
Provably Forgetting of Information in
Manufacturing Systems?

Verification of the KASTEL?? Industry Demonstrator

Alexander Weigl

Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Abstract. During the manufacturing process, information are generated
and aggregated that constitute a business secrets and therefore need a
high protection. On the other hand, if we can prove, that an information
is absented, the effort for the protection for this system could be invested
on different information, aspects or systems.
For this, we develop the notion of information forgetting of a reactive
system. This notion describes that a reactive system needs to forget
the information about a secret within a certain amount of cycles. This
property limits the amount of historical information an attacker can
learn by observing a manufacturing system. Moreover, we formalise and
prove the notion of an information forgetting system with Relational Test
Tables.
We evaluate the verification on the industry demonstrator for kastel svi
project, which was provided by the Fraunhofer IOSB and developed by
industrial third-party contractor. In this demonstrator, we are able to
show, that a selected business secret – the number of wheel turns – is not
forgotten. We suggest and prove a fix of the leak.
We close with an elaborate discussion on the verification and results and
also with remarks to the how information forgetting relates supports
quantifiable security.

Keywords: Information flow control, information forgetting, formal
security, Relational Test Tables

1 Introduction

In the era of the industrial revolution (IR4.0), information security becomes
an increasingly important aspect of industrial manufacturing systems. As these

? This work was supported by the German Federal Ministry of Education and Research
within the framework of the project kastel svi in the Competence Center for Applied
Security Technology (kastel).

?? “The Competence Center for Applied Security Technology (KASTEL) is one of
three competence centers for cyber security in Germany, which were initiated by the
Federal Ministry of Education and Research (BMBF) in March 2011.” — kastel
Website, accessed 2019-11-06

https://www.kastel.kit.edu/english/index.php
https://www.kastel.kit.edu/english/index.php

system should be more configurable and adaptable, the amount of software
within these system increases. Moreover the manufacturing system and the
enterprise resource planing system (ERP) needs to share more information, e.g.
the manufacturing system needs to announce finished work pieces, the ERP
configures the manufacturing system according to the customer’s wishes of
the next job. The information becomes a valuable target, either for violating
confidentiality or integrity of the manufacturing process.

In this report, we try to verify whether a business secret is stored inside
the control unit of a manufacturing system. The control unit, often called Pro-
grammable Logic Controller (PLC), is a computer, on which reactive programs
are executed. Execution of a program is triggered every n milliseconds. It begins
with reading of the sensors values and ends with writing of the computed actuator
values to the underlying bus system.

The configuration and processing information of manufacturing system can
contain very sensitive and crucial information of the manufacturing process or
turnovers. These business secrets1 are protected by the German law. To gain
this protection, a company needs to protect the data by using state-of-the-art
methods (cf. [6] and § 2 Nr. 1 lit. b) GeschGehG). Therefore, a company is
interested to know in which components their data is stored to apply protection
measurements more purposeful.

Our demonstrator is a configurable colour wheel. The PLC software controls
the direction and speed of the connected rotating colour wheel. The PLC software
is either controlled manually by the operator via an human machine interface
(HMI), or runs a runtime-defined control sequence. Our goal is to verify that the
number of turns of the colour wheel is not stored within the state of the software.

The verification subject. The program to be verified is the control software of an
automated production system (aPS), that does not produce any work pieces, but
uses the real components and programming languages of the aPS domain. The
aPS consists of a Programmable Logic Controller, an HMI interface and motor
rotating a colour wheel. The software lets the colour wheel spin, either by inputs
from the HMI, or automatically in configurable sequences.

The software was developed by a sub-contractor of the Fraunhofer IOSB.
Originally, the demonstrator was designed for demonstrating a replay-attack [7]
on the network level and how this attack is detected by an anomaly detection.
The components are connected via Ethernet. This gives the opportunity to an
infiltrator to manipulate the sensor and actuator commands. In the intended
attack, an attacker sends malicious packets to control the colour wheel.

Business Secrets. For the kastel demonstrator, we follow a different story:
Business secrets are confidential information of a company, and protected by law.
This protection requires efforts by the owning company to protect their data
following the state of the art. A typical business secret is the amount of work
pieces, e.g. cars or enriched uranium, that are produced within a time interval.

1 in german: Geschäftsgeheimnis

2

For demonstration, we assume that the amount of colour wheel turns represents a
business secret. We want to show, that the program fulfills the following property.

Definition 1 (Informal Property). The PLC software does not store the
number of turns of the colour wheel.

Therefore any attacker is not able to derive this information by observing a single
internal state of the PLC.

Outline. We explain the software components, architecture and information flow
in Section 2.1. In Section 2.2, we present the steps that were taken to obtain a
verifiable program, e. g. the removal of floating point variables. The property and
verification are presented in Section 3.

2 Program to be Verified

In this section we explain the software to be verified. First, we give an overview
over the structure (Section 2.1). Second, we identify the verified fragment and
needed preparation steps (program transformations, Section 2.2).

The software was developed by a industrial third-party contractor in charge of
the Fraunhofer IOSB designed to demonstrate their Intrusion Detection System
for replay attacks in industrial communication networks. These attacks are closer
described in [7]. The hardware of the demonstrator is shown in Fig. 1.

Fig. 1. Hardware components of the system to be verified. Image provided by Fraun-
hofer IOSB

3

The following paragraphs are paraphrased from the technical documentation
provided from the Fraunhofer IOSB. The core functionality of the PLC is to
control the motor via EtherCAT. The PLC supports two modes: automatic and
manual operation. The mode is selected by an integrated HMI.

In the automatic mode, the PLC executes a user-defined sequence of steps.
A step consists of a target position (angle), velocity, acceleration, deceleration
and waiting time. The PLC drives the wheel to the target position with the
defined velocity and ac- and deceleration. If the position is reached, it waits
the defined waiting time and then proceeds with the next step. Depending on
the configuration the system leaves the automatic mode after the sequence is
completely executed or restarts with the first step. The automatic mode can
be paused or aborted. In the manual mode, the users can interact with the
system more directly via the HMI. The user can stop and spin the wheel in both
directions with a user-defined, or predefined velocity. Also the manual mode
allows to set the reference position of the wheel.

2.1 Software Architecture

The software is mainly implemented in Structured Text (ST) (IEC 61131-3)
and consists out of 16 user-defined data types, two function blocks, two function
(initialisation and communication with HMI) and the main program2. Function
blocks are special to IEC 61131-3. Function blocks are functions with an internal
state. A function block can be instantiated in other function blocks or programs
and consecutive invocations are executed on the internal state and the input
variables. A function block can have multiple output variables.

The Fig. 2 visualises the internal architecture and the execution. The main
program is executed cycle-wise every nms. It starts with the call to the Function
Initialisation(). This function ensures a correct initialised the global state.
Mainly it ensures that the error messages are defined in String variables and all
the arrays are pre-filled. The initialisation function is only executed once, i. e. in
the first cycle. In the second step the current values from the HMI are transferred
to the global state. Third, the main program determines the operation mode,
either stop, manual or automatic3. The fourth step invokes the function block
SequenceAutomaton, which only handles the automatic mode. This automaton
decides whether the motor needs to move, the target position is reached, or the
waiting time is elapsed and the next step should be executed. These decisions are
based on the sequence of user-defined entries within the global state. A distinct
internal variable describes the current state of the sequence execution (cf. Fig. 2).
The call to MainAxis triggers the most important part of the software: the motor
control. There are 15 modes in this function block. The mode variable is set
internally or externally by the main program or the sequence automaton. A

2 Additionally, there are seven auxiliary functions, mostly for converting to and from
external sensor values.

3 The automatic mode is split into a mode for pre-selection of the auto settings (auto)
and executing the automatic mode (active auto).

4

PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Fig. 2. Architecture of the software consisting out of four structural elements: main
program, sequence automaton, main axis control and HMI.

mode corresponds to specified parameter set in calls of motor control driver4. For
example: if the mode is halt, the driver parameters are set to stop the motor,
and at the end of this function block the driver is called. Erroneous and success
calls are handled by MainAxis by jumping to the idle or error mode. The code
of MainAxis and its dependencies before the preparation for the verification is
given in Appendix B.

The function blocks communicate by setting variables in the global state.
For example the function block Sequence Automaton sets the mode of MainAxis

directly and MainAxis sets value for the HMI.

The program sizes are: Initialisation has 54 LoC, Program Main 97 LoC
(reading from HMI 40 LoC, operation mode 45 LoC), Function Block MainAxis

has 362 LoC, Function Block SequenceAutomaton has 65 LoC, and writing to HMI
has 81 LoC.

4 The driver function blocks are an extension of PLCOpen Motor Control.

5

2.2 Preparations for Verification

For the verification we concentrate on the function block MainAxis. But before
the verification, we need apply program transformations to bring this function
block into a supported shape for the symbolic execution and the model checker.
In the remaining paper we do not distinguish between state and output variables
of the function block. We consider the output variables as part of the state.

The starting point is original implementation of the function block MainAxis,
the global state and the auxiliary functions. We start by simplifying the function
block into ST0 – a simplified version of Structured Text where all loops are
unwound and invocations to function blocks are inlined. The transformation is
described in [2]. Secondly, we need to apply simplifications customised for the
given software.

We remove assignments to dScratch and VSObj McFaultDescription. The first
location is a global variable that is never read, but is written. The second one
holds a String value of the current error cause in the HMI, and unsupported by
the model checker.

The model checker can not handle floating values. Therefor we transform
variables of type real to int. Additionally, we need to remove the conversion
functions REAL TO INT and INT TO REAL with the identity function. We apply the
same for the used – and not needed anymore – rounding of values ((x/1000)*1000).

In the last transformation, we slice the program to remove all variables, that
are neither read or written, and remark the remaining variables as input and
output according to their reading and write access.

The resulting program for the verification code is 421 LoC.

3 Verification

Proof obligation. Our goal is to verify, that the given function block MainAxis

does not store any information about the business secret: the number of turns of
the wheels. In the following we analyse and break down the informal specification
the into a formal property, that can be checked. The final proof obligation is
given in Section 3.1.

Non-Interference Property. Physically, the number of wheel turns can be derived
by integrating the angular velocity va(t) in a time interval [n,m]:

#turns :=

⌊
1

360

∫ m

n

va(t) dt

⌋
.

#turns represents the precise amount of wheel rotations, whereas the PLC is
only capable to capture an estimation of #turns, due to limitations of the data
type, sensor values and impreciseness in triggering the cycle. In the remaining
section we do not distinguish between precise or estimated number of turns. An
attacker should not learn anything about the number of turns #turns, after they

6

have observed the current state σ of the PLC. Mathematically expressible using
probabilities:

P (#turns | σ) = P (#turns) , (1)

where P(#turns) describes the apriori probability distribution of the number of
turns, where as P(#turns | σ) is the aposteri distribution after observing the
state, and #turns and σ correspond to the same point in time. Equation (1)
corresponds to the non-interference of #turns and σ.

Equation (1) expresses a strict property that an attacker learns nothing by
observing a state σ of the PLC software. This property is too restrict. The initial
state is already a counter example: An attacker can determine that a given state
is the initial state5. And from this information, they can derive #turn = 0.

Additionally, the presented non-interference property (1) can not be modelled
by a forbidden information flow between variables. An information flow exists if the
state of a program variable h influences a different variable l. For confidentiality
considerations, the variable h represents the secret information and l the public
observable output. In our case, the complete state of the PLC is public observable.
The secret is the number of turns that is not directly available by observing a
state, but it is derivable from a given path. Alternatively, we could use the sensor
value of the velocity as the secret. This is more restrictive, because then nothing
is allowed to depend on this sensor value and therefore this variable could silently
be removed. In general, forbidding an information flow from a sensor value to the
internal state is too limiting for manufacturing system. The system needs to react
to events and these events are recognised by sensor values. In the demonstrator
it is easy to recognise that the velocity sensor is read and stored internally.

3.1 Property

Information Forgetting. We need to find a relaxed information flow property,
that allows that a secret can be stored for a short time inside the state, and will
eventually be forgotten later on.

Let us make a gedanken experiment with two instances of the demonstrator.
First, we run both demonstrators for an arbitrary amount of time and different
velocities, resulting in different number of turns. Second, we synchronise the
sensor inputs of both systems for a short amount of time. Third, we stop both
systems and inspect their internally state. If the states are indistinguishable, then
the number of wheel rotations are not derivable anymore.

In contrast to information flow we introduce an annealing phase. During the
annealing phase the secret information should be superseded. We prove that an
attacker – observing a single state of the PLC – can only derive information
about the k last cycles. For manufacturing systems, cycle times are rather small
(≤ 10ms) and therefor the time window, in which the states are distinguishable,
are short. The formalisation is given in form of a relational test table (rtt) in
Fig. 3.

5 The internal variable FC Init is set to true only in the very first state.

7

Relational test tables. Relational test tables are a canonical extension of gener-
alised test tables (gtt) [4, 1]. Gtts are a table-based specification language. The
columns correspond to input, output or state variables. The rows are the steps in
the test, which are executable from top to bottom. Each row has an interval as a
time constraint, which describes how often a row can be applied consecutively.
Rows may be skippable. The cells contain the constraints for the corresponding
column and row. For easy accessibility, gtts allow the use of abbreviations, e.g. the
cell content > 10 enforces that the designated column variable should be bigger
than 10 or an interval [5, 10] for defining an allowed value range. Abbreviations
are translated into Boolean expression.

Applying a row means, that we pick up an input adhering the constraints
of columns for the input variables and the current row, executing the system,
and checking if the emitted output obtains the corresponding output constraints.
During verification we check every possible sequence of rows and every possible
input composition. We say a system is conform to a gtt, if we cannot find
a sequence of described input values that leads to a violation of the output
constraints [1, cf. weak conform].

A gtt allows us to describe the behaviour of single runs of a system, but our
property talks about two runs of two system. Rtts overcome this restriction and
allow us to specify k-safety properties [9]. Our gedanken experiment is a 2-safety
property [5]. Rtts brings two changes into gtts: First, the variable access needs
to qualify to which program run they correspond. Second, the program runs
can be paused independently. During the pause, they stutter in their local state,
but the input variables may change. For each program run there is an extra
pause column, that determines if the program run should be paused (TRUE) or
not (FALSE, default value). For more details on rtts, refer to [9].

Extensions to relational test tables. For readability of our specification (Fig. 3)
we make two extensions to gtts.

First, we allow that a column can also be designated to a function. The
abbreviations of the cell contents are checked against the evaluation of the
corresponding column header. If the column header contains a variable, the
abbreviation are expanded against value of the variable. Additionally, we now
allow that column header is a function on the input, output and state values.
Then, the abbreviation are expanded against the evaluation of the function in
the current state.6 This extension correspond to the widely used concept of
model variables. The model variables, like column functions, exist only in the
specification domain.

Second, we add a new cell abbreviation for separately defined predicates. If
a cell entry consists only out of a predicate P without arguments, we interpret
the cell as the application of the predicate to the evaluation of column header.
Let f be a function, which returns a tuple of values f : σ 7→ (x1, . . . , xn), of the
corresponding column, then we interpret P as P (x1, . . . , xn). Scalar values are

6 We can say, a variable v in the column header describes a function fv : σ 7→ σ(v),
where σ is the current state.

8

silently lifted. For rtts, a function in the column header has the same arity as
the number of program runs.

Both extensions do not extend the expressibility of gtts, but allow us to write
more comprehensible generalised test tables by reducing and externalising of
variables and expression. Instead of writing complex expression in the table, we
can concentrate on the most important: the consecutive execution flow of the
test.

Proof obligation. Figure 3 shows the relational test table that captures our
gedanken experiments. We define V ⊗ V ′ for two variable signatures V, V ′ as a
projection function of two states, to two tuples representing the values of the
variables in V and V ′.

V ⊗ V ′ := λσ, σ′. (πV (σ), πV ′(σ′)) (2)

where πV (σ) := (σ(v1), . . . , σ(vn)) (with n = |V |) denotes the projections of the
state σ to a tuple of the values of variables in V .

We define S to be the variable signature that contains the local state variables,
analogue IL for the low input, and IH for the high input variables. S ⊗ S maps
two states to a tuple, where the first element matches the local state of the first
run, analogue the second element for the second run. The same is valid for IL⊗IL
for the low input and IH ⊗ IH for the high output variables.

PAUSE INPUT OUTPUT �
0 1 S ⊗ S IL ⊗ IL IH ⊗ IH S ⊗ S

0 = = — — 1
1 — = — — —
2 — = = — k
3 — = = = ω

Fig. 3. Template of relational test table for information forgetting

In the rtt, we use following relations on these state projections:

– The relation “—” stands for don’t-care, and does not enforce any constraint
on the column value.

– The relation “=” is the symbolic equality and enforces that the first and
second element of the tuple are equal.

In Fig. 3, Row 0 expresses that local states and low inputs of both program
runs need to be equal. Where our secret inputs (the velocity) can differ between
both runs. We do not care about the state (and output variable) at the end of
the invocation. In Row 0, we allow that both state can differ, caused by the
different values for secret inputs, but the input remains equivalent for IL. For
the demonstrator we have |S| = 32 |IL| = 51, and |IH | = 1. The exact variables
for IL, IH and S are given in Appendix A.

9

You can non-deterministically decide whether you stay in Row 1 or start the
annealing phase in Row 2. Row 2 enforces that also the secret IH is equivalent in
both runs. After k cycle, the states of both runs need to be equivalent (Row 4)—
indicating that the secret previously injected is forgotten.

For efficiency, we start both systems in equal states. This is an over-approximation
as this formalisation also includes the initial states described by the language
semantics. This trick reduces the diameter of the of the search space.

3.2 Result

The complete transformation pipeline is implemented in our verification library for
automated production systems and is publicly available7. After the translations,
the state space in the model checker is 566 bits large (270 bits input, 296 bits
state).

We instantiated our property (Fig. 3) with k = 2 for the annealing phase. For
the verification we used nuXmv 1.1.1 [3] on an Intel® Core™ i5-6500 (3.20GHz)
with 16 GB RAM.

The system does not adhere our property (Fig. 3). nuXmv finds a counter
example in 1.85 sec. over(median, n = 3). So there exists a run that does not
lead to vanish of the secret information about the past velocities.

Inspecting the counter example shows the reason why the different velocities –
given via ActStep.rVelocity – are result into different value in the state variable
MoveAxis1.Velocity after k = 2 cycles of equal input. The visited states of
MoveAxis are states: MOVESTATE ABSOLUTE, MOVESTATE MOVEACTIVE, and MOVESTATE -

INIT (cf. Appendix B).

Fixing the leak. Inspection of the counter examples gives us a hint which variable
leaks the secret information: MoveAxis1.Velocity. Further, we can proof that all
the others variables do not inferred with secret anymore. We are using the same
formalisation but exclude MoveAxis1.Velocity from set of state variables S.

Going further, we have three possibilities to remove the information of the
leaking variable: First, we manually inspect the variable and its information flow,
and conclude that this variable is independent of the number of turns. Second,
we can modify the program and overwrite the variable. This step changes the
behaviour of the program and has to checked against the documentation. Third
we we could enforce that the system has to visit a state that enforce an overwrite
of MoveAxis1.Velocity. After inspecting the code, you may find out that this
variable is only written if state=MOVESTATE ABSOLUTE. This steps alters and limits
the verification condition, in such a way that you assume that certain occurs
occasionally.

We decided for the second alternative and added two assignments at the end
of the code (cf. Appendix B):

MoveAxis1.Velocity := 0; MoveAxis1.Execute := FALSE;

7 https://github.com/verifaps/verifaps-lib

10

The first assignments overrides the velocity, s.t. the variable does not leak this
information. The second assignments disables the command execution of the
instance MoveAxis1 of the Function Block MC MoveRelative [8] in the next cycle.
The driver function blocks are called at the end of the Function Block MoveAxis

for sending commands to the motor controller of the colour wheel. Setting Execute

prevent that the controller that the a velocity of 0 is sent to the controller in
the next cycle. If a new velocity needs to be set, the MoveAxis1 re-enables the
execution and also sets the velocity.

Model checking runtime. The Table 3.2 gives an overview about the runtime: for
finding the counter example in the original leaky program (A), proving that only
MainAxis1.Velocity leaks(B), and proving the fixed version (C). Sample size is
n = 2. We omit the standard derivation; in all runs it was lower than 20 seconds.
The runtime of the model checker depends heavily on the number of cycles k
to forget the information. The parameter k highly influences the depth search
space, as it determines the number of unwinding the system definitions.

Table 1. Runtime of the model-checker for proving or finding a counterexamples of the
information forgetting for various annealing phases k and scenarios (A) original leaky
version, (B) original leaky version proving all other variables do not leak, and (C) fixed
(non-leaky) version.

k = 2 3 5 7 10

(A) 3.39 sec 2.95 sec 2 min 52 sec 9 min 24 sec 2 h 50 min
(B) 57.40 sec 45.82 sec 3 min 32 sec 10 min 29 sec 2 h 36 min
(C) 40.93 sec 29.74 sec 3 min 5 sec 10 min 46 sec 1 h 33 min

4 Discussion

After inspecting the code, we are sure, that the software holds the informal
property (Definition 1) of not storing the number of wheel turns. The formal
property (Fig. 3) is still stronger than the informal property. It is important to
note, that abstracting the environment (other function block and hardware) of
the MoveAxis and letting the systems start in arbitrary equal states can lead to
spurious counter examples. Also note, we avoid the problem of the leak in the
initial state by considering only traces with at least two cycles (time duration in
Row 0 in Fig. 3).

Restriction to the Function Block. We decided to verify the Function Block
MoveAxis as it is the most complex and critical software part inside this software
project, and deals finally with the sensors and actuators. Hence, every control
request passes this piece of code. It was out of our scope whether the other function
blocks adheres the property. This includes the human-machine-interface (HMI)

11

and also Function Blocks of the motor driver. Both sub systems are not completely
accessible from the PLC software, but may be observable by an attacker. The
PLC software can only access the shared variables for communication or the
given input and output parameter, especially this includes the current velocity.
The internal state, i. e. the user-interface elements, is not accessible or modelled
for verification. On a real attack, the attacker sees also the complete user-defined
program sequence, containing the information of the current segment, its position,
velocity, etc. From these program sequence, an attacker might guess an estimation
of the previous amount of turns, but also an estimation of the future amount of
turns. Moreover, we only looked at the PLC software. Information may be stored
inside the physical plant itself and are fed back to the PLC via sensors. Without
a suitable environment model, information flow in the physical plants are not
traceable. The internal actions of the PLC, e. g. reading sensors values, setting
actuators values, debug interface, are also uncovered from our considerations.

Single observable state. We limit the leakage in our attacker model to one PLC
software state. In practise attacks expand over several days to months. An attacker
may see every observable state during this infiltration period. Our approach
keeps still useful: the attacker can not guess information, which are lying past its
infiltration without additional consumption. One of these consumption could be
that the attacked industrial system is running the same program with the same
parameter before its successful infiltration.

Program transformation. For the verification we apply some program transforma-
tion, i. e. demoting floating point variable to integer variables, removing string,
unread or unwritten variables. These transformation can be critical and need
a justification case by case. For example, code lines could become unreachable
using integer instead of floating-point arithmetic. In contrast, symbolic execution
and other simplification, like structure unfolding, are uncritical as they are not
change the semantic of the program, special the set of reachable states remain
the same.

Why verification on the PLC level? In our demonstrator, we prove the privacy
on the second lowest level of the automation pyramid. The field or electronic
level – containing the sensors and actuators – is beneath the PLC, and upper
PLC is the HMI-SCADA system, the manufacturing enterprise system (MES)
and the enterprise resource planing system. The upper level are gathering the
process from the lower levels, and may store the business information for which
we tried to prove that they are forgotten. Nonetheless, verification of the PLC are
needed. Due to their real-time requirements, protection of PLC against attacks
are hard to achieve without threaten the functionality. The upper level are built
with standard PC components and may be protected with standard equipment.
On the other side, attacks on the lower sensor and actuator level were observed,
which made the protection of the PLC more difficult.

Other formalisation. There may exist other formalisation of Definition 1. For
example: We can assure that for every trace t with number of wheel turns

12

#turnst, there exists a second possible trace t′ with #turnst′ 6= #turnst, and
the last states of t and t′ are equal

∀t ∈ traces. ∃t′ ∈ traces. t|t| = t′|t′| ∧ #turnst′ 6= #turnst .

After observing a state of PLC, an attacker could not distinguish whether
#turnst or #turnst′ is the real value of turns (assuming that no additional
information are known). But in the worst case, there are only two possible turns
P (#turnst) ≥ 0 and P (#turnst′) ≥ 0 and both numbers of turns are almost
identical: |#turnst −#turnst′ | = 1.

5 Quantification

Our presented approach is a quantification of security, because we can quantify
how fast information is forgotten and how much information is forgotten. Both
numbers are on an ordinal scale – they can help in the comparison of the security
of systems. Because, a system that forgets more information faster is more secure.
This ordinal can be considered from the view of risk assessment. A risk is formed
by two factors: entry probability and costs in the event of damage or loss. Our
approach does not prevent that an attacker can successfully capture a PLC
system. But if a successful attack occurs, the attacker sees a limited and known
amount of information. Therefore, if a system forgets more information faster, it
has a lower risk, because of the reduced costs – whereby entry probability keeps
the same. On the other side, we do not have an interval scale, as it is invalid to
state, that a system is two times more secure than an other system if it forgets
the same information two times faster. For the cost assessment, it is crucial which
information are kept in the system.

6 Conclusion

In this paper we develop a notion and formalisation of an information-forgetting
system. This notion is a relaxed variant of an information flow property, where
we give a system a time span (annealing phase) in which the system needs to
forget secrets. A system that dependently forgets the Business Secrets, is not
protected against successful intrusion, but in case of an intrusion the amount of
leaked secrets are reduced.

We apply this notion to a manufacturing system provided by the Fraun-
hofer IOSB with the goal to prove that a certain business secret – the number
of wheel turns – are not derivable if the attacker has access to one local state.
We prove, that the information of the velocity flow only into one single state
variable, and by code revision we see that the velocity is only assigned and not
accumulated.

13

References

[1] Bernhard Beckert et al. “Generalised Test Tables: A Practical Specifica-
tion Language for Reactive Systems”. In: Integrated Formal Methods. Ed.
by Nadia Polikarpova and Steve Schneider. Cham: Springer International
Publishing, 2017, pp. 129–144. isbn: 978-3-319-66845-1.

[2] Bernhard Beckert et al. “Regression Verification for Programmable Logic
Controller Software”. In: 17th International Conference on Formal Engi-
neering Methods (ICFEM 2015). Vol. 9407. LNCS. Springer, Dec. 2015,
pp. 234–251.

[3] Roberto Cavada et al. “The nuXmv Symbolic Model Checker”. In: Computer
Aided Verification (CAV). LNCS 8559. Springer, 2014, pp. 334–342.

[4] Suhyun Cha et al. “Applicability of generalized test tables: a case study using
the manufacturing system demonstrator xPPU”. In: at - Automatisierung-
stechnik 66.10 (Oct. 2018), pp. 834–848. doi: 10.1515/auto-2018-0028.
url: https://doi.org/10.1515/auto-2018-0028.

[5] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: Journal
of Computer Security 18.6 (2010), pp. 1157–1210. issn: 0926227X. doi:
10.3233/JCS-2009-0393.

[6] Dirk Müllmann. “Auswirkungen der Industrie 4.0 auf den Schutz von
Betriebs- und Geschäftsgeheimnissen”. In: Wettbewerb in Recht und Praxis
(WRP) 2018 64.10 (2018), pp. 1177–1184.

[7] Steffen Pfrang et al. “Design and Architecture of an Industrial IT Security
Lab”. In: Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer International
Publishing, Nov. 2016, pp. 114–123. doi: 10.1007/978-3-319-49580-4_11.
url: https://doi.org/10.1007/978-3-319-49580-4_11.

[8] TC2 Task Force Motion Control. Technical Specification: Part 1 -Function
blocks for motion control. eng. Tech. rep. Version 2.0. Mar. 17, 2011. 141 pp.

[9] Alexander Weigl et al. Relational Test Tables: A Practical Specification
Language for Evolution and Security. Tech. rep. Karlsruher Institut für
Technologie (KIT), 2019. 10 pp. doi: 10.5445/IR/1000099122.

A Variables

State variables S: JogAxis1$Backward, JogAxis1$Fast, JogAxis1$Forward,
Mode, MoveAxis1$Distance, MoveAxis1$Execute, MoveAxis1$Velocity,
MoveVelAxis1$Execute, MoveVelAxis1$Velocity,
PowerAxis1$Enable, ReadActPosAxis1$Enable, ReadActVelAxis1$Enable,
ReadStatusAxis1$Enable, RefAxis1$Execute, RefAxis1$Mode,
RefAxis1$Position, Reset$Execute, SetDriveRampAxis1$Acceleration,
SetDriveRampAxis1$Deceleration, SetDriveRampAxis1$Execute,
StatusAxis1$ActPosition, StatusAxis1$ActVelocity,
StatusAxis1$DeltaPosition, StopAxis1$Execute, bAxisInPosition,

bNotMoving, iScratch, rLastPositionCmd,

stHmiInt$stMCStatus$tMC Cmd, state, tTimeout$IN, tTimeout$PT

14

https://doi.org/10.1515/auto-2018-0028
https://doi.org/10.1515/auto-2018-0028
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-319-49580-4_11
https://doi.org/10.1007/978-3-319-49580-4_11
https://doi.org/10.5445/IR/1000099122

Low input variables (IL): ActStep$rAccel, ActStep$rDeccel,
ActStep$rPosition, JogAxis1$Busy, JogAxis1$CommandAborted,
JogAxis1$Error, MoveAxis1$Busy, MoveAxis1$CommandAborted,
MoveAxis1$Error, MoveVelAxis1$CommandAborted, MoveVelAxis1$Error,
MoveVelAxis1$InVelocity, PowerAxis1$Error, PowerAxis1$Status,
ReadActPosAxis1$Error, ReadActPosAxis1$Position,
ReadActPosAxis1$Valid, ReadActVelAxis1$Error,
ReadActVelAxis1$Valid, ReadActVelAxis1$Velocity,
ReadStatusAxis1$Error, RefAxis1$Done, RefAxis1$Error, Reset$Done,
Reset$Error, Sequence$bAutoRelease, Sequence$eState,
SetDriveRampAxis1$Busy, SetDriveRampAxis1$Done,
SetDriveRampAxis1$Error, StatusAxis1$Disabled, StatusAxis1$Error,
StatusAxis1$StandStill, StopAxis1$Done, StopAxis1$Error,
stHmiInt$rIncrement, stHmiInt$rStartVel,
stHmiInt$stMCStatus$bMC Error, stHmiInt$stReq$bReset,
stHmiInt$stReq$stMan$bDecrVel, stHmiInt$stReq$stMan$bDisable,
stHmiInt$stReq$stMan$bHome, stHmiInt$stReq$stMan$bIncrVel,
stHmiInt$stReq$stMan$bJogFFwd, stHmiInt$stReq$stMan$bJogFRev,
stHmiInt$stReq$stMan$bJogFwd, stHmiInt$stReq$stMan$bJogRev,
stHmiInt$stReq$stMan$bStartVel, stHmiInt$stReq$stMan$bStop,
stHmiInt$stStepData$rDeltaPos, tTimeout$Q

High input variables (IH):

ActStep$rVelocity

15

B Program to be Verified

1 (* ***)

2 (* ** ENUMS ***)

3
4 TYPE

5
6 McCmds_t : (MCCMD_NONE, MCCMD_POWER, MCCMD_HALT, MCCMD_MOVEJOG,

7 MCCMD_MOVEVEL, MCCMD_MODMOVE, MCCMD_RESET, MCCMD_REFPOS);

8
9 ModeState_t : (MODE_NOMODE, MODE_MANUAL, MODE_AUTO, MODE_AUTOACTIVE);

10
11 MoveState_t : (MOVESTATE_INIT, MOVESTATE_ENABLE, MOVESTATE_DISABLE,

12 MOVESTATE_REF, MOVESTATE_IDLE, MOVESTATE_HALT, MOVESTATE_SETDRIVERAMP,

13 MOVESTATE_ABSOLUTE, MOVESTATE_VELOCITY, MOVESTATE_MOVEACTIVE,

14 MOVESTATE_JOGCWSLOW, MOVESTATE_JOGCWFAST, MOVESTATE_JOGCCWSLOW,

15 MOVESTATE_JOGCCWFAST, MOVESTATE_ERROR, MOVESTATE_RESET);

16
17 SeqState_t : (SEQSTATE_INIT, SEQSTATE_RESET, SEQSTATE_IDLE,

18 SEQSTATE_MOVE, SEQSTATE_WAIT, SEQSTATE_DONE);

19 END_TYPE

20
21 (* ***)

22 (* ** RECORDS ***)

23 TYPE

24
25 ST_AxisStatus : STRUCT

26 Valid : BOOL; (* status is available*)

27 Busy : BOOL; (* busy*)

28 Error : BOOL; (* error occured*)

29 Errorstop : BOOL; (* drive stopped due to an error*)

30 Disabled : BOOL; (* drive is disabled*)

31 Stopping : BOOL; (* drive is stopping*)

32 Referenced : BOOL; (* drive is referenced*)

33 StandStill : BOOL; (* drive is not moving*)

34 DiscreteMotion : BOOL; (* drive moves in discrete motion*)

35 ContinuousMotion : BOOL; (* drive moves in continuous motion*)

36 SynchronizedMotion : BOOL; (* drive moves in synchronized motion*)

37 Homing : BOOL; (* drive is referencing*)

38 ConstantVelocity : BOOL; (* drive moves with constant velocity*)

39 Accelerating : BOOL; (* drive is accelerating*)

40 Decelerating : BOOL; (* drive is decelerating*)

41 ActPositionUsr : DINT; (* Actual Position usr*)

42 ActPosition : REAL; (* Actual Position ° *)

43 DeltaPosition : REAL;

44 ActVelocityUsr : INT; (* ActualVelocity = rpm*)

45 ActVelocity : REAL; (* Actual Velocity °/s *)

46 ActAccelerationUsr : INT; (* Actual Acceleration = rpm/s2*)

47 ActAcceleration : REAL; (* Actual Acceleration = °/s2*)
48 ActDecelerationUsr : INT; (* Actual Acceleration = rpm/s2*)

49 ActDeceleration : REAL; (* Actual Acceleration = °/s2*)
50 RefVelocityUsr : INT;

51 RefVelocity : REAL;

52 END_STRUCT;

53
54 stSm : STRUCT

55 bStatechange : BOOL;

56 bAutoRelease : BOOL;

57 bCycleStop : BOOL;

58 bReset : BOOL;

59 bStepFwd : BOOL;

60 bStepRev : BOOL;

61 reStepper : BOOL;

62 iActStep : INT;

63 iMaxStep : INT;

64 eState : SeqState_t;

65 tStepDelay : TON;

66 END_STRUCT;

67
68 stSeqParams : STRUCT

69 rPosition : REAL; (* Command position in 360.000° * 1000 *)

70 rVelocity : REAL; (* Command velocity in °/sec *)

71 rAccel : REAL; (* Command acceleration in °/sec² *)

72 rDeccel : REAL; (* Command decceleration in °/sec² *)

73 dPause : DINT; (* Dwelltime between steps *)

74 END_STRUCT;

75
76
77 ST_Hmi_Segment : STRUCT

78 StartAngle : INT;

79 EndAngle : INT;

80 Angle : INT;

81 Color : DWORD;

82 Invisible : BOOL;

83 END_STRUCT;

84
85 ST_McOutputs : STRUCT

86 Done : BOOL;

87 CommandAborted : BOOL;

88 Error : BOOL;

89 Busy : BOOL;

90 Status : BOOL;

91 Valid : BOOL;

92 ErrorID : UDINT;

93 END_STRUCT;

94
95 stHmi : STRUCT

96 bWatchdog : BOOL;

97 stReq : stHmi_Req;

98 stStepData : stHMI_ActStepData;

99 stMCStatus : stHMI_MCStatus;

100 rStartVel : REAL;

101 rIncrement : REAL;

102 strOpMode : string;

16

103 rActVelo : REAL;

104 bDirectionCW : BOOL;

105 bDirectionCCW : BOOL;

106 stSegments : array[0..9] of ST_Hmi_Segment;

107
108 END_STRUCT;

109
110 stHMI_ActStepData : STRUCT

111 iStep : INT;

112 rCmdPos : REAL;

113 rActPos : REAL;

114 rDeltaPos : REAL;

115 stTimes : stHMI_ActStepData_Times;

116 END_STRUCT;

117
118 stHMI_ActStepData_Times : STRUCT

119 dPT : DINT;

120 dET : DINT;

121 dRT : DINT;

122 END_STRUCT;

123
124 stHMI_MCStatus : STRUCT

125 bMC_Error : BOOL;

126 tMC_Cmd : McCmds_t;

127 udMC_ErrorID : UDINT;

128 strMC_ErrorString : string;

129 END_STRUCT;

130
131 stHmi_Req : STRUCT

132 stMan : stHmi_Req_Man;

133 stSeq : stHmi_Req_Seq;

134 bReset : BOOL;

135 bAuto : BOOL;

136 bManual : BOOL;

137 bStart : BOOL;

138 END_STRUCT;

139
140 stHmi_Req_Man : STRUCT

141 bJogFwd : BOOL; (* Request Axis Jog CW (Fwd) *)

142 bJogFFwd : BOOL; (* Request Axis Jog CW (Fwd) *)

143 bJogRev : BOOL; (* Request Axis Jog CCW (Rev) *)

144 bJogFRev : BOOL; (* Request Axis Jog CCW (Rev) *)

145 bIncrVel : BOOL;

146 bDecrVel : BOOL;

147 bStartVel : BOOL;

148 bStop : BOOL; (* Request Axis Jog Stop ? Useles when JOGGING? *)

149 bHome : BOOL; (* Request Axis Home *)

150 bDisable : BOOL; (* Disable Axis for Home Request *)

151 END_STRUCT;

152
153 stHmi_Req_Seq : STRUCT

154 bReset : BOOL; (* Reset Sequence to first step *)

155 bFwd : BOOL; (* Goto next step *)

156 bRev : BOOL; (* Goto previous step *)

157 bCycleStop : BOOL; (* Inhibit sequence from starting over *)

158 END_STRUCT;

159

160 stSeqParams : STRUCT

161 rPosition : REAL; (* Command position in 360.000° * 1000 *)

162 rVelocity : REAL; (* Command velocity in °/sec *)

163 rAccel : REAL; (* Command acceleration in °/sec² *)

164 rDeccel : REAL; (* Command decceleration in °/sec² *)

165 dPause : DINT; (* Dwelltime between steps *)

166 END_STRUCT;

167
168 stSM : STRUCT

169 bStatechange : BOOL;

170 bAutoRelease : BOOL;

171 bCycleStop : BOOL;

172 bReset : BOOL;

173 bStepFwd : BOOL;

174 bStepRev : BOOL;

175 reStepper : BOOL;

176 iActStep : INT;

177 iMaxStep : INT;

178 eState : SeqState_t;

179 tStepDelay : TON;

180 END_STRUCT;

181
182
183 Axis_Ref_ETC_ILX : STRUCT END_STRUCT;

184 END_TYPE

185
186 FUNCTION_BLOCK MC_Power_ETC_ILX

187 VAR_INPUT

188 Enable : BOOL;

189 Axis : Axis_Ref_ETC_ILX;

190 END_VAR

191 VAR_OUTPUT

192 Status: BOOL;

193 Error : BOOL;

194 END_VAR

195 END_FUNCTION_BLOCK

196
197 FUNCTION_BLOCK MC_Jog_ETC_ILX

198 VAR_INPUT

199 Forward, Backward, Fast : BOOL;

200 TipPos, WaitTime, VeloSlow, VeloFast: DINT;

201 Axis : Axis_Ref_ETC_ILX;

202 END_VAR

203 VAR_OUTPUT

204 Done, Busy, CommandAborted, Error: BOOL;

205 END_VAR

206 END_FUNCTION_BLOCK

207
208
209 FUNCTION_BLOCK MC_MoveRelative_ETC_ILX

210 VAR_INPUT

211 Execute : BOOL;

212 Distance, Velocity: DINT;

213 Axis : Axis_Ref_ETC_ILX;

214 END_VAR

215 VAR_OUTPUT

216 Done, Busy, CommandAborted, Error: BOOL;

17

217 END_VAR

218 END_FUNCTION_BLOCK

219
220
221 FUNCTION_BLOCK MC_MoveVelocity_ETC_ILX

222 VAR_INPUT

223 Execute : BOOL;

224 Velocity: DINT;

225 Axis : Axis_Ref_ETC_ILX;

226 END_VAR

227 VAR_OUTPUT

228 InVelocity, Done, Busy, CommandAborted, Error: BOOL;

229 END_VAR

230 END_FUNCTION_BLOCK

231
232 FUNCTION_BLOCK MC_Stop_ETC_ILX

233 VAR_INPUT

234 Execute : BOOL;

235 Axis : Axis_Ref_ETC_ILX;

236 END_VAR

237 VAR_OUTPUT

238 Done, Busy, Error: BOOL;

239 END_VAR

240 END_FUNCTION_BLOCK

241
242
243
244 FUNCTION_BLOCK MC_ReadActualPosition_ETC_ILX

245 VAR_INPUT

246 Enable : BOOL;

247 Axis : Axis_Ref_ETC_ILX;

248 END_VAR

249 VAR_OUTPUT

250 Valid, Busy, Error: BOOL;

251 Position : DINT;

252 END_VAR

253 END_FUNCTION_BLOCK

254
255
256
257 FUNCTION_BLOCK MC_ReadActualVelocity_ETC_ILX

258 VAR_INPUT

259 Enable : BOOL;

260 Axis : Axis_Ref_ETC_ILX;

261 END_VAR

262 VAR_OUTPUT

263 Valid, Busy, Error: BOOL;

264 Velocity : INT;

265 END_VAR

266 END_FUNCTION_BLOCK

267
268 FUNCTION_BLOCK MC_ReadStatus_ETC_ILX

269 VAR_INPUT

270 Enable : BOOL;

271 Axis : Axis_Ref_ETC_ILX;

272 END_VAR

273 VAR_OUTPUT

274 Valid, Busy, Error, Errorstop, Disabled,

275 Stopping, Referenced, Standstill, DiscreteMotion,

276 ContinuousMotion, SynchronizedMotion, Homing, ConstantVelocity,

277 Accelerating, Decelerating: BOOL;

278 END_VAR

279 END_FUNCTION_BLOCK

280
281
282 FUNCTION_BLOCK SetDriveRamp_ETC_ILX

283 VAR_INPUT

284 Execute : BOOL;

285 Acceleration, Deceleration: UINT;

286 Axis : Axis_Ref_ETC_ILX;

287 END_VAR

288 VAR_OUTPUT

289 Valid, Busy, Error, Done: BOOL;

290 END_VAR

291 END_FUNCTION_BLOCK

292
293
294 FUNCTION_BLOCK MC_Reset_ETC_ILX

295 VAR_INPUT

296 Execute : BOOL;

297 Axis : Axis_Ref_ETC_ILX;

298 END_VAR

299 VAR_OUTPUT

300 Valid, Busy, Error, Done: BOOL;

301 END_VAR

302 END_FUNCTION_BLOCK

303
304 FUNCTION_BLOCK MC_SetPosition_ETC_ILX

305 VAR_INPUT

306 Execute : BOOL;

307 Position : DINT;

308 Mode : BOOL;

309 Axis : Axis_Ref_ETC_ILX;

310 END_VAR

311 VAR_OUTPUT

312 Valid, Busy, Error, Done: BOOL;

313 END_VAR

314 END_FUNCTION_BLOCK

315
316 FUNCTION ABS : INT

317 VAR_INPUT a,b:INT; END_VAR

318 IF a <= b THEN ABS := a; ELSE ABS:=b; END_IF

319 END_FUNCTION

320
321 (* ***)

322 (* GLOBAL VARIABLES ***)

323
324 VAR_GLOBAL

325 Axis1 : Axis_Ref_ETC_ILX;

326 ReadStatusAxis1 : MC_ReadStatus_ETC_ILX;

327 StatusAxis1 : ST_AxisStatus;

328 state : MoveState_t; (* state machine state *)

329
330 MCDiagAxis1 : ARRAY[0..16] OF ST_McOutputs;

18

331
332 ReadActPosAxis1 : MC_ReadActualPosition_ETC_ILX;

333 //ReadActPosAxis1Out : ST_McOutputs; (* debug function block output data *)

334
335 ReadActVelAxis1 : MC_ReadActualVelocity_ETC_ILX;

336 //ReadActVelAxis1Out : ST_McOutputs; (* debug function block output data *)

337
338 SetDriveRampAxis1 : SetDriveRamp_ETC_ILX;

339 //SetDriveRampAxis1Out : ST_McOutputs; (* debug function block output data *)

340
341 PowerAxis1 : MC_Power_ETC_ILX;

342 //PowerAxis1Out : ST_McOutputs; (* debug function block output data *)

343
344 RefAxis1 : MC_SetPosition_ETC_ILX;

345 //RefAxis1Out : ST_McOutputs; (* debug function block output data *)

346
347 StopAxis1 : MC_Stop_ETC_ILX;

348 //StopAxis1Out : ST_McOutputs; (* debug function block output data *)

349
350 JogAxis1 : MC_Jog_ETC_ILX;

351 //JogAxis1Out : ST_McOutputs; (* debug function block output data *)

352
353 MoveAxis1 : MC_MoveRelative_ETC_ILX;

354 //MoveAxis1Out : ST_McOutputs; (* debug function block output data *)

355
356 MoveVelAxis1 : MC_MoveVelocity_ETC_ILX;

357 //MoveVelAxis1Out : ST_McOutputs; (* debug function block output data *)

358 MoveVelAxis1OutAtVelocity : BOOL;

359
360 Reset : MC_Reset_ETC_ILX;

361 //ResetOut : ST_McOutputs; (* debug function block output data *)

362
363 bFS : BOOL; (* First scan flag *)

364
365 Mode : ModeState_t; (* device mode states *)

366 bModechange : BOOL; (* change in device mode, true for one cycle *)

367
368 fbSequence : FB_Sequence;

369 bAxisInPosition : BOOL;

370
371 stHmiInt : stHmi; (* Interface structure to HMI *)

372 END_VAR

373
374 VAR_GLOBAL PERSISTENT

375 Sequence : stSM;

376 aSeqParams : ARRAY[0..16] OF stSeqParams;

377 END_VAR

378
379 FUNCTION_BLOCK TON

380
381 VAR_INPUT

382 IN : BOOL;

383 PT : USINT;

384 END_VAR

385
386 VAR_OUTPUT

387 Q : BOOL;

388 ET : USINT;

389 END_VAR

390
391 END_FUNCTION_BLOCK

392
393 FUNCTION ActSetDriveRamp : VOID END_FUNCTION

394 FUNCTION ActPower : VOID END_FUNCTION

395 FUNCTION ActSetPosition : VOID END_FUNCTION

396 FUNCTION ActStop : VOID END_FUNCTION

397 FUNCTION ActMoveJog : VOID END_FUNCTION

398 FUNCTION ActMove : VOID END_FUNCTION

399 FUNCTION ActMoveVel : VOID END_FUNCTION

400 FUNCTION ActReset : VOID END_FUNCTION

401 FUNCTION ActReadActualVelocity : VOID END_FUNCTION

402 FUNCTION ActReadStatus : VOID END_FUNCTION

403 FUNCTION ActReadActualPosition : VOID END_FUNCTION

404 FUNCTION ActReadStatus : VOID END_FUNCTION

405
406
407
408
409 FUNCTION FC_Init : BOOL

410
411 VAR iIndex : INT; END_VAR

412
413 (* ** Initialise SeqParams on first scan ***)

414
415 Sequence.iMaxStep := 7;

416 FOR iIndex := 0 TO 7 DO

417 aSeqParams[iIndex].rPosition := (iIndex) * 60;

418 IF (iIndex MOD 2 = 0) THEN

419 aSeqParams[iIndex].rPosition := aSeqParams[iIndex].rPosition * -1;

420 END_IF

421 IF iIndex = 0 THEN

422 aSeqParams[iIndex].rVelocity := 2000;

423 ELSE

424 aSeqParams[iIndex].rVelocity := 100;

425 END_IF

426 aSeqParams[iIndex].rAccel := 1000;

427 aSeqParams[iIndex].rDeccel := 1000;

428 aSeqParams[iIndex].dPause := 2000;

429 END_FOR

430
431 Sequence.bCycleStop := FALSE;

432 stHmiInt.rStartVel := 1000.0;

433 stHmiInt.rIncrement := 1000.0;

434 FC_Init := TRUE;

435 END_FUNCTION

436
437
438 PROGRAM MainAxis

439 VAR

440 dScratch : DINT;

441 iScratch : INT;

442 rLastPositionCmd : INT;

443 bReverse : BOOL;

444 bForward : BOOL;

19

445 tTimeout : TON;

446 bNotMoving : BOOL;

447 END_VAR

448
449 (* ** update the axis status at the beginning of each cycle ***)

450 ReadStatusAxis1.Enable := TRUE;

451 ActReadStatus();

452 IF ReadStatusAxis1.Error THEN

453 state := MOVESTATE_ERROR;

454 END_IF;

455
456 (* ** actual position value ***)

457 ReadActPosAxis1.Enable := TRUE;

458 ActReadActualPosition();

459 IF ReadActPosAxis1.Valid THEN

460 StatusAxis1.ActPosition := USRPOS_TO_POS(ReadActPosAxis1.Position);

461 ELSIF ReadActPosAxis1.Error THEN

462 state := MOVESTATE_ERROR;

463 END_IF;

464
465 (* ** actual velocity value ***)

466 ReadActVelAxis1.Enable := TRUE;

467 ActReadActualVelocity();

468 IF ReadActVelAxis1.Valid THEN

469 StatusAxis1.ActVelocity := USRVEL_TO_VEL(ReadActVelAxis1.Velocity);

470 ELSIF ReadActVelAxis1.Error THEN

471 state := MOVESTATE_ERROR;

472 END_IF;

473
474
475 (* ** move axis using a state machine ***)

476 CASE state OF

477 MOVESTATE_INIT: (* initialisation *)

478 (* initialize all function blocks *)

479 PowerAxis1.Enable := FALSE;

480 StopAxis1.Execute := FALSE;

481 Reset.Execute := FALSE;

482 SetDriveRampAxis1.Execute := FALSE;

483 JogAxis1.Forward := FALSE;

484 JogAxis1.Backward := FALSE;

485 MoveAxis1.Execute := FALSE;

486 MoveVelAxis1.Execute := FALSE;

487 state := MOVESTATE_ENABLE;

488
489 MOVESTATE_ENABLE:

490 PowerAxis1.Enable := TRUE;

491 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_POWER;

492 IF PowerAxis1.Status THEN

493 state := MOVESTATE_IDLE;

494 ELSIF PowerAxis1.Error THEN

495 stHmiInt.stMCStatus.bMC_Error := TRUE;

496 state := MOVESTATE_ERROR;

497 END_IF

498
499 MOVESTATE_DISABLE:

500 PowerAxis1.Enable := FALSE;

501 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_POWER;

502 IF NOT(PowerAxis1.Status) THEN

503 state := MOVESTATE_IDLE;

504 ELSIF PowerAxis1.Error THEN

505 stHmiInt.stMCStatus.bMC_Error := TRUE;

506 state := MOVESTATE_ERROR;

507 END_IF

508
509 MOVESTATE_REF:

510 RefAxis1.Position := POS_TO_USRPOS(180.0);

511 RefAxis1.Mode := FALSE;

512 RefAxis1.Execute := TRUE;

513 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_REFPOS;

514 IF RefAxis1.Done THEN

515 RefAxis1.Execute := FALSE;

516 state := MOVESTATE_IDLE;

517 ELSIF RefAxis1.Error THEN

518 stHmiInt.stMCStatus.bMC_Error := TRUE;

519 state := MOVESTATE_ERROR;

520 END_IF

521
522
523 MOVESTATE_HALT:

524 JogAxis1.Forward := FALSE;

525 JogAxis1.Backward := FALSE;

526 MoveAxis1.Execute := FALSE;

527 MoveVelAxis1.Execute := FALSE;

528 StopAxis1.Execute := TRUE;

529 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_HALT;

530 IF StopAxis1.Done THEN

531 StopAxis1.Execute := FALSE;

532 state := MOVESTATE_IDLE;

533 ELSIF StopAxis1.Error THEN

534 stHmiInt.stMCStatus.bMC_Error := TRUE;

535 state := MOVESTATE_ERROR;

536 END_IF

537
538
539 MOVESTATE_IDLE:

540 JogAxis1.Forward := FALSE;

541 JogAxis1.Backward := FALSE;

542 MoveAxis1.Execute := FALSE;

543 IF stHmiInt.stMCStatus.bMC_Error OR StatusAxis1.Error THEN

544 state := MOVESTATE_ERROR;

545 END_IF

546 IF NOT(StatusAxis1.Error OR StatusAxis1.Disabled) THEN

547 (* Axis enabled & no fault condition -> normal operation *)

548 IF Sequence.bAutoRelease THEN (* Automatic operation *)

549 IF Sequence.eState = SEQSTATE_MOVE THEN

550 bAxisInPosition := TRUE;

551 state := MOVESTATE_SETDRIVERAMP;

552 END_IF

553 ELSE (* Manual operation *)

554 IF stHmiInt.stReq.stMan.bJogFwd THEN

555 state := MOVESTATE_JOGCWSLOW;

556 END_IF

557
558 IF stHmiInt.stReq.stMan.bJogFFwd THEN

20

559 state := MOVESTATE_JOGCWFAST;

560 END_IF

561
562 IF stHmiInt.stReq.stMan.bJogRev THEN

563 state := MOVESTATE_JOGCCWSLOW;

564 END_IF

565
566 IF stHmiInt.stReq.stMan.bJogFRev THEN

567 state := MOVESTATE_JOGCCWFAST;

568 END_IF

569
570 IF stHmiInt.stReq.stMan.bStartVel THEN

571 stHmiInt.stReq.stMan.bStartVel := FALSE;

572 state := MOVESTATE_VELOCITY;

573 END_IF

574
575 IF stHmiInt.stReq.stMan.bIncrVel THEN

576 stHmiInt.stReq.stMan.bIncrVel := FALSE;

577 stHmiInt.rStartVel := stHmiInt.rStartVel + stHmiInt.rIncrement;

578 IF NOT(StatusAxis1.StandStill) THEN

579 state := MOVESTATE_VELOCITY;

580 END_IF

581 END_IF

582
583 IF stHmiInt.stReq.stMan.bDecrVel THEN

584 stHmiInt.stReq.stMan.bDecrVel := FALSE;

585 stHmiInt.rStartVel := stHmiInt.rStartVel - stHmiInt.rIncrement;

586 IF NOT(StatusAxis1.StandStill) THEN

587 state := MOVESTATE_VELOCITY;

588 END_IF

589 END_IF

590
591 IF stHmiInt.stReq.stMan.bDisable THEN

592 (* Disable axis to be able to rotate it manualy to its reference point *)

593 stHmiInt.stReq.stMan.bDisable := FALSE;

594 IF StatusAxis1.StandStill THEN

595 state := MOVESTATE_DISABLE;

596 END_IF

597 END_IF

598 END_IF (* Every operation mode *)

599 IF stHmiInt.stReq.stMan.bStop THEN

600 Mode :=MODE_MANUAL;

601 state := MOVESTATE_HALT;

602 END_IF

603 ELSE (* ** Axis disabled or axis fault condition present ***)

604 IF StatusAxis1.Disabled THEN (* ** Axis disabled ***)

605 IF stHmiInt.stReq.stMan.bDisable THEN (* ** Enable axis for normal operation ***)

606 stHmiInt.stReq.stMan.bDisable := FALSE;

607 state := MOVESTATE_ENABLE;

608 END_IF

609 IF stHmiInt.stReq.stMan.bHome THEN (* ** Set axis actual position to 0° ***)

610 state := MOVESTATE_REF;

611 END_IF

612 END_IF

613 END_IF

614
615 MOVESTATE_JOGCWSLOW:

616 (* ** Jog Axis in CW Direction ***)

617 JogAxis1.Forward := TRUE;

618 JogAxis1.Backward := FALSE;

619 JogAxis1.Fast := FALSE;

620 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MOVEJOG;

621 IF JogAxis1.Busy THEN

622 IF NOT(stHmiInt.stReq.stMan.bJogFwd) THEN

623 JogAxis1.Forward := FALSE;

624 state := MOVESTATE_IDLE;

625 END_IF

626 END_IF

627 IF JogAxis1.CommandAborted OR JogAxis1.Error THEN

628 stHmiInt.stMCStatus.bMC_Error := TRUE;

629 state := MOVESTATE_ERROR;

630 END_IF

631
632 MOVESTATE_JOGCWFAST:

633 (* ** Jog Axis in CW Direction ***)

634 JogAxis1.Forward := TRUE;

635 JogAxis1.Backward := FALSE;

636 JogAxis1.Fast := TRUE;

637 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MOVEJOG;

638 IF JogAxis1.Busy THEN

639 IF NOT(stHmiInt.stReq.stMan.bJogFFwd) THEN

640 JogAxis1.Forward := FALSE;

641 state := MOVESTATE_IDLE;

642 END_IF

643 END_IF

644 IF JogAxis1.CommandAborted OR JogAxis1.Error THEN

645 stHmiInt.stMCStatus.bMC_Error := TRUE;

646 state := MOVESTATE_ERROR;

647 END_IF

648
649 MOVESTATE_JOGCCWSLOW:

650 (* ** Jog Axis in CCW Direction ***)

651 JogAxis1.Forward := FALSE;

652 JogAxis1.Backward := TRUE;

653 JogAxis1.Fast := FALSE;

654 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MOVEJOG;

655 IF JogAxis1.Busy THEN

656 IF NOT(stHmiInt.stReq.stMan.bJogRev) THEN

657 JogAxis1.Backward := FALSE;

658 state := MOVESTATE_IDLE;

659 END_IF

660 END_IF

661 IF JogAxis1.CommandAborted OR JogAxis1.Error THEN

662 stHmiInt.stMCStatus.bMC_Error := TRUE;

663 state := MOVESTATE_ERROR;

664 END_IF

665
666 MOVESTATE_JOGCCWFAST:

667 (* Jog Axis in CW Direction *)

668 JogAxis1.Forward := FALSE;

669 JogAxis1.Backward := TRUE;

670 JogAxis1.Fast := TRUE;

671 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MOVEJOG;

672 IF JogAxis1.Busy THEN

21

673 IF NOT(stHmiInt.stReq.stMan.bJogFRev) THEN

674 JogAxis1.Backward := FALSE;

675 state := MOVESTATE_IDLE;

676 END_IF

677 END_IF

678 IF JogAxis1.CommandAborted OR JogAxis1.Error THEN

679 stHmiInt.stMCStatus.bMC_Error := TRUE;

680 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MOVEJOG;

681 state := MOVESTATE_ERROR;

682 END_IF

683
684 MOVESTATE_SETDRIVERAMP:

685 IF NOT(SetDriveRampAxis1.Execute) THEN

686 IF (SetDriveRampAxis1.Acceleration <>

687 ACC_TO_USRACC(aSeqParams[Sequence.iActStep].rAccel)) OR

688 (SetDriveRampAxis1.Deceleration <>

689 ACC_TO_USRACC(aSeqParams[Sequence.iActStep].rDeccel)) THEN

690 SetDriveRampAxis1.Acceleration :=

691 REAL_TO_UDINT(aSeqParams[Sequence.iActStep].rAccel);

692 SetDriveRampAxis1.Deceleration :=

693 REAL_TO_UDINT(aSeqParams[Sequence.iActStep].rDeccel);

694 SetDriveRampAxis1.Execute := TRUE;

695 ELSE

696 state := MOVESTATE_ABSOLUTE;

697 END_IF

698 ELSE

699 IF SetDriveRampAxis1.Busy THEN

700 SetDriveRampAxis1.Execute := FALSE;

701 ELSIF SetDriveRampAxis1.Done THEN

702 SetDriveRampAxis1.Execute := FALSE;

703 state := MOVESTATE_ABSOLUTE;

704 ELSIF SetDriveRampAxis1.Error THEN

705 stHmiInt.stMCStatus.bMC_Error := TRUE;

706 state := MOVESTATE_ERROR;

707 END_IF

708 END_IF

709
710 MOVESTATE_ABSOLUTE : (* ** start to first position ***)

711 bAxisInPosition := FALSE;

712 (* Calculate Setpoints *)

713 StatusAxis1.DeltaPosition := aSeqParams[Sequence.iActStep].rPosition

714 - StatusAxis1.ActPosition;

715 IF (aSeqParams[Sequence.iActStep].rPosition < 0) AND

716 (* rotate CCW *)

717 (ABS(aSeqParams[Sequence.iActStep].rPosition) > StatusAxis1.ActPosition)

718 (* Cross 0° / 360° *)

719 THEN

720 StatusAxis1.DeltaPosition := -1 * (360 +

721 aSeqParams[Sequence.iActStep].rPosition + StatusAxis1.ActPosition);

722 ELSIF (aSeqParams[Sequence.iActStep].rPosition > 0) AND

723 (* rotate CW *)

724 (aSeqParams[Sequence.iActStep].rPosition < StatusAxis1.ActPosition)

725 (* Cross 0° / 360° *)

726 THEN

727 StatusAxis1.DeltaPosition := ((360 - StatusAxis1.ActPosition)

728 + aSeqParams[Sequence.iActStep].rPosition);

729 ELSE

730 StatusAxis1.DeltaPosition := ABS(aSeqParams[Sequence.iActStep].rPosition)

731 - StatusAxis1.ActPosition;

732 END_IF

733
734 (* ** Setup axis command parameters ***)

735 MoveAxis1.Distance := POS_TO_USRPOS(StatusAxis1.DeltaPosition);

736 //.... leak is here:

737 MoveAxis1.Velocity := VEL_TO_USRVEL(aSeqParams[Sequence.iActStep].rVelocity);

738 MoveAxis1.Execute := TRUE;

739 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MODMOVE;

740
741 IF MoveAxis1.Busy OR

742 (MoveAxis1.Distance = rLastPositionCmd) THEN

743 MoveAxis1.Execute := FALSE;

744 // Fix: MoveAxis1.Velocity := 0;

745 state := MOVESTATE_MOVEACTIVE;

746 END_IF

747 IF MoveAxis1.CommandAborted OR MoveAxis1.Error THEN

748 stHmiInt.stMCStatus.bMC_Error := TRUE;

749 state := MOVESTATE_ERROR;

750 END_IF

751 IF NOT(Sequence.bAutoRelease OR Sequence.eState = SEQSTATE_MOVE) THEN

752 (* ** stop all active commands ***)

753 state := MOVESTATE_HALT;

754 END_IF

755
756 MOVESTATE_VELOCITY:

757 IF stHmiInt.rStartVel = 0 THEN

758 state := MOVESTATE_HALT;

759 ELSE

760 MoveVelAxis1.Velocity := VEL_TO_USRVEL(stHmiInt.rStartVel);

761 MoveVelAxis1.Execute := TRUE;

762 END_IF

763 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_MODMOVE;

764 IF MoveVelAxis1.InVelocity THEN

765 MoveVelAxis1.Execute := FALSE;

766 state := MOVESTATE_IDLE;

767 ELSIF MoveVelAxis1.CommandAborted OR MoveVelAxis1.Error THEN

768 stHmiInt.stMCStatus.bMC_Error := TRUE;

769 state := MOVESTATE_ERROR;

770 END_IF

771
772 MOVESTATE_MOVEACTIVE:

773 rLastPositionCmd := MoveAxis1.Distance;

774 bNotMoving := (REAL_TO_INT(StatusAxis1.ActPosition * 1000) / 1000) = iScratch;

775 tTimeout(IN := bNotMoving , PT := t#1000ms);

776 iScratch := REAL_TO_INT(StatusAxis1.ActPosition * 1000) / 1000;

777 IF NOT(Sequence.bAutoRelease OR Sequence.eState = SEQSTATE_MOVE

778 OR stHmiInt.stReq.stMan.bStop) THEN

779 (* ** stop all active commands ***)

780 state := MOVESTATE_HALT;

781 END_IF

782 IF bAxisInPosition THEN

783 state := MOVESTATE_IDLE;

784 ELSIF tTimeout.Q THEN

785 state := MOVESTATE_ABSOLUTE;

786 END_IF

22

787
788 MOVESTATE_ERROR :

789 IF StatusAxis1.Error OR stHmiInt.stMCStatus.bMC_Error THEN

790 state := MOVESTATE_RESET; (* ** axis error requires reset ***)

791 ELSE

792 state := MOVESTATE_INIT; (* ** function block errors don't need a reset ***)

793 END_IF

794
795 MOVESTATE_RESET :

796 Reset.Execute := stHmiInt.stReq.bReset;

797 stHmiInt.stMCStatus.tMC_Cmd := MCCMD_RESET;

798 IF Reset.Done THEN

799 VSObj_McFaultDescription.stTextDisplay := 'Keine Fehler';

800 stHmiInt.stMCStatus.bMC_Error := FALSE;

801 state := MOVESTATE_INIT;

802 ELSIF Reset.Error THEN

803 stHmiInt.stMCStatus.bMC_Error := TRUE;

804 state := MOVESTATE_INIT; (* ** can't do anything here ***)

805 END_IF

806
807 END_CASE

808
809
810 IF state = MOVESTATE_MOVEACTIVE AND StatusAxis1.StandStill THEN

811 IF (stHmiInt.stStepData.rDeltaPos > -0.5) AND

812 (stHmiInt.stStepData.rDeltaPos < 0.5) THEN

813 bAxisInPosition := TRUE;

814 END_IF

815 ELSE

816 bAxisInPosition := FALSE;

817 END_IF

818
819 dScratch := ACC_TO_USRACC(rScratch);

820
821 ActSetDriveRamp() ; (* call the set drive ramp function block *)

822 ActPower() ; (* call the power function block *)

823 ActSetPosition() ; (* call the set position function block *)

824 ActStop() ; (* call the halt function block *)

825 ActMoveJog() ; (* call the jog function block *)

826
827 // leaked value is used here:

828 ActMove() ; (* call the move function block *)

829
830 ActMoveVel() ; (* call the move function block *)

831 ActReset() ; (* call the reset function block *)

832
833
834 //fix: MoveAxis1.Velocity := 0;

835
836 END_PROGRAM

23

	Provably Forgetting of Information in Manufacturing Systems

