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Dynamical decoupling of quantum two-level systems by
coherent multiple Landau–Zener transitions
Shlomi Matityahu1,2,3*, Hartmut Schmidt4, Alexander Bilmes4, Alexander Shnirman3,5, Georg Weiss4, Alexey V. Ustinov4,6,
Moshe Schechter1 and Jürgen Lisenfeld 4

Increasing and stabilizing the coherence of superconducting quantum circuits and resonators is of utmost importance for various
technologies, ranging from quantum information processors to highly sensitive detectors of low-temperature radiation in
astrophysics. A major source of noise in such devices is a bath of quantum two-level systems (TLSs) with broad distribution of
energies, existing in disordered dielectrics and on surfaces. Here we study the dielectric loss of superconducting resonators in the
presence of a periodic electric bias field, which sweeps near-resonant TLSs in and out of resonance with the resonator, resulting in a
periodic pattern of Landau–Zener transitions. We show that at high sweep rates compared to the TLS relaxation rate, the coherent
evolution of the TLS over multiple transitions yields a significant reduction in the dielectric loss relative to the intrinsic value. This
behavior is observed both in the classical high-power regime and in the quantum single-photon regime, possibly suggesting a
viable technique to dynamically decouple TLSs from a qubit.
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INTRODUCTION
Superconducting quantum devices are nowadays at the heart of
many physical platforms exploring both foundations and applica-
tions of quantum mechanics. In particular, superconducting
quantum circuits1 are one of the prime contenders for the
realization of a quantum computer,2,3 and superconducting
microwave resonators are of great interest for photon detection
in astronomy applications.4,5 The coupling of superconducting
qubits to resonators provides exciting prospects for studying
quantum optics and atomic physics in an engineerable architec-
ture with strong nonlinearities and interactions.6–8

Originally postulated in the 1970s to explain the low-
temperature properties of amorphous solids,9,10 tunneling
two-level systems (TLSs) have attracted a lot of renewed
interest in the field of superconducting quantum devices,
where such defects residing in the amorphous oxides of the
microfabricated circuits form a major energy relaxation and
decoherence channel.11 Since TLSs couple both to strain and
electric fields, those that are in resonance with a device
electromagnetic mode efficiently dissipate energy into pho-
non12 and BCS quasiparticle13 excitations, giving rise to
dielectric loss in superconducting microwave resonators and
energy relaxation in superconducting qubits. Moreover, due to
mutual TLS-TLS interactions,14 the thermal fluctuations of low-
frequency TLSs give rise to fluctuations of high-frequency
resonant TLSs—a phenomenon known as spectral diffusion,
which causes time-dependent fluctuations of the device’s
electromagnetic environment.15–24 Improving and stabilizing
the coherence properties of superconducting devices is crucial
for the realization of a scalable quantum computer.2,3

In the standard tunneling model,9,10 each TLS is described by
the Hamiltonian

H ¼ 1
2

Δσz þ Δ0σxð Þ þ
X
α;β

γαβεαβ � p � E
 !

σz; (1)

where σx and σz are the Pauli matrices, Δ and Δ0 are the bias and
tunneling energies of the unperturbed TLS, and
γαβ � ð1=2Þ∂Δ=∂εαβ, p � ð1=2Þ∂Δ=∂E are the elastic quadrupole
and electric dipole moments of the TLS, which couple to the strain
and electric fields εαβ and E. The distribution of Δ and Δ0 is quite
universal and has the form f ðΔ;Δ0Þ ¼ P0=Δ0, with P0 being a
material dependent constant.
For strongly driven superconducting microwave resonators at

low temperatures, kBT � _ω, interaction of the resonator
electric field EresðtÞ ¼ Eac cosðωtÞ with resonant TLSs leads to
the well-known expression for the dielectric loss tangent

(inverse quality factor),25 tan δ ¼ tan δ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω2

R0T1T2

q
. Here

tan δ0 ¼ πP0p2 tanhð_ω=2kBTÞ=ð3ϵÞ is the intrinsic loss tangent
in the low-power limit, with p ¼ jpj the absolute magnitude of the
dipole moment and ϵ the dielectric constant, ΩR0 ¼ pEac=_ is the
TLS (maximum) Rabi frequency (see below) and T1, T2 are
characteristic TLS relaxation and decoherence times (At the
regime of low temperatures kBT � _ω considered here, the
hyperbolic tangent factor is approximately unity, meaning that the
thermal excitation of resonant TLSs is negligible). This power
dependence arises from saturation of individual TLSs. Unfortu-
nately, using this saturation effect to improve the coherence times
of superconducting qubits is impractical, as unwanted qubit
excitations are caused either by the applied strong resonant field
or by excited TLSs via the qubit-TLS interaction.
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Recently, the dielectric loss of superconducting resonators was
studied in the presence of a periodic bias field EbiasðtÞ, which
slowly changes the bias energy of TLSs at a rate v0 ¼ 2p _Ebias, and
sweeps them through resonance with the resonator.26,27 The
dynamics of each transition is of the Landau–Zener (LZ) type,28–30

with a non-adiabatic transition probability

P ¼ e�1=ξ ; (2)

where ξ ¼ 2jv0j=ðπ_Ω2
R0Þ is a dimensionless parameter. At slow

sweep rates jv0j � _ΩR0Γ1, the transition time for a single LZ
transition, tLZ ¼ _ΩR0=jv0j, is longer than the TLS relaxation time
T1 ¼ Γ�1

1 ; the LZ transitions are irrelevant, and the loss tangent is
almost independent of the sweep rate and given by the non-linear
saturation discussed above. In terms of ξ , this regime can be
expressed as ξ � ξ1, where ξ1 � 2Γ1=ðπΩR0Þ. For _ΩR0Γ1 �
jv0j � _Ω2

R0 (equivalently, Ω�1
R0 � tLZ � T1 or ξ1 � ξ � 1), each

LZ transition is coherent and adiabatic, with photon absorption
probability 1� P � 1, meaning that each TLS swept through
resonance dissipates one photon. As the number of TLSs swept
through resonance is proportional to jv0j, the loss in this regime
increases linearly with jv0j. In the regime jv0j � _Ω2

R0 (ξ � 1) each
transition becomes non-adiabatic, with photon absorption prob-
ability 1� P / 1=v0, leading to a universal constant loss tangent
independent of the resonator field.26,27 This universal constant
loss equals the low-power limit tan δ0, a consequence of a short
transition time tLZ compared to the Rabi oscillation period Ω�1

R0 ,
such that during resonant passages TLSs are not saturated by the
resonator ac field.
A crucial assumption of the results described above is the long

period of the bias field, T sw, compared to the relaxation time T1. In
this regime, TLSs relax after each transition, and two subsequent
transitions are independent. Here, we explore a regime of shorter
periods, T sw < T1, where the coherent evolution during several LZ
transitions has to be considered.31–37 We show theoretically and
experimentally that due to interference effects the resonator loss
decreases in this regime. This reduction relative to the intrinsic
loss is significant, and the loss reaches a value which may be, in
principle, even lower than at zero sweep rate. In contrast to the
saturation limit at zero sweep rate discussed above, the low loss in
the high sweep rate regime T�1

sw � Γ1 is a consequence of a
reduced photon absorption probability due to destructive
interference between many LZ transitions. Moreover, whereas
saturation of photon absorption is obtained by strong resonant
driving for ΩR0 � Γ1, the reduction of the loss in the regime
T�1
sw � Γ1 is achieved by application of time-dependent bias fields

with frequency T�1
sw much lower than the resonance frequency

ω=ð2πÞ. We also discuss the single-photon regime, and show
experimental evidence for the applicability of the theory in this
regime. Since the physics of the single-photon regime corre-
sponds to that of a qubit coupled to a resonant TLS, the results
suggest a technique to effectively decouple near-resonant TLSs
from a qubit without affecting the qubit state.

RESULTS
Theory
We consider an arbitrary TLS out of the ensemble of TLSs,
described by the Hamiltonian (1) in the presence of the resonator
field EresðtÞ ¼ Eac cosðωtÞ and a parallel periodic bias field EbiasðtÞ
with period T sw and amplitude Emax. In the specific experiment to
be discussed below, this bias field is a symmetric triangular wave,
as shown in Fig. 1a. This bias field shifts the TLS bias energy, such
that ΔðtÞ ¼ Δð0Þ � 2p � EbiasðtÞ. Under these assumptions, a
number nTLS / P0 pEmax of TLSs per unit volume are swept into
resonance with the resonator field in each period of the bias field.
In a single period, most of these TLSs experience two LZ
transitions during which TLS dissipation is negligible for

ξ � ξ1 ¼ 2Γ1=ðπΩR0Þ; the TLS dynamics in each resonance,

occurring at time t0 for which the TLS energy splitting EðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2ðtÞ þ Δ2

0

q
equals _ω (Fig. 1b), is governed by the LZ

Hamiltonian (See Supplementary Material for further details of
theory and experiments)

HLZðtÞ ¼ 1
2
vðt � t0Þσz þ _ΩRσx½ �: (3)

Here, σx and σz are the Pauli matrices in the diabatic basis
f g; nj i; e; n� 1j ig with gj i and ej i being the TLS ground and
excited states, respectively, and nj i is a photon number state (It is
important to realize that the LZ transitions occur between photon
number states that differ by one photon. This does not contradict
the assumption of a classical resonator with mean photon number
hnphi � 1, such that the transition amplitudes are fixed for all TLSs
and do not change between consecutive transitions, which allows

us to treat TLSs independently), and v ¼ v0 cos η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðΔ0=_ωÞ2

q
is

the TLS energy sweep rate, with v0 ¼ 2p _Ebiasðt0Þ the maximum
sweep rate and η the angle between the TLS dipole moment and
the electric fields; the TLS Rabi frequency is
ΩR ¼ ΩR0ðΔ0=_ωÞ cos η. Note that for the triangular bias field
shown in Fig. 1a, the maximum sweep rate is jv0j ¼ 4pEmax=T sw.
To obtain the dielectric loss due to TLSs, we calculate the

counting statistics of the number of photons absorbed by a single
TLS. Within the full counting statistics formalism, the evolution
operator describing a single coherent LZ transition is31

ULZðkÞ ¼
ffiffiffi
P

p
ei

k
2e�iψ

ffiffiffiffiffiffiffiffiffiffiffi
1� P

p

�e�ik2eiψ
ffiffiffiffiffiffiffiffiffiffiffi
1� P

p ffiffiffi
P

p
 !

; (4)

where ψ is the Stokes phase, approaching 0 and π=4 in the

Fig. 1 Periodic modulation of a TLS energy splitting. a A triangular
wave bias field EbiasðtÞ and b) the corresponding energy splitting

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2ðtÞ þ Δ2

0

q
of a TLS with bias energy ΔðtÞ ¼ 0:5þ 2pEbiasðtÞ,

tunneling energy Δ0 ¼ 0:7, and pEmax ¼ 0:5 (energies are in units of
_ω). The intersections of EðtÞ with the dashed line correspond to
times where the TLS is swept through resonance with the resonator,
the dynamics of each resonance is of the LZ type, with the
Hamiltonian Eq. (3). In each period of the bias field, the time
intervals t1 and t2 correspond to free propagation between
subsequent LZ transitions, with t1 þ t2 ¼ T sw .
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adiabatic (ξ � 1) and non-adiabatic (ξ � 1) limits, respectively.38

Note that a sign reversal of v in the Hamiltonian Eq. (3)
corresponds to the transformation ψ ! π � ψ in Eq. (4).31 (See
Supplementary Material for further details of theory and experi-
ments). The counting field k counts the number of photons
absorbed by the TLS, with the factors e�ik=2 and eik=2 correspond-
ing to the absorption and emission of a photon. In Liouville space
(See Supplementary Material for further details of theory and
experiments.), this evolution operator transforms into the super-
operator ULZðkÞ ¼ ULZðkÞ 	 ULZð�kÞ½ �
.
In between two successive transitions, the TLS is out of

resonance for a time interval t and the dynamics of its density
matrix ρ is described by the Lindblad equation,

_ρ ¼ � i
_
HTLS; ρ½ � þ

X
i¼±

Γi LiρL
y
i �

1
2
fLyi Li; ρg

� �
; (5)

where HTLSðtÞ ¼ ðEðtÞ=2Þσz , L± ¼ σ ± ¼ ðσx ± iσyÞ=2 and Γþ ¼ Γ",
Γ� ¼ Γ# are the transition rates between the TLS eigenstates. For
simplicity, we assume no pure dephasing, such that the
decoherence rate is Γ2 ¼ Γ1=2, where Γ1 ¼ Γ" þ Γ# is the relaxation
rate. The corresponding evolution operator in Liouville space is
(See Supplementary Material for further details of theory and
experiments)

UðtÞ ¼

Γ"
Γ1
þ Γ#

Γ1
e�Γ1t 0 0 Γ"

Γ1
1� e�Γ1tð Þ

0 eiϕðtÞ�Γ2t 0 0

0 0 e�iϕðtÞ�Γ2t 0
Γ#
Γ1

1� e�Γ1tð Þ 0 0 Γ#
Γ1
þ Γ"

Γ1
e�Γ1t

0
BBBB@

1
CCCCA;

(6)

where ϕðtÞ ¼ 1
_

R t
0Eðt0Þdt0. The evolution of the density matrix after

one period of the bias field is obtained as
ρðT sw; kÞj i ¼ UswðkÞ ρð0Þj i, where ρj i ¼ ðρ00; ρ01; ρ10; ρ11ÞT is the
ket representing the density matrix ρ in Liuoville space (See
Supplementary Material for further details of theory and experi-
ments), and UswðkÞ ¼ ULZðπ � ψ; kÞUðt2ÞULZðψ; kÞUðt1Þ with
T sw ¼ t1 þ t2 (here we have used the fact that the sweep rate
changes sign between consecutive transitions). The evolution
after time t ¼ NT sw is then

ρðt; kÞj i ¼ UN
swðkÞ ρð0Þj i: (7)

The generating function for the statistics of the TLS photon
absorption after time t ¼ NT sw is given by

χðt; kÞ ¼ Tr ρðt; kÞj i½ � ¼ Tr UN
swðkÞ ρð0Þj i� �

; (8)

where the trace operation is defined as Tr ρj i½ � � ρ00 þ ρ11. In
particular, the number of photons absorbed by the TLS during
time t is given by the first moment hNphðtÞi ¼ �i ∂χðt;kÞ∂k jk¼0. For
k ¼ 0 there should be a stationary solution to Eq. (7), meaning
that one of the eigenvalues λ1 of Uswðk ¼ 0Þ equals unity, whereas
jλjj < 1 for j ¼ 2; 3; 4. As a result, in the limit t ! 1 only the mode
with eigenvalue λ1 ¼ 1 will contribute, and after some algebra we
obtain the photon absorption rate per TLS (See Supplementary
Material for further details of theory and experiments),

γabs ¼ lim
t!1

hNphðtÞi
t

¼ � i
T sw

g1h j dUsw

dk
jk¼0 v1j i; (9)

where g1h j and v1j i are the left and right eigenvectors of Uswðk ¼
0Þ corresponding to the eigenvalue λ1 ¼ 1. The total photon
absorption rate per unit volume is Γabs ¼ nTLSγabs / P0 pEmaxγabs.
Comparing the power dissipation density Pdis ¼ �_ωΓabs with
Pdis ¼ � 1

2ωϵ
00E2ac, we obtain the expression for the loss tangent

tan δ ¼ ϵ00

ϵ0
¼ 2_Γabs

ϵE2ac
¼ 2p2Γabs

ϵ_Ω2
R0

; (10)

where ϵ0 and ϵ00 are the real and imaginary parts of the dielectric
constant.
The general expression for γabs is somewhat complicated, see

Eq. (26) in the Supplementary Material (See Supplementary
Material for further details of theory and experiments.). We now
consider the experimentally relevant regime kBT � _ω, for which
Γ1 � Γ# (Γ" � 0), and analyze the expression for γabs in simple
limits. We first consider the incoherent limit Γ1T sw � 1, which in
terms of the dimensionless sweep rate ξ can be expressed as
ξ � ξ2, with ξ2 � 8pEmaxΓ1=ðπ_Ω2

R0Þ. In this limit we obtain
γabs � 2 1� Pð Þ=T sw. Equation (10) then gives the universal
behavior discussed in refs, 26,27 namely tan δ= tan δ0 � 1 in the
non-adiabatic limit ξ � 1, and tan δ= tan δ0 � ξ for ξ1 � ξ � 1
(See Supplementary Material for further details of theory and
experiments). Thus, the results of refs 26,27 are reproduced if
subsequent LZ transitions are incoherent such that TLSs start from
the ground state at each transition. We note that the regime
ξ < ξ1 ¼ 2Γ1=ðπΩR0Þ, in which dissipation occurs within a single
LZ transition, has to be treated separately. In this limit the loss

approaches the saturation limit tan δ= tan δ0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩR0=Γ1Þ2

q
,

as studied numerically in ref. 26 As mentioned above, in this work
we concentrate on the regime ξ > ξ1, where dissipation within a
single transition can be safely neglected, and consider the effect
of dissipation between transitions.
In the coherent regime Γ1T sw � 1 or ξ � ξ2, TLSs experience

M ¼ Γ1T swð Þ�1 ¼ ξ=ξ2 � 1 multiple coherent transitions. In the
non-adiabatic regime ξ � 1, where the probability 1� P for
photon absorption\emission in a single transition is small, the
interference between multiple transitions is constructive for ϕ1 þ
ϕ2 ¼ 2πn (See Supplementary Material for further details of theory
and experiments.), where n is an integer and ϕ1;2 are the
dynamical phases accumulated between successive transitions.
This gives rise to a resonance in γabs as a function of the phases,
whose width in the non-adiabatic regime ξ � 1 is δϕ / M�1 for
M2 1� Pð Þ < 1 and δϕ / ffiffiffiffiffiffiffiffiffiffiffi

1� P
p

for M2 1� Pð Þ > 1 (See Supple-
mentary Material for further details of theory and experiments).
The contribution to γabs of TLSs out of resonance (corresponding
to destructive interference (See Supplementary Material for
further details of theory and experiments) is
γnon�res
abs / Γ1 1� Pð Þ ¼ Γ1=ξ , with weak dependence on ϕ1 and
ϕ2. Below we concentrate on the contribution of the resonance,
which dominates over that of the off-resonance part.
To obtain the loss tangent due to an ensemble of TLSs, one has

to compute the total absorption rate per unit volume [see Eq.
(10)], Γabs, by averaging γabs over the distribution of TLSs and the
orientation of their dipole moments, as described in the
Supplementary Material (See Supplementary Material for further
details of theory and experiments). This is a complicated
procedure (See Supplementary Material for further details of
theory and experiments), and instead we choose to concentrate
on the main effect of the ensemble of TLSs relevant to the
interference discussed above, which is the distribution of the phases
ϕ1 and ϕ2. It is plausible to assume that the wide, random
distribution of TLS parameters translates into an approximately
homogeneous distribution of ϕ1 and ϕ2. We thus neglect the
distribution of Δ0, p and η in all other quantities, such as the sweep
rate, the Rabi frequency, the relaxation rate and the stokes phase,
and set t1 ¼ t2 ¼ T sw=2 (the qualitative results are not sensitive to
the latter choice). The absorption rate per TLS, γabs, is then a function
of ξ , ξ2, ϕ1 and ϕ2 (See Supplementary Material for further details of
theory and experiments.). Two different behaviors of the loss
tangent in the coherent regime are expected for ξ2 < 1 and ξ2 > 1.
For ξ2 < 1, the regime ξ2 < ξ � 1 is coherent (ξ > ξ2) and

adiabatic (ξ � 1), meaning that photons are absorbed and re-
emitted by the TLSs with high probability. The photons are thus
dissipated at the relaxation rate of the TLSs, so that γabs / Γ1 (See
Supplementary Material for further details of theory and
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experiments). This gives rise to constant loss tangent, tan δ / ξ2.
In the non-adiabatic regime ξ2 < 1 � ξ the resonance width is
δϕ / ffiffiffiffiffiffiffiffiffiffiffi

1� P
p

(since M2 1� Pð Þ � ξ=ξ22 � 1 in this regime). If ϕ1
and ϕ2 are nearly homogeneously distributed, the contribution of
this resonance to the photon absorption rate is
γresabs / γabsðϕ1 ¼ �ϕ2Þ � δϕ / Γ1

ffiffiffiffiffiffiffiffiffiffiffi
1� P

p
. Hence, the loss tangent

decreases as ξ�1=2.
For ξ2 > 1, the loss tangent follows the universal curve of ref. 26

up to ξ � ξ2. For ξ � ξ22 the resonance width is again
δϕ / ffiffiffiffiffiffiffiffiffiffiffi

1� P
p

, and the corresponding contribution of this reso-
nance to the loss tangent is again / ξ�1=2. In the crossover region
ξ2 < ξ � ξ22 the resonance width is δϕ / M�1, giving rise to the
photon absorption rate γresabs � γabsðϕ1 ¼ �ϕ2Þ � δϕ / Γ1M 1� Pð Þ,
which depends weakly on ξ . Table 1 summarizes the qualitative
behavior of the loss tangent in various regimes.
In Fig. 2a we show the results for the loss tangent obtained by a

numerical average of the absorption rate over the homogeneous
distribution of ϕ1 and ϕ2. One readily observes the qualitative
limits discussed above. The results in Fig. 2a are obtained for the
limit ξ1 ¼ 2Γ1=ðπΩR0Þ ! 0, such that TLSs are fully saturated at
zero sweep rate (i.e., we take the limits ξ1 ! 0 and pEmax=ð_Γ1Þ !
1 such that ξ2 ¼ 8pEmaxΓ1=ðπ_Ω2

R0Þ ¼ 2πξ21pEmax=ð_Γ1Þ is finite).
This shows how the universal curve discussed in ref. 26 (solid black
curve in Fig. 2a) is modified due to multiple coherent transitions.
Note that under this assumption the loss at high sweep rates
cannot reduce below the vanishing loss at ξ ¼ 0.
In order to relate directly to experiment, we note that for finite

ξ1 the loss approaches the saturation limit tan δ= tan δ0 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩR0=Γ1Þ2

q
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2=πξ1Þ2

q
for ξ < ξ1.

26,27 In Fig. 2b,

c we show the theoretical results expected for finite values of ξ1.
For each value of ξ2 > ξ1 (which translates to a given value of
pEmax=ð_Γ1Þ ¼ ξ2=ð2πξ21Þ), the results in Fig. 2a describe the loss at
ξ > ξ1. For ξ < ξ1 we cut these results by the horizontal lines
corresponding to the value of the loss at the stationary saturation
limit ξ ¼ 0. In practice, for ξtξ1 the loss tangent reduces to its
ξ ¼ 0 value monotonically with decreasing ξ , as was studied
numerically in refs 26,27 Thus, in the regime ξ1 < ξ < ξ2 the loss
tangent is described by the universal curve discussed in ref., 26

whereas it becomes non-universal for ξ < ξ1 (due to dissipation
within a single transition) or ξ > ξ2 (due to coherent multiple
transitions). As seen in Fig. 2b, c, for finite ξ1 one expects the loss
at high sweep rates (ξ � ξ2) to decrease below its value at ξ ¼ 0.
All the main qualitative features of our theoretical results are
observed experimentally. This includes also the saturation of the
loss at ξ < ξ1, and to some extent the decrease below this value at
large sweep rates (see Fig. 4 below).
We stress that the decrease of the loss at the coherent and non-

adiabatic regime ξ � maxf1; ξ2g is a result of interference
between M coherent LZ transitions, which reduce the photon
absorption probability. To see this, consider N identical TLSs of
which NgðtÞ and NeðtÞ occupying the ground and excited states,
respectively. In a classical approach (At the regime of low
temperatures kBT � _ω considered here, the hyperbolic tangent
factor is approximately unity, meaning that the thermal excitation
of resonant TLSs is negligible), one can write a rate equation for

NeðtÞ,
_Ne ¼ γðNg � NeÞ � Γ#Ne þ Γ"Ng

¼ γðN � 2NeÞ � Γ1Ne þ Γ"N;
(11)

where γ ¼ 2 1� Pð Þ=T sw is the photon emission and absorption
rate in a single LZ transition. The steady state solution is Ne ¼
Nðγ þ Γ"Þ= 2γ þ Γ1ð Þ and the corresponding photon absorption
rate per TLS is

γabs ¼
γ N � 2Neð Þ

N
¼ Γ# � Γ"

Γ1

γ

1þ 2γ=Γ1
: (12)

Since ðΓ# � Γ"Þ=Γ1 ¼ tanhð_ω=2kBTÞ equals unity at low tempera-
tures, we obtain γabs � γ for γ � Γ1 (or Mð1� PÞ � 1) and γabs �
Γ1=2 for γ � Γ1 (or Mð1� PÞ � 1). The first limit corresponds to
the result of refs 26,27 and the second limit corresponds to a
constant loss tangent tan δ / ξ2, as we find above in the regime
ξ2 < ξ � 1. Therefore, a classical approach based on independent
transitions does not capture the physics of the fast sweep regime,
which exhibits a decreasing loss with increasing sweep rate for
ξ > ξ2.

Experiment
In our experiment, we study TLS in deposited aluminum oxide by
using it as the dielectric in lumped-element LC-resonators. This
material is highly relevant for superconducting quantum proces-
sors, because it is used for tunnel barriers in Josephson junctions
of qubits and also forms naturally on circuit wiring after air
exposure. However, any depositable dielectric can in principle be
studied with this method.
Figure 3 shows a sample resonator structured by optical

lithography from superconducting aluminum on a sapphire
substrate. Following experiments by Khalil et al.,27 the capaci-
tances are designed as bridges consisting of four equal Al/AlOx/Al
capacitors. Hereby, an electric bias field can be applied to the
dielectric. In addition, our setup allows for mechanical TLS tuning
by controlling the strain in the sample material with a piezo
actuator.14 Each chip contains 8 slightly different resonators that
are coupled to a common transmission line, and is installed in a
well-shielded and heavily filtered cryogenic setup that allows for
measurements in the single-photon regime at sample tempera-
tures of 30 mK.39 All capacitors contain a 25-nm thick layer of
amorphous AlOx that is deposited in a Plassys system by eBeam-
evaporation of aluminum in a low-pressure oxygen atmosphere.
Further details on the setup and fabrication are found in (See
Supplementary Material for further details of theory and
experiments).
We characterize the total dielectric loss tangent tan δ � 1=Qi by

recording resonance curves using a network analyzer and
extracting the internal quality factor Qi using a standard fit
procedure.40 In particular, we study this loss while a triangular
voltage signal VbiasðtÞ is applied as a bias to the sample dielectric.
This results in a sweep rate v0 ¼ p _Vbias=d, where d ¼ 25 nm is the
distance between the capacitor plates, considering that due to the
design only half the voltage drops at each capacitor. The shortest
periods in our experiment are 10 ns, such that T sw � 2π=ω, where
ω � 2π ´ 7 GHz is the resonance frequency of the resonator.
Resonant transitions due to the bias field can therefore be safely
neglected. The highest bias field amplitude is Emax ¼ 0:9 MV/m,

Table 1. Qualitative behavior of the normalized loss tangent tan δ= tan δ0 in various regimes.

ξ2 < 1 ξ2 > 1

ξ < ξ2 ξ2 < ξ � 1 ξ � 1 ξ � 1 1 � ξ < ξ2 ξ2 < ξ � ξ22 ξ � ξ22
tan δ= tan δ0 / ξ / ξ2 / ξ2=

ffiffiffi
ξ

p / ξ / 1 / 1 / ξ2=
ffiffiffi
ξ

p
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which allows us to apply a bias field rate _Ebias ¼ 2Emax=T sw up to
1:8 � 1014 V=ðm � sÞ. For typical values of the dipole moment of
TLSs in AlOx , p � 0:5 eA, this corresponds to a maximum sweep
rate of jv0j=h � 2 � 109 GHz/s. The adiabatic condition v0=ð_ω2Þ �
1 thus holds, justifying the assumption that the bias field changes
the energy splitting of the TLS adiabatically. We also note that as
in refs, 39,41,42 the dielectric volume of the resonator has been
chosen such that on average there is roughly one TLS in
resonance with the resonator in the absence of the bias field. By
applying the bias field all TLSs within the energy window pEmax

around _ω are swept into resonance and contribute to the loss. In
our experiment pEmax is in the range 1–10 GHz, hence �100–1000
TLSs contribute to the loss and averaging is proper.

Figure 4 shows the measured dielectric loss tangent in two
different resonators as a function of the dimensionless sweep rate
ξ ¼ 2jv0j=ðπ_Ω2

R0Þ. Each curve is obtained by varying the period
T sw of the bias field, keeping its amplitude Emax and the input
power Pin fixed. To calculate ξ, the maximum Rabi frequency is

computed as ΩR0 ¼ pEac=_ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2PinQ2

l

� �
= _2ωCQcd

2� �q
, where Ql ,

Qc are the measured loaded and coupling quality factors, C is the
total resonator capacitance, and a typical value of p ¼ 0:5eA is
used.11 Note that for a given Pin, the value of Eac (and thus ΩR0)
depends on the resonator loss (and thus on ξ). The values of ξ in
the horizontal axes of Fig. 4 take this dependence into account.
To compare the experimental results with our theory, Fig. 4

shows the loss due to TLSs, obtained by subtracting the
background loss at the saturation regime (large powers) at
ξ ¼ 0. We further normalize the resulting loss tangent by the
intrinsic loss tangent tan δ0 (see (See Supplementary Material for
further details of theory and experiments) for saturation curves of
the resonators and for values of the background and intrinsic TLS
loss tangent). In addition, we estimate the values of the parameter
ξ2 ¼ 8pEmaxΓ1=ðπ_Ω2

R0Þ for selected curves. For this purpose, we
use the value of ΩR0 at ξ ¼ 0 and set p ¼ 0:5 eA and Γ1 ¼ 1MHz,
in accordance with TLS dipole moments and relaxation rates
observed in AlOx .

11,43–45 Note that this is an approximation, since
the value of ξ2 is not constant for measurement at a fixed power
(due to the loss dependence of the Rabi frequency discussed
above). For both resonators, the qualitative agreement with the
theoretical prediction of Fig. 2 is excellent. By tuning the input
power, and therefore varying ΩR0, one can change the parameter
ξ2 by several orders of magnitude to obtain the different
behaviors shown in Fig. 2. Variation of Emax then weakly tunes
the value of ξ2 in each regime. For ξ2t1 one observes wide peaks
which become more pronounced for 1tξ2 < 100. For ξ2 > 100
these peaks become the universal plateau as in Fig. 4b, followed
by the reduction in loss. Note that for ξ2 > 1 the loss starts
decreasing at ξ � ξ2, in agreement with the theoretical prediction
of Fig. 2a. Unfortunately, comparison of the functional form of this
decrease with the power low tan δ / ξ�1=2 predicted by our
theory is impossible, both because there is almost no data at the
regime ξ > ξ22 and because of the dependence of ΩR0 on ξ , not
taken into account by the theory. We also notice that resonator 1
(Fig. 4a) provides some evidence that the loss at high sweep rates
can reduce below its value at ξ ¼ 0 (no bias field). This is seen for
the green and blue curve families for which the TLSs are not fully
saturated at ξ ¼ 0.

a)

b)

inductor

via

transmission line

capacitors

voltage bias

Vbias

100 µm

20 µm

AlOx

in

out

Fig. 3 Schematic of the experimental setup. a Photograph of a
lumped-element resonator consisting of a capacitively terminated
meandering inductor. The (colorized) inset shows a zoom of the four
capacitors between bottom (red) and top layers (green), which are
separated by 25nm-thick amorphous AlOx . b Circuit schematic. The
electric field in the capacitor dielectric is controlled by an applied
bias voltage Vbias .

a)

b)

c)

Fig. 2 Theoretical results for the loss tangent due to TLSs,
normalized by the intrinsic low-power loss tangenttan δ0 ¼
πP0p2=ð3ϵÞ, as a function of the dimensionless sweep rate ξ �
2jv0j=ðπ_Ω2

R0Þ for various values of ξ2 � 8pEmaxΓ1=ðπ_Ω2
R0Þ, as

indicated in the legend. The results are obtained by a numerical
average of the photon absorption rate per TLS, hγabsi, over a
homogeneous distribution of the phases ϕ1 and ϕ2. a Calculation in
the limit ξ1 ¼ 2Γ1=ðπΩR0Þ ! 0 and pEmax=ð_Γ1Þ ! 1 such that ξ2 ¼
8pEmaxΓ1=ðπ_Ω2

R0Þ ¼ 2πξ21pEmax=ð_Γ1Þ is finite, corresponding to full
saturation at zero sweep rate. b Modification of the results for the
case of partial saturation at zero sweep rate (finite ξ1), with ξ1 ¼ 0:05
and c ξ1 ¼ 0:25. The loss in a) is cut by the saturation value

tan δ= tan δ0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩR0=Γ1Þ2

q
(horizontal dashed line), to which

it approaches for ξtξ1 .
26,27 Due to the decoupling effect at high

sweep rates the loss reduces below its value in the absence of a
periodic bias field (ξ ¼ 0).
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DISCUSSION
To examine whether the effect discussed above is also applicable
in the single-photon regime, we consider now a quantized single-
mode cavity field EresðtÞ ¼ ê

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ω=ϵ0V

p ðae�iωt þ ayeiωtÞ sinðkzÞ (ê is
a polarization unit vector, ϵ0 the vacuum permittivity, V the
resonator volume, k the wave vector, and ay, a the photon
creation and annihilation operators) propagating along the z-axis
and interacting with a set of near-resonant TLSs. After neglecting
the longitudinal coupling and applying the rotating wave
approximation, the corresponding Hamiltonian is

H ¼ 1
2

X
i

E iσ
i
z þ _ωayaþ

X
i

gi σ
i
þaþ σi�a

y� �
; (13)

where gi ¼ �pðΔ0=E iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ω=ϵ0V

p
sinðkziÞ and σ ± ¼ ðσx ± iσyÞ=2. As

the last term couples different TLSs via the quantized cavity field,
the assumption of independent TLSs cannot be invoked as in the
case of a classical field discussed above (which corresponds to the
substitution 2gi

ffiffiffiffiffiffiffi
nph

p ¼ ΩR;i). For hnphi � 1, each TLS feels the
same classical field in every transition, but for hnphi � 1 the
dynamics of each transition depends on previous transitions of
other TLSs. In this regime, calculation of the probability for an

absorption of a single photon involves a consideration of multiple
emissions and absorptions by an ensemble of TLSs, and thus the
interference between many more paths than in the above
analysis, where the coherent evolution of a single TLS was
considered. It is expected, however, that just as in the case of
independent TLSs discussed above, the random distribution of
TLSs leads to random distribution of phases accumulated between
consecutive transitions. As a result, there will be no preference for
some resonant paths that involve emissions and absorptions of
multiple TLSs, and most paths will interfere destructively, thus
justifying an independent treatment of each TLS. In this case, each
TLS is described by a Jaynes-Cummings Hamiltonian,46

H ¼ 1
2
Eσz þ _ωayaþ g σþaþ σ�ay

� �
; (14)

which reduces to the LZ Hamiltonian in the vicinity of each
resonance. Provided this approximation is justified, the physics
discussed above is also applicable in the single-photon regime.
Indeed, in Fig. 4 the data at the lowest Rabi frequency corresponds
to mean photon number hnphi � 1, and clearly displays reduced
loss at high sweep rates, suggesting that a treatment of
independent TLSs is indeed relevant. A more thorough investiga-
tion of the single-photon regime will be performed elsewhere.
We note that the single-photon regime hnphi � 1 corresponds

to the problem of a qubit with energy splitting Eq coupled to a
near-resonant TLS with energy splitting ETLS (Note that a resonator
is usually in a coherent state and not in a Fock state, and therefore
its state cannot exactly be described as a superposition of two
states. However, for mean photon number hnphi � 1, the most
important number states in the coherent superposition are the
zero and one photon states, which are in correspondence to the
ground and excited states of a qubit). Near resonance the relevant
coupling is the transverse one, / σ

ðqÞ
x σ

ðTLSÞ
x , and within the

subspace f 0; ej i; 1; gj ig ( 0j i; 1j i and gj i; ej i being the qubit and
the TLS ground and excited states, respectively) each resonance is
again governed by the LZ dynamics. The above results thus
suggest that by sweeping the bias energy of TLSs at a rate larger
than their relaxation rate, but smaller than the qubit frequency
ωq ¼ Eq=_, one may dynamically decouple the qubit from sparse
TLSs. Since this sweeping is slow compared to the time scale of
the qubit dynamics, the qubit state remains unperturbed. This is in
contrast to the saturation regime at strong resonant driving fields,
where undesired qubit excitations are inevitable.
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