KIT | KIT-Bibliothek | Impressum | Datenschutz

Oracle or Teacher? A Systematic Overview of Research on Interactive Labeling for Machine Learning

Knaeble, Merlin; Nadj, Mario; Maedche, Alexander

Abstract (englisch):
Machine learning is steadily growing in popularity – as is its demand for labeled training data. However, these datasets often need to be labeled by human domain experts in a labor-intensive process. Recently, a new area of research has formed around this process, called interactive labeling. While much research exists in this young and rapidly growing area, it lacks a systematic overview. In this paper, we strive to provide such overview, along with a cluster analysis and an outlook on five avenues for future research. Hereby, we identified 57 relevant articles, most of them investigating approaches for labeling images or text. Further, our findings indicate that there exist two competing views how the user could be treated: (a) oracle, where users are queried whether a label is right or wrong versus (b) teacher, where users can offer deeper explanations in the interactive labeling process.



Originalveröffentlichung
DOI: 10.30844/wi_2020_a1-knaeble
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 03.2020
Sprache Englisch
Identifikator ISBN: 978-3-9554533-5-0
KITopen-ID: 1000117774
Erschienen in 15. Internationale Tagung Wirtschaftsinformatik (WI 2020), Potsdam, 9 - 11 März 2020
Verlag GITO Verlag
Seiten 2–16
Schlagwörter Interactive Labeling, Interactive Machine Learning, Training Data
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page