1).
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Proposition 2. Let λ > V1 > V2 and f ∈ S(Rn). Then, for any given ε > 0, the unique
solution uε ∈ S(Rn) of (9) is given by

uε(x, y) = F−1n
(

F+
n f

| · |2 − µ2
1 − iε

+
F−n f

| · |2 − µ2
2 − iε

)
(x, y)

+ F−1n−1
(
ei|y|ν1,ε(m1,εg+,ε +m2,εg−,ε)

)
(x)

+ F−1n−1
(
ei|y|ν2,ε(m3,εg+,ε +m4,εg−,ε)

)
(x)

(12)

where g+,ε(ξ) = F+
n f(ξ,−ν1,ε(ξ)), g−,ε(ξ) = F−n f(ξ, ν2,ε(ξ)) and

m1,ε(ξ) :=
i
√
π/2

ν1,ε(ξ) + ν2,ε(ξ)
·
(

sign(y)− ν2,ε(ξ)

ν1,ε(ξ)

)
,

m2,ε(ξ) :=
i
√
π/2

ν1,ε(ξ) + ν2,ε(ξ)
· (1 + sign(y)) ,

m3,ε(ξ) :=
i
√
π/2

ν1,ε(ξ) + ν2,ε(ξ)
· (1− sign(y)) ,

m4,ε(ξ) :=
i
√
π/2

ν1,ε(ξ) + ν2,ε(ξ)
·
(
− sign(y)− ν1,ε(ξ)

ν2,ε(ξ)

)
.

(13)

Proof. From Proposition 1 we obtain

(|ξ|2 + η2 − (µ2
1 + iε))F+

n uε(ξ, η) + (2π)−
1
2 (iηFn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ)) = F+

n f(ξ, η),

(|ξ|2 + η2 − (µ2
2 + iε))F−n uε(ξ, η)− (2π)−

1
2 (iηFn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ)) = F−n f(ξ, η).

So νj,ε(ξ)
2 = µ2

j + iε− |ξ|2 yields the formula

F+
n uε(ξ, η) =

F+
n f(ξ, η)− (2π)−

1
2 (iηFn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ))

η2 − ν1,ε(ξ)2
,

F−n uε(ξ, η) =
F−n f(ξ, η) + (2π)−

1
2 (iηFn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ))

η2 − ν2,ε(ξ)2
.

(14)

We now exploit ran(F+
n ) ⊥ ran(F−n ) in order to compute Fn−1[uε(·, 0)](ξ),Fn−1[u′ε(·, 0)](ξ).

The Residue Theorem gives for all φ ∈ S(Rn−1) and ζ(z) :=
√

2πe−|z| for z ∈ R

0 = 〈F−n uε,F+
n (φ⊗ ζ)〉L2(Rn)

=

∫
R

∫
Rn−1

(
F−n f(ξ, η) + (2π)−

1
2 (iηFn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ))

η2 − ν2,ε(ξ)2
· φ̂(ξ)

−iη + 1

)
dξ dη

=

∫
Rn−1

φ̂(ξ) ·

[(∫
R

F−n f(ξ, η)

(η2 − ν2,ε(ξ)2)(−iη + 1)
dη

)
+
Fn−1[u′ε(·, 0)](ξ)√

2π

(∫
R

1

(η2 − ν2,ε(ξ)2)(−iη + 1)
dη

)
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+
Fn−1[uε(·, 0)](ξ)√

2π

(∫
R

iη

(η2 − ν2,ε(ξ)2)(−iη + 1)
dη

)]
dξ

=

∫
Rn−1

iπφ̂(ξ)

ν2,ε(ξ)(1− iν2,ε(ξ))
·
(
F−n f(ξ, ν2,ε(ξ)) +

iν2,ε(ξ)Fn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ)√
2π

)
dξ

and similarly

0 = 〈F+
n uε,F−n (φ⊗ ζ)〉L2(Rn)

=

∫
Rn−1

iπφ̂(ξ)

ν1,ε(ξ)(1− iν1,ε(ξ))
·
(
F+
n f(ξ,−ν1,ε(ξ))−

iν2,ε(ξ)Fn−1[uε(·, 0)](ξ) + Fn−1[u′ε(·, 0)](ξ)√
2π

)
dξ.

Since φ ∈ S(Rn−1) was arbitrary, we get for almost all ξ ∈ Rn−1(
−iν1,ε(ξ) 1
−iν2,ε(ξ) −1

)(
Fn−1[uε(·, 0)](ξ)
Fn−1[u′ε(·, 0)](ξ)

)
=
√

2π

(
F+
n f(ξ,−ν1,ε(ξ))
F−n f(ξ, ν2,ε(ξ))

)
=
√

2π

(
g+,ε(ξ)
g−,ε(ξ)

)
.

Inverting this linear system we get(
Fn−1[uε(·, 0)](ξ)
Fn−1[u′ε(·, 0)](ξ)

)
=

√
2π

ν1,ε(ξ) + ν2,ε(ξ)

(
i i

ν2,ε(ξ) −ν1,ε(ξ)

)(
g+,ε(ξ)
g−,ε(ξ)

)
.(15)

From this and F+
n + F−n = Fn we get for x ∈ Rn−1, y ∈ R

uε(x, y) = F−1n (F+
n uε + F−n uε)(x, y)

(14)
= F−1n

(
F+
n f(ξ, η)

η2 − ν1,ε(ξ)2
+
F−n f(ξ, η)

η2 − ν2,ε(ξ)2

)
(x, y)

− 1√
2π
F−1n

[(
iη

η2 − ν1,ε(ξ)2
− iη

η2 − ν2,ε(ξ)2

)
· (Fnuε)(ξ, 0)

]
(x, y)

− 1√
2π
F−1n

[(
1

η2 − ν1,ε(ξ)2
− 1

η2 − ν2,ε(ξ)2

)
· (Fnuε)′(ξ, 0)

]
(x, y)

= F−1n
(

F+
n f

| · |2 − µ2
1 − iε

+
F−n f

| · |2 − µ2
2 − iε

)
(x, y)

− 1

2π
F−1n−1

(∫
R

(
iη

η2 − ν1,ε(ξ)2
− iη

η2 − ν2,ε(ξ)2

)
eiyη dη · (Fnuε)(ξ, 0)

)
(x)

− 1

2π
F−1n−1

(∫
R

(
1

η2 − ν1,ε(ξ)2
− 1

η2 − ν2,ε(ξ)2

)
eiyη dη · (Fnuε)′(ξ, 0)

)
(x)

= F−1n
(

F+
n f

| · |2 − µ2
1,ε

+
F−n f

| · |2 − µ2
2,ε

)
(x, y)

+
sign(y)

2
F−1n−1

((
ei|y|ν1,ε − ei|y|ν2,ε

)
(Fnuε)(·, 0)

)
(x)

− i

2
F−1n−1

((ei|y|ν1,ε

ν1,ε
− ei|y|ν2,ε

ν2,ε

)
(Fnuε)′(·, 0)

)
(x).



10 RAINER MANDEL AND DOMINIC SCHEIDER

Combining this identity with (15) we find (12),(13). �

It will turn out useful to decompose the last lines of (12) according to

wε(x, y) + wε(x, y) + Wε(x, y) +Wε(x, y)

where the small frequencies are collected in wε, the large ones in Wε and the remaining
intermediate ranges of frequencies are covered by the terms wε,Wε. Formally,

wε(x, y) := F−1n−1
(
ei|y|ν1,ε(1|·|≤µ1m1,εg+,ε + 1|·|≤µ1m2,εg−,ε)

)
(x)

+ F−1n−1
(
ei|y|ν2,ε(1|·|≤µ1m3,εg+,ε + 1|·|≤µ2m4,εg−,ε)

)
(x),

wε(x, y) := F−1n−1
(
ei|y|ν1,ε1µ1<|·|≤µ2m2,εg−,ε + ei|y|ν2,ε1µ1<|·|≤µ2m3,εg+,ε

)
(x),

Wε(x, y) := F−1n−1
(
ei|y|ν1,ε1µ1<|·|≤µ1+µ2m1,εg+,ε + ei|y|ν1,ε1µ2<|·|≤µ1+µ2m2,εg−,ε

)
(x)

+ F−1n−1
(
ei|y|ν2,ε1µ2<|·|≤µ1+µ2m3,εg+,ε + ei|y|ν2,ε1µ2<|·|≤µ1+µ2m4,εg−,ε

)
(x),

Wε(x, y) := F−1n−1
(
ei|y|ν1,ε(1|·|>µ1+µ2m1,εg+,ε + 1|·|>µ1+µ2m2,εg−,ε)

)
(x)

+ F−1n−1
(
ei|y|ν2,ε(1|·|>µ1+µ2m3,εg+,ε + 1|·|>µ1+µ2m4,εg−,ε)

)
(x).

In the following section we will state estimates for wε,wε,Wε,Wε (see the Propositions 3, 4, 5, 6)
that lead to the proof of Theorem 1. Before going on with this we compute the limit of uε
as ε↘ 0. The above representation formula for uε leads to the definition(

R(λ+ i0)f
)
(x, y) := u+(x, y)

:= lim
ε↘0
F−1n

(
F+
n f

| · |2 − µ2
1 − iε

+
F−n f

| · |2 − µ2
2 − iε

)
(x, y)

+ F−1n−1
(
ei|y|ν1(m1g+ +m2g−)

)
(x)

+ F−1n−1
(
ei|y|ν2(m3g+ +m4g−)

)
(x)

(16)

where the limit in the first line will be a weak limit in Lq(Rn). As above, the last two lines
of (16) can be rewritten as

w(x, y) + w(x, y) + W(x, y) +W (x, y)

where g+(ξ) = F+
n f(ξ,−ν1(ξ)), g−(ξ) = F−n f(ξ, ν2(ξ)) and

w(x, y) := F−1n−1
(
ei|y|ν1(1|·|≤µ1m1g+ + 1|·|≤µ1m2g−)

)
(x)

+ F−1n−1
(
ei|y|ν2(1|·|≤µ1m3g+ + 1|·|≤µ2m4g−)

)
(x),

w(x, y) := F−1n−1
(
ei|y|ν11µ1<|·|≤µ2m2g− + ei|y|ν21µ1<|·|≤µ2m3g+

)
(x),

W(x, y) := F−1n−1
(
ei|y|ν11µ1<|·|≤µ1+µ2m1g+ + ei|y|ν11µ2<|·|≤µ1+µ2m2g−

)
(x)

+ F−1n−1
(
ei|y|ν21µ2<|·|≤µ1+µ2m3g+ + ei|y|ν21µ2<|·|≤µ1+µ2m4g−

)
(x),

W (x, y) := F−1n−1
(
ei|y|ν1(1|·|>µ1+µ2m1g+ + 1|·|>µ1+µ2m2g−)

)
(x)

+ F−1n−1
(
ei|y|ν2(1|·|>µ1+µ2m3g+ + 1|·|>µ1+µ2m4g−)

)
(x).

(17)
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Here,

m1(ξ) :=
i
√
π/2

ν1(ξ) + ν2(ξ)
·
(

sign(y)− ν2(ξ)

ν1(ξ)

)
,

m2(ξ) :=
i
√
π/2

ν1(ξ) + ν2(ξ)
· (1 + sign(y)) ,

m3(ξ) :=
i
√
π/2

ν1(ξ) + ν2(ξ)
· (1− sign(y)) ,

m4(ξ) :=
i
√
π/2

ν1(ξ) + ν2(ξ)
·
(
− sign(y)− ν1(ξ)

ν2(ξ)

)
.

(18)

Notice that in the case without a jump in the potential we have µ1 = µ2 =: µ, ν1 ≡ ν2 and
the formula (16) simplifies to(

R(λ+ i0)f
)
(x, y) = lim

ε↘0
F−1n

(
Fnf

| · |2 − µ2 − iε

)
(x, y) if V1 = V2

because of m1 +m3 ≡ m2 +m4 ≡ 0. At several places we shall need the estimates

|m1(ξ)| . (1 + |ξ|)−1|ν1(ξ)|−1 (ξ ∈ Rn−1),

|m2(ξ)|+ |m3(ξ)| . (1 + |ξ|)−1 (ξ ∈ Rn−1),

|m4(ξ)| . (1 + |ξ|)−1|ν2(ξ)|−1 (ξ ∈ Rn−1).

(19)

3. Proof of Theorem 1 and Corollary 2

We first collect a few tools from Harmonic Analysis that we will need in our estimates. For
n ≥ 3, the first line in (12) and (16) may be analyzed with the aid of Gutiérrez’ Limiting
Absorption Principle [27, Theorem 6] (see also [30, Theorem 2.3]) for the Helmholtz equation
with constant coefficients in Rn. The corresponding result for the case n = 2 was provided
by Evéquoz [17, Theorem 2.1].

Theorem 5 (Gutiérrez, Evéquoz). Assume n ∈ N, n ≥ 2, (p, q) ∈ D and V ≡ V1 = V2. If
λ > V1 = V2 then the solutions uε of (9) and u+, u− := u+ from (16) satisfy

‖u+‖Lq(Rn) + ‖u−‖Lq(Rn) + sup
0<|ε|≤1

‖uε‖Lq(Rn) . ‖f‖Lp(Rn).

More can be said about the qualitative properties of u+, u−, especially concerning their
behaviour at infinity which is governed by an outgoing respectively incoming Sommerfeld
radiation condition that even characterize these solutions of the Helmholtz equation, see for
instance [27, Corollary 1] in the case n ≥ 3. As solutions of the Helmholtz equation (2), the
imaginary parts of u± are solutions of the homogeneous Helmholtz equation. Computations
reveal (see for instance (5.6) in [37]) that Im(u+) = − Im(u−) is a multiple of the function
F−1d (Fdf dσµ) where µ =

√
λ− V1 =

√
λ− V2 > 0. This corresponds to a Herglotz wave

given by the density Fdf on Sd−1µ . So Theorem 5 implies the following.
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Corollary 3. For n ∈ N, n ≥ 2 and (p, q) ∈ D the linear operator f 7→ F−1n (Fnf dσµ) is
bounded from Lp(Rd) to Lq(Rd) for all µ > 0.

Another reference for this result and for the optimality of the asserted range can be found
in [32, Theorem 2.14]. We will also need several Fourier restriction theorems for the Fourier
transforms Fn,Fn−1 restricted to spheres in Rn−1 respectively Rn. We use d as the dimen-
sional parameter.

Theorem 6 (Stein-Tomas). Let d ∈ N, d ≥ 2 and 1 ≤ p ≤ 2(d+1)
d+3

, µ > 0. Then

‖Fdf‖L2(Sd−1
µ ) . µ

d−1
2
− d
p′ ‖f‖Lp(Rd), ‖Fd(g dσµ)‖Lp′ (Rd) . µ

d−1
2
− d
p′ ‖g‖L2(Sd−1

µ ).

The Stein-Tomas Theorem (see [42] or [39, p.386]) is one particularly important estimate that
embeds into a whole family of estimates. The Restriction Conjecture says that the estimates

(20) ‖Fdh‖Lq′ (Sd−1
µ ) . µ

d−1
q′ −

d
p′ ‖h‖Lp(Rd), ‖Fd(g dσµ)‖Lp′ (Rd) . µ

d−1
q′ −

d
p′ ‖g‖Lq(Sd−1

µ ).

hold whenever p′ > 2d
d−1 , q ≥

(
d−1
d+1

p′
)′

. In the two-dimensional case d = 2 the validity of (20)
is known since the 1970s [43, Theorem 3], [22, p.33-34]. In the higher-dimensional case,
however, the conjecture is still unsolved. Up to our knowledge, the strongest known result
in this direction is due to Tao, see [40, Figure 3] and [41, p.1382].

Theorem 7 (Fefferman, Zygmund). Let d = 2 and p′ > 2d
d−1 , q ≥

(
d−1
d+1

p′
)′
, µ > 0. Then (20)

holds.

Theorem 8 (Tao). Let d ∈ N, d ≥ 3 and p′ > 2(d+2)
d

, q ≥
(
d−1
d+1

p′
)′
, µ > 0. Then (20) holds.

As a consequence, in our analysis we can use (20) for p′ > p∗(d), q ≥
(
d−1
d+1

p′
)′

. We recall

p∗(d) = q∗(d)′ = 2d
d+1

in the case d = 2 and p∗(d) = q∗(d)′ = 2(d+2)
d+4

in the case d ≥ 3. All
other major technical results are contained in Theorem 2 and Theorem 3 that we presented
in the Introduction. In view of the representation formula (16) and the following remarks
we will demonstrate Theorem 1 by a separate discussion for four different frequency regimes.
Our result for the small frequency parts are the following.

Proposition 3. Let n ∈ N, n ≥ 2 and 1
p
> 1

p∗(n)
, 1
q
< 1

q∗(n)
, 1
p
− 1

q
≥ 2

n+1
. Then we have

‖w‖Lq(Rn) + sup
0<|ε|≤1

‖wε‖Lq(Rn) . ‖f‖Lp(Rn).

In particular, this holds for all (p, q) ∈ D̃. If the Restriction Conjecture is true, then these
estimates even hold whenever 1

p
> n+1

2n
, 1
q
< n−1

2n
, 1
p
− 1

q
≥ 2

n+1
and hence for all (p, q) ∈ D.

The proof of Proposition 3 will be given in Section 7. In Section 8, we analyze the first of
the two terms containing intermediate frequencies. We will prove the following result.

Proposition 4. Let n ∈ N, n ≥ 2 and 1
p
> 1

p∗(n)
, 1
q
< 1

q∗(n)
, 1
p
− 1

q
≥ 2

n+1
. Then we have

‖w‖Lq(Rn) + sup
0<|ε|≤1

‖wε‖Lq(Rn) . ‖f‖Lp(Rn).
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In particular, this holds for all (p, q) ∈ D̃. If the Restriction Conjecture is true, then this
estimate even holds for 1

p
> n+1

2n
, 1
q
< n−1

2n
, 1
p
− 1

q
≥ 2

n+1
and thus for all (p, q) ∈ D.

The estimates related to the second range of intermediate frequencies rely on Theorem 2
(n = 2) and Theorem 3 (n ≥ 3). The proof is provided in Section 9.

Proposition 5. Let n ∈ N, n ≥ 2 and 1
p
> n+1

2n
, 1
q
< n−1

2n
, 1
p
− 1

q
≥ 2

n+1
. Then we have

‖W‖Lq(Rn) + sup
0<|ε|≤1

‖Wε‖Lq(Rn) . ‖f‖Lp(Rn).

In particular, this holds for all (p, q) ∈ D.

The estimates for the large frequency parts W,Wε are the easiest ones. The proof will be
presented in Section 10.

Proposition 6. Let n ∈ N, n ≥ 2 and 1 ≤ p ≤ 2 ≤ q ≤ ∞ with 0 ≤ 1
p
− 1

q
≤ 2

n
and 1

p
− 1

q
< 2

n

if p = 1 or q =∞. Then we have

‖W‖Lq(Rn) + sup
0<|ε|≤1

‖Wε‖Lq(Rn) . ‖f‖Lp(Rn).

In particular, this holds for all (p, q) ∈ D.

Proof of Theorem 1. From Proposition 2 and the representation formulas (12), (16) we
get

‖u+‖Lq(Rn) + ‖u−‖Lq(Rn) + sup
0<|ε|≤1

‖uε‖Lq(Rn)

. sup
0<|ε|≤1

∥∥∥∥F−1n (
F+
n f

| · |2 − µ2
1 − iε

+
F−n f

| · |2 − µ2
2 − iε

)∥∥∥∥
Lq(Rn)

+ ‖w‖Lq(Rn) + ‖w‖Lq(Rn) + ‖W‖Lq(Rn) + ‖W‖Lq(Rn)
+ sup

0<|ε|≤1

(
‖wε‖Lq(Rn) + ‖wε‖Lq(Rn) + ‖Wε‖Lq(Rn) + ‖Wε‖Lq(Rn)

)
.

For all exponents (p, q) ∈ D̃ the control of each of these terms by the Lp-norm of the right
hand side is a consequence of Theorem 5, Proposition 3, Proposition 4, Proposition 5 and
Proposition 6 because of D̃ ⊂ D. If the Restriction Conjecture is true, then the same
statement holds even all (p, q) ∈ D. �

Proof of Corollary 2. We briefly recall the dual variational technique for nonlinear
Helmholtz equations from [20]. We aim at proving the existence of a real-valued function
u ∈ Lq(Rn) satisfying

−∆u+ V u− λu = Γ|u|q−2u in Rn(21)

in the distributional sense. In view of elliptic regularity theory any distributional solution of
such an equation will actually belong to W 2,r

loc (Rn) for all r ∈ [1,∞). Such solutions of the
nonlinear PDE (21) will be obtained by solving the integral equation u = K(Γ|u|q−2u) where
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Kφ := Re(R(λ+ i0)φ) and R(λ+ i0) has the mapping properties stated in Theorem 1. We

set v := Γ
1
q′ |u|q−2u and thus look for v ∈ Lq′(Rn) satisfying

|v|q′−2v = Γ
1
qK(Γ

1
q v).

Since K is symmetric, this equation has a variational structure. So we have to prove the
existence of a nontrivial critical point of the functional

I(v) :=
1

q′

∫
Rn
|v|q′ − 1

2

∫
Rn

(
Γ

1
q v
) [
K
(
Γ

1
q v
)]
.

This functional has the Mountain Pass geometry, as we will explain and verify below. More-
over, exploiting Γ→ 0 at infinity, it satisfies the Palais-Smale condition. This can be shown
exactly as in [20, Lemma 5.2] where the corresponding statement is proved in the special case
V1 = V2. With these two ingredients we may apply the Mountain Pass Theorem [5, Theo-
rem 2.1] and obtain a nontrivial critical point v of I. Transforming this function back ac-

cording to v = Γ
1
q′ |u|q−2u, we get a nontrivial solution u = Γ−

1
q |v|q′−2v = K(Γ

1
q v) ∈ Lq(Rn)

of the nonlinear Helmholtz equation (3).

We now check that I has the Mountain Pass geometry. First, by choice of q in Corollary 2,
the operator R(λ + i0) : Lq

′
(Rn) → Lq(Rn) is bounded and thus K : Lq

′
(Rn) → Lq(Rn) is

bounded as well. Moreover,

I(v) ≥ 1

q
‖v‖q

′

Lq′ (Rn) −
1

2
‖K‖Lq′ (Rn)→Lq(Rn)‖Γ‖

2
q

L∞(Rn)‖v‖
2
Lq′ (Rn)

and q′ < 2 imply I(0) = 0 < infS% I for some sufficiently small % > 0 where S% denotes the

sphere in Lq
′
(Rn) with radius %. Finally, I(tv) → −∞ as t → ∞ for some v ∈ Lq′(Rn), the

proof of which will take the remainder of this section. We adapt an idea from [35, Section 3]
and choose the ansatz v = vδ where

(22) vδ(x, y) := Γ(x, y)−
1
qw(x)e−y1(δ,∞)(Γ(x, y))1(0,∞)(y) (x ∈ Rn−1, y ∈ R, δ > 0)

with sufficiently small δ > 0 and with a nontrivial Schwartz function w satisfying supp(ŵ) ⊂
Rn \Bµ2(0) = {ξ ∈ Rn−1 : |ξ| > µ2}. Notice that vδ ∈ Lq

′
(Rn) because of δ > 0 and

Γ
1
q vδ → f in Lq

′
(Rn) as δ ↘ 0 where f(x, y) = w(x)e−y1(0,∞)(y).

Here we used Γ > 0 on Rn. So we find with the aid of Plancherel’s theorem

lim
δ↘0

∫
Rn

(
Γ

1
q vδ
) [
K
(
Γ

1
q vδ
)]

d(x, y)

=

∫
Rn
f(Kf) d(x, y)

= Re

(∫
Rn

(R(λ+ i0)f) · f d(x, y)

)
(16)
= Re

(∫
Rn
F−1n

(
F+
n f

| · |2 − µ2
1 − i0

+
F+
n f

| · |2 − µ2
2 − i0

)
(x, y) · f(x, y) d(x, y)

)
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+ Re

(∫
Rn
F−1n−1

(
ei|y|ν1(m1g+ +m2g−)

)
(x) · f(x, y) d(x, y)

)
+ Re

(∫
Rn
F−1n−1

(
ei|y|ν1(m3g+ +m4g−)

)
(x) · f(x, y) d(x, y)

)
= Re

(∫
Rn

F+
n f(ξ, η) · Fnf(ξ, η)

|ξ|2 + η2 − µ2
1 − i0

+
F−n f(ξ, η) · Fnf(ξ, η)

|ξ|2 + η2 − µ2
2 − i0

d(ξ, η)

)

+ Re

(∫
Rn

ei|y|ν1(ξ)(m1(ξ)g+(ξ) +m2(ξ)g−(ξ))Fn−1[f(·, y)](ξ) d(ξ, y)

)
+ Re

(∫
Rn

ei|y|ν2(ξ)(m3(ξ)g+(ξ) +m4(ξ)g−(ξ))Fn−1[f(·, y)](ξ) d(ξ, y)

)
.

Inserting (22) we get

Fn−1[f(·, y)](ξ) = ŵ(ξ)e−y1(0,∞)(y), F+
n f(ξ, η) = Fnf(ξ, η) =

ŵ(ξ)

1 + iη
, F−n f ≡ 0.

So our choice of w implies |ξ|2 + η2 ≥ |ξ|2 > µ2
2 > µ2

1 for all (ξ, η) ∈ supp(ŵ) × R =
supp(F+

n f) = supp(Fnf). This has the following consequences:

(i) The principal value symbol −i0 can be omitted in the first two integrals.

(ii) νj(ξ) = i|νj(ξ)| for j = 1, 2, see (10).

(iii) g−(ξ) = F−n f(ξ, ν2(ξ)) = 0 and g+(ξ) = F+
n f(ξ,−ν1(ξ)) = ŵ(ξ)

1−iν1(ξ) = ŵ(ξ)
1+|ν1(ξ)| .

Given that m1(ξ) is real-valued and positive and m3 ≡ 0 for |ξ| ≥ µ2 > µ1, y > 0, see (18)
and (ii), this implies∫

Rn
f(Kf) d(x, y)

=

∫
Rn

|Fnf(ξ, η)|2

|ξ|2 + η2 − µ2
1

d(ξ, η) + Re

(∫
Rn

ei|y|ν1(ξ)m1(ξ)g+(ξ)Fn−1[f(·, y)](ξ) d(ξ, y)

)
=

∫
Rn

|Fnf(ξ, η)|2

|ξ|2 + η2 − µ2
1

d(ξ, η) +

∫
Rn−1

m1(ξ)|ŵ(ξ)|2

1 + |ν1(ξ)|

(∫ ∞
0

e−(|ν1(ξ)|+1)y dy

)
dξ

=

∫
Rn

|Fnf(ξ, η)|2

|ξ|2 + η2 − µ2
1

d(ξ, η) +

∫
Rn−1

m1(ξ)|ŵ(ξ)|2

(1 + |ν1(ξ)|)2
dξ > 0.

As a consequence, we obtain ∫
Rn

(
Γ

1
q vδ
) [
K
(
Γ

1
q vδ
)]

d(x, y) > 0

provided that δ > 0 is small enough. This finishes the proof of the Mountain Pass Geometry
and the claim is proved. �
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4. Proof of Theorem 2

In this section we discuss the mapping properties of the operator Tλ,α from (4) in the one-
dimensional case d = 1. Before proving the claims from Theorem 2 on that matter, we
provide two auxiliary results dealing with singular one-dimensional oscillatory integrals. We
use the following well-known estimate.

Proposition 7 (VIII.§1.1.2 Corollary [39] on p.334). Let I ⊂ R be an interval. Then we
have for all b ∈ W 1,1(I) the estimate∣∣∣∣∫

I

eicρb(ρ) dρ

∣∣∣∣ . c−1(|b(0)|+ ‖b′‖L1(I))

with a constant independent of I and b.

Proposition 8. Let δ ∈ (0, 1) and a ∈ C1([0, 1]). Then the following holds for c > 0:

(i)

∣∣∣∣∫ 1

0

eicρa(ρ)ρ−δ dρ

∣∣∣∣ . (1 + c)δ−1(|a(0)|+ ‖a′‖∞).

(ii)

∣∣∣∣∫ 1

0

eicρa(ρ)ρ−δ dρ− a(0)cδ−1
∫ ∞
0

eiρρ−δ dρ

∣∣∣∣ . c−1 (|a(0)|+ ‖a′‖∞) .

In particular, there is M > 0 independent of a such that∣∣∣∣∫ 1

0

eicρa(ρ)ρ−δ dρ

∣∣∣∣ & cδ−1|a(0)| for c ≥M(1 + ‖a′‖∞|a(0)|−1)1/δ.

Proof. For 0 < c ≤ 1 the estimate (i) is trivial. For c > 0 we get from Proposition 7∣∣∣∣∫ 1

0

eicρa(ρ)ρ−δ dρ

∣∣∣∣ . ∣∣∣∣∫ 1

0

eicρ(a(ρ)− a(0))ρ−δ dρ

∣∣∣∣+ |a(0)|
∣∣∣∣∫ 1

0

eicρρ−δ dρ

∣∣∣∣
. c−1

∫ 1

0

|((a(ρ)− a(0))ρ−δ)′| dρ+ |a(0)|cδ−1
∣∣∣∣∫ c

0

eiρρ−δ dρ

∣∣∣∣
≤ cδ−1(|a(0)|+ ‖a′‖∞).

The estimate (ii) is similar. For 0 < c ≤ 1 the estimate is trivial, while for c > 0 we may
exploit Proposition 7 once more to get∣∣∣∣∫ 1

0

eicρa(ρ)ρ−δ dρ− a(0)cδ−1
∫ ∞
0

eiρρ−δ dρ

∣∣∣∣
≤
∣∣∣∣∫ 1

0

eicρ(a(ρ)− a(0))ρ−δ dρ

∣∣∣∣+ |a(0)|
∣∣∣∣∫ ∞

1

eicρρ−δ dρ

∣∣∣∣
. c−1

∫ 1

0

|((a(ρ)− a(0))ρ−δ)′| dρ+ c−1|a(0)|
(

1 +

∫ ∞
1

ρ−1−δ dρ

)
. c−1 (|a(0)|+ ‖a′‖∞) .

The second part of (ii) is a direct consequence of the first part since all constants incorporated
in . are independent of a and c. �
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The above result allows to determine the exact asymptotics in the singular case δ ∈ (0, 1)
and in particular some lower bound for large c that we will need in the construction of
counterexamples. Similar but slightly different results can be obtained for δ = 0.

Proposition 9. Let a ∈ C1([0, 1]). Then the following holds for all c > 0

(i)

∣∣∣∣∫ 1

0

eicρa(ρ) dρ

∣∣∣∣ . (1 + c)−1(|a(0)|+ ‖a′‖∞).

(ii)

∣∣∣∣∫ 1

0

eicρa(ρ) dρ− a(1)eic − a(0)

ic

∣∣∣∣ . (1 + c)−2 (|a(0)|+ |a′(0)|+ ‖a′′‖∞) if a ∈ C2([0, 1]).

Proof. Part (i) is proved just as in the singular case, see Proposition 8. For 0 < c ≤ 1 the
estimate (ii) is trivial and for c > 1 we get via integration by parts and the estimate (i)∣∣∣∣∫ 1

0

eicρa(ρ) dρ− a(1)eic − a(0)

ic

∣∣∣∣ = c−1
∣∣∣∣∫ 1

0

eicρa′(ρ) dρ

∣∣∣∣ . c−2(‖a′′‖∞ + |a′(0)|).

�

Proof of Theorem 2: We have to show that the estimate

(23) ‖Tλ,αh‖Lq(R) . (1 + λ)2α−
2
p
+ 2
q ‖h‖Lp(R)

holds where α ∈ [0, 1), λ ≥ 0 and (p, q) ∈ Dα, i.e., 1
p
− 1

q
≥ α, 1

p
> α, 1

q
< 1 − α. Moreover,

we will show that the range of exponents p, q is optimal under these assumptions.

For notational convenience we only consider the special case in Theorem 2 where the annulus
is A = {ξ ∈ R : 1 ≤ |ξ| ≤ 2}, so we consider (see (4)) the operator

Tλ,αh = F−11

(
1A(·)e−λ

√
|·|2−1(| · |2 − 1)−αm(| · |)F1h(·)

)
.

We first present the comparatively easy proof for the case 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1
p
− 1

q
≥ α

that only requires m ∈ C([1, 2]). From the Hausdorff-Young inequality we get in the case
1
p
− 1

q
> α

‖Tλ,αh‖Lq(R) .
∥∥∥F−11

(
1A(·)e−λ

√
|·|2−1(| · |2 − 1)−αm(| · |)F1h(·)

)∥∥∥
Lq(R)

.
∥∥∥e−λ
√
|·|2−1(| · |2 − 1)−αm(| · |)F1h(·)

∥∥∥
Lq′ (A)

.
∥∥∥e−λ
√
|·|2−1(| · |2 − 1)−αm(| · |)

∥∥∥
L

pq
q−p (A)

‖F1h‖Lp′ (A)

. ‖m‖∞‖e−λ
√
|·|2−1(| · |2 − 1)−α‖

L
pq
q−p (A)

‖F1h‖Lp′ (R)

. ‖m‖∞
(∫ 2

1

e−
pq
q−pλ

√
r2−1(r2 − 1)−

αpq
q−p dr

) q−p
pq

‖h‖Lp(R)
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. ‖m‖∞
(∫ 1

0

e−λρρ1−
2αpq
q−p dρ

) q−p
pq

‖h‖Lp(R)

. ‖m‖∞(1 + λ)2α−
2
p
+ 2
q ‖h‖Lp(R).

The endpoint case 1
p
− 1

q
= α is achieved through complex interpolation. Since the procedure

is almost the same as in the proof of Theorem 3 below, we omit the details here and remark
only that this strategy requires continuity of m.

We continue with the proof of the full result under the assumption m ∈ C1([1, 2]). We use

|Tλ,αh(x)| =
∣∣∣F−11

(
1A(·)e−λ

√
|·|2−1(| · |2 − 1)−αm(| · |)F1h

)
(x)
∣∣∣

=
1√
2π

∣∣∣∣∫
A

eiξxe−λ
√
|ξ|2−1(|ξ|2 − 1)−αm(|ξ|)F1h(ξ) dξ

∣∣∣∣
=

∣∣∣∣∫
R
Kλ(x− y)h(y) dy

∣∣∣∣
where Kλ(z) :=

1

2π

∫
A

eiξz(|ξ|2 − 1)−αm(|ξ|)e−λ
√
|ξ|2−1 dξ.

From this identity we get in the case p 6= 1, q 6=∞

‖Tλ,αh‖Lq(R) . ‖Kλ ∗ h‖Lq(R) . ‖Kλ‖
L

pq
pq+p−q ,∞(R)

‖h‖Lp(R)

so that we have to show

(24) ‖Kλ‖
L

pq
pq+p−q ,∞(R)

. (1 + λ)2α−
2
p
+ 2
q if p 6= 1, q 6=∞.

Similarly, in order to cover the cases p = 1 or q =∞ as well, we need to prove

(25) ‖Kλ‖
L

pq
pq+p−q (R)

. (1 + λ)2α−
2
p
+ 2
q if p = 1 or q =∞.

The proof of (24),(25) is based on pointwise estimates for the kernel function Kλ. For
|z| ≤ 1 + λ2 we will use

|Kλ(z)| .
∫ 2

1

e−λ
√
r2−1(r2 − 1)−α dr .

∫ √3
0

e−λρρ1−2α dρ . (1 + λ)2α−2.
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For |z| ≥ 1 + λ2 we estimate the kernel with the aid of oscillatory integral theory that uses
m ∈ C1([1, 2]). Proposition 8 (i) and Proposition 9 (i) imply

|Kλ(z)| .
∣∣∣∣∫ 1

0

eiρzρ−α(2 + ρ)−αm(1 + ρ)e−λ
√
ρ2+2ρ dρ

∣∣∣∣
Prop. 7

.
∫ |z|−1

0

ρ−α(2 + ρ)−α|m(1 + ρ)|e−λ
√
ρ2+2ρ dρ

+
1

|z|

(
|z|α +

∫ 1

|z|−1

∣∣∣∣ d

dρ

(
ρ−α(2 + ρ)−αm(1 + ρ)e−λ

√
ρ2+2ρ

)∣∣∣∣ dρ

)
.
∫ |z|−1

0

ρ−αe−λ
√
ρ dρ+ |z|α−1

+
1

|z|

∫ 1

|z|−1

ρ−α−1e−λ
√
ρ dρ+

λ

|z|

∫ 1

|z|−1

ρ−α−
1
2 e−λ

√
ρ dρ

. λ2α−2
∫ λ|z|−1/2

0

t1−2αe−t dt+ |z|α−1

+
λ2α

|z|

(∫ λ

λ|z|−1/2

t−2αe−t + t−1−2αe−t dt

)
. λ2α−2

∫ λ|z|−1/2

0

t1−2αe−t dt+ |z|α−1 +
λ2α

|z|

∫ ∞
λ|z|−1/2

t−1−2αe−t dt

. λ2α−2
(
λ|z|−1/2

)2−2α
+ |z|α−1 +

λ2α

|z|

((
λ|z|−1/2

)−2α
+ 1
)

. |z|α−1.

(26)

Making use of pq
pq+p−q ≥

1
1−α (due to 1

p
− 1

q
≥ α) we get

‖Kλ‖
L

pq
pq+p−q ,∞(R)

. (1 + λ)2α−2‖1‖
L

pq
pq+p−q ,∞([0,1+λ2])

+ ‖| · |α−1‖
L

pq
pq+p−q ,∞([1+λ2,∞))

. (1 + λ)2α−
2
p
+ 2
q

We conclude that (24) holds. Along the same lines we find

‖Kλ‖
L

pq
pq+p−q (R)

. (1 + λ)2α−
2
p
+ 2
q if p = 1 or q =∞

because then pq
pq+p−q >

1
1−α by assumption. So the sufficiency part of Theorem 2 is proved.

For the construction of a counterexample we assume m ≡ 1, λ = 0 as well as 1
p
− 1

q
< α and

p 6= 1, q 6=∞. We want to show that (23) does not hold in this case. To this end we choose
β according to

(27) max

{
1− α− 1

q
, 0

}
< β < 1− 1

p
.
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Then the function f :=
√

2πF−11 (1[1,2](·)(| · |2 − 1)−β) belongs to Lp(R) because of

|f(x)| =
∣∣∣∣∫ 2

1

eixξ(|ξ|2 − 1)−β dξ

∣∣∣∣ =

∣∣∣∣∫ 1

0

eixρρ−β(2 + ρ)−β dρ

∣∣∣∣ . (1 + |x|)β−1,

see Proposition 8 (i). On the other hand, Proposition 8 (ii) gives in the case α + β < 1

|T0,αf(x)| =
∣∣∣∣∫ 1

0

eixρρ−α−β(2 + ρ)−α−β dρ

∣∣∣∣ & |x|α+β−1 as |x| → ∞.

Since our choice for β from (27) implies q(α+β−1) ≥ −1, this estimate gives T0,αf /∈ Lq(R).
In the case α+β ≥ 1 we slightly modify the counterexample and define fε := F−11 (1[1+ε,2](·)(|·
|2 − 1)−β). Then the sequence (fε) is bounded in Lp(R) by the Hausdorff-Young inequality
while |T0,αfε(x)| → +∞ uniformly on a small neighbourhood of x = 0. Indeed,

inf
|x|≤π/8

|T0,αfε(x)| = inf
|x|≤π/8

∣∣∣∣∫ 2

1+ε

eixξ(|ξ|2 − 1)−β−α dξ

∣∣∣∣
≥ inf
|x|≤π/8

∣∣∣∣∫ 2

1+ε

cos(xξ)(|ξ|2 − 1)−β−α dξ

∣∣∣∣
≥ cos(π/4)

∫ 2

1+ε

(|ξ|2 − 1)−β−α dξ ↗∞ as ε→ 0.

This shows that T0,α is unbounded for 1
p
− 1

q
< α and p 6= 1, q 6=∞.

It remains to show that (23) does not hold either for p = 1
α
, q = ∞ or p = 1, q = 1

1−α
and α ∈ [0, 1). By duality, it suffices to disprove (23) in the former case. This example is
constructed as follows. We set for k ∈ N

fk(y) := ln(k + 1)−α1[1,k+1](y)y−αeiy.

Then ‖fk‖Lp(R) = 1 and

‖T0,αfk‖L∞(R) ≥ |T0,αfk(0)| = 1

2π
ln(k + 1)−α

∣∣∣∣∫ k+1

1

y−αeiy
(∫ 2

1

e−iξy(|ξ|2 − 1)−α dξ

)
dy

∣∣∣∣
In the case α = 0 this implies

‖T0,0fk‖L∞(R) ≥
1

2π

∣∣∣∣∫ k+1

1

eiy
(∫ 2

1

e−iξy dξ

)
dy

∣∣∣∣
=

1

2π

∣∣∣∣∫ k+1

1

eiy · e−2iy − e−iy

−iy
dy

∣∣∣∣
=

1

2π

∣∣∣∣∫ k+1

1

e−iy

y
− 1

y
dy

∣∣∣∣
≥ ln(k + 1)

2π
− 1

2π

∣∣∣∣∫ k+1

1

e−iy

y
dy

∣∣∣∣ ,
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which tends to +∞ as k → ∞. This proves the unboundedness in the case α = 0, i.e., for
p = q =∞. In the case α ∈ (0, 1) we get from Proposition 8 (ii)

lim
y→∞

y1−αeiy
∫ 2

1

e−iξy(|ξ|2 − 1)−α dξ = lim
y→∞

y1−α
∫ 1

0

e−iρyρ−α(2 + ρ)−α dρ

= 2−α
∫ ∞
0

e−iρρ−α dρ

=: µ ∈ C \ {0}.
Hence, for k0 ∈ N sufficiently large and all k ≥ k0 we have

‖T0,αfk‖L∞(R) ≥ |T0,αfk(0)|

=
1

2π
ln(k + 1)−α

∣∣∣∣∫ k+1

1

y−αeiy
(∫ 2

1

e−iξy(|ξ|2 − 1)−α dξ

)
dy

∣∣∣∣
=

1

2π
ln(k + 1)−α

∣∣∣∣∫ k+1

k0

y−1 · y1−αeiy
(∫ 2

1

e−iξy(|ξ|2 − 1)−α dξ

)
dy

∣∣∣∣+ o(1)

≥ |µ|
4π

ln(k + 1)−α
∫ k+1

k0

y−1 dy + o(1)

=
|µ|
4π

ln(k + 1)1−α + o(1),

which tends to +∞ as k →∞. Hence, the operator T0,α : Lp(R)→ Lq(R) is unbounded for
p = 1

α
, q =∞ and α ∈ (0, 1), which is all we had to show. �

5. Proof of Theorem 3

Theorem 3 is proved with the aid of Stein’s Interpolation Theorem [38, Theorem 1] for
holomorphic families of operators. So we have to estimate the operators Tλ,α defined in (4).
We first recall our estimates for the operators Sλ from (7) that will provide the desired bounds
in the endpoint case α = 0. Choosing s = 2 in Theorem 4 we get the following.

Proposition 10. Let d ∈ N, d ≥ 2, 0 < a < b < ∞ and m ∈ L∞([a, b]). Then we have for
all λ ≥ 0 and all p ∈ [1, 2]

‖Sλh‖L2(A) . (1 + λ)−1+( d+3
2
− d+1

p
)+‖h‖Lp(Rd),

‖S∗λg‖Lp′ (Rd) . (1 + λ)−1+( d+3
2
− d+1

p
)+‖g‖L2(A).

As a consequence we obtain the following result.

Proposition 11. Let d ∈ N, d ≥ 2, 0 < a < b < ∞ and m ∈ L∞([a, b]). Then we have for
all λ ≥ 0 and all p ∈ [1, 2], q ∈ [2,∞]

‖Tλ,0h‖Lq(Rd) . (1 + λ)
−2+( d+3

2
− d+1

p
)++( d+3

2
− d+1

q′ )+‖h‖Lp(Rd).

Proof. We may assume that m is real-valued nonnegative, otherwise we split the operator
into the sum of four such operators according to m = m2

1 − m2
2 + i(m2

3 − m2
4). But then we
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have Tλ,0 = S∗λSλ where m in the definition of Sλ, Sλ is replaced by
√
m and thus the claim

follows from Proposition 10. �

Next we use these estimates in the endpoint case α = 0 for the analysis of Tλ,α from (4)
with α ∈ (0, 1). Up to an α-dependent prefactor, these operators may be embedded into the
family of operators

(28) Tλ,sh :=
e(1−s)

2

Γ(1− s)
F−1d

(
1A(·)e−λ

√
|·|2−a2(| · |2 − a2)−sm(| · |)Fdh(·)

)
.

A priori, these operators are well-defined for Schwartz functions h : Rd → C and s ∈ C with
0 ≤ Re(s) < 1. We assume λ ≥ 0 and m ∈ C([a, b]). Since we are going to apply Stein’s
Interpolation Theorem (Theorem 1 in [38]) to the family (Tλ,σs)s∈S where S := {s ∈ C :
0 ≤ Re(s) ≤ 1} and σ ∈ [0, 1] (including the endpoint case σ = 1), we need to extend the
operators from (28) to the line Re(s) = 1 in a continuous way. Only for this reason we will
temporarily assume m ∈ C1([a, b]), but we will see that this extra assumption is actually not
necessary. The extension is based on the representation

(Tλ,sh)(x) =
e(1−s)

2

Γ(1− s)

∫ b

a

e−λ
√
r2−a2(r2 − a2)−sm(r)F−1d (Fdh dσr)(x) dr

= (1− s)
∫ b

a

(r − a)−s(Aλ,s(r)h)(x) dr where

(Aλ,s(r)h)(x) :=
e(1−s)

2

Γ(2− s)
e−λ
√
r2−a2(r + a)−sm(r)F−1d (Fdh dσr)(x).

Integration by parts motivates the definition

(Tλ,sh)(x) = (b− a)1−s(Aλ,s(b)h)(x)−
∫ b

a

(r − a)1−s(A′λ,s(r)h)(x) dr if Re(s) = 1.

Notice that this expression is well-defined for Schwartz functions h : Rd → C (due to m ∈
C1([a, b])) and we have

Tλ,1h = Aλ,1(a)h = (2a)−1m(a)F−1d (Fdh dσa).

In order to apply the Interpolation Theorem, we need to check that (Tλ,s)s∈S is an analytic
family of operators in the sense of [38, p.483].

Proposition 12. For all Schwartz functions h1, h2 : Rd → C the map s 7→
∫
Rd h1(Tλ,sh2) dx

is holomorphic in S̊ and continuous on S.

Proposition 12 implies that for all σ ∈ [0, 1] the family (Tλ,σs)s∈S is admissible for Stein’s
Interpolation Theorem. Notice that the original version requires Proposition 12 to hold for
step functions, but actually any dense family of functions can be chosen. We use this fact
in order to show that Tλ,α, which is an α-dependent multiple of Tλ,α, is a bounded operator
from Lp(Rd) to Lq(Rd) whenever α ∈ (0, 1) and (p, q) ∈ Dα where

Dα =

{
(p, q) ∈ [1,∞]2 :

1

p
>

1

2
+
α

2d
,

1

q
<

1

2
− α

2d
,

1

p
− 1

q
≥ 2α

d+ 1

}
,
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cf. (5). An estimate of the corresponding mapping constant will then provide the result.

Proof of Theorem 3: For notational convenience we only discuss a = 1, b = 2. As explained
earlier, our proof is based on complex interpolation. We temporarily assume m ∈ C1([1, 2])
in order to make use of Proposition 12 that is needed for Stein’s Interpolation Theorem. On
the other hand, our estimates will only depend on the L∞-norm of m so that all results will
persist for m belonging to the completion of C1([1, 2]) with respect to this norm, namely for
m ∈ C([1, 2]).

We start with recalling the estimates for the endpoint α = 0. From Proposition 11 we deduce

‖Tλ,0f‖Lq1 (Rd) = ‖Tλ,0f‖Lq1 (Rd) . (1 + λ)
−2+( d+3

2
− d+1

q′1
)++( d+3

2
− d+1

p1
)+‖f‖Lp1 (Rd)(29)

whenever 1 ≤ p1 ≤ 2 ≤ q1 ≤ ∞. Those already yield the claim for α = 0 so that we
may assume α ∈ (0, 1) in the following. On the other hand, for exponents p2, q2 satisfying
1
p2
> d+1

2d
, 1
q2
< d−1

2d
, 1
p2
− 1

q2
≥ 2

d+1
we get for any s ∈ S with 0 ≤ Re(s) < 1 from Minkowski’s

inequality in integral form and Corollary 3

‖Tλ,sf‖Lq2 (Rd) =

∥∥∥∥∥ e(1−s)
2

Γ(1− s)

∫ 2

1

e−λ
√
r2−1(r2 − 1)−sm(r)F−1d ((Fdf dσr)(·) dr)

∥∥∥∥∥
Lq2 (Rd)

≤

∣∣∣∣∣ e(1−s)
2

Γ(1− s)

∣∣∣∣∣
∫ 2

1

e−λ
√
r2−1(r2 − 1)−Re(s)m(r)

∥∥F−1d (Fdf dσr)
∥∥
Lq2 (Rd) dr

≤

∣∣∣∣∣ e(1−s)
2

Γ(1− s)

∣∣∣∣∣
∫ 2

1

e−λ
√
r2−1(r2 − 1)−Re(s)m(r)r

−1+ d
p2
− d
q2 ‖f‖Lp2 (Rd) dr

.

∣∣∣∣∣ e(1−s)
2

Γ(1− s)

∣∣∣∣∣ ‖m‖∞
(∫ √3

0

e−λρρ1−2Re(s) dρ

)
‖f‖Lp2 (Rd)

.

∣∣∣∣∣ e(1−s)
2

Γ(1− s)

∣∣∣∣∣ ‖m‖∞|1− Re(s)|(1 + λ)2Re(s)−2‖f‖Lp2 (Rd)

. ‖m‖∞(1 + λ)2Re(s)−2‖f‖Lp2 (Rd).

(30)

By our choice of the prefactor, which is adapted from [39, p.381], the above estimate is
uniform with respect to s ∈ S such that 0 ≤ Re(s) < 1. Moreover, as announced earlier,
it only depends on the L∞-norm of m. Hence, the continuity property from Proposition 12
implies that the estimate persists on the closure of this set, namely on the whole strip S. This
is a consequence of the Uniform Boundedness Principle. From Proposition 12, (29), (30) we
infer that, for any given σ ∈ [0, 1], (Tλ,σs)s∈S is a holomorphic family of operators of admissible
growth in the sense of [38] so that Stein’s Interpolation Theorem applies.

We consider three different regimes of exponents (p, q) ∈ Dα, namely

(a) (p, q) ∈ D, i.e., 1
p
> d+1

2d
, 1

q
< d−1

2d
, 1
p
− 1

q
≥ 2

d+1
,

(b) 1
p
− 1

q
< min

{
2
d+1

, 2d
d+1

(2mp,q − 1)
}

,
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(c) mp,q ≤ d+1
2d

and 1
p
− 1

q
≥ 2d

d+1
(2mp,q − 1).

Here, mp,q := min{1
p
, 1 − 1

q
}. First, for (p, q) as in (a) we do not need interpolation to

conclude. Indeed, the above estimate implies

‖Tλ,αf‖Lq(Rd) . (1 + λ)γ‖f‖Lp(Rd) where γ = 2α− 2 < 2α− 2 +
1

p
− 1

q

Hence, (6) holds and the claim is proved for such exponents. For exponents (p, q) as in (b)
or (c) we use interpolation. Having the above conditions on p1, q1, p2, q2 in mind, Stein’s
Interpolation Theorem gives

‖Tλ,θσf‖Lq(Rd) . (1 + λ)
2θσ−2+(1−θ)( d+3

2
− d+1

p1
)++(1−θ)( d+3

2
− d+1

q′1
)+‖f‖Lp(Rd),

where
1

p
=

1− θ
p1

+
θ

p2
,

1

q
=

1− θ
q1

+
θ

q2
, θ ∈ [0, 1), σ ∈ [0, 1].

Being interested in θσ = α we thus obtain (σ := α/θ)

‖Tλ,αf‖Lq(Rd) . (1 + λ)
2α−2+(1−θ)( d+3

2
− d+1

p1
)++(1−θ)( d+3

2
− d+1

q′1
)+‖f‖Lp(Rd),

where
1

p
=

1− θ
p1

+
θ

p2
,

1

q
=

1− θ
q1

+
θ

q2
, θ ∈ [α, 1),

1 ≤ p1 ≤ 2 ≤ q1 ≤ ∞,
1

p2
− 1

q2
≥ 2

d+ 1
, 1 ≥ 1

p2
,

1

q′2
>
d+ 1

2d
.

(31)

In the case (b) one can check that that the choice

θ =
d+ 1

2

(
1

p
− 1

q

)
, p1 = q1 = 2,

1

p2
=

1

2
+

2

d+ 1

1
p
− 1

2

1
p
− 1

q

,
1

q2
=

1

2
− 2

d+ 1

1
2
− 1

q

1
p
− 1

q

.

is admissible for (31) and leads to the uuper bound for the operator norm

(1 + λ)γ where γ = 2α− 2 + 2(1− θ) = 2α− d+ 1

p
+
d+ 1

q
.

In particular, assuming additionally 1
p
−1
q
≥ 2

d+2
as in the Theorem, one finds γ ≤ 2α−2+1

p
−1
q
.

Given that p 6= 1 and q 6=∞ we conclude that (6) holds under this assumption and the claim
is proved for such exponents.

It remains to consider exponents (p, q) as in (c). In that case we define θε := 2dmp,q − d− ε
for small ε > 0. In the case mp,q = 1

p
one chooses

θ = θε, p1 = 2, q1 =
1− θε

(1
2
− 1

p
+ 1

q
− θε(d−3)

2(d+1)
)+
, p2 =

θε
1
p
− 1−θε

2

, q2 =
θε

1
q
− 1−θε

q1

and in the case mp,q = 1− 1
q

one takes

θ = θε, q1 = 2, p1 =

(
1− θε

(1
2
− 1

p
+ 1

q
− θε(d−3)

2(d+1)
)+

)′
, q2 =

θε
1
q
− 1−θε

2

, p2 =
θε

1
p
− 1−θε

p1

.
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A lengthy computation reveals that these choices are admissible for (31) and the bound for
the operator norm is (1 + λ)γ where

γ =

{
2α + d+1

p
− d+1

q
, if 2dmp,q − d+1

p
+ d+1

q
≥ d− 1

2α + 1− d+ 2dmp,q + d+1
p
− d+1

q
+ ε , if 2dmp,q − d+1

p
+ d+1

q
< d− 1.

Under the additional assumption 1
p
− 1
q
≥ 2

d+2
from the Theorem we get again γ ≤ 2α−2+ 1

p
− 1
q

and in the case p = 1 or q =∞

γ − (2α− 2 +
1

p
− 1

q
) = d+ 1− 2dmp,q −

(
1

p
− 1

q

)
+ ε

≤ d+ 1− 2dmp,q −
2d

d+ 1
(2mp,q + 1) + ε

=
d2 + 1

d+ 1
− 2d(d+ 3)

d+ 1
mp,q + ε

≤ d2 + 1

d+ 1
− 2d(d+ 3)

d+ 1

d+ α

2d
+ ε

≤ −(3 + α)d+ 1− 3α

d+ 1
+ ε < 0,

which is all we had to show. �

6. Proof of Theorem 4

We have to prove the estimate

‖e−λ
√
|·|2−a2m(| · |)Fdh(·)‖Ls(A) . ‖h‖Lp(Rd)(1 + λ)

2
s′−

2
p
−β.

for m ∈ L∞([a, b]), λ ≥ 0 and β as in (8). For simplicity we assume µ1 = 1, µ2 = 2, i.e.,
A = {ξ ∈ Rd : 1 < |ξ| ≤ 2}. We first present the bound given by the Hausdorff-Young
inequality, so we assume d ∈ N, 1 ≥ 1

p1
≥ 1

2
, 1 ≥ 1

s1
≥ 1

p′1
. Hölder’s inequality implies

‖Sλh‖Ls1 (A) . ‖Fdh‖Lp′1 (A)‖e
−λ
√
|·|2−1‖

L

s1p
′
1

p′1−s1 (A)

. ‖h‖Lp(Rd)

(∫ 2

1

e
−λ s1p

′
1

p′1−s1

√
r2−1

rd−1 dr

) p′1−s1
s1p
′
1

. ‖h‖Lp(Rd)

(∫ √3
0

e
−λ s1p

′
1

p′1−s1
ρ
ρ dρ

) 1
s1
− 1
p′1

. ‖h‖Lp(Rd)(1 + λ)
− 2
s1

+ 2
p′1 .

This already gives the claim for d = 1. So let us assume d ≥ 2 from now on. We interpolate
the previous estimate with the following one for 1 ≥ 1

p2
> 1

p∗(d)
, 1 ≥ 1

s2
≥ d+1

(d−1)p′2
. From
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Theorem 7 and Theorem 8 we deduce the bound

‖Sλh‖Ls2 (A) . ‖Fdh e−λ
√
|·|2−1‖Ls2 (A)

.

(∫ 2

1

e−λs2
√
r2−1

(∫
Sd−1
r

|Fdh|s2 dσr

)
dr

) 1
s2

.

(∫ 2

1

e−λs2
√
r2−1r

d−1− ds
p′ ‖h‖s2

Lp(Rd) dr

) 1
s2

. ‖h‖Lp(Rd)
(∫ 2

1

e−λs2
√
r2−1 dr

) 1
s2

. ‖h‖Lp(Rd)(1 + λ)
− 2
s2 .

We infer from the Riesz-Thorin Theorem

(32) ‖Sλh‖Ls(A) . ‖h‖Lp(Rd)(1 + λ)
2
s′−

2
p1
− 2θ
p′1

whenever

1

p
=

1− θ
p1

+
θ

p2
,

1

s
=

1− θ
s1

+
θ

s2
, 0 ≤ θ ≤ 1,

1 ≥ 1

p1
≥ 1

2
, 1 ≥ 1

s1
≥ 1

p′1
, 1 ≥ 1

p2
>

1

p∗(d)
, 1 ≥ 1

s2
≥ d+ 1

(d− 1)p′2
.

In order to get the asserted result we (subsequently) choose for sufficiently small ε̃ > 0

θ = min

{
−1 +

d+ 1

p
− d− 1

s′
, 1,

(
1

p
− 1

2

)(
1

p∗(d)
− 1− ε̃

2

)−1}
,

θ

p2
= max

{
θ − d− 1

2

(
1

p
− 1

s′

)
,

θ

p∗(d)
+
ε̃

2
,
1

p
− 1 + θ

}
,

1− θ
p1

=
1

p
− θ

p2
,

max

{
1

s
− 1 + θ,

θ(d+ 1)

(d− 1)p′2

}
≤ θ

s2
≤ min

{
θ,

1

s
− 1− θ

p′1

}
,

1− θ
s1

=
1

s
− θ

s2
.

We briefly explain why this choice is admissible. The inequalities 1 ≥ 1
p2
> 1

p∗(d)
and 1 ≥

1
s2
≥ d+1

(d−1)p′2
are immediate consequences of the definition of p2, s2. Moreover, p2 ≥ θ

1
p
−1+θ

implies 1 ≥ 1
p1

and after some computations one finds that θ ≤ min{−1 + d+1
p
− d−1

s′
, (1
p
−

1
2
)( 1
p∗(d)
− 1

2
+ ε̃

2
)−1} implies 1

p1
≥ 1

2
. Finally, s2 ≤ θ

1
s
−1+θ yields 1 ≥ 1

s1
and s2 ≥ θ

1
s
− 1−θ

p′1

gives

1
s1
≥ 1

p′1
. With this choice we obtain for ε̃ sufficiently small (in particular ε̃ ≤ ε)

− 2

p1
− 2θ

p′1

= −2θ − 2(1− θ)
p1
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= −2

p
− 2θ +

2θ

p2

= −2

p
− 2θ + 2 max

{
θ − d− 1

2

(
1

p
− 1

s′

)
,

θ

p∗(d)
+
ε̃

2
,
1

p
− 1 + θ

}
= −2

p
−min

{
d− 1

p
− d− 1

s′
,

2θ

p∗(d)′
− ε̃, 2

p′

}
≤ −2

p
−min

{
d− 1

p
− d− 1

s′
,
2(d+1

p
− d−1

s′
− 1)

p∗(d)′
− ε, 2

p∗(d)′
− ε,

2
p∗(d)′

(1
p
− 1

2
)

1
p∗(d)
− 1

2

− ε, 2

p′

}

= −2

p
−min

{
d− 1

p
− d− 1

s′
,
2(d+1

p
− d−1

s′
− 1)

p∗(d)′
− ε,

2
p∗(d)′

(1
p
− 1

2
)

1
p∗(d)
− 1

2

− ε, 2

p′

}
.

Here, the last equality comes from the fact that the third number inside the bracket of the
second last line lies between the fourth and the fifth number. Combining this with (32) gives
the desired bound.

7. Proof of Proposition 3

In this section we prove Proposition 3 dealing with the small frequency part wε of the solution
of the perturbed Helmholtz equation. In order to avoid heavy notation we carry out the esti-
mates for w = limε↘0wε in detail and briefly discuss the necessary modifications afterwards.
We recall from (17) the formula

w(x, y) := F−1n−1
(
ei|y|ν1(1|·|≤µ1m1g+ + 1|·|≤µ1m2g−)

)
(x)

+ F−1n−1
(
ei|y|ν2(1|·|≤µ1m3g+ + 1|·|≤µ2m4g−)

)
(x)

(33)

where m1, . . . ,m4 were introduced in (18). We recall νj(ξ) =
√
µ2
j − |ξ|2 for |ξ| ≤ µj and

j = 1, 2. We have to prove the estimate

‖w‖Lq(Rn) + sup
0<|ε|≤1

‖wε‖Lq(Rn) . ‖f‖Lp(Rn).

under the assumptions 1
p
> 1

p∗(n)
, 1
q
< 1

q∗(n)
and 1

p
− 1

q
≥ 2

n+1
.

Proof of Proposition 3: For every fixed x ∈ Rn−1, y ∈ R we have

w(x, y) = (2π)
1−n
2

∫
|ξ|≤µ1

ei(x·ξ+|y|ν1(ξ))(m1(ξ)g+(ξ) +m2(ξ)g−(ξ)) dξ

+ (2π)
1−n
2

∫
|ξ|≤µ2

ei(x·ξ+|y|ν2(ξ))(1|ξ|≤µ1m3(ξ)g+(ξ) +m4(ξ)g−(ξ)) dξ

= (2π)
1−n
2

∫
Sn−1
µ1

ei(x·ξ+|y|η)
m1(ξ)g+(ξ) +m2(ξ)g−(ξ)

(1 + |∇ν1(ξ)|2)
1
2

1(0,∞)(η) dσµ1(ξ, η)

+ (2π)
1−n
2

∫
Sn−1
µ2

ei(x·ξ+|y|η)
1|ξ|≤µ1m3(ξ)g+(ξ) +m4(ξ)g−(ξ)

(1 + |∇ν2(ξ)|2)
1
2

1(0,∞)(η) dσµ2(ξ, η).
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Next we use Theorem 7 in the case n = 2 and Tao’s Fourier Restriction Theorem (Theorem 8)

in the case n ≥ 3. In both cases, s :=
(
n−1
n+1

q
)′

. Using the estimates |m1| . |ν1|−1, |m2| +
|m3| . 1, |m4| . |ν2|−1, which follow from (19), we obtain

‖w‖Lq(Rn) . ‖(m1g+ +m2g−)(1 + |∇ν1|2)−
1
2‖Ls(Sn−1

µ1
)

+ ‖(1|ξ|≤µ1m3g+ +m4g−)(1 + |∇ν2|2)−
1
2‖Ls(Sn−1

µ2
)

. ‖(|ν1|−1|g+|+ |g−|)(1 + |∇ν1|2)−
1
2‖Ls(Sn−1

µ1
)

+ ‖(1|ξ|≤µ1|g+|+ |ν2|−1|g−|)(1 + |∇ν2|2)−
1
2‖Ls(Sn−1

µ2
)

(11)

. ‖|g+|+ |ν1||g−|‖Ls(Sn−1
µ1

) + ‖1|ξ|≤µ1|ν2||g+|+ |g−|‖Ls(Sn−1
µ2

)

. ‖|g+|+ |g−|‖Ls(Sn−1
µ1

) + ‖1|ξ|≤µ1|g+|+ |g−|‖Ls(Sn−1
µ2

)

. ‖g+‖Ls(Sn−1
µ1

) + ‖g−‖Ls(Sn−1
µ2

)

. ‖F+
n f‖Ls(Sn−1

µ1
) + ‖F−n f‖Ls(Sn−1

µ2
).

Since 1
p
− 1

q
≥ 2

n+1
implies s′ ≥

(
n−1
n+1

p′
)′

and p′ > 2(n+2)
n

, Theorem 8 applies and we get

‖w‖Lq(Rn) . ‖F+
n f‖Ls(Sn−1

µ1
) + ‖F−n f‖Ls(Sn−1

µ2
) . ‖f‖Lp(Rn),

which is all we had to show. Here we used F±n f = Fn(f±) where f±(x, y) = f(x, y)1(0,∞)(±y).

Now we indicate the necessary modifications to get the corresponding uniform estimates for wε
with respect to ε ∈ (0, 1]. Here, each νj in (33) is replaced by νj,ε where νj,ε(ξ)

2 = µ2
j−|ξ|2+iε

and Im(νj,ε(ξ)) > 0. In this case we obtain the same estimates as above because the sets
{(ξ,Re(νj,ε(ξ))) : |ξ| ≤ µj} are regular hypersurfaces with the property that the Gaussian
curvature has a positive lower bound independent of ε. For such surfaces Tao’s result remains
true and we may thus argue as above. Notice that the positive imaginary part of ν1,ε, ν2,ε
lead to damping factors e−|y| Im(νj,ε(ξ)) in the integrals that may be estimated from above by
one. �

8. Proof of Proposition 4

In this section we bound (the first part of) the intermediate frequency terms given by

w(x, y) = F−1n−1
(
eiyν11Am2g− + eiyν21Am3g+

)
(x)

(18)
= 1y>0F−1n−1

(
eiyν11Am

∗F−n f(·,−ν2(·)
)

(x)

+ 1y<0F−1n−1
(
eiyν21Am

∗F+
n f(·,−ν1(·))

)
(x)

where m∗(ξ) := i
√

2π(ν1(ξ) + ν2(ξ))
−1. Here, A = {ξ ∈ Rn−1 : µ1 < |ξ| ≤ µ2} so that

ξ ∈ A implies ν1(ξ) = i(|ξ|2 − µ1)
1/2 and ν2(ξ) = (µ2

2 − |ξ|2)−1/2, see (10). For a bounded
complex-valued function m ∈ L∞(A) we define the linear operators

Qmh(x, y) := 1y<0F−1n−1
(
eiyν21AmF+

n h(·,−ν1(·))
)

(x)
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that we will prove to be bounded from Lp(Rn) to Lq(Rn) under the given assumptions on p, q.
Its adjoint is then bounded from Lq

′
(Rn) to Lp

′
(Rn) and hence as well for all p, q according

to the assumptions. It is given by the formula

Q∗mh(x, y) := 1y>0F−1n−1
(
eiyν11AmF−n h(·, ν2(·))

)
(x)

because we have for all h1, h2 ∈ S(Rn)∫
R

∫
Rn−1

Qmh1(x, y)h2(x, y) dx dy

=

∫ 0

−∞

∫
Rn−1

eiyν2(ξ)1A(ξ)m(ξ)F+
n h1(ξ,−ν1(ξ))Fn−1[h2(·, y)](ξ) dξ dy

=

∫
Rn−1

1A(ξ)m(ξ)F+
n h1(ξ,−ν1(ξ))

∫ 0

−∞
e−iyν2(ξ)Fn−1[h2(·, y)](ξ) dy dξ

=

∫
Rn−1

1A(ξ)m(ξ)F+
n h1(ξ,−ν1(ξ)) · (2π)

1
2F−n h2(ξ, ν2(ξ)) dξ

=

∫
Rn−1

(∫ ∞
0

1A(ξ)Fn−1[h1(·, y)](ξ)eiν1(ξ) dy

)
m(ξ)F−n h2(ξ, ν2(ξ)) dξ

=

∫ ∞
0

∫
Rn−1

Fn−1[h1(·, y)](ξ) eiν1(ξ)1A(ξ)m(ξ)F−n h2(ξ, ν2(ξ)) dξ dy

=

∫ ∞
0

∫
Rn−1

h1(x, y) F−1n−1 (eiν11AmF−n h2(·, ν2(·))) (x) dx dy

=

∫
R

∫
Rn−1

h1(x, y)Q∗mh2(x, y) dx dy.

The following result tells us that it is sufficient to find Lp − Lq-bounds for Qm.

Proposition 13. For x ∈ Rn−1, y > 0 we have

w(x, y) = (Q∗m∗f)(x, y) + (Qm∗f)(x, y).

Our bounds for Qm rely on Theorem 4.

Lemma 1. Let n ∈ N, n ≥ 2 and m ∈ L∞(A). Then the linear operator Qm : Lp(Rn) →
Lq(Rn) is bounded whenever 1

p
> 1

p∗(n)
, 1
q
< 1

q∗(n)
, 1
p
− 1

q
≥ 2

n+1
. In particular, this holds for

all (p, q) ∈ D̃. If the Restriction Conjecture is true then it is bounded whenever 1
p
> n+1

2n
, 1
q
<

n−1
2n
, 1
p
− 1

q
≥ 2

n+1
and hence for all (p, q) ∈ D.

Proof. We have

Qmh(x, y) = F−1n−1
(
eiyν21AmF+

n h(·,−ν1(·))
)

(x) · 1y<0

= (2π)
1−n
2

∫
|ξ|≤µ2

ei(x·ξ−yν2(ξ))1A(ξ)m(ξ)F+
n h(ξ,−ν1(ξ)) dξ · 1y<0

= (2π)
1−n
2

∫
Sn−1
µ2

ei(x·ξ−yη)1A(ξ)1η>0m(ξ)
F+
n h(ξ,−ν1(ξ))

(1 + |∇ν2(ξ)|2)−
1
2

dσµ2(ξ, η) · 1y<0
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In the case n = 2, n ≥ 3 we use Theorem 7, Theorem 8, respectively. Due to 1
q
< 1

q∗(n)
and

s :=
(
n−1
n+1

q
)′

we get the bound

‖Qmh‖Lq(Rn) .
∥∥∥1AmF+

n h(·,−ν1(·))(1 + |∇ν2(·)|2)−
1
2

∥∥∥
Ls(Sn−1

µ2
)

. ‖m‖∞
∥∥1AF+

n h(·,−ν1(·))
∥∥
Ls(Sn−1

µ2
)

. ‖m‖∞
(∫

A

∣∣∣∣∫ ∞
0

Fn−1[f(·, z)](ξ)e−z
√
|ξ|2−µ21 dz

∣∣∣∣s dξ

) 1
s

.

Minkowski’s inequality and Theorem 4 imply for β and d = n− 1 as in (8)

‖Qmh‖Lq(Rn) . ‖m‖∞
∫ ∞
0

(∫
A

∣∣∣Fn−1[h(·, z)](ξ)e−z
√
|ξ|2−µ21

∣∣∣s dξ

) 1
s

dz

. ‖m‖∞
∫ ∞
0

‖h(·, z)‖Lp(Rn−1)(1 + z)
2
s′−

2
p
−β dz

. ‖m‖∞ ‖h‖Lp(Rn)
provided that ( 2

s′
− 2

p
− β)p′ < −1 or equivalently β + 3

p
− 2

s′
− 1 > 0. To prove the main

statement of the Lemma, it remains to check this condition for all (p, q) ∈ D̃. Indeed, in the
case n = 2, where d = n− 1 = 1, this follows from β = 0 and

3

p
− 2

s′
− 1 = 3

(
1

p
− 1

q

)
− 3

q
− 1 > 2− 3

4
− 1 > 0.

In the case d = n− 1 ≥ 2 this is a consequence of the definition of β from (8). We have(
n− 2

p
− n− 2

s′

)
+

3

p
− 2

s′
− 1 =

n+ 1

p
− n

s′
− 1 =

n+ 1

p
− n(n+ 1)

(n− 1)q
− 1

= (n+ 1)

(
1

p
− 1

q

)
− n+ 1

(n− 1)q
− 1

> 2− n+ 1

n− 1
· n

2(n+ 2)
− 1

=
n2 + n− 4

2(n− 1)(n+ 2)

> 0,

2

p′
+

3

p
− 2

s′
− 1 =

1

p
− 2(n+ 1)

(n− 1)q
+ 1

=

(
1

p
− 1

q

)
− n+ 3

(n− 1)q
+ 1

>
2

n+ 1
− n+ 3

n− 1
· n

2(n+ 2)
+ 1
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=
(n+ 3)(n2 + n− 4)

2(n+ 1)(n− 1)(n+ 2)

> 0,(
2

(p∗(n−1))′ (
1
p
− 1

2
)

1
p∗(n−1) −

1
2

)
+

3

p
− 2

s′
− 1 = (n− 1)

(
1

p
− 1

2

)
+

3

p
− 2

s′
− 1

=
n+ 2

p
− 2(n+ 1)

(n− 1)q
− n+ 1

2

=
n2 − n− 4

(n− 1)p
+

2(n+ 1)

n− 1

(
1

p
− 1

q

)
− n+ 1

2

>
(n2 − n− 4)(n+ 4)

2(n− 1)(n+ 2)
+

4

n− 1
− n+ 1

2

=
n2 + n+ 2

2(n+ 2)(n− 1)

> 0,(
2(n

p
− n−2

s′
− 1)

p∗(n− 1)′

)
+

3

p
− 2

s′
− 1 =

(
(n− 1)n

(n+ 1)p
− (n− 1)(n− 2)

(n+ 1)s′
− n− 1

n+ 1

)
+

3

p
− 2

s′
− 1

=
n2 + 2n+ 3

(n+ 1)p
− n2 − n+ 4

(n+ 1)s′
− 2n

n+ 1

=
n2 + 2n+ 3

n+ 1

(
1

p
− 1

q

)
+

n2 − 2n− 7

(n+ 1)(n− 1)q
− 2n

n+ 1

>
2(n2 + 2n+ 3)

(n+ 1)2
+ 1n=3

(n2 − 2n− 7)n

2(n+ 1)(n− 1)(n+ 2)
− 2n

n+ 1

=
2(n+ 3)

(n+ 1)2
+ 1n=3

(n2 − 2n− 7)n

2(n+ 1)(n− 1)(n+ 2)

> 0.

Hence, the condition ( 2
s′
− 2

p
−β)p′ < −1 holds. For the extra claim regarding the Restriction

Conjecture, is suffices to prove the above estimates (for n ≥ 3) where p∗(n − 1) is replaced

by 2(n−1)
n

and the estimates 1
p
> n+4

2(n+2)
, 1
q
< n

2(n+2)
are replaced by 1

p
> n−1

2n
, 1
q
< n−1

2n
. This

can be done as above and one obtains again β + 3
p
− 2

s′
− 1 > 0 and the proof is finished. �

Proof of Proposition 4: This is a consequence of Proposition 13 and Lemma 1 because

‖w‖Lq(Rn) . ‖Q∗m∗f‖Lq(Rn) + ‖Qm∗f‖Lq(Rn) . ‖f‖Lp(Rn)

provided that 1
p
> 1

p∗(n)
, 1
q
< 1

q∗(n)
, 1
p
− 1

q
≥ 2

n+1
holds. If the Restriction Conjecture holds,

p∗(n) and q∗(n) can be replaced by 2n
n+1

and 2n
n−1 , respectively. �
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9. Proof of Proposition 5

We now prove our estimates for those intermediate frequencies collected in Wε. As above,
we avoid the technicalities for ε > 0 by considering only the most singular limit term

W(x, y) = lim
ε↘0

Wε(x, y) = F−1n−1
(
ei|y|ν11µ1<|·|≤µ1+µ2m1g+ + ei|y|ν11µ2<|·|≤µ1+µ2m2g−

)
(x)

+ F−1n−1
(
ei|y|ν21µ2<|·|≤µ1+µ2m3g+ + ei|y|ν21µ2<|·|≤µ1+µ2m4g−

)
(x).

We use νj(ξ) = i
√
|ξ|2 − µ2

j for |ξ| > µj. To prove Proposition 5 wehave to show that for all

n ∈ N, n ≥ 2 and all p, q such that 1
p
> n+1

2n
, 1
q
< n−1

2n
and 1

p
− 1

q
≥ 2

n+1
the following estimate

holds
‖W‖Lq(Rn) + sup

0<|ε|≤1
‖Wε‖Lq(Rn) . ‖f‖Lp(Rn).

Proof of Proposition 5: We introduce the annuli Aj := {ξ ∈ Rn−1 : µj ≤ |ξ| ≤ µ1 + µ2}
for j = 1, 2. Then we have for fixed x ∈ Rn, y ∈ R
W(x, y) = F−1n−1

(
1A1e

i|y|ν1m1F+
n f(·,−ν1(·))

)
(x)

+ F−1n−1
(
1A2e

i|y|ν1m2F−n f(·, ν2(·))
)

(x)

+ F−1n−1
(
1A2e

i|y|ν2m3F+
n f(·,−ν1(·))

)
(x)

+ F−1n−1
(
1A2e

i|y|ν2m4F−n f(·, ν2(·))
)

(x)

=

∫ ∞
0

F−1n−1
(

1A1(ξ)e
−(|y|+z)

√
|ξ|2−µ21m1(ξ)Fn−1[f(·, z)](ξ)

)
(x) dz

+

∫ 0

−∞
F−1n−1

(
1A2(ξ)e

−|y|
√
|ξ|2−µ21+z

√
|ξ|2−µ22m2(ξ)Fn−1[f(·, z)](ξ)

)
(x) dz

+

∫ ∞
0

F−1n−1
(

1A2(ξ)e
−|y|
√
|ξ|2−µ22−z

√
|ξ|2−µ21m3(ξ)Fn−1[f(·, z)](ξ)

)
(x) dz

+

∫ 0

−∞
F−1n−1

(
1A2(ξ)e

−|y|
√
|ξ|2−µ22+z

√
|ξ|2−µ22m4(ξ)Fn−1[f(·, z)](ξ)

)
(x) dz

=

∫ ∞
0

F−1n−1
(

1A1(ξ)e
−(|y|+|z|)

√
|ξ|2−µ21(|ξ|2 − µ2

1)
− 1

2 m̃1(|ξ|)Fn−1[f(·, z)](ξ)
)

(x) dz

+

∫ 0

−∞
F−1n−1

(
1A2(ξ)e

−(|y|+|z|)
√
|ξ|2−µ22m̃2(|ξ|)Fn−1[f(·, z)](ξ)

)
(x) dz

+

∫ ∞
0

F−1n−1
(

1A2(ξ)e
−(|y|+|z|)

√
|ξ|2−µ22m̃3(|ξ|)Fn−1[f(·, z)](ξ)

)
(x) dz

+

∫ 0

−∞
F−1n−1

(
1A2(ξ)e

−(|y|+|z|)
√
|ξ|2−µ22(|ξ|2 − µ2

2)
− 1

2 m̃4(|ξ|)Fn−1[f(·, z)](ξ)
)

(x) dz.

Here, the functions m̃1, . . . , m̃4 are defined by

m̃1(|ξ|) = m1(ξ)(|ξ|2 − µ2
1)

1
2 =

√
π/2

ν1(ξ) + ν2(ξ)
· (sign(y)ν1(ξ)− ν2(ξ)) ,
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m̃4(|ξ|) = m4(ξ)(|ξ|2 − µ2
2)

1
2 =

√
π/2

ν1(ξ) + ν2(ξ)
· (− sign(y)ν2(ξ)− ν1(ξ))

and

m̃2(|ξ|) = m2(ξ)e
|y|(
√
|ξ|2−µ22−

√
|ξ|2−µ21) =

i
√
π/2(1 + sign(y))

ν1(ξ) + ν2(ξ)
· e|y|(
√
|ξ|2−µ22−

√
|ξ|2−µ21),

m̃3(|ξ|) = m3(ξ)e
|z|(
√
|ξ|2−µ22−

√
|ξ|2−µ21) =

i
√
π/2(1− sign(y))

ν1(ξ) + ν2(ξ)
· e|z|(
√
|ξ|2−µ22−

√
|ξ|2−µ21).

Notice that m̃1, . . . , m̃4 are indeed radially symmetric because so are ν1, ν2. From |ν1(ξ) +
ν2(ξ)| & 1 and µ1 < µ2 we infer that all four terms are bounded independently of y, z. So
we apply Theorem 2 (n = 2) resp. Theorem 3 (n ≥ 3) to bound these integrals for any
fixed y, z ∈ R. The assumptions of these theorems are satisfied because our assumption in
Proposition 5 implies for d = n− 1 and α ∈ {0, 1

2
}

1

p
>
n+ 1

2n
≥ 1

2
+
α

2d
,

1

q
<
n− 1

2n
≤ 1

2
− α

2d
,

1

p
− 1

q
≥ 2

n+ 1
≥ 2α

d+ 1
.

From the above-mentioned Theorems we get

‖W(·, y)‖Lq(Rn−1) .
∫
R
(1 + |y|+ |z|)γ‖f(·, z)‖Lp(Rn−1) dz

where γ ≤ −1 + 1
p
− 1

q
and γ < −1 + 1

p
− 1

q
for p = 1 or q =∞. In the latter case the classical

version of Young’s convolution inequality applies and gives

‖W‖Lq(Rn) . ‖(1 + | · |)γ ∗ ‖f(·, z)‖Lp(Rn−1)‖Lq(R)

. ‖(1 + | · |)γ‖
L

pq
pq−q+p (R)

(∫
R
‖f(·, z)‖pLp(Rn−1) dz

) 1
p

. ‖f‖Lp(Rn).

In the former case Young’s convolution inequality in weak Lebesgue spaces [25, Theorem 1.4.25]
is applicable and yields

‖W‖Lq(Rn) . ‖(1 + | · |)−1+
1
p
− 1
q ∗ ‖f(·, z)‖Lp(Rn−1)‖Lq(R)

. ‖(1 + | · |)−1+
1
p
− 1
q ‖

L
pq

pq−q+p ,w(R)

(∫
R
‖f(·, z)‖pLp(Rn−1) dz

) 1
p

. ‖f‖Lp(Rn).
�

10. Proof of Proposition 6

We recall that have to prove the following: For all n ∈ N, n ≥ 2 and p′, q ∈ [2,∞] we have

‖W‖Lq(Rn) + sup
0<|ε|≤1

‖Wε‖Lq(Rn) . ‖f‖Lp(Rn) .
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provided that 0 ≤ 1
p
− 1

q
≤ 2

n
and 1

p
− 1

q
< 2

n
if p = 1 or q =∞. Here,

W (x, y) = F−1n−1
(
ei|y|ν11|·|>µ1+µ2(m1g+ +m2g−)

)
(x)

+ F−1n−1
(
ei|y|ν21|·|>µ1+µ2(m3g+ +m4g−)

)
(x).

and Wε is given by the same formula with ν1, ν2 replaced by ν1,ε, ν2,ε, respectively. We recall
g+(ξ) = F+

n f(ξ,−ν1(ξ)) and g−(ξ) = F−n (ξ, ν2(ξ)).

Proof of Proposition 6: Again we concentrate on the estimates for W since the corre-
sponding modifications for Wε are purely technical. We recall that for |ξ| ≥ R := µ1 + µ2 we

have |m1(ξ)| + . . . + |m4(ξ)| . (1 + |ξ|)−1 as well as iνj(ξ) = −
√
|ξ|2 − µ2

j ≤ −c(|ξ| + 1) for

some c > 0, see (19) and (10). So the Hausdorff-Young inequality implies

‖W (·, y)‖Lq(Rn−1) .
∥∥ei|y|ν1(m1g+ +m2g−) + ei|y|ν2(m3g+ +m4g−)

∥∥
Lq′ (Rn−1\BR(0))

.
∥∥e−c|y|(|·|+1)(| · |+ 1)−1(|g+|+ |g−|)

∥∥
Lq′ (Rn−1\BR(0))

.
∫
R

∥∥e−c(|y|+|z|)(|·|+1)(| · |+ 1)−1Fn−1[f(·, z)]
∥∥
Lq′ (Rn−1)

dz.

In the last step we applied Minkowski’s inequality in integral form. Using now Hölder’s and
then the Hausdorff-Young inequality we get

‖W‖Lq(Rn) ≤

(∫
R

(∫
R

∥∥∥∥e−c(|z|+|y|)(|·|+1)

| · |+ 1

∥∥∥∥
L

pq
q−p (Rn−1)

‖Fn−1[f( · , z)]‖Lp′ (Rn−1) dz

)q

dy

) 1
q

.

(∫
R

(∫
R

∥∥∥∥e−c(|z|+|y|)(|·|+1)

| · |+ 1

∥∥∥∥
L

pq
q−p (Rn−1)

‖f( · , z)‖Lp(Rn−1) dz

)q

dy

) 1
q

. ‖K ∗ F‖Lq(R)
where

K(w) =
∥∥(| · |+ 1)−1 e−c|w|(| · |+1)

∥∥
L

pq
q−p (Rn−1)

and F (w) = ‖f( · , w)‖Lp(Rn−1) .

For w > 0 we have

K(w) h e−cw
(∫ 1

0

rn−2 dr +

∫ ∞
1

rn−2−
pq
q−p e−c

pq
q−pwr dr

) q−p
pq

= e−cw
(∫ 1

0

rn−2 dr + w−(n−1)+
pq
q−p

∫ ∞
w

tn−2−
pq
q−p e−c

pq
q−p t dt

) q−p
pq

h 1[1,∞)(w)e−cw + 1(0,1)(w)w−(n−1)
q−p
pq

+1.

Thus K ∈ Lpq/(pq+p−q),∞(R) if and only if(
−(n− 1)

q − p
pq

+ 1

)
· pq

pq + p− q
≥ −1, equivalently

1

p
− 1

q
≤ 2

n
,
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which is precisely the assumption in the proposition. Similarly, K ∈ Lpq/(pq+p−q)(R) if and
only if 1

p
− 1

q
< 2

n
. So, as in the proof of Proposition 5, the classical and weak-space versions

of Young’s convolution inequality imply ‖W‖Lq(Rn) . ‖f‖Lp(Rn), which is all we had to show.
�
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[4] S. Agmon and L. Hörmander. Asymptotic properties of solutions of differential equations with simple
characteristics. J. Analyse Math., 30:1–38, 1976.

[5] A. Ambrosetti and P. Rabinowitz. Dual variational methods in critical point theory and applications. J.
Functional Analysis, 14:349–381, 1973.

[6] J.-G. Bak. Sharp estimates for the Bochner-Riesz operator of negative order in R2. Proc. Amer. Math.
Soc., 125(7):1977–1986, 1997.

[7] J.-G. Bak, D. McMichael, and D. Oberlin. Lp-Lq estimates off the line of duality. J. Austral. Math. Soc.
Ser. A, 58(2):154–166, 1995.

[8] L. Börjeson. Estimates for the Bochner-Riesz operator with negative index. Indiana Univ. Math. J.,
35(2):225–233, 1986.

[9] L. Brandolini and L. Colzani. Bochner-Riesz means with negative index of radial functions in Sobolev
spaces. Rend. Circ. Mat. Palermo (2), 42(1):117–128, 1993.

[10] Y. Cho, Y. Kim, S. Lee, and Y. Shim. Sharp Lp-Lq estimates for Bochner-Riesz operators of negative
index in Rn, n ≥ 3. J. Funct. Anal., 218(1):150–167, 2005.
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