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Abstract: Mountain ecosystems are biodiversity hotspots that are increasingly threatened by climate
and land use/land cover changes. Long-term biodiversity monitoring programs provide unique
insights into resulting adverse impacts on plant and animal species distribution. Species distribution
models (SDMs) in combination with satellite remote sensing (SRS) data offer the opportunity to
analyze shifts of species distributions in response to these changes in a spatially explicit way. Here,
we predicted the presence probability of three different rove beetles in a mountainous protected area
(Gran Paradiso National Park, GPNP) using environmental variables derived from Landsat and Aster
Global Digital Elevation Model data and an ensemble modelling approach based on five different
model algorithms (maximum entropy, random forest, generalized boosting models, generalized
additive models, and generalized linear models). The objectives of the study were (1) to evaluate the
potential of SRS data for predicting the presence of species dependent on local-scale environmental
parameters at two different time periods, (2) to analyze shifts in species distributions between the
years, and (3) to identify the most important species-specific SRS predictor variables. All ensemble
models showed area under curve (AUC) of the receiver operating characteristics values above 0.7
and true skills statistics (TSS) values above 0.4, highlighting the great potential of SRS data. While
only a small proportion of the total area was predicted as highly suitable for each species, our results
suggest an increase of suitable habitat over time for the species Platydracus stercorarius and Ocypus
ophthalmicus, and an opposite trend for Dinothenarus fossor. Vegetation cover was the most important
predictor variable in the majority of the SDMs across all three study species. To better account for
intra- and inter-annual variability of population dynamics as well as environmental conditions, a
continuation of the monitoring program in GPNP as well as the employment of SRS with higher
spatial and temporal resolution is recommended.

Keywords: temporal analysis; species distribution model; Landsat; ASTER GDEM; ensemble
modelling; protected area; Italian Alps; biodiversity monitoring

1. Introduction

Mountain ecosystems are biodiversity hotspots with higher species richness and levels of endemism
than adjacent lowlands as a result of steep environmental gradients over short distances that lead
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to topographic, geologic, and climatic heterogeneity [1,2]. Such physiographic complexity creates
a mosaic of habitats and, hence, a multitude of ecological niches. Furthermore, spatial isolation of
mountain ridges by environmentally very different lower elevations enhances the segregation of
populations and, potentially, speciation. Mountains also play a key role in providing ecosystem
services [3], e.g., they supply half of the global human population with fresh water [4]. At the same
time, mountain regions are especially sensitive to the impacts of a changing climate as seen by the
shrinking of glaciers, changes in water provisioning, and the increase of extreme events such as
avalanches and landslides [5].

To understand the impacts of these changes on plant and animal species distributions, long-term
biodiversity monitoring initiatives are needed to develop adapted conservation measures [6]. While
data collection is a time-consuming endeavor by itself, accessibility is an additional major challenge in
mountains. However, such in situ data are indispensable for predicting species occurrence probability
at larger scale using, e.g., species distribution models (SDMs, see [7] for detailed information). SDMs
based on species data stemming from standardized biodiversity monitoring schemes instead of
opportunistic observations have been shown to provide higher model accuracy even with a lower
sample size [8]. However, not only reliable species presence data, but also geospatial information
on ecologically relevant environmental factors is needed. Since ecological niches in mountains are
largely influenced by micro-topography [9], geospatial data created by employing spatial interpolation
techniques (e.g., for climatic data, [10]) is often not capable of capturing such small-scale differences
and heterogeneity.

Besides climatic data, which governs species distribution at coarse resolution, land use/land cover
(LULC) is a main determinant of species presence/absence at finer resolutions [11]. However, existing
LULC maps are often not thematically detailed enough and the temporal resolution may be inadequate
to improve predictions of species distributions [12–14]. In this study, we therefore used satellite
remote sensing (SRS) data offering great potential to mirror spatially explicit habitat characteristics
for use in SDMs [15]. Furthermore, SRS data is often the only consistent source of information on
environmental gradients in space and time allowing also retrospective analyses. However, the use
of SRS data in mountain regions is challenging, e.g., due to high and persistent cloud and snow
cover, strong illumination effects, and often short vegetation periods (see [16] for more detailed
information and possible ways forward). Therefore, only a limited number of studies so far has
employed satellite-derived parameters for SDMs in mountainous regions (but see [17,18]).

The use of SRS data for assessing taxonomic, structural, and functional biodiversity research has
generally been increasing in recent years [19], driven by a free and open access data policy together with
rapid sensor developments offering increasing spatial, temporal, and spectral resolution of satellite
imagery [20]. Most importantly, the recently available high-resolution and high-frequent data of
the Sentinel-2 mission allows a much more detailed characterization of vegetation phenology [21],
improved mapping of fine-scaled habitat types [22], and better assessment of nature conservation
status [23]. However, despite these promising developments, studies employing SRS data for analyzing
temporal trends in biodiversity face a number of limitations in data availability. Due to the availability of
a consistent and cross-calibrated multi-decadal data record and a long-term systematic data acquisition
strategy, Landsat satellite imagery is a unique monitoring tool for biodiversity assessments over time
at a high spatial scale [24,25].

The objective of this study was to evaluate the potential of Landsat data for predicting the presence
of different rove beetles (order Coleoptera, family Staphylinidae) in the Gran Paradiso National Park
(GPNP), a mountainous protected area in northwestern Italy. Specifically, we analyzed species data
from two different field campaigns (2006–2007 and 2012–2013) to track changes in time and to test model
stability. Staphylinids are key organisms in various terrestrial ecosystems and, together with carabid
beetles, ants, and spiders, constitute the vast majority of epigeic mesoarthropods (i.e., invertebrate
animals that live on the soil surface) [26]. They are abundant, taxonomically and trophically diverse,
occupy a variety of ecological niches, and can be easily sampled; all these characteristics make them an
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attractive taxon for use as bioindicators [27,28]. Moreover, many rove beetle species respond to and
depend on local-scale environmental parameters and resources [27–29], representing an important
challenge for the application of SRS data. In the present study, we focused on three species with
fairly different habitat requirements. To collate a well-constructed set of predictor variables relevant to
the biology of the species [30], we derived a set of selected topographic and environmental features
addressing the peculiarities of the mountainous region studied. We used a state-of-the-art ensemble
modelling framework (i.e., an approach that integrated multiple individual model predictions to obtain
a final, more accurate one; [31]) that combined two regression-based methods (generalized linear
models (GLM) and generalized additive models (GAM) [32,33]) and three machine-learning methods
(random forest (RF), generalized boosting models (GBM), and maximum entropy (MAXENT) [34–36])
by means of weighted average, an approach suggested to have higher accuracy than single-algorithm
models and to perform best among consensus methods [37]. In particular, we addressed the following
questions:

• How well can habitat suitability be modelled based on SRS data for rove beetles in mountainous
ecosystems?

• How and why do SRS-based model predictions differ among years?
• What are the most important SRS predictors? How do they differ among species?

2. Materials and Methods

2.1. Study Area

The study region encompassed the territory of the Gran Paradiso National Park (GPNP, total
area of 847.4 km2) located in northwestern Italy (Figure 1a). GPNP is the oldest national park in Italy
that gained official conservation status in 1922 and provides habitat for the threatened alpine ibex
(Capra ibex). The park is part of the Long-Term Ecological Research (LTER, site code: LTER_EU_IT_109)
and of the NATURA 2000 (site code: IT1201000) networks and has been subject to intensive long-term
monitoring efforts and research [38].

GPNP is characterized by complex topography with elevation ranging from 670 to 4061 m above
sea level (a.s.l.) including different altitudinal vegetation belts (montane, subalpine, alpine, and
nival) [39]. Woodlands (20.2% of the territory) are dominated by larch (Larix decidua) and Norway
spruce (Picea abies) while species-rich alpine grasslands and pastures (17% of the territory) can be
found above the treeline. About 60% of the territory is covered with sparse or no vegetation, bare
rocks, or glaciers [38,40]. The climate is alpine-continental, characterized by low annual mean
temperatures (ca. 5 ◦C), high seasonal differences, and a general paucity of precipitation (990 mm/year
on average). However, remarkable dissimilarities can be observed among different valleys due to
variations in altitude, slope, and aspect. Snow cover is usually present from November–December to
March–April [41,42].

2.2. Sampling Design for Biodiversity Data and Species Characteristics

Species occurrence data for this study were collected in the context of the long-term monitoring
project Monitoring of Animal Biodiversity in Mountain Ecosystems, which is an initiative of the GPNP
and the first attempt to develop a protocol for long-term monitoring of multiple taxa in the Italian
Alps [39]. The main purpose of this long-term monitoring initiative is to collect information on changes
in community composition for multiple taxa [39] to allow analyzing biodiversity changes in time
and along elevational gradients. The first monitoring campaign started in 2006–2007 and campaigns
(carried out over a two-year period) will be continued every six years.
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Figure 1. Study area and sampling design for long-term biodiversity monitoring efforts. (a) Location 
of Gran Paradiso National Park. A buffer of 1 km was added to the official boundaries of the park to 
avoid edge effects when modelling species distributions. (b) Locations of transects within the park 
boundaries. (c) Schematic representation of the distribution of plots along a transect (following 
contour lines). (d) Locations of pitfall traps within each plot. 

The monitoring scheme encompasses five representative altitudinal transects to cover three 
vegetation belts (high montane, subalpine, alpine; elevational range 1200–2600 m a.s.l.; Figure 1b). 
Sampling units are plots (circular areas with 100 m radius, between five and seven per transect, 
resulting in a total of 30 plots for GPNP, Figure 1c), which are separated by an altitudinal difference 
of approximately 200 m to allow for data independence. Pitfall traps in each plot were set up along 
one diameter of the plot with a distance of 50 m from each other (Figure 1d). Species 
presence/absence data were collected using pitfall traps (plastic cups, diameter of 7 cm, filled with 
ca. 10 cc of white vinegar and some drops of detergent to break surface tension). The traps were 
emptied and refilled every two weeks from May to September. Sampled adult specimens were 
identified at the species level by taxonomic experts who registered presence/absence for each taxon.  

Here, we focus on rove beetles (Coleoptera: Staphylinidae) using data from the two monitoring 
campaigns in 2006–2007 and 2012–2013. Rove beetles have been previously shown to be sensitive to 
ecosystem modification and anthropogenic impacts [43,44]. Pitfall traps (when being active for a 
whole season) can be considered suitable for obtaining estimates of presence/absence as well as 
relative population density and for quantifying population fluctuations in epigeal Coleoptera and 
allow a standardized and repeatable sampling through space and time [45,46]. Among the 178 
species present in the database, we here selected three (Dinothenarus fossor, Platydracus stercorarius, 
and Ocypus ophthalmicus) for which a sufficiently high number of sampling locations was available, 
and which were not highly localized within our study area. We chose rather common species for 
which taxonomy, general habitat requirements, and ecological traits are reasonably well known 
[27]. From those, we focused on species with taxonomic proximity (same subfamily and tribe, 
Staphylininae Staphylinini), but characterized by quite different ecological and functional 

Figure 1. Study area and sampling design for long-term biodiversity monitoring efforts. (a) Location
of Gran Paradiso National Park. A buffer of 1 km was added to the official boundaries of the park to
avoid edge effects when modelling species distributions. (b) Locations of transects within the park
boundaries. (c) Schematic representation of the distribution of plots along a transect (following contour
lines). (d) Locations of pitfall traps within each plot.

The monitoring scheme encompasses five representative altitudinal transects to cover three
vegetation belts (high montane, subalpine, alpine; elevational range 1200–2600 m a.s.l.; Figure 1b).
Sampling units are plots (circular areas with 100 m radius, between five and seven per transect,
resulting in a total of 30 plots for GPNP, Figure 1c), which are separated by an altitudinal difference of
approximately 200 m to allow for data independence. Pitfall traps in each plot were set up along one
diameter of the plot with a distance of 50 m from each other (Figure 1d). Species presence/absence
data were collected using pitfall traps (plastic cups, diameter of 7 cm, filled with ca. 10 cc of white
vinegar and some drops of detergent to break surface tension). The traps were emptied and refilled
every two weeks from May to September. Sampled adult specimens were identified at the species level
by taxonomic experts who registered presence/absence for each taxon.

Here, we focus on rove beetles (Coleoptera: Staphylinidae) using data from the two monitoring
campaigns in 2006–2007 and 2012–2013. Rove beetles have been previously shown to be sensitive
to ecosystem modification and anthropogenic impacts [43,44]. Pitfall traps (when being active for
a whole season) can be considered suitable for obtaining estimates of presence/absence as well as
relative population density and for quantifying population fluctuations in epigeal Coleoptera and
allow a standardized and repeatable sampling through space and time [45,46]. Among the 178 species
present in the database, we here selected three (Dinothenarus fossor, Platydracus stercorarius, and Ocypus
ophthalmicus) for which a sufficiently high number of sampling locations was available, and which
were not highly localized within our study area. We chose rather common species for which taxonomy,
general habitat requirements, and ecological traits are reasonably well known [27]. From those, we
focused on species with taxonomic proximity (same subfamily and tribe, Staphylininae Staphylinini),
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but characterized by quite different ecological and functional specialization, in particular in terms of
macro- and micro-habitat affinity and altitudinal range. For detailed species characteristics see Box 1
and description in Section S1 in the supplementary.

Box 1. Characteristics of the Staphylinidae species used for species distribution modelling according to
Tagliapietra and Zanetti [47] and Zanetti et al. [48]. Source of photographs: Iconographia Coleopterorum
Poloniae by Lech Borowiec (http://baza.biomap.pl).

Dinothenarus fossor
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Macro-habitat Sylvicolous (mainly) Eurytopic Often in open areas (eurytopic)

Micro-habitat Phytodetriticolous (mainly) Saprophilous (often close
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(other insects)
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2.3. Species Presence/Pseudo-Absence Data for Model Training

To train the SDMs, we used the environmental conditions at the trap locations in which individuals
of each target species were captured (true presence data), separately for each species. The number of
traps and plots in which individuals of each species were captured varied among species and years
(Table 1). Furthermore, a few samples were excluded from the analysis as located in areas covered
by clouds and snow in the analyzed SRS data. For all species and both monitoring campaigns, we
pooled the data collected in 2006–2007 and 2012–2013, respectively, thereby increasing the number
of traps and plots in which individuals were captured (Table 1). The use of data from consecutive
years is a common approach in species distribution modelling to account for inter-annual differences
in species abundance and occurrence [49]. We initially used all traps where the study species were
captured as presence points for fitting the models, but, due to the close proximity of traps within plots,
then decided to model each species on plot-pooled data by subsampling only one trap per plot as
presence point. For each plot, we selected the trap with the highest number of captured individuals
per species, thus ensuring that the site was recurrently frequented by the study species. Subsampling
is an effective way of removing pseudo-replicates (i.e., spatially correlated observations) in the dataset.

http://baza.biomap.pl


Remote Sens. 2020, 12, 80 6 of 24

Although this approach further reduced the number of presences available for modelling, previous
studies [50,51] showed that accurate SDMs can be fitted on very small numbers of training records.

Table 1. Number of traps, plots, and transects in which individuals of each species were captured,
located in areas free of cloud and snow cover in the analyzed SRS data. Number of plots (used as
presence data) used for modelling and the correspondent time periods are highlighted in bold.

Dinothenarus fossor Platydracus stercorarius Ocypus ophthalmicus

Year(s) 20
06

20
07

20
12

20
13

20
06
/2

00
7

20
12
/2

01
3

20
06

20
07

20
12

20
13

20
06
/2

00
7

20
12
/2

01
3

20
06

20
07

20
12

20
13

20
06
/2

00
7

20
12
/2

01
3

Traps 42 36 55 49 52 66 14 12 25 35 22 45 19 15 16 16 27 26
Plots 15 15 18 17 17 19 9 10 14 16 12 18 11 10 9 10 14 12

Tran-sects 4 5 4 4 5 4 4 5 5 5 5 5 5 5 4 5 5 5

Due to the limited size of our dataset, we decided not to use traps without captured individuals
as absence information but to generate pseudo-absence data. Pseudo-absences are commonly used
in distribution modelling [52], and they should not be interpreted as sites at which the species
was truly absent, but rather as a sample of the environmental variation in the study area [53,54].
Moreover, this approach allowed us to use the true absences as an independent dataset for subsequent
model evaluation (see Section 2.7). Specifically, we created 500 stratified random point locations as
pseudo-absence data, which were allocated according to the sampling design in terms of trap density
at specific altitudinal ranges (Figure 1c; e.g., 6.7% of the traps were located at 1300 m a.s.l. thus 33
out of 500 random points were assigned to the range 1300 ± 50 m). Additional constraints for the
locations of these stratified random points were a minimum distance of 30 m between points to match
the spatial scale of the analyzed satellite remote sensing data (see Section 2.4.) and the non-existence
of points within a buffer area with 500 m diameter around trap locations (for detailed information
see Figure S1). This buffer acknowledged the necessity to use reasonable pseudo-absences that are
adequately environmentally distant from the presence data (but not outside the area of interest) in
order to avoid inflation of AUC (area under curve of the receiver operating characteristics) values [55].
Areas covered by clouds and snow were excluded for allocation of pseudo-absence data.

2.4. Satellite Remote Sensing Data

We used multispectral Landsat surface reflectance data provided by the Earth Resources
Observation and Science Centre Processing Architecture [56]. Landsat imagery has proven suitable
to derive geospatial information on environmental characteristics that affect species distributions in
multiple studies [18,57] and has been used to model changes in biodiversity between different time
periods [58]. Two Landsat images acquired on 22 September 2006 (Landsat 5-TM) and 9 September 2013
(Landsat 8-OLI) that were consistent with the time period of in situ species data sampling (between
May and September) were downloaded. These images were selected to minimize overall cloud cover
over the study area (41.6% in 2006 and 25.3% in 2013) and differences between acquisition dates.
We topographically corrected the images and calculated the tasseled cap transformation to derive
“brightness”, “greenness”, and “wetness” using sensor-specific coefficients [59,60]. Additionally, we
derived the Normalized Difference Vegetation Index (NDVI, [61]) and downloaded the NDVI-based
land surface temperature (LST) for each acquisition date [62].

In order to represent altitudinal and topographic gradients, the ASTER Global Digital Elevation
Model (GDEM, cell size: 30 × 30 m, [63]) was aligned to match pixel locations of the Landsat imagery.
While the use of altitude information has been subject to debate in ecology in general [1] and in species
distribution modelling in particular [9,64], we here used altitude as a proxy for climatic parameters
since spatially explicit estimates of climate were not available at sufficiently high spatial resolution.
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In addition, based on the ASTER GDEM, the Terrain Ruggedness Index (TRI, based on 8 adjacent
cells within a quadratic array around the center cell [65]), sine of aspect (eastness), cosine of aspect
(northness), and slope were calculated. Areas covered by clouds, cloud shadows, and snow were
masked out (Figure S2). To avoid collinearity of explanatory variables in the subsequent analyses,
a threshold of |r| > 0.7 was used to exclude variables [66]. As a result, NDVI was not used in the
modelling framework due to its strong correlation with altitude. Likewise, brightness and land surface
temperature were also excluded as they were highly correlated with northness and wetness (Figure S3).
An overview of the SRS variables used and their ecological relevance is given in Table 2.

Table 2. Characteristics of noncorrelated SRS-based variables used in species distribution modelling.
Abbreviations: TCT, tasseled cap transformation. References indicate studies highlighting the ecological
relevance of the considered variables.

Variable Ecological Relevance References Source

Altitude
Directly correlated with temperature, of

particular importance in mountain
ecosystems

[9,18,67] ASTER GDEM

Eastness/Northness

Gradients represent differences in the aspect
affecting irradiation and precipitation (e.g.
an orientation towards east favours heating
up in the morning while west-facing ensure

higher temperatures in the afternoon)

[68,69] ASTER GDEM

Slope
Terrain steepness reflects gradients in
humidity, thickness of soil layer and

transport dynamics of matter
[18] ASTER GDEM

Terrain
Ruggedness

Index

Represents elevational differences among
neighbouring grid cells (high values relate

to large topographic heterogeneity and
impenetrable terrain)

[65,70] ASTER GDEM

Greenness (TCT)
Responds to photosynthetic capacity,

vegetation cover and primary productivity
(sensitive to topography)

[71,72] Landsat imagery

Wetness (TCT)

Responds to soil/canopy moisture and
standing water, being often highest in
young forest stands (not sensitive to

topography)

[73,74] Landsat imagery

2.5. Ensemble Modelling and Model Parametrization

Since the choice of model algorithm is a major component of prediction uncertainty in SDMs [37,75],
several algorithms were employed and combined in order to estimate and account for prediction
uncertainty (ensemble modelling, [31]). We used five modelling methods that are representative for
different classes of model algorithms, namely generalized linear models and generalized additive
models (GLM and GAM, regression-based methods, [32,33]), random forest, generalized boosting
models, and maximum entropy (RF, GBM, and MAXENT; machine-learning methods; [34–36]) as
implemented in the biomod2 package version 3.3 [76] using R version 3.6.0 [77]. To account for the
within-algorithm model variation when different sets of data were used for model fitting, we computed
distribution models for each species using 50 repetitions where 70% of the data were used for model
training and 30% for model testing. To avoid spatial sorting bias in the cross-validation procedure [78],
we used a spatially stratified approach to split the training and the testing data sets, to prevent selecting
testing-presence sites close to training-presence sites. Specifically, the full dataset was divided into
50 clusters (one for each model repetition), using k-means clustering based on the spatial coordinates of
presence/pseudo-absence points. For each model run, 30% of the points closest to the center coordinates
of the respective cluster were used as testing dataset and the remaining as training dataset. Model
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outputs were scaled between 0 and 1000 to ensure comparability of model predictions across the
different model algorithms. A binomial link function was used to fit GLMs, allowing linear and
quadratic terms as well as linear interactions of the explanatory variables. To simplify the full model
(i.e., to reduce the number of environmental predictors by removing less important ones), a stepwise
backward selection was applied to select final models, based on the Bayesian Information Criterion
(BIC) [79]. GAMs were also fitted with a binomial link function, including all seven explanatory
variables and using the algorithm as implemented in the mgcv package [80]. The basis dimension
of the smooth functions was set to k = 4 to avoid overfitting. For MAXENT, the maximum number
of iterations was set to 500 and the ‘Auto feature’ settings were used while excluding threshold and
hinge features to avoid over-parameterization [81]. The regularization parameter β was set to 0.002 to
optimize model performance [82]. For RF models we used 500 trees, following previous studies [75],
while for GBMs we used the default settings (number of trees = 100, interaction depth parameter
= 1, learning rate = 0.1, and subsampling fraction = 0.5) suggested by the gbm package [83]. The
AUC was used as evaluation criteria to generate the ensemble predictions from the five different
algorithms (see biomod2 documentation for further details). To obtain a relevant combination of
several unbiased (i.e., with fair accuracy) models, all individual models with an AUC value <0.7 were
discarded, and the ensemble models were constructed for each species and time period by computing
the weighted average of all remaining model predictions [52]. The weights were based on the AUC
scores of each model, so that better performing models had a higher influence in the final ensemble.
This technique has been shown to be one of the best performing consensus methods [37] and is widely
used in ensemble applications [52]. To assess shifts in suitable habitat between the two time periods,
we defined five classes of habitat suitability based on the presence probability scores extracted from the
SDM maps. The five classes were defined by the following thresholds of presence probability scores:
0–200, >200–400, >400–600, >600–800, and >800–1000, ordered from low to high habitat suitability.
To compare changes over time, we calculated the percentage of area in each class for the common
area not masked by cloud, shadow, and snow coverage in either of the two time periods. Moreover,
we calculated Spearman rank correlation coefficients between the SDMs, to assess the correlation of
species distributions between time periods and across different species.

2.6. Assessing Variable Importance of SRS Data

Variable importance was assessed by comparing the model prediction derived from the original
dataset and predictions derived from permuted datasets [76,84]. Permuted datasets were created
by randomizing one environmental variable resulting in one dataset for each predictor variable.
The predictions of occurrence probabilities resulting from permuted datasets and the original dataset
were compared by calculating the Pearson correlation coefficient; a small correlation coefficient thus
indicated high importance of the permuted variable. This procedure was repeated three times for each
model run, and mean correlation values for each predictor variable were derived across the 50 model
repetitions. Values of variable importance were finally calculated by subtracting the correlation
coefficient from 1. To ensure comparability between different model algorithms, the relative variable
importance was calculated for every variable per algorithm. To understand the effect of single variables
on the SDM predictions, response curves showing the sensibility of the model to each variable were
plotted for all variables in the ensemble models [76].

2.7. Model Evaluation

We used a cross-validation procedure to assess model performance and calculated two evaluation
metrics commonly used in species distribution modelling, AUC and the true skills statistics (TSS) [54].
AUC values for SDMs indicate how well the model discriminated between species presence and
absence/pseudo-absence data [85]. According to Swets [86], models with AUC values below 0.7 are
considered as poorly accurate, those with AUC between 0.7 and 0.9 as useful, and those with values
above 0.9 as highly accurate. TSS is a threshold-dependent metric, not affected by the size of the
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validation set nor by species prevalence [54,87]. TSS is calculated as sensitivity (i.e., true positive rate)
+ specificity (i.e., true negative rate) −1, and therefore ranges from −1 to +1, where values of zero or
less indicate a performance no better than random guessing [54]. According to González-Ferreras
et al. [88], model accuracy is poor when TSS values are below 0.4, fair when TSS is between 0.4 and
0.6, good when TSS is between 0.6 and 0.8, and excellent for values above 0.8. Mean AUC and TSS
scores were calculated based on the 50 model repetitions for all model algorithms and for the ensemble
models. In addition to AUC and TSS, we analyzed and compared model predictions at presence
locations and at independent true absence data (i.e., traps in which no individuals of each target species
were captured) for each species to examine how well derived maps represented in situ data. Finally,
as uncertainty maps are an important tool for communicating model reliability in a spatially explicit
way [89], we calculated the difference between the 97.5th percentile and the 2.5th percentile of cell
values derived from the prediction maps for each species, based on 50 model repetitions.

3. Results

3.1. Model Performance

AUC and TSS values were highly concordant in assessing model performance, and the majority
of species prediction models showed satisfactory accuracy levels based on the two evaluation metrics
(i.e., AUC > 0.7 and TSS > 0.4, Table 3), and can thus be categorized as useful [86]. Dinothenarus fossor
showed the highest number of well-performing models, probably because of the larger number of
presence points in both time periods, compared to the other two species (Table 1). On the contrary, for
Platydracus stercorarius, only 5 out of 12 models could be classified as useful, based on the evaluation
metrics scores. In the case of Ocypus ophthalmicus, 5 out of the 6 model types built for the time period
2006–2007 performed well, whereas the number decreased to 4 out of 6 for the 2012–2013. Model
performance varied significantly across model algorithms, with the machine-learning algorithms GBM,
RF, and MAXENT producing the highest AUC and TSS scores. In contrast, GAM and GLM models
performed poorly. Moreover, the evaluation metrics values of GLM models showed strong variation
for different model repetitions, reflecting the instability of the models. The ensemble models always
outperformed all other model types, returning accurate models for all species in both time periods.
Contrasting patterns were found when comparing the different time periods 2006–2007 and 2012–2013:
For Dinothenarus fossor, we observed higher evaluation metrics scores for the models referring to
2012–2013 across all algorithms. In contrast, for Ocypus ophthalmicus model performance was higher
for 2006–2007. No clear pattern was found for Platydracus stercorarius when comparing model accuracy
between time periods.

In addition to the cross-validation results, the comparison between modelled presence probabilities
at presence locations and at absence records not used for model training revealed that the majority of
ensemble models had fair discriminatory power in the prediction of suitable vs. unsuitable habitat.
For Dinothenarus fossor, the modelled presence probabilities were significantly higher in the ensemble
predictions at presence sites compared to absence sites, in both time periods (Figure 2). However,
for the other two species, the ensemble models built for 2006–2007 had higher discriminatory power
than those built for 2012–2013.
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Table 3. Mean area under curve (AUC) and true skills statistics (TSS) values, with standard deviation
(SD), calculated on the 50 model repetitions for the different time periods, species, and model algorithms.
AUC values >0.7 and TSS values >0.4 are highlighted in green. Abbreviations: GLM, generalized linear
model; GAM, generalized additive model; RF, random forest; GBM, generalized boosting model.

Dinothenarus fossor

Years 2006/2007 2012/2013

mean
AUC ±SD mean

TSS ±SD mean
AUC ±SD mean

TSS ±SD

GLM 0.549 0.11 0.164 0.17 0.67 0.104 0.354 0.19
GAM 0.717 0.118 0.455 0.185 0.782 0.064 0.557 0.128

MAXENT 0.725 0.083 0.454 0.126 0.801 0.102 0.574 0.191
RF 0.74 0.094 0.5 0.149 0.813 0.085 0.618 0.12

GBM 0.83 0.047 0.588 0.088 0.835 0.064 0.609 0.137
Ensemble 0.845 0.044 0.663 0.076 0.869 0.053 0.666 0.111

Platydracus stercorarius

Years 2006/2007 2012/2013

mean
AUC ±SD mean

TSS ±SD mean
AUC ±SD mean

TSS ±SD

GLM 0.532 0.073 0.098 0.117 0.529 0.102 0.168 0.169
GAM 0.626 0.124 0.312 0.226 0.625 0.098 0.337 0.117

MAXENT 0.78 0.068 0.605 0.126 0.655 0.055 0.375 0.086
RF 0.638 0.115 0.368 0.161 0.754 0.077 0.505 0.121

GBM 0.664 0.133 0.391 0.221 0.77 0.059 0.542 0.085
Ensemble 0.798 0.058 0.618 0.1 0.788 0.051 0.551 0.095

Ocypus ophthalmicus

Years 2006/2007 2012/2013

mean
AUC ±SD mean

TSS ±SD mean
AUC ±SD mean

TSS ±SD

GLM 0.685 0.137 0.391 0.267 0.573 0.149 0.186 0.268
GAM 0.8 0.142 0.615 0.26 0.587 0.125 0.22 0.214

MAXENT 0.809 0.148 0.707 0.217 0.709 0.112 0.474 0.141
RF 0.881 0.079 0.754 0.15 0.767 0.102 0.572 0.142

GBM 0.843 0.087 0.7 0.158 0.713 0.14 0.525 0.191
Ensemble 0.893 0.086 0.806 0.145 0.843 0.07 0.672 0.127

3.2. Effects of Inter-Annual Variability of Species Records on SRS-Based Training Data

The inter-annual variability of the plots in which individuals of the three species were captured
(see Section 2.3) together with the inter-annual differences in the SRS data themselves (see Section 2.4)
had clear effects on the values and range of the SRS-based model training data (Figure S4). Variability
was generally lower for the variables derived from the ASTER GDEM (altitude, eastness, northness,
slope, and ruggedness), which were static data for both time periods. On the contrary, the largest
differences were found for greenness and wetness, due to variations in ecosystem conditions and
seasonal changes as a result of the differences in acquisition dates (the 2006 imagery was acquired
20 days later than the 2013 data). However, variability cannot solely be attributed to differences
between the two Landsat data sets. For example, Ocypus ophthalmicus showed considerable variation
also for the ASTER GDEM-based variables between 2006–2007 and 2012–2013. Similar differences
can be seen for Dinothenarus fossor with respect to eastness. Overall, the subsampling of the full
dataset by retaining only one trap per plot did not significantly reduce the variance and range of the
environmental variables, apart from few exceptions (Figure S4).
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3.3. Variable Importance

Across species, model algorithms, and years, greenness generally had the highest mean variable
importance according to correlation analyses between model predictions based on permuted and
original datasets, followed by ruggedness (Table 4). This trend was evident also in the ensemble
models, for which greenness and ruggedness were always the most important variables, with the
only exception being the model built for Platydracus stercorarius in 2006–2007, in which wetness was
the second most important variable after greenness. Slope was of only very minor importance in
all models. However, slight differences in variable importance between species and years could be
detected. For example, topographic variables like ruggedness and northness were more important for
Ocypus ophthalmicus than for the other two species, whereas greenness was less important than for
Dinothenarus fossor and Platydracus stercorarius. Wetness was found to be an important variable in the
ensemble model built for Platydracus stercorarius for the time period 2006–2007, whereas it played only
a minor role in all other models. The most consistent pattern across the two time periods considered
was found for Dinothenarus fossor, whereas Ocypus ophthalmicus showed the highest variations across
model algorithms and between time periods. However, values of importance scores differed, being
generally higher for MAXENT and GBM for variables identified as highly important than in the
other algorithms. On the other hand, GLMs had the smallest range of variable importance values
across variables. The response curves of modelled presence probability relative to each environmental
variable showed a strong and positive effect of greenness and a negative effect of ruggedness on
species presence for all three species (Figure S5). High wetness values decreased the probability of
occurrence of Platydracus stercorarius in the model built for 2006–2007, and a similar but milder effect
could be seen for Dinothenarus fossor in 2012–2013. Northness, eastness, and slope had negligible effects
on species presence in all six ensemble models. In addition, altitude had weak effects on the SDMs,
although some slight differences in altitudinal range between species could be observed in the response
curves. Specifically, the models built for Platydracus stercorarius and Ocypus ophthalmicus showed a
slight increase of predicted presence probability at higher altitudes (above 2000 m), whereas the trend
was reversed in the 2006–2007 Dinothenarus fossor´s model.

Table 4. Variable importance according to correlation analyses between model predictions based on
permuted and original datasets for all study and model algorithms trained by data collected in 2006–2007
and 2012–2013. Values shown are the mean values across the 50 model repetitions. Cell coloring in
dark grey highlights the most important variable and in light grey the second most important one.
Abbreviations: GLM, generalized linear model; GAM, generalized additive model; RF, random forest;
GBM, generalized boosting model.

Dinothenarus fossor

Years 2006/2007 2012/2013

Algorithm GLM GAM MAXENT RF GBM Ensemble GLM GAM MAXENT RF GBM Ensemble

Altitude 0.169 0.127 0.175 0.071 0.11 0.117 0.115 0.073 0.105 0.05 0.01 0.048
Northness 0.177 0.182 0.084 0.175 0.002 0.062 0.16 0.234 0.091 0.174 0.022 0.123
Eastness 0.137 0.211 0.02 0.171 0.003 0.079 0.152 0.227 0.035 0.133 0.022 0.11

Slope 0.083 0.05 0.046 0.095 0.001 0.021 0.12 0.053 0.074 0.075 0.022 0.04
Ruggedness 0.122 0.166 0.227 0.179 0.243 0.238 0.138 0.089 0.23 0.182 0.124 0.153
Greenness 0.204 0.182 0.388 0.24 0.642 0.458 0.228 0.237 0.379 0.292 0.792 0.488
Wetness 0.11 0.081 0.06 0.069 0.000 0.024 0.087 0.086 0.085 0.094 0.008 0.038
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Table 4. Cont.

Platydracus stercorarius

Years 2006/2007 2012/2013

Algorithm GLM GAM MAXENT RF GBM Ensemble GLM GAM MAXENT RF GBM Ensemble

Altitude 0.107 0.077 0.029 0.063 0.002 0.029 0.136 0.084 0.144 0.076 0.038 0.041
Northness 0.149 0.145 0.087 0.167 0.019 0.083 0.141 0.124 0.063 0.136 0.025 0.07
Eastness 0.133 0.096 0.029 0.155 0.003 0.033 0.149 0.128 0.051 0.139 0.02 0.064

Slope 0.123 0.131 0.005 0.052 0.001 0.019 0.142 0.118 0.156 0.071 0.086 0.076
Ruggedness 0.145 0.165 0.148 0.107 0.174 0.147 0.12 0.152 0.278 0.238 0.299 0.289
Greenness 0.189 0.268 0.516 0.294 0.649 0.532 0.178 0.254 0.227 0.247 0.494 0.403
Wetness 0.152 0.119 0.186 0.162 0.152 0.157 0.134 0.14 0.082 0.092 0.038 0.057

Ocypus ophthalmicus

Years 2006/2007 2012/2013

Algorithm GLM GAM MAXENT RF GBM Ensemble GLM GAM MAXENT RF GBM Ensemble
Altitude 0.161 0.101 0.074 0.044 0.002 0.052 0.155 0.127 0.222 0.133 0.187 0.096

Northness 0.135 0.194 0.067 0.232 0.054 0.143 0.097 0.238 0.059 0.221 0.108 0.166
Eastness 0.133 0.16 0.043 0.122 0.005 0.076 0.163 0.208 0.025 0.139 0.002 0.081

Slope 0.05 0.076 0.031 0.06 0.057 0.037 0.045 0.054 0.02 0.042 0.027 0.029
Ruggedness 0.208 0.166 0.313 0.266 0.432 0.319 0.199 0.16 0.437 0.225 0.341 0.324
Greenness 0.231 0.2 0.409 0.18 0.425 0.32 0.196 0.144 0.176 0.176 0.313 0.256
Wetness 0.083 0.103 0.063 0.095 0.025 0.053 0.145 0.07 0.062 0.063 0.022 0.048

3.4. Species Distribution Maps

The area of GPNP for which species distributions could be modelled was larger in 2012–2013 due
to a smaller proportion of areas covered by clouds, cloud shadows, and snow in the respective Landsat
data set. While the regions predicted as potentially suitable varied to a different extent between the
species, valleys generally had higher suitability scores than hillsides or high-altitude plateaus (Figure 3).
According to our results, the southern and eastern parts of the study area were generally more suitable
compared to the remaining regions. While the six SDMs had high correlation coefficients (Table S1),
indicating large similarities in the modelled distributions of the three species, we also observed some
differences: Ensemble models built for Ocypus ophthalmicus resulted in a higher predicted occurrence
probability in the northeastern part of the study area compared to the other species. The southwestern
valleys in the GPNP were also modelled as highly suitable for Ocypus ophthalmicus, whereas their
modelled presence probability was intermediate for Platydracus stercorarius and low for Dinothenarus
fossor (Figure 3).

Visual comparison of the final SDM maps revealed that modelled distribution patterns across
time periods were more similar for Ocypus ophthalmicus than for Dinothenarus fossor and Platydracus
stercorarius, which is supported by higher correlation values between the correspondent SDM maps
(Table S1). High habitat suitability scores (i.e., above 600) were only obtained for a small proportion
of GPNP across all species (below 20% of the study area, Table S2). For Dinothenarus fossor, the area
with high suitability scores (>600 to 1000) decreased from 2006–2007 to 2012–2013 (16.4% vs. 8.3%,
Table S2). Contrarily, the highly suitable area increased from 8.9% to 16.4% for Platydracus stercorarius
and from 11.3% to 19.1% for Ocypus ophthalmicus between the two time periods. Model uncertainty
was generally higher in areas with medium to high presence probability and low in areas with lowest
predicted suitability (see Figure 3 and Figure S6), showing a similar spatial pattern for the three species.
When comparing time periods, overall uncertainty was higher for Dinothenarus fossor and Platydracus
stercorarius in the 2012–2013 models, whereas the trend was opposite for Ocypus ophthalmicus.
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Figure 3. Species distribution likelihood for each species in 2006–2007 and 2012–2013 based on the
ensemble models. Locations of the plots used as presence points for model training are shown to
emphasize the variability of input data. Coordinates shown are based ETRS (European Terrestrial
Reference System) 1989 LAEA (Lambert Azimuthal Equal-Area) projection.

4. Discussion

The objective of this study was to examine the potential of SRS data to produce species distributions
maps of rove beetles with different ecological and functional specialization. A large set of studies
predicting species distribution of invertebrates relies on habitat parameters recorded in the field as
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well as bioclimatic variables [90–92]. Others also include SRS-derived information on land use/land
cover [93–96] or variables related to topography (e.g., slope, northness, and eastness, [97]). However,
to our knowledge the present study is the first attempt to predict species distribution of beetles in a
mountainous region entirely based on SRS data.

4.1. Model Performances to Predict Invertebrate Species Distribution

The presented SDMs can be rated as useful according to Swets [86] and González-Ferreras et al. [88]
based on mean AUC and TSS values obtained in the cross-validation step. When comparing different
algorithms, regression-based methods (GLM and GAM) had the lowest mean performance, whereas
machine-learning methods (RF, GBM, and MAXENT) were found to be the most accurate. GLMs have
been widely used in SDM studies [53], but their inability to capture nonlinear responses might be one
reason for their poor performance in our study. Otherwise, our results confirmed the robustness and
effectiveness of more recently developed machine-learning techniques: Elith et al. [53] showed better
performances of GBM and MAXENT compared to GAM and GLM across different species (plants, birds,
mammals, and reptiles) and regions; similarly, Marmion et al. [37] and Grenouillet et al. [98] found RF
to have the highest accuracy among several tested single algorithm models (among which GLM and
GAM) in predicting plant and fish species distributions, respectively. Araújo and New [31] list RF, GBM,
and MAXENT as techniques that already incorporate the notion of ensemble forecasting, which could
be one of the underlying factors explaining their higher predictive accuracy over regression methods.
While the performance of all model algorithms was negatively affected by the small number of presence
points used for model fitting, the selection method of pseudo-absences impacted regression and
machine-learning techniques differently: Wisz and Guisan [99] and Barbet-Massin et al. [100] showed
that a large number (e.g., 10,000) of randomly selected pseudo-absences improved the performance
of GLMs and GAMs, hence our spatially stratified selection approach may have influenced the
performance of these model types.

Overall, the variability among the five algorithms confirmed the suitability of the chosen ensemble
modelling approach, and the evaluation metrics values identified the ensembles as the highest
performing models compared to single algorithm models, as also shown by Marmion et al. [37]
and Grenouillet et al. [98]. Nonetheless, the comparison of modelled presence probability scores at
true absence and presence points revealed that not all ensemble models had high discriminatory
power (Figure 2). In particular, the models built for Platydracus stercorarius and Ocypus ophthalmicus in
2012–2013 tended to overestimate distribution ranges, predicting high occurrence probability also at
absence locations. This could be due to the small number of presence points available for model training
(18 and 12, respectively, Table 1). In fact, models trained using all traps where beetles were captured
as presence points (instead of plot-pooled data) had a consistently higher accuracy in discriminating
presences from true absence sites. Moreover, distributions of widespread species, such as Platydracus
stercorarius, Ocypus ophthalmicus (see description in Section S1), were more difficult to predict compared
to those of rare species [50,51]. Nevertheless, the obtained species distribution maps can be considered
as quite reliable based on local ecological knowledge, which is becoming increasingly important in
ecological modelling in general [101,102]. In particular, the SDMs met our expectations of more similar
distribution patterns for Platydracus stercorarius and Dinothenarus fossor, which are both macro-habitat
generalists and strongly dependent on vegetated areas, compared to the predicted distribution of
Ocypus ophthalmicus, which is less dependent on vegetation (see description in Section S1).

Regarding the spatial resolution of the employed Landsat images and GDEM (30 × 30 m), we
assumed adequacy to predict species distribution of invertebrates as other studies employing SRS
data were successfully conducted on an even broader spatial scale so far [93,94] (but see Section 4.4).
Moreover, despite general recognition of the importance of scale selection in SDMs [103], studies
addressing scale directly have found equivocal results: Guisan et al. [104] showed that a 10 times lower
resolution of environmental layers used in modelling did not severely affect predictions from SDMs,
despite a general decrease in model performance when using explanatory variables at coarser grain
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size. Nevertheless, as ecological processes are also highly dependent on scale, more research in this
direction is needed to better understand the complex relationships between the temporal and spatial
variability of species presence records and representation of this variability in SRS data.

4.2. Temporal Variability of Species Presence Records, SRS Data, and Modelled Distribution Ranges

Inter-annual fluctuations in the number of epigeic beetles are a quite common phenomenon found
in many works while not completely understood. Indeed, the number of specimens caught by pitfall
traps, and consequently the detectability of the species, are linked not only to animal abundance but
also to their activity [105,106]. Movement patterns are in turn highly dependent on different factors
like temperature and general weather conditions as well as food supply and individual fitness [107].
Furthermore, variations at the micro-habitat scale, including changes in soil moisture, humidity, and in
the occurrence of ephemeral resources like prey availability, significantly affect beetles’ abundance,
activity, and ultimately detectability [28,108,109]. To reduce yearly variability, we selected species
known to be (1) not directly depending on ephemeral resources and (2) nonspecific predators, feeding
on various soil arthropods.

The variability of species abundances at trap locations was one reason which led to differences in
the values of the SRS-based model predictors at the presence locations between the two time periods
(2006–2007 and 2012–2013). The second reason for the observed variations was in the inter-annual
differences in environmental conditions, as greenness and wetness were based on different Landsat
images for the two time periods. Specifically, the Landsat image was acquired 20 days later in 2006
compared to 2013, explaining the lower values of greenness (Figure S4) associated with differences
in vegetation phenology [110]. Such differences in the vegetation-related environmental variables
between 2006–2007 and 2012–2013 likely had a comparatively stronger effect on the SDMs built for
Dinothenarus fossor and Platydracus stercorarius, for which greenness was highly important. The variation
in greenness values could explain the larger differences in predicted species distribution of the two
species between time periods when compared to Ocypus ophthalmicus.

In addition, the 2006 Landsat image was also more strongly affected by clouds, shadows, and
snow, which further reduced the total area available for modelling in both time periods and limited
comparisons about temporal changes in species distributions. The effect of acquisition date of SRS
imagery on analyzing species patterns was also shown by other studies [111,112], highlighting the
drawbacks of using single SRS imagery representing temporal snapshots and not accounting for
intra-annual differences of environmental variables. Analyzing multi-temporal SRS data may be a
way to overcome these limitations and has been shown to improve SDMs for marsh bird species [113].
SDMs based on longer composite periods (i.e., multiple years) also showed less deviance from observed
species presence/absence field data [114]. While being aware of these problems, the number of suitable
SRS imagery was unfortunately restricted in our study and presented SDMs could not be improved in
this regard (but see Section 5). Furthermore, radiometric differences between Landsat 5 TM (Thematic
Mapper) and Landsat 8 OLI (Operational Land Imager) images may also have caused differences in
species predictions [115]. Nevertheless, radiometric differences were overall small in relation to other
influencing factors, i.e., phenological differences between the two acquisition dates, and did not affect
our overall outcome.

4.3. Importance of SRS Predictors

For all species, SRS-derived greenness was very important. This indicates that vegetated areas
are generally preferred by our study species (which is well known at least for Dinothenarus fossor
and Platydracus stercorarius, whereas Ocypus ophthalmicus is less dependent on vegetation [47,48,116]).
This trend was clearly visible in the variable response curves of all models (Figure S5), in which the
modelled probability of species presence increased at higher greenness values. Moreover, ruggedness
was identified as the second most important variable in almost all models, negatively affecting the
probability of species occurrence. This indicates that penetrability of the terrain determines species
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distribution: rugged terrain with large variations in elevation, which in turn affect soil thickness and
moisture, was less suitable for rove beetles. While known macro- and micro-habitat requirements are
rather different (see Box 1 and description in Section S1), the patterns of variable importance and their
response curves were fairly similar for the three study species, with greenness and ruggedness being
the two most important variables in all ensemble models but one (the 2006–2007 model for Platydracus
stercorarius, in which greenness and wetness scored the highest importance values, see Table 4). This
indicates that the SRS variables employed in the present study were not entirely capable of depicting
the subtle differences in terms of habitat requirements of invertebrate species.

Apart from ruggedness, other topographic-related variables, such as slope, eastness, and northness,
had relatively low importance in all models. The effect of wetness in the SDMs is hard to interpret, as it
showed contrasting results in the models´ variables response curves. Wetness had a strong negative
effect in the 2006–2007 model built for Platydracus stercorarius, but not in 2012–2013. For the other two
species, wetness had lower importance scores and a seemingly negative effect on species occurrence,
as should be expected in xerophilous species (see Box 1). Altitude, which is typically inversely related
to temperature, affected the SDMs very weakly but in different ways for the three species: While we
observed negative effects for Dinothenarus fossor (although only for the model referring to 2006–2007),
the tendency was opposite for Ocypus ophthalmicus in both time periods, and for Platydracus stercorarius
in 2006–2007. These results are in line with our expectations, as the heliophilous species Ocypus
ophthalmicus is known to occupy higher altitudes with sunny places above the tree line and to have a
broader altitudinal range compared to the other species (see Box 1 and Section S1).

It is difficult to reflect our findings regarding variable importance with respect to other studies,
as only very little research has focused on the analysis of spatial patterns of Staphylinidae, either
at the community or at the species level. Indeed, the highest number of bibliographic sources
is represented by faunistic works, followed by articles considering the role of Staphylinidae as
bioindicators, in forest or in agricultural ecosystems [47,48,117,118]. In any case, some general patterns
have been found. In particular, it emerged that Staphylinidae are usually more influenced by local
factors than landscape-scale features [119]. Community composition and the presence of single species
have often been observed as being determined by micro-climate (soil moisture and temperature) and
by habitat-related characteristics (vegetation cover and micro-habitat characteristics like decaying
material or soil texture) [27,117,120].

4.4. Suggestions for Model Improvement

While the ensemble SDMs outperformed the single algorithm models for all species and years
and were thus rated as useful based on the cross-validation results, some suggestions for model
improvement can be formulated.

A continuation of the monitoring program in GPNP is recommended (and currently conducted) to
assess trends in biodiversity and the impact of environmental changes on species [6,121]. The generation
of new species presence and absence information will also improve the performance of SDMs as
inter-annual variability in species trapping success can be balanced out. Our decision to train the
SDMs on plot-pooled data to avoid issues of pseudo-replication and of spatial correlation reduced
our sample size significantly, consequently affecting the discriminatory power of the fitted models.
An in-depth analysis of the spectral reflectance characteristics of presence and pseudo-absence data
may have further improved model performance as recently shown by Remelgado et al. [122].

The inclusion of additional predictors, such as detailed land cover and grazing intensity maps,
could surely improve the models and possibly increase their discernment between the distribution
maps of the three species. In our case, these data were unfortunately not available at the right spatial
and temporal scale. The availability of environmental variables at finer spatial scale could reduce the
problem of spatial autocorrelation between near presence points by enabling the detection of changes
in environmental characteristics at a higher resolution, namely within the 50 m of inter-trap distance.
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While we here focused on cost-effective explanatory SRS data, recent advances in remote
sensing technologies provide the possibility to better account for intra-annual differences in habitat
characteristics which likely improve SDMs for our study species in the future. Specifically, Sentinel-1
radar images and Sentinel-2 optical images allow to monitor soil moisture content [123] and
vegetation status and composition [124,125] at high spatial resolution and high temporal frequency,
respectively. Likewise, high resolution satellite imagery (e.g., PlanetScope) or unmanned aerial vehicles
(UAVs) equipped with multi- and hyperspectral sensors as well as laser scanner systems are very
promising in this context by providing high resolution data on micro-habitat, vegetation structure, and
topography [126,127].

5. Conclusions

The presented findings have important implications for future studies on species distribution
modelling. Our results suggest that single time interval studies (as currently often done in SRS-based
SDMs) may lead to false assumptions regarding underlying environmental drivers of species
distributions. However, a continuation of monitoring is needed to not only track changes in species
distribution patterns but also to better account for inter-annual variations due to natural population
dynamics and differences in activity patterns. While in the present study, freely available Landsat
images were employed, we detected shortages and corresponding implications for species distribution
modelling due to the restricted temporal resolution of this data in mountainous regions characterized
by high and persistent cloud cover. The limited number of suitable SRS imagery severely restricted
our ability to account for intra-annual and inter-annual environmental variability and in turn limited
the explanatory power regarding habitat suitability trends over time. However, recent advances in
remote sensing technology can solve these problems in future works. Finally, the derived species
distribution maps provide valuable information for conservation endeavors in GPNP, e.g., to identify
species hot spots and potential connectivity paths inside the protected area. Furthermore, they support
environmental change scenarios to identify potential biodiversity losses.
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