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CHAPTER 1

Introduction

The present thesis deals with translation surfaces which form a modern field of research
compared to the history of mathematics. Since their appearance in [FK36] in the early 20th
century where Fox and Kershner studied billiard trajectories on polygonal tables a lot of
progress has been made in understanding the geometry of translation surfaces. In the course
of this research many connections to various mathematical fields have been discovered: From
the first study of polygonal billiards evolved a much broader interest in dynamical systems on
translation surfaces, and furthermore relations to Teichmüller theory, algebraic geometry and -
as it is the case for this thesis - geometric group theory. For a wide overview to translation
surfaces and their applications see [Zor06], [HS06] and [Möl09]. The relation between billiards
and translation surfaces is studied in [KMS86], [KS00] and [MT02]. In [Yoc10] translation
surfaces are used to study the dynamics of interval exchange maps. In [Möl13] translation
surfaces are studied from the perspective of algebraic geometry. And for an introduction to
the Teichmüller theory of translation surfaces we refer to [Vee86], [Vee89] and [Wri15].

Apart from their importance in the mentioned research fields what makes translation surfaces
so appealing is their very graphic nature. By definition, they are surfaces constructed from a
finite or infinite collection of Euclidean polygons which are glued along parallel sides of the
same length. This makes the geometry of translation surfaces to most parts quite approachable
as polygons in the Euclidean plane are very familiar mathematical objects. Depending on
whether the collection of polygons is finite or infinite we speak of finite and infinite translation
surfaces. The study of finite translation surfaces has progressed quite far in the past years.
And although there still are many open problems concerning finite translation surfaces, the
interest in all types of infinite translation surfaces has grown ever more. This thesis attempts
a contribution to shed light on the still mostly dark universe of infinite translation surfaces.
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When trying to describe the global geometry of a translation surface we must first observe its
local behaviour which is ambivalent in the following sense. On one hand a translation surface,
apart from a set of singular points, is locally isometric to open subsets of the Euclidean plane.
As this is a very familiar geometry we can use common tools and notions from Euclidean
geometry as “straight lines”, “orientation”, “parallelity” and “directions” as “north” or “left”.
This then allows us to locally study important objects as geodesics, metric discs and compact
sets. On the other hand open disks around singular points may look very different from
Euclidean open disks which makes the whole geometry of translation surfaces all the more
interesting. As the curvature of a translation surface is concentrated in the singularities we
have that the total angle sum around such a singularity is a natural multiple of 2π or even
infinite, compared to regular points of the surface having an angle sum equal to 2π. This fact
has interesting consequences: While there is exactly one geodesic ray starting in a regular point
in any direction of S1, there usually are more than one geodesic rays starting in a singularity
in this same direction, see Figure 1.1.

Compared to infinite translation surfaces the local geometry of finite translation surfaces is
rather easy to comprehend. They are compact surfaces having only finitely many singularities.
Each singularity is conical, i.e. its total angle sum is finite and of the form 2πk for a natural k
which is called the multiplicity of the singularity. Each disc of sufficiently small radius around
such a conical singularity admits a translation covering of degree k onto a Euclidean disc of same
radius and which is ramified over its center, see Figure 1.1. However, for infinite translation
surfaces more types of singularities can appear. Firstly, there are ∞-angle singularities which,
similar to conical singularities, admit a translation covering map of infinite degree from any
sufficiently small disc around them onto a corresponding Euclidean disc. This existence
of such a covering map is the reason why we classify conical and ∞-angle singularities as
tame singularities: Although discs around such singularities are not isometric to common
Euclidean discs they behave well enough for us to illustrate them using Euclidean discs glued
together along parallel slits. Apart from these tame singularities a whole variety of wild

a b c
ac b

Figure 1.1: A disc around a singularity of multiplicity k = 3 together with a 3-sheeted ramified
covering onto a Euclidean disc. Note that there are three distinct geodesics starting
in that singularity in north direction.

singularities may occur on infinite translation surfaces. As the name suggests wild singularities
are those singularities whose neighborhoods cannot be described as concisely as the ones of
tame singularities. There is a multitude of infinite translation surfaces whose wild singularities
exhibit different and astounding properties. See [BV13], [Ran16] and [Ran18] for a detailed
introduction to wild translation surfaces.
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This variety of singularity types complicates the study on the whole family of infinite
translation surfaces. There rarely are insightful methods that can be applied to all types of
infinite translation surfaces at once. A very reasonable restriction which often is included in the
definition of translation surfaces is to require the discreteness of the subset of singular points.
Hereby one discards surfaces such as open discs of the Euclidean plane which are translation
surfaces by the general definition but do not have as interesting properties as translation
surfaces with discrete singularities. But still in that case, often one has to restrict to special
subfamilies and apply tools specifically designed for that kind of surface. Such subfamilies are
for example infinite translation surfaces of finite area as the Chamanara surface ([Cha04]),
translation surfaces constructed from rectangles with varying dimensions as the stack of boxes
example ([Bow12] and [Ran16]), or translation surfaces obtained from inserting slits into the
Eudlidean plan and gluing them back together in various ways as in [CRW19] and [Ran16].
Another class of translation surfaces - the one which we are interested in - consists of those
surfaces constructed from infinitely many copies of one base polygon which are glued together
in a regular way.
Considering this, it is clear that if we want to explore a notion as broad as “the geometry”

of infinite translation surfaces we have to restrict ourselves to a suitable subfamily as well. But
which? Usually, when it comes to exploring a great number of complicated objects it is very
fruitful to begin with those objects which exhibit symmetries. A symmetrical object has the
advantage that it can be understood as a whole often by studying a smaller, more approachable
part whose copies can be arranged to form the original object. If, as in our case, this object is
an infinite translation surface it makes sense to describe its symmetries using a suitable group
action on the surface. And the role of the smaller, more approachable part should be played
by a finite translation surface which we understand fairly well compared to the infinite ones.
This observation suggests that we should define our subfamily of infinite translation surfaces
which we want to study in detail as follows: A regular translation surface X as we will define it
more precisely in Section 3.1 shall be a translation surface which permits a regular translation
covering onto a finite translation surface X0 and may be ramified at most over the singularities
of the base surface X0. We speak of G-regular translation surfaces when we require the deck
transformation group of the corresponding covering to be isomorphic to G. A great advantage
of this definition is that we can describe the symmetries of X with the group G, which allows
us to use group theoretical methods in order to study the translation surface. Furthermore it
allows us to deduce many properties of the infinite surface X from the base surface X0 which
is finite and hence easier to understand. However, this benefit has its price: As we will see all
regular translation surfaces are tame. This means that with our approach a large part of the
universe of infinite translation surfaces, namely the wild ones, is left unexplored.
Having found a reasonable family of translation surfaces to focus on it is now necessary to

clarify what is meant by studying their “global geometry”. Among the many ways to describe
the geometry of Riemannian surfaces one common approach is to describe its geodesics, i.e.
paths of shortest length between two arbitrary points and - closely related - to compute the
distance between any two points of that space. Although geodesic segments in translation
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surfaces consist of common Euclidean line segments, in practice the exact computation of
distances proves to be quite difficult. The reason is that the singularities lead to sudden
directional changes of the geodesic which in general are hard to follow, see Figure 1.2. A

p
x
q

τ

τ ′

Figure 1.2: The Euclidean line segment τ between p and q is a geodesic segment. If we consider
the geodesic segment τ ′ between p and the point x which may be arbitrarily close
to q then the singularity acts as a shortcut.

good way to avoid this problem of computing exact distances is to study the coarse geometry
of translation surfaces which only gives reasonable lower and upper bounds for the distance
between two arbitrary points. This is usually done by finding a map, called quasi-isometry,
from the translation surface to a metric space whose geometry is more familiar. In this way
distances in the translation surface can be related to distances in the familiar metric space
which gives us information about the rough global shape of the translation surface. Illustratively
spoken two quasi-isometric spaces roughly have a similar shape “when looked at from a large
distance”. For example the inclusion Z ↪→ R is a quasi-isometry while it is not possible to find
a quasi-isometry from R to R2: The line R is simply too “thin” to behave metrically similar to
the plane, see figure 1.3. When studying the coarse geometry of translation surfaces all finite
translation surfaces become suddenly indistinguishable: Indeed, all bounded metric spaces are
quasi-isometric to a one point set and therefore uninteresting from this perspective.

There are metric spaces whose coarse geometry can be described by means of group theory.
For this, we usually consider finitely generated groups and turn a group itself into a metric
space using the word metric with respect to a finite generating set. An important result in
geometric group theory is the Švarc-Milnor Lemma, see [BH99], Proposition 8.19. It states in
particular that if a finitely generated group G acts properly discontinuously on a proper metric
space X such that the corresponding quotient space X/G is compact, then the metric space
is quasi-isometric to the group equipped with the word metric corresponding to any finite
generating set. As an example, the Cayley graph Cay(G,S) is a metric graph constructed from
a group G, whose elements represent the vertices, and a finite generating set S. The G-left
multiplication on this graph satisfies the conditions of the Švarc-Milnor Lemma and therefore
both the graph and the group are quasi-isometric.
Similar to Cayley graphs we can construct any G-regular translation surface X from the

finitely generated group G and a finite base translation surface. And as for Cayley graphs we
have a close relation between the coarse geometry of the regular translation surface and its
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Cay(Z, {−1, 1})

Figure 1.3: The Euclidean line R is quasi-isometric to Z and to the Cayley graph
Cay(Z, {−1, 1}). However, R is not quasi-isometric to the Euclidean plane R2, as
the plane contains points which are arbitrarily far from the line.

symmetry group. However, in general a G-regular translation surface will not be quasi-isometric
to the group G. Illustratively speaking, the reason is that possible ∞-angle singularities of
X lead to “shortcuts” in the geometry of the surface X which are not present in the group
structure and hence geometry of G.

In this thesis we present methods to determine the coarse geometry of infinite regular
translation surfaces. As an example we introduce monodromy elements in the group G that
describe those “shortcuts” in the G-regular surface X. It turns out that in many cases the
coarse geometry of X is determined by quotients of the group G, however this does not hold in
general. For the general situation we construct a graph from the group G and the monodromy
elements and prove that it is quasi-isometric to X.

This thesis is structured as follows. In Chapter 2 we present all the necessary definitions and
tools that are needed in order to study infinite regular translation surfaces. General translation
surfaces and affine maps are introduced in Section 2.1. An important example of such affine
maps are translation coverings. In Section 2.2 we define singularities of translation surfaces and
discuss their types and properties. In particular we are interested in tame singularities. We
recall the metric on translation surfaces and study geodesics in more detail in Section 2.3. An
important family of translation surfaces, the finite ones, is presented in Section 2.4. They are
of high interest to us as many properties of infinite regular translation surfaces can be studied
using properties of finite translation surfaces. In Section 2.5 we introduce singular loops in
finite translation surfaces which are a useful tool in the study of regular translation surfaces.
As we are interested in regular coverings of finite translation surfaces Section 2.6 provides all
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the necessary background from covering theory. Also, in order to study the coarse geometry of
infinite regular translation surfaces we define quasi-isometries in Section 2.7, and give a short
overview of the necessary results in geometric group theory. Furthermore, in Section 2.8 we
give the definition of an end of a topological space and recall some properties of ends of groups.

In Chapter 3 we study the main objects of our interest: regular translation surfaces. As we
will see regular translation surfaces that are infinite are highly symmetric and behave relatively
well compared to other generic infinite translation surfaces. We define finite and infinite regular
translation surfaces in Section 3.1. They permit a regular translation covering onto a finite
translation surface, their base surface. We show that this implies that regular translation
surfaces are always tame. Using the constructive characterization of translation surfaces we
describe in Section 3.2 how to construct a regular translation surface from a finite translation
surface and a finitely generated group. In Section 3.3 we prove that every regular translation
surface can be constructed in this fashion. This turns out to be very helpful since we can
describe quite complicated regular translation surfaces X by studying the more approachable
data, namely the finite base surface and the deck transformation group G of the corresponding
regular covering, by means of Euclidean geometry and group theory. In that case we speak of
G-regular translation surfaces. A first use of this method is presented in Section 3.4. Here
we use singular loops in order to describe the singularities of regular translation surfaces. In
particular we characterize ∞-angle singularities using the order of certain elements in the
corresponding group G. We then describe the whole set of singularities of a regular translation
surface X by suitable cosets of G. This is a first indication that geometry and group theory
are closely related for regular translation surfaces. As a first result we prove the following
remarkable relation between geometry and group theory.

Theorem 1.1. Let X be an infinite regular translation surface having at least one ∞-angle
singularity. Then X has finitely many ∞-angle singularities if and only if G is virtually Z.

In Section 3.5 we study quotient spaces of regular translation surfaces using intermediate
translation coverings which correspond to subgroups of G. Finally, in Section 3.6 we present
important examples for infinite regular translation surfaces: The 2- and 3-staircase and the
AB-surface. Although the 2- and 3-staircase are both Z-regular and look highly similar from the
constructive perspective we prove that their coarse geometry is very different: The 2-staircase
is bounded whereas the 3-staircase is quasi-isometric to Z. While in these two examples the
quasi-isometry class seems to be closely related to the finitely generated deck transformation
group G, the AB-surface exhibits a more complicated coarse geometry. Indeed we show that
this surface is quasi-isometric to the countably infinite regular tree T∞.
This observation leads us to the natural question whether two regular translation surfaces

are quasi-isometric or not. More precisely, we formulate the question as follows:

Question 1.2. Given a G-regular translation surface X, can we explicitly describe a graph
which is quasi-isometric to X?

Our attempt to answer this question is presented in Chapter 4. Firstly, we focus on special
cases of G-regular translation surfaces before we answer this question for general regular
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translation surfaces. The simplest case is dealt with in Section 4.1. Here we consider G-regular
translation surfaces having only conical singularities. Using the Švarc-Milnor-Lemma we get
the following result.

Theorem 1.3. Let X be a G-regular translation surface having only conical singularities.
Then X is quasi-isometric to G.

In Section 4.2 we consider G-regular translation surfaces where G is a boundedly generated
group. In this case we can show that under moderate conditions a G-regular translation surface
is quasi-isometric to a quotient group G/U for a normal subgroup U of G which depends on
the covering. In particular this condition holds when G is abelian.

Theorem 1.4. Let X be a G-regular translation surface where G is abelian. Then X is
quasi-isometric to a quotient group of G.

The study of the coarse geometry of general translation surfaces happens in Section 4.3.
After a detailed observation on the length of geodesic segments in regular translation surfaces
we formulate the main result of Section 4.

Theorem 1.5. Let X be a G-regular translation surface. Then X is quasi-isometric to
Cay(G,T∞), the Cayley graph of G with respect to an infinite generating system T∞ of G.

We see that the answer to the previously formulated question is “Yes”. However, Theorem
1.5 does not tell us whether two given regular translation surfaces are quasi-isometric. It just
reduces this problem to finding a quasi-isometry between corresponding intricate, locally infinite
graphs, which in itself is not easy to solve. We conclude the study of the coarse geometry of
regular translation surfaces in Section 4.4 where we describe the ends of a G-regular translation
surface X. Theorem 1.6 tells us that each end of X comes from an end of G, i.e. of its Cayley
graph with respect to a finite generating system.

Theorem 1.6. There is a surjective map

Ends(G) � Ends(X).

As a side result of this theorem we obtain the following statement: Any Z-regular translation
surface containing at least one ∞-angle singularity is bounded and has exactly one end. When
studying G-regular translation surface with G having infinitely many ends, its space of ends
might however still be very complicated to describe as shows an example where G is the free
group on two generators.

In Chapter 5 we present two applications of our results. We generalize the AB-surface to a
family of regular translation surfaces having as deck transformation group the free group on n
generators for n ≥ 2. In the case n = 2 we obtain the original AB-surface. Using Theorem 1.5
we are able to prove that all translation surfaces of this family are quasi-isometric to T∞.
As a second application we consider the Teichmüller space of translation structures on a closed
topological surface. Using Theorem 1.5 we can show that the quasi-isometry class of a regular
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translation surface does not depend on the choice of translation structure on the corresponding
base surface. Illustratively speaking, this means that a small variation of the shape of the base
polygon does not change the coarse geometry of the corresponding regular translation surface.



CHAPTER 2

Background

2.1 Translation surfaces

There are three equivalent possibilities to define translation surfaces. The first uses Euclidean
polygons that are glued along parallel edges, the second uses translation structures and the
third definition uses the notion of abelian differentials on a surface. For our purpose we will
only need the first two and throughout this paper we mostly work with the first and most
illustrative definition. For this reason we will put our focus on the first one. For a precise
description of the other definitions and a detailed proof that all three are equivalent we refer
to the book in progress by Valdez and Delecroix, see [DV], Chapter 1.

Consider an at most countable family P of polygons in the Euclidean plane. Here, a polygon
is a simply connected and compact set whose boundary is a closed curve consisting of finitely
many straight line segments, its edges. Let E(P) be the set of all the edges in P. Fix an
orientation of the plane which induces an orientation on each polygon in P and hence on the
edges of each polygon in P. Suppose there is a map gl : E(P)→ E(P), called gluing map,
where each edge e ∈ E(P) is paired to a unique distinct edge gl(e) ∈ E(P) such that gl(e) and
e differ by a translation and have opposite orientation. We also say that e and gl(e) are paired
edges. From the family P and the gluing map gl we construct a topological space X as follows:
Consider the disjoint union

⊔
P∈P P of all polygons and identify points on the edges using the

translation map given by gl. The resulting quotient space is

X :=
⊔
P∈P

P/ ∼gl,

obtained from ’gluing’ all polygons in P along the paired edges. We have a natural quotient
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map π :
⊔
P∈P P → X which is 1-to-1 in the interior of each polygon and 2-to-1 on the edges

without their endpoints. A vertex v of a polygon P ∈ P is of finite degree if π−1(π(v)) is finite
and of infinite degree otherwise.

Definition 2.1. Let P and gl : E(P)→ E(P) as before. Let X be X without all vertices of
infinite degree. If X is connected we call it the (constructive) translation surface obtained from
the family of polygons P. If the collection P is finite we call X a finite otherwise an infinite
translation surface. Note that if X is a finite translation surface then X = X. The set of all
vertices of the family P after gluing is called the singularities of X and is denoted by Sing(X).
We then denote by X∗ := X\Sing(X) the punctured translation surface X without all vertices
of the family P . We equip X∗ with the flat metric d obtained by extending the local Euclidean
metric on each polygon in P and extend it to the metric d on X.

Remark. In order to avoid confusion in the notation we remark here that X does not stand for
the completion of the space X. In general X is not complete, for example if X consists of an
infinite family of polygons whose diameter converges to zero. However, in the case of regular
translation surfaces it indeed turns out that X is the metric completion of X which is why we
stick with this notation.
It might not be clear at first why we do not define the whole quotient space X to be the

translation surface, especially since in our definition above we allow singularities of X to lie
’outside’ of X. However, while X ⊆ X indeed is a topological surface the constructed space
X in general is not. Consider for example a vertex of infinite degree whose total angle sum
is infinite, as shown on the right-hand side of Figure 2.2. Then the closed disc of any radius
r > 0 centered in this vertex is not compact and hence X is not a locally compact space and in
particular not a surface. We will see later that both spaces, X and X, have their advantages.
On the one hand X is a surface and hence is ’behaving well’ as a topological space. On the
other hand in the case of regular translation surfaces X is a complete metric space which
allows us to study geodesics and gain information about the geometry of the space.

Consider any surface S equipped with a flat metric. We say that a point σ ∈ S is a conical
point of angle 2πα for the flat metric if there exists an open neighborhood U of σ and a real
number α > 0 such that U\{σ} is isometric to C\{0} equipped with the metric (dr)2 + (αrdθ)2

with respect to the polar coordinates (r, θ) of the Euclidean plane. As the name suggests
it follows from this definition that a disc of sufficiently small radius ε around σ has the
circumference 2παε. For the second definition let S be a connected topological surface. A
translation atlas on S is a set of maps T := {ϕi : Ui → C} where (Ui)i∈N is an open cover
of S, each ϕi is a homeomorphism from Ui to ϕi(Ui) and for each i, j the transition map
ϕj ◦ ϕ−1

i : ϕi(U ∩ V )→ ϕj(U ∩ V ) locally is a translation in C. The surface S together with
such a translation atlas is as well naturally endowed with a flat metric simply by pulling back
the Euclidean metric in C.

Definition 2.2. Equivalently, a (geometric) translation surface is a tuple X = (S,Σ, T )
consisting of a connected topological surface S, a discrete subset Σ ⊂ S and a maximal
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translation atlas T on S\Σ such that every σ ∈ Σ is a conical point for the induced flat
metric. Here, the subset Σ corresponds to the set of vertices of finite degree in the definition
of constructive translation surfaces.

Let X = (S,Σ, T ) and X ′ = (S′,Σ′, T ′) be two (geometric) translation surfaces. An affine
map between X and X ′ is a homeomorphism f : S → S′ satisfying f(Σ) = Σ′ and which is
of the form x 7→ Ax + b in local coordinates on S\Σ, where A ∈ GL2(R) and b ∈ R2. Note
that the differential Df = A of f is independent from the choice of charts. If Df is the unit
matrix we call f a translation between X and X ′. When the two translation surfaces are given
as a glued collection of polygons then X and X ′ being equivalent means that we can obtain
X ′ by cutting X along straight lines and gluing back along paired edges. In Figure 2.1 we

see an affine map which is locally given by the linear transformation where A =
(

1 1
0 1

)
. A

∼=
A

Figure 2.1: An affine map between the flat square torus and a translation surface obtained
from a paralellogram which is equivalent to it.

translation covering from X onto X ′ is a topological covering map p : S → S′ that is of the
form x 7→ x+ b in local coordinates, where b ∈ R2. A translation covering is called cyclic if
its deck transformation group is cyclic, and hence isomorphic to Z or Z/dZ for d ∈ N. The
number d is called the degree of the covering.

2.2 Singularities

Let X be a translation surface obtained from a family of polygons P. As we have seen we
can extend the natural flat metric on X∗ to a metric on the space X. In this way it makes
sense to talk about open and closed discs of a given radius around any point in X. Discs of a
sufficiently small radius ε around any point in X∗ are isometric to Euclidean ε-discs. However,
discs around singularities behave differently. A singularity σ ∈ Sing(X) is called tame if there
exists an ε > 0 and a cyclic translation covering

p : Dε(σ)\{σ} → Dε(0)\{0}

from the punctured open ε-disc in X around σ to the punctured open ε-disc in R2. Otherwise
the singularity is called a wild singularity. Similarly, we call the translation surface tame if
each of its singularities is tame, and we call it wild in all other cases. A detailed classification
of singularities in infinite translation surfaces can be found in [BV13] and [Ran16].

Let σ be a tame singularity. The corresponding cyclic translation covering has finite degree
d if and only if σ is a conical point of angle 2πd. We therefore call σ a conical singularity and
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define its multiplicity to be kσ := d− 1. The reason for this definition is that conical points of
angle 2πd are exactly the zeros of abelian differentials on X of order d− 1, see [Str84], Chapter
III, for a detailed explanation. In terms of the flat metric this means that the total angle
sum around a conical singularity with multiplicity d− 1 is exactly 2πd. If the corresponding
translation covering is infinitely cyclic we say that σ is an infinite angle singularity or short
∞-angle singularity.

Example. One classic example for a finite translation surface is given by a glued polygon as
shown on the left-hand side in Figure 2.2. The resulting surface has genus 2 and all vertices
of the polygon are identified to one singularity. Note that the total angle sum around this
singularity is 6π. Hence it has one conical singularity with multiplicity k = 2.

Figure 2.2: Two examples for tame translation surfaces.

On the right-hand side we see an important example, the infinite 2-staircase. It consists
of infinitely many glued squares where opposite sides are identified using a horizontal resp.
vertical translation. After identficiation there remain four distinct singularities which are all
∞-angle. Hence the resulting translation surface X is the complete quotient space without
those four singularities. In particular, we see here that any closed disc in X around a singularity
is non-compact.

For a closer study of the infinite staircase and its dynamical properties we refer to [HHW13].

2.3 Geodesics

In this section we present the geometric properties of translation surfaces and are particularly
interested in the behaviour of geodesics in such surfaces. For a detailed examination of the
geometry of flat metrics, see [Dan10].
Let X be a translation surface and consider the space X with all singularities included. A

geodesic in X is a path γ from an interval into X that is locally isometric. Given two points
x, y ∈ X a geodesic arc between x and y is a geodesic γ : [0, L]→ X satisfying L = d(x, y).
We call its image [x, y] := γ([0, L]) ⊂ X a geodesic segment between x and y. A geodesic
segment [x, y] satisfying [x, y] ∩ Sing(X) = {x, y} is called a saddle connection.
Let z ∈ X be a point on a geodesic segment which is not an endpoint. If z ∈ X∗ then
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the geodesic segment in a small neighborhood of z is a Euclidean line segment since X∗ is
locally isometric to the Euclidean plane. If z ∈ Sing(X) is a tame singularity then in a small
neighborhood of z the geodesic segment consists of two Euclidean line segments starting in z
such that the angle at z between both line segments is not less than π. In particular if z is a
conical singularity of multiplicity 0, i.e. with the regular angle sum 2π, the geodesic segment
through z locally is just a Euclidean line. However if z has multiplicity ≥ 1 or is ∞-angle
it is possible to have a geodesic segment having an angle greater than π at a singularity. In
particular, given a geodesic ending in such a singularity, there are uncountably many ways to
extend this geodesic as long as the angle remains ≥ π. In Figure 2.3 we see an example of a
geodesic entering a singularity with multiplicity k = 2 and three possible ways of extending
this geodesic.

< π

< π

≥ π

Figure 2.3: Three of infinitely many possible geodesics crossing a conical singularity.

The following lemma presents a sufficient condition for recognizing tame translation surfaces.
Using this we will prove in Section 3.1 that all regular translation surfaces are tame.

Lemma 2.3. Let X be a translation surface such that the length of each saddle connection
in X is uniformly bounded below by a positive number L. Then X is tame. Furthermore any
geodesic segment between two singularities consists of finitely many saddle connections.

Proof. As the length of any saddle connection in X is bounded below by L > 0 each disc of
radius L/3 around a singularity σ does not contain a second singularity. Hence, we can for
example choose L/3 as uniform radius around each singularity to construct a cyclic covering of
the corresponding punctured disc in Euclidean space. This proves that X is tame. Now consider
a geodesic segment [σ, σ′] between two singularities σ, σ′. It has the length d := d(σ, σ′). As
the length of each saddle connection is bounded below by L > 0 the number N of saddle
connections in the segment [σ, σ′] satisfies the relation d ≥ L ·N , and is thus finite.

2.4 Finite translation surfaces

Finite translation surfaces form one large class of tame translation surfaces. By definition
a finite translation surface X is obtained from a finite collection P of Euclidean polygons
together with a gluing map gl : E(P) → E(P). Since P is finite there are only finitely
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many vertices and the angle sum around each vertex is finite. As a result X = X is a closed,
tame translation surface with finitely many conical singularities σ1, . . . , σn having multiplicities
k1, . . . , kn. For finite translation surfaces we often shortly write Σ instead of Sing(X) and we
say that X has singularity type (k1, . . . , kn). Using a variant of the Gauss-Bonnet formula we
have the following relation between the multiplicities and the genus g of the surface X:

2g − 2 =
n∑
i=1

ki.

In the following it will be much more convenient for us to think of a finite translation surface
X as only one Euclidean polygon P ⊂ R2 glued along paired parallel edges of same length
and different orientation. It is always possible to find such a polygon as shows the zippered
rectangle construction by Yoccoz, see [Yoc10]. In particular we can even choose this polygon
P to only have right angles. This is not necessary in general but will be helpful in a later
proof. Let π : P → X be the natural quotient map. The polygon P has 2m sides and corners
where m denotes the number of paired edges. The 2m corners in P are identified by the gluing
to form the n singularities σ1, . . . , σn. Applying the Euler formula on the finite translation
surface obtained by gluing P we obtain the following relation for m:

m = 2g + n− 1.

Label the 2m edges by e±1 , . . . , e±m such that paired edges are of the form (e+
i , e

−
i ). Fix a point

x̃0 in the interior of P and let x0 := π(x̃0) be its image in X∗. It is a common topological fact
that the surface X∗ of genus g and with n punctures has a fundamental group isomorphic to
the free group on m = 2g + n− 1 generators. In our current setting we can now choose those
generators in a natural way. Namely, we let ci be the homotopy class of a loop in X∗ based in
x0 that crosses only the edge π(e+

i ) = π(e−i ) exactly once. And we orient the loop in such a
way that its preimage in the polygon P enters the edge e+

i and exits e−i . Figure 2.4 shows an
example of such a choice of loops. Hence, the fundamental group of X∗ is given by

π1(X∗, x0) = 〈c1, . . . , cm〉 ∼= Fm,

and we equip the fundamental group with the word metric with respect to the generating set
{c1 . . . , cm}. Note that the choice of generators ci depends on the polygon P . For a formal
definition of the word metric on groups see Section 2.7.

Given a finite translation surface X coming from a Euclidean polygon P ⊂ C we define two
different notions of diameter. The diameter of X is given by

diam(X) := max
x,y∈X

d(x, y),

where d is the natural flat metric on X. For the second definition we define the polygonal
metric dP on P as follows. For any two points x, y ∈ P ⊂ C let dP (x, y) be the length of the
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e+
1

e+
2

e+
3

e+
4

e−3e−1

e−4

e−2

x0

c1
c2

c3
c4

Figure 2.4: Four loops whose homotopy classes generate the free group π1(X∗, x0).

shortest path between x and y which lies inside the polygon P . Note that if P is not convex
then this shortest path may consist of several straight line segments as shown in figure 2.5 (a).
We now define the diameter of P as

diam(P ) := max
x,y∈P

dP (x, y).

In general both notions of diameter are not identical as shows the example in figure 2.5 (b).

(a) (b)

x

y x

y

x′

y′

P P X

Figure 2.5: (a) A path in P realizing the distance dP (x, y). (b) Two paths in the polygon P
resp. the corresponding translation surface X realizing the respective diameters.

2.5 Singular loops

For each singularity σi ∈ Σ in the finite translation surface X we consider the homotopy class
ri ∈ π1(X∗, x0) of a loop based in x0 around σi. More precisely we choose this loop to be
minimal with respect to its word length and say that ri is a singular loop for σi. Note that
this element ri is not unique: If ri has word length di then there are altogether 2di possible
singular loops corresponding to the di cyclic conjugates of ri and their inverses. By ignoring
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the inverses we thus have di possible choices of singular loops around σi all having word length
di with respect to the generating system {c1, . . . , cm} of π1(X∗, x0). By cyclic conjugates of a
word w = w1 . . . wd we mean the words obtained by successively conjugating the word with
w−1

1 , w−1
2 , . . . , w−1

d−1, i.e. the words w2 . . . wdw1, w3 . . . wdw1w2 etc. Illustratively the number
di corresponds to the number of different ’corner sectors’ crossed by a singular loop around a
given singularity σi, see Figure 2.6. Or put differently, the number di is the number of corners

r1

x0

r2

σ2

σ1

e+
1

e+
2 e+

3
e+

4

e+
5

Figure 2.6: An example for singular loops around σ1 and σ2. Here d = 5 and r1 = c3c
−1
4 c5c1c

−1
2

and r2 = c4c
−1
5 c−1

1 c2c
−1
3 .

in the polygon P which are identified with the singularity σi after gluing. This observation
shows us that we can count the number 2m of corners in P by adding the number of ’corner
sectors’ for each singularity. In other words

∑
σi∈Σ

di = 2m.

In particular we can bound the word length di of those singular loops ri by 2m. If we now
choose such singular loops r1, . . . , rn for each singularity we can describe the fundamental
group π1(X,x0) via the following group presentation, see [Sti93].

π1(X,x0) ∼= 〈c1, . . . , cm | r1, . . . , rn〉.

2.6 Regular coverings

We need some further general tools from covering theory, see [Hat02] or [Ful95]. Consider a
topological covering p : S → S0 between two topological surfaces. The covering p is called
regular if the deck transformation group

Deck(S|S0) := {f ∈ Homeo(S) | p ◦ f = p}
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acts transitively on the fiber p−1(x) for any x ∈ S0. We say that a regular covering is a
G-covering if its deck transformation group is isomorphic to G. Two coverings p : S → S0

and p′ : S′ → S0 are equivalent if there is a homeomorphism f : S → S′ such that p′ ◦ f = p.
Note that in the case of p and p′ being translation coverings this implies that f is a translation
and hence both translation surfaces are equivalent.
Consider a regular topological covering p : S → S0 and fix a base point x̃0 ∈ S and

x0 := p(x̃0) ∈ S0. This defines a surjective group homomorphism, the monodromy map, as
follows. Let

µ : π1(S0, x0)→ Deck(S|S0), c 7→ f−1,

where f is the unique element in Deck(S|S0) which maps x̃0 to the endpoint of the lift c̃
of c starting in x̃0. Note that this element is well defined as the endpoint lies in the fiber
p−1(x0) and Deck(S|S0) acts transitively on this fiber. Note that it is necessary to take the
inverse of f in order for µ to be a homomorphism. In the case that p is a G-covering with
fixed isomorphism ϕ : Deck(S|S0) ∼→ G we often work with the alternative monodromy map
ϕ ◦µ : π1(S0, x0)→ G. The following lemma shows that we can detect equivalent G-coverings
by studying their monodromy maps.

Lemma 2.4. Let p : S → S0 and p′ : S′ → S0 be two G-coverings with corresponding
monodromy maps µ, µ′ : π1(S0, x0) � G. The following are equivalent:

(i) p and p′ are equivalent coverings,

(ii) kerµ = kerµ′,

(iii) There is α ∈ Aut(G) such that µ′ = α ◦ µ.

Proof. We give a sketch of the proof here. For further details consider [Hat02].

(i)⇒ (ii) Let γ ∈ kerµ. In other words, each lift of γ in S is a closed path. By the equivalence
of p and p′ there is a homeomorphism f : S → S′ satisfying p′ ◦ f = p. In particular,
each lift of γ in S′ is the image under f of a lift in S and hence a closed loop, too. This
proves kerµ ⊆ kerµ′. The converse inclusion follows analoguously.

(ii)⇒ (i) Fix a universal covering S̃ → S0 of S0. The normal subgroup U := kerµ = kerµ′ in G
acts freely and properly discontinuously on S̃ and hence induces a covering q : U\S̃ → S0.
The quotient space by definition is homeomorphic to S, say via f : S → U\S̃. By
definition of the covering q we have that p = q ◦ f and hence p and q are equivalent. The
same holds for S′ and p′ and we get that p and p′ are equivalent.

(ii)⇔ (iii) The direction (iii) ⇒ (ii) is clear. Define the following map α : G→ G via α(g) := µ′(γ)
where γ is an arbitrary element in the preimage µ−1(g) ⊂ π1(S0, x0). This map is
well-defined: If γ1, γ2 both lie in µ−1(g) then γ1γ

−1
2 lies in kerµ which is kerµ′ by (ii).

From this follows that µ′(γ1) = µ′(γ2) and α is well-defined. Furthermore, it is not hard
to check that α is a group homomorphism.
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2.7 Quasi-isometries and Cayley graphs

The definitions and results in this chapter are taken from [FM12], [BH99] and [Bri08]. The
proofs for all statements in this section can be found in [BH99]. Let (X, d) and (X ′, d′) be
two metric spaces. A map f : (X, d)→ (X ′, d′) is a quasi-isometric embedding if there are
constants A ≥ 1, B ≥ 0 such that we have for all points x, y ∈ X

1
A
· d(x, y)−B ≤ d′(f(x), f(y)) ≤ A · d(x, y) +B.

The map f is called quasi-surjective if there is a constant R ≥ 0 such that for any point z ∈ X ′

there is a point x ∈ X with d′(f(x), z) ≤ R. A quasi-surjective quasi-isometric embedding as
above is called an (A,B)-quasi-isometry and we also say that the spaces (X, d) and (X ′, d′)
are quasi-isometric. Note that this property is indeed an equivalence relation as it is always
possible to construct a quasi-isometry g : X ′ → X from a given quasi-isometry f : X → X ′.

There is an interesting result combining both the geometry of a metric space and properties
of a group acting on that space in a certain way. A metric space (X, d) is proper if closed balls
of finite radius in X are compact. It is a geodesic metric space if there exists a geodesic arc
between any two points in X. Given a group G acting on the metric space (X, d) we call the
action cocompact if there is a compact set K ⊆ X such that X = G.K, or equivalently if the
quotient space G\X of the action is compact. The action is properly discontinuous if, for each
compact K ⊆ X, the set {g ∈ G | g.K ∩K 6= ∅} is finite.

Remark. Let X be a tame translation surface with the induced flat metric d. We have seen
before that closed balls of finite radius around ∞-angle singularities are non-compact. Hence
(X, d) is a proper metric space if and only if Sing(X) only contains conical singularities.

We can turn a finitely generated group G with finite generating set S into a proper metric
space endowed with the so-called word metric dS induced by S as follows. We first define the
word length of an element g ∈ G to be

|g|S := min{k ∈ N0 | g = s1 . . . sk, si ∈ S ∪ S−1, i = 1, . . . , k},

where S−1 denotes the set of inverses of S. Then the word metric for two elements g, h ∈ G is

dS(g, h) := |g−1h|S

and defines a metric which is invariant under G-left multiplication. The proof of the following
lemma can be found in [BH99], Proposition 8.19.

Lemma 2.5 (Švarc-Milnor-Lemma). Let (X, d) be a proper geodesic metric space. If a
group G acts properly discontinuously and cocompactly by isometries on X, then G is finitely
generated. Furthermore, for any choice of finite generating set S and basepoint x0 ∈ X the
map (G, dS)→ (X, d) g 7→ g.x0 is a quasi-isometry.

One important class of examples for quasi-isometric spaces is given by Cayley graphs of
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finitely generated groups. Let G be a group generated by a finite set S. From this we construct
a graph Cay(G,S), the oriented Cayley graph of G with respect to S, as follows. The vertices
of Cay(G,S) are the elements of G. And for each generator s ∈ S and vertex g ∈ G there is
an edge from the vertex g to gs. Note that the unoriented Cayley graph is always a connected
graph since S is a generating set. In the literature one sometimes finds this graph to be
unoriented and also the restrictions on S may vary. It is often required that S may not contain
the neutral element of G or any self-inverse elements. However, for our purposes we do not
restrict S as long as all its elements generate G. In particular, we even allow S to contain two
or more identical elements. Figure 2.7 shows part of the Cayley graph of Z with generating set
S = {0,−2, 3}.

0 321−1−2−3

Figure 2.7: The Cayley graph Cay(Z, {0,−2, 3}).

The group G itself acts on Cay(G,S) by left-multiplication on the vertices: (g, h) 7→ gh. In
this way each element g ∈ G induces an automorphism of Cay(G,S). Furthermore, we equip
Γ := Cay(G,S) with the natural graph metric dΓ where the distance between any two adjacent
vertices is 1. With respect to this metric each automorphism induced by the G-action is in
fact an isometry. One easily checks that the left-action of G on Cay(G,S) as metric spaces
is properly discontinuous and cocompact. By the Švarc-Milnor Lemma 2.5 the injective map
G → Cay(G,S), g 7→ g is a quasi-isometry. This proves the first statement of the following
Lemma. For the second statement we refer to [FM12], Theorem 8.2.

Lemma 2.6. Let G be a group generated by the finite subset S. Then (G, dS) and (Cay(G,S), dΓ)
are quasi-isometric. Furthermore the quasi-isometry class of (G, dS) does not depend on the
finite generating set S.

For this reason we will often omit the finite generating set S when we talk about the quasi-
isometry class of G. And we often shortly say that some metric space X is quasi-isometric to
G when it is clear that we are implicitly talking about word metrics corresponding to finite
generating sets.

Remark. It is important to keep in mind that the previous lemma only holds for finite generating
sets. While it is possible to define the Cayley graph with respect to an infinite generating
set as we will do in Section 4.3, it turns out in general that this Cayley graph is not at all
quasi-isometric to the group with word metric corresponding to a finite generating set. In an
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example at the beginning of Section 4.4 we consider the Cayley graph Cay(Z, 2Z) and it turns
out that this is a bounded metric space having only one end, in contrast to Cay(Z, S) being
unbounded and having two ends when S is a finite generating set.

There has been much work on the classification of quasi-isometry classes of metric spaces,
and in particular of finitely generated groups. A helpful tool is to find objects associated to
metric spaces that remain invariant under quasi-isometries. We call them QI-invariants. The
usual approach in order to distinguish the quasi-isometry classes of two given metric spaces is
to find a suitable QI-invariant and to show that it is different for those metric spaces. We give
here some well-known facts about quasi-isometries, see [BH99], Chapter 8.

Lemma 2.7. (i) Any two finite groups resp. bounded metric spaces are quasi-isometric.

(ii) A group G is quasi-isometric to Z if and only if it contains Z as finite index subgroup.

(iii) For n ≥ 2 all free groups Fn on n generators are quasi-isometric.

(iv) Zm is quasi-isometric to Zn if and only if m = n.

(v) If H is a finite index subgroup of G then H and G are quasi-isometric.

Some common QI-Invariants for finitely generated groups are e.g. finiteness, hyperbolicity,
their growth rate and their space of ends. See the next section for the notion of ends.

2.8 The space of ends

The originial definiton of the space of ends can be found in [Fre31] and works with ascending
sequences of compact subsets in a topological space. In this thesis we use the equivalent
definition using proper rays which is introduced in [Hop44], §1, and which will turn out to be
useful for our study of translation surfaces. All the following definitions and results can be
found in [BH99].
Let X be a topological space. A proper ray in X is a map r : [0,∞)→ X such that the

preimage of every compact set in X is again compact. In particular, for every compact K ⊆ X
there is T ≥ 0 such that r([T,∞]) does not intersect K. More illustratively, a proper ray is an
infinite path in X that might cross a compact set many times but after a finite time it leaves
this compact set and never reenters it. Two proper rays r, r′ : [0,∞)→ X are equivalent if
for every compact K ⊂ X there is T > 0 such that the restricted rays r|[T,∞) and r′|[T,∞) lie
in the same path component of X\K. The equivalence class of a proper ray r, denoted by
end(r), is called an end of X and we denote by Ends(X) the set of all ends of X.

Next, we equip Ends(X) with a topology by defining a notion of convergence as follows. A
sequence of ends end(rn) converges to an end end(r) for n→∞ if and only if for every compact
set K ⊆ X there exists a sequence of integers Nn such that rn[Nn,∞) and r[Nn,∞) lie in
the same path component of X\K whenever n is sufficiently large. The topology on Ends(X)
is now defined by describing its closed sets, where A ⊆ Ends(X) is closed if it satisfies the
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following condition: if end(rn) ∈ A for all n ∈ N then end(rn) → end(r) implies end(r) ∈ A.
The following result, see [BH99], Proposition 8.29, shows that quasi-isometric spaces have
homeomorphic spaces of ends.

Lemma 2.8. Let X and X ′ be proper geodesic spaces. Then every quasi-isometry f : X → X ′

induces a homeomorphism end(f) : Ends(X)→ Ends(X ′).

Given a finitely generated group G with finite generating set S its Cayley graph Γ :=
Cay(G,S) clearly is a geodesic space. And since S is a finite generating set, all vertices of Γ
have finite valence and Γ is proper. We then define Ends(G) := Ends(Γ). In this definition
the space of ends Ends(G) depends, a priori, on the choice of the generating set S. But the
previous lemma together with Lemma 2.6 show that this is well-defined up to homeomorphisms.
One important result in geometric group theory about ends of finitely generated groups is

the following, see [BH99], Theorem 8.32, and [Hop44], [Sta68] for details.

Theorem 2.9. Let G be a finitely generated group. Then Ends(G) has either 0, 1, 2 ends or is
a Cantor set. More precisely,

(i) G has 0 ends if and only if it is finite,

(ii) G has 2 ends if and only if it contains Z as a subgroup of finite index,

(iii) G has infinitely many ends if and only if G can be expressed as a certain form of
amalgamated free product or HNN extension.

Remark. These two results combined show us that for finitely generated groups the number of
ends is a QI-invariant. However, this does not hold true for infinite generating sets. In Section
4.4 we will consider Cayley graphs of groups with infinite generating sets and see examples
where such a Cayley graph for Z is bounded but does have one end, although Z when finitely
generated has 2 ends.
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Regular Translation Surfaces

3.1 Definition

A translation surface X is called regular if there is a finite translation surface X0 and a regular
translation covering p : X∗ → X∗0 . The regular covering p can be extended to a continuous
map X → X0. We will denote this extension by p as well. Note that p−1(Sing(X0)) = Sing(X).
If the deck transformation group Deck(X∗|X∗0 ) is isomorphic to some abstract group G we also
say that X is a G-regular translation surface. We call the covered finite translation surface X0

the base surface of X. Clearly, X is an infinite translation surface if and only if G is infinite.

Lemma 3.1. Regular translation surfaces are tame.

Proof. Let X be a regular translation surface and X0 its base surface. We show that the
minimal length of saddle connections in X is bounded below by a positive number. The claim
then follows from Lemma 2.3. Since p is a local isometry each saddle connection in X is
mapped to a saddle connection in X0 of the same length. In particular the infimum of possible
lengths of a saddle connection in X is exactly the infimum L of saddle connection lengths in
X0. Since X0 is a finite translation surface L is a positive number.

3.2 Construction

We next describe an illustrative way of constructing G-regular translation surfaces and we
prove that every regular translation surface can be constructed this way. This will turn out to
be very useful in the later sections as we can consider regular translation surfaces as a glued
collection of multiple copies of one and the same polygon.
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We make use of the notions defined in Section 2.4. Fix a finite translation surface X0 obtained
by gluing paired parallel sides of a 2m-sided polygon P . Let π : P → X0 be the corresponding
quotient map. Fix further a finitely generated group G with m generators s1, . . . , sm. By the
universal property of free groups there is a unique homomorphism µ : Fm ∼= π1(X∗0 ,M)→ G

which maps c−1
i 7→ si. We now construct a translation surface Xµ as follows. Consider G

copies of the polygon P , i.e. one copy P × {g} for each g ∈ G and identify the sides of those
polygons in a particular way. Namely we identify the e+

i -side of each polygon P ×{g} with the
e−i -side of the polygon P ×{gsi}, i = 1, . . . ,m. As for the constructive definition of translation
surfaces we define Xµ to be (P ×G)/∼µ where ∼µ denotes the equivalence relation given by
the gluing identification of sides, and Xµ is Xµ without all vertices of infinite degree. Therefore
points in Xµ can be parametrized as equivalence classes of pairs (x, g) where x ∈ P, g ∈ G. We
shortly write [x, g] ∈ Xµ for such an equivalence class. Note that the resulting space Xµ is
connected since the group G is generated by s1, . . . , sm. By construction Xµ is a translation
surface and it is an infinite one if and only if G is infinite. Note that the definition of Xµ does
not only depend on X0 and µ but on the specific gluing polygon P we choose for X0. However,
we will show in the following section that different polygons for one and the same surface X0

yield equivalent translation surfaces Xµ, hence we can omit P in the description of Xµ.
We still need to show that the constructed surface Xµ is a G-regular translation surface. In

the way we constructed Xµ there is a natural left G-action by translations on Xµ given by
h.[x, g] := [x, hg] which when restricted to X∗µ is clearly free and properly discontinuous. The
latter follows from the fact that each element acts by translation of the copies of P and hence
the distance between translated copies is bounded below. This way we get a covering map

p∗ : X∗µ → X∗0 , [x, g] 7→ π(x),

which extends to a continuous map p : Xµ → X0. Furthermore, the quotient space of this
action is exactly X∗0 . Hence the deck transformation group Deck(X∗µ|X∗0 ) is isomorphic to
G. Since G acts transitively on the fibre of each point x ∈ X∗0 we have in particular that p
restricted to X∗µ is a regular covering. Note that the monodromy map corresponding to p∗ is
given by µ.

Remark. We can easily illustrate G-regular coverings constructed as before by drawing the
Euclidean polygon P and labeling each edge with a generator of G. If two edges are paired we
often omit the label of one of both edges since each label in G of an edge is simply the inverse
of the label of its paired egde. See the following example.

Example. Consider the G-regular translation surface covering X0 given by Figure 3.1 where
G = S3 is the symmetry group on 3 elements. The monodromy map µ is given as shown on
the left-hand side. It assigns to each generator of π1(X∗0 , x0) a transposition in S3 such that
all transpositions together generate the whole group. The preimages of the black resp. white
singularities of the base surface are the three black resp. white singularities on the regular
translation surface. An edge on the right-hand side is glued to the unique parallel edge having
the same singularities as endpoints.
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∼=

(23)

(12) id

(13) (123)

(12)

(132)(23)

(13)

x0

Figure 3.1: An S3-regular translation surface.

3.3 Equivalence of regular translation surfaces

In this section we show that each regular translation surface X is equivalent to a constructed
one of the form Xµ and that the equivalence class is independent of the choice of base polygon.
For this reason we will from now on only consider G-regular translation surfaces of the form
Xµ constructed from G copies of one Euclidean polygon.

Proposition 3.2. (i) For each regular translation surface X there is a polygon P , a finitely
generated group G and a monodromy map µ such that X is equivalent to the constructed
translation surface Xµ = (P ×G)/ ∼µ without the vertices of infinite degree.

(ii) The equivalence class of X does not depend on the choice of base polygon P .

Proof. Let p : X∗ → X∗0 be the regular translation covering associated to the regular
translation surface X. Choose an arbitrary Euclidean polygon P ⊂ R2 with paired edges such
that P/∼ is equivalent to X0 where ∼ is the map gluing two paired edges together. In other
words, there is a local translation T : P/∼ → X0. Such a polygon can for example be found
using the zippered rectangle construction presented in [Yoc10]. Fix a point x̃0 lying in the
interior of P and let x0 := T (x̃0) ∈ X0. Let G := Deck(X∗|X∗0 ) be the deck transformation
group of the covering p. As shown in Section 2.6 the covering p induces the monodromy
homomorphism µ : π1(X∗0 , x0) → G. This monodromy in return induces a labeling of the
edges of P as follows: To each edge e of P is assigned a unique homotopy class of paths in
P/∼ based in x̃0 crossing only the edge e once. Let γe ∈ π1(X∗0 , x0) be the image of this class
under T and define µ(γ−1

e ) ∈ G to be the label of e. The inverse argument of µ comes from
the fact that we defined µ as a homomorphism. Now construct the translation surface Xµ

from Xµ := (P ×G)/∼µ as explained above.
As we have already seen this construction induces a new covering p′ : X∗µ → (P/∼)∗ which as

well is a G-regular translation covering. Let q := T ◦ p′ : X∗µ → X∗0 and consider the following
commuting diagram. By the construction of Xµ we know that the corresponding monodromy
maps µp and µq of those two translation coverings are identical. Lemma 2.4 then implies
that p and q are equivalent as topological coverings and so there exists a homeomorphism
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X∗µ X∗

X∗0(P/∼)∗

f

T

q pp′

f : X∗ → X∗µ such that p = q ◦ f . The resulting map f locally is a translation since p and q
are locally translations. The map f can be extended continuously to the metric completion
X → Xµ satisfying f(Sing(X)) = Sing(Xµ). Hence X and Xµ are equivalent translation
surfaces which proves (i). Since the choice of P was arbitrary this also proves (ii).

Remark. With these results in mind we will from now on always assume that all G-regular
translation surfaces are of the form Xµ = (P ×G)/∼µ for some polygon P on 2m sides and a
surjective monodromy homomorphism µ : Fm → G.

Example. Consider the following two G-regular translation surfaces Xµ, Xµ′ where G = F (a, b)
is the free group on two generators, as shown in Figure 3.2. The two finite base translation

a ba

b

baa

Xµ Xµ′

1

Figure 3.2: Two F (a, b)-regular translation surfaces with equivalent base surfaces

surfaces X0 and X ′0 are equivalent since we can cut the left-hand polygon along the dotted
lines and glue the remaining parts together to form the right-hand polygon. We claim that
both infinite G-regular translation surfaces are equivalent as well. In order to see this we
choose generators c1, c2, c3 of the fundamental group of the equivalent base surfaces and study
the monodromy maps µ and µ′ of the coverings, see Figure 3.3. The monodromy map µ of the
left-hand covering is easily seen to be

µ : c−1
1 7→ a, c−1

2 7→ ba, c−1
3 7→ b,

while following the paths of the right-hand covering results in a monodromy map

µ′ : c−1
1 7→ a, c−1

2 7→ a−1ba2, c−1
3 7→ a−1ba.
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X0 ∼= X ′0

c1 c2

c3
c1

c3

c2

Figure 3.3: A choice of three generators of π1(X∗0 , x0) in the equivalent base surfaces

Although both maps are not identical a short calculation shows that the inner automorphism
α of F (a, b)

α : a 7→ a, b 7→ a−1ba,

satisfies µ′ = α ◦ µ, and hence both monodromy maps are equivalent. Lemma 2.4 now implies
that the corresponding translation coverings are equivalent es well and therefore the two
regular translation surfaces Xµ and Xµ′ are equivalent as well. An illustrative proof of this
fact can also be seen in Figure 3.4, where a part of the regular translation surfaces is shown.
Here, one can ”see” the isometry between both translation surfaces mapping black resp. white

Xµ
∼= Xµ′

1 bb−1

a−1a−1b−1

a ba

1 a−1ba
a−1b−1a

a−1a−1b−1

a a−1ba2

Figure 3.4: Both F (a, b)-regular translation surfaces turn out to be equivalent

singularities of Xµ onto black resp. white singularities of Xµ′ . Note that the white singularities
are all ∞-angle singularities. That is why we draw those curved slits into the surfaces which
should be thought of as straight slits.

3.4 Singularity types

A lot of data and properties of a G-regular surface Xµ can be extracted simply by studying
the base surface X0 and the monodromy map µ : π1(X∗0 , x0) → G. We show now that we
can describe the types of singularities of Xµ using methods of group theory.
Consider first a finite translation surface X0 with singularities Σ = {σ1, . . . , σn} which is

given by some simply connected polygon P with 2m sides. Let x̃0 be a point in the interior of
P and x0 ∈ X0 its corresponding image under the gluing map. As described in Section 2.4
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let c1, . . . , cm be the loops in X∗0 corresponding to the side pairs of P and which generate the
free group π1(X∗0 , x0) of rank m. For each singularity σi choose a singular loop ri ∈ π1(X∗0 , x0)
around it as shown in Section 2.5. Now fix a surjective homomorphism µ : π1(X∗0 , x0)→ G

such that si := µ(c−1
i ) form a finite generating system S for the group G, i = 1, . . . ,m. For

the singular loop rj around each singularity σj define uj := µ(r−1
j ) ∈ G to be the monodromy

element for σj , j = 1, . . . , n. Note again that a different choice of singular loop r′ around σj
results in a monodromy element u′ which is conjugated to uj in G or its inverse. Finally we
define the set

Σ∞ := {σj | uj has infinite order in G, j = 1, . . . , n} ⊆ Σ.

The set Σ∞ is well defined as it does not depend on the choice of the singular loop rj : From
the observations made in Section 2.5 we know that since a different singular loop r′ around
σj results in an element u′ conjugated to uj in G or inverse to it, both elements uj and u′

have the same order ∈ N ∪ {∞}. Note however that the subset Σ∞ always depends on the
homomorphism µ.

As we have seen before µ induces a G-regular translation surface Xµ and a regular covering
which can be extended to p : Xµ → X0 such that Sing(Xµ) = p−1(Σ). Since Xµ is tame it
only has conical or ∞-angle singularities. The following lemma tells us that we can recognize
the ∞-angle singularities in Xµ as the preimages of Σ∞ under p.

Lemma 3.3. Let Xµ and Σ∞ be as before.

(i) σ ∈ Σ∞ if and only if each of its preimages is ∞-angle.

(ii) σ /∈ Σ∞ if and only if each of its preimages is conical. More precisely, if σ has multiplicity
kσ then each of its preimages has multiplicity

(kσ + 1)ord(uσ)− 1.

Proof. Let σ ∈ Σ and σ̃ ∈ p−1(σ) one of its preimages in Xµ. We show that σ ∈ Σ\Σ∞ if and
only if σ̃ is conical. On the polygon P fix a corner C which is mapped onto σ under the gluing
map. By construction of Xµ we find a copy P × {g} of the polygon such that the corner after
identification [C, g] is exactly the preimage σ̃. Consider the unique singular loop r ∈ π1(X∗0 )
around σ corresponding to the corner C and consider its lift r̃ in X∗µ starting in the point
[x0, g] ∈ X∗µ. The endpoint of r̃ is then [x0, gu] where u = µ(r−1) since µ is the monodromy
map of the covering. Similarly for every k ∈ Z the endpoint of the lift of rk starting in [x0, g]
is given by [x0, gu

k]. See Figure 3.5 for an example. Obviously σ̃ is a conical singularity if and
only if the lift of some power of r is a closed loop in X∗µ, i.e. if and only if there is a k ∈ Z
such that guk = g or equivalently if and only if u ∈ G has finite order. This last statement is
equivalent to σ /∈ Σ∞.
Let us calculate the multiplicity in the finite case. Since σ /∈ Σ∞ we know that each of its

preimages σ̃ is conical. Each lift of the singular loop r corresponds to a sector of angle sum
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p

Xµ

X0
r

r̃

s1

s3

s4

s2

g gs2 gs2s
−1
4 gµ(r−1)

x0

σ̃

Figure 3.5: The lift r̃ of a singular loop starts in the copy g and ends in the copy gµ(r−1).

2π(kσ + 1) around σ̃. Since the lift of rord(u) is a closed simple loop around σ̃ and ord(u) is
minimal with respect to this property we can add up the angle sums of the ord(u) many sectors
and get a total angle sum of 2π(kσ +1) ·ord(u). Hence its multiplicity is (kσ +1)ord(u)−1.

We will now describe the singularity set Sing(Xµ) in more detail and denote by Sing∞(Xµ) :=
p−1(Σ∞) the set of all ∞-angle singularities of Xµ. Remember that the points in Xµ =
(P × G)/∼µ are given by equivalence classes [x, g] of pairs (x, g) where x ∈ P and g ∈ G.
Then [x, g] is a singularity (possibly of multiplicity 0) if and only if x is a corner of the
polygon P . Now for each σ ∈ Σ of the n singularities fix one corner Cσ of P representing
it and let uσ ∈ G be the monodromy element corresponding to the corner Cσ. Clearly,
Sing(Xµ) = {[Cσ, g] | σ ∈ Σ, g ∈ G}.
Because of [Cσ, g] = [Cσ, h] if and only if h = gumσ for some m ∈ Z we know that [Cσ, g] =

[Cσ, gumσ ] for all m ∈ Z. Hence we can identify this singularity with the coset g〈uσ〉 of G/〈uσ〉.
This observation proves the following Lemma.

Lemma 3.4. There is a bijection

Sing(Xµ) = {[Cσ, g〈uσ〉] | σ ∈ Σ, g ∈ G} ∼−→
⊔
σ∈Σ

G/〈uσ〉,

and similarly
Sing∞(Xµ) ∼=

⊔
σ∈Σ∞

G/〈uσ〉.

Lemma 3.4 permits us to make two interesting statements about the structure of regular
translation surfaces. Firstly, for finite regular translation surfaces we can compute the genus
and the singularity type from the data of the given base surface X0 and the monodromy µ.
Secondly, we can characterize infinite regular translation surfaces only having finitely many
∞-angle singularities.
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Corollary 3.5. Let Xµ be a finite G-regular translation surface with base surface X0. Let
uσ ∈ G be a monodromy element for each singularity σ ∈ Σ of X0. Then the genus of Xµ can
be computed using the following formula:

2− 2g(Xµ) = |G| ·

2− 2g(X0)−
∑
σ∈Σ

(
1− 1

ord(uσ)

) .
Proof. Since G is a finite group all the elements uσ have finite order and the set Σ∞ is empty.
Hence the continuous extension map p : Xµ → X0 yields a ramified covering which is possibly
ramified over the n singularities of X0. The ramification index eσ for each singularity is exactly
the order of uσ. Let mσ be the number of preimages in p−1(σ) and let d = |G| be the finite
degree of the unramified covering p : X∗µ → X∗0 . Then we have mσ · eσ = d for all σ ∈ Σ.
Consider a triangulation of X0 where Σ is a subset of the vertices with F faces, E edges and
V vertices. This induces a triangulation on Xµ via the covering map p. Then every face of
dimension 1, 2 and any vertex of the triangulation in X0 that is not a singularity has exactly d
preimages in Xµ. Applying the Riemann-Hurwitz formula to the triangulation in Xµ yields

χ(Xµ) = d · F − d · E + d · (V − n) +
∑
σ∈Σ

mσ

= d · (F − E + V )− d · n+
∑
σ∈Σ

d

eσ

= d · χ(X0)− d ·
∑
σ∈Σ

(
1− 1

eσ

)
.

Using the relation χ(Xµ) = 2− 2g(Xµ) for the genus finishes the proof.

Example. We can use the formula from Corollary 3.5 to compute the genus of the S3-regular
translation surface in Figure 3.1. The base surface is the flat torus and has genus g(X0) = 1.
The monodromy element corresponding to the singular loop starting at the black top corner is
(12) and has order 2. The same holds for the white bottom corner. Hence we have

2− 2g(Xµ) = 6 ·
(

2− 2 · 1−
(

1− 1
2

)
−
(

1− 1
2

))
= −6,

and Xµ has genus g(Xµ) = 4.

Corollary 3.6. Let Xµ be G-regular having at least one ∞-angle singularity. Then Xµ has
only finitely many ∞-angle singularities if and only if G is virtually Z, i.e. if G contains an
infinite cyclic subgroup of finite index.

Proof. By the Lemma 3.4 we have a bijection

Sing∞(Xµ) ∼=
⊔

σ∈Σ∞
G/〈uσ〉,

and hence we have that Sing∞(Xµ) is finite if and only if
∑
σ∈Σ∞ [G : 〈uσ〉] is finite. Since Σ
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is finite, this union is finite if and only if [G : 〈uσ〉] is finite for all σ ∈ Σ∞. Therefore, G is
virtually cyclic. Note that we need the condition Sing∞(Xµ) 6= ∅, otherwise Σ∞ = ∅ holds
and we do not necessarily find an infinite cyclic subgroup of G. On the other hand it is quite
easy to see that if G is virtually cyclic then any infinite cyclic subgroup of G is of finite index
and hence

∑
σ∈Σ∞ [G : 〈uσ〉] is finite: Let U = 〈u〉 be an infinite cyclic subgroup of G and

W = 〈w〉 a cyclic subgroup of finite index in G. The finite index of W implies that there is an
m 6= 0 such that um ∈W , otherwise all cosets of the form umW would be pairwise distinct, a
contradiction to the finite index. In particular, the infinite cyclic group 〈um〉 is a subgroup of
U ∩W . As U and W both are infinite cyclic subgroups of G it follows that U ∩W must be an
infinite cyclic subgroup of finite index in both W and U . The index formula

[G : U ] · [U : (U ∩W )] = [G : (U ∩W )] = [G : W ] · [W : (U ∩W )]

then implies that U has finite index in G.

3.5 Quotient surfaces

Consider a G-regular translation surface Xµ on which we have the natural G-action by
translations. Given a subgroup U ≤ G we can study the orbit space U\Xµ of this action.
Clearly, if U = G then the quotient space is again the finite base surface X0, possibly without
singularities. The following lemma shows that the quotient space always is a translation surface,
but not necessarily a regular one.

Lemma 3.7. The quotient space U\Xµ is a translation surface. More precisely,

(i) U\Xµ is a finite translation surface if and only if U ≤ G has finite index,

(ii) The intermediate covering U\Xµ → X0 is a regular translation covering if and only if
U ≤ G is a normal subgroup.

Proof. By definition there is a regular covering p : X∗µ → X∗0 with Deck(X∗µ|X∗0 ) = G. As
a subgroup of G we know that U as well acts freely and properly discontinuously from left
via translations and hence the quotient map πU : X∗µ → U\X∗µ is a translation covering.
Furthermore the subgroup U induces an intermediate covering pU : U\X∗µ → X∗0 satisfying
p = pU ◦ πU . Hence pU is a translation covering onto X∗0 as well and U\X∗µ is a translation
surface. This covering is regular if and only if U is a normal subgroup which implies (ii).
Finally U\X∗µ is a finite translation surface if and only if the fiber p−1

U (x) is finite for any
x ∈ X∗0 . Since there is a bijective correspondence between the fiber and the coset space U\G
the finiteness of the fiber is equivalent to the finite index of U in G and (i) follows.

We can explicitly construct the quotient surface U\Xµ from the polygon collection of Xµ as
follows. Since the U -left action identifies all copies of the form P × {u}, u ∈ U , the quotient
surface U\Xµ consists of the collection P × (U\G) of copies of P which are glued together
similarly to the case of Xµ: Each edge e+

i of a polygon P ×{Ug} is glued to the edge e−i of the
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polygon P × {Ugsi}. Again, removing identified vertices of P of infinite degree in the space
(P × (U\G))/∼ results in a translation surface which is the quotient surface U\Xµ.

Example. Consider the previous example of the S3-regular surface. We have the subgroup
U := 〈(12)〉 ≤ S3 of order two which is not normal in S3. There are three cosets U =
{id, (12)}, U(13) = {(13), (132)} and U(23) = {(23), (123)}. The quotient surface U\Xµ is
shown in Figure 3.6. Note that the quotient surface covers the base surface X0 but not regularly:
The lift of the loop γ in X0 in x̃ is a closed path whereas the lift in ỹ is not closed.

(23)

id

id

(13) (123)

(12)

(132)(23)

(13)

x0

U

U(23)U(13)

x̃

ỹ

p

πU

pU

Figure 3.6: A non-regular quotient surface of the S3-regular translation surface Xµ.

3.6 Examples and their quasi-isometry classes

In the following we present three examples of regular translation surfaces and their geometric
properties. In particular we will determine their quasi-isometry class. As finite translation
surfaces are all quasi-isometric to a point it is clear that only the coarse geometry of infinite
regular translation surfaces will be of interest for us. The resulting observations will then be
generalized in the next section.

Example (1). Figure 3.7 shows two examples of Z-regular translation surfaces, the left one
covering a torus, the right one covering a genus-2 surface. We call them the infinite 2- resp.
3-staircase, denoted by X2 and X3. Although both translation surfaces ’look highly similar’
there are some substantial differences. Namely, as is shown in the figure the 2-staircase has
exactly four ∞-singularities while the 3-staircase has infinitely many conical singularities, all
of them having multiplicity k = 2. In particular, the completion of the 3-staircase is a proper
metric space whereas the completion of the 2-staircase is not. One more important difference
between those two similar translation surfaces is that they are not in the same quasi-isometry
class:
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Figure 3.7: The 2-staircase has four ∞-angle singularities and is a bounded metric space. The
3-staircase only has conical singularities and is quasi-isometric to Z.

Let us take a closer look at the geometry of the completions of these two surfaces. Although
the complete 2-staircase X2 has infinite area it is a bounded metric space: Each copy of the
base polygon P in X2 contains all four ∞-angle singularities. Let σ̃ be one of them. Then for
any two points x, y in X2 we have

d(x, y) ≤ d(x, σ̃) + d(σ̃, y) ≤ 2 · diam(P ),

since the distance d(x, σ̃) is bounded by the largest Euclidean distance between any two points
in the copy of P containing x and similarly for y.

In order to determine the quasi-isometry class of the 3-staircase X3 note that the complete
space X3 is a proper metric space as it only contains conical singularities. We have the natural
Z-action of the deck transformation group on X3 which is illustratively given by translating
the copies of Q up- or downwards. This action is easily seen to be properly discontinuous
and it is cocompact since the quotient space is the compact base translation surface. By the
Švarc-Milnor-Lemma 2.5 it follows then that X3 is quasi-isometric to Z.

Example (2). For the last example let F (a, b) be the free group on two generators a and b.
We consider the F (a, b)-regular surface X(a,b) as shown in Figure 3.8 where the base surface
consists of four unit squares and has four singularities of multiplicity k = 0. For further
observations we will call this surface the AB-surface. The two black singularities have the
monodromy a resp. a−1 while the two white ones have monodromy b resp. b−1, all of infinite
order in F (a, b). The resulting surface X(a,b) is a rather intricate but nonetheless flat surface
having only ∞-angle singularities. More precisely, by Lemma 3.4 we have a bijection

Sing(X(a,b)) = Sing∞(X(a,b)) ∼= F (a, b)/〈a〉 t F (a, b)/〈a〉 t F (a, b)/〈b〉 t F (a, b)/〈b〉.
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a1 1 b
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a

a2

a−1

ba−1

b

ba

a−1b−1

∼=

σa σbτ

Figure 3.8: The F (a, b)-regular translation surface X(a,b)

For example the black square singularity in X(a,b) corresponds to the coset 〈a〉 because it
is contained in all copies P × {am} for m ∈ Z. The following proposition determines the
quasi-isometry class of X(a,b).

Proposition 3.8. Let T∞ be the regular tree of countably infinite valence. Then X(a,b) and
T∞ are quasi-isometric.

Proof. We prove the claim in two steps. In step 1 we define a graph ∆ and embed it into
X(a,b). We then show that this embedding is a quasi-isometry and therefore X(a,b) as well as
X(a,b) are quasi-isometric to ∆. In step 2 we prove that ∆ is graph-isomorphic to T∞. This
concludes the proof.

Step 1. We define the A-B-graph ∆ as follows. Let G := F (a, b) and A := 〈a〉, B := 〈b〉 the
relevant cyclic subgroups. The vertex set of ∆ is defined to be

V (∆) := G/A tG/B

and two vertices gA and hB are adjacent if and only gA ∩ hB 6= ∅. There are no further edges
in between G/A and G/B which makes ∆ a bipartite graph with vertex partitions G/A and
G/B. For the embedding let σa resp. σb be the black square resp. white circle singularity of
the base surface X0 with corresponding monodromies a and b as shown in Figure 3.8. For each
g ∈ F (a, b) all the copies (gam)m∈Z of P have exactly one preimage of σa in common, similar
for the copies (gbm)m∈Z. As observed before this means that we can describe preimages of σa
and σb by the cosets G/A and G/B. More precisely, we have a bijection between the preimage
p−1(σa) and G/A given by

G/A −→ p−1(σa), gA 7→ [Ca, g],
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where Ca is a fixed corner of the polygon P corresponding to the singularity σa. An analogue
statement holds for p−1(σb) and G/B.

Consider now the geodesic segment τ between σa and σb in X0 which is simply the horizontal
saddle-connection between them. We define ∆′ := p−1(τ) ⊂ X(a,b) to be its preimage under
the covering p and we show that ∆′ is an embedding of the A-B-graph ∆ defined above into
X(a,b). The vertex set V (∆′) is p−1(σa) t p−1(σb) and thus bijective to G/A tG/B. And two
vertices [Ca, gA] and [Cb, hB] in ∆′ are connected by an edge if and only if there is common
copy P × {k} in X(a,b) such that both singularities lie in this copy. This is of course equivalent
to k ∈ gA ∩ hB 6= ∅. So both graphs are isomorphic.
It remains to show that this embedding is a quasi-isometry. It clearly is quasi-surjective

since each point in X(a,b) has distance at most diam(P ) to a singularity [σa, gA]. And it is
even an isometric embedding since the shortest path between two singularities in V (∆′) is
simply a sequence of horizontal saddle connections of length 1 which are preimages of τ . An
illustration of the situation is given in Figure 3.9.

1
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A B

A B
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Figure 3.9: On the left-hand side is the graph ∆ which is isomorphic to T∞. On the right-hand
side we see how ∆ is isometrically embedded into X(a,b). Each bold lower edge of
a copy is an embedded edge of ∆. The dotted lines represent the gluings of the
edges labelled with a resp. b.

Step 2. We have to show that ∆ is a regular tree of countably infinite vertex degree. The
vertex A has countably infinitely many neighbors, namely all vertices of the form amB, m ∈ Z.
Similar for the vertex B, see Figure 3.9. It is not hard to show that the left multiplication
by elements of G = F (a, b) is an action via graph automorphisms which is transitive when
restricted to the partitions of V (∆). Hence all vertices have infinite vertex degree.

It remains to prove that ∆ is a tree. To each vertex of ∆ we can assign a syllable length in
N0 and a syllable pattern as follows. Let w.l.o.g. gA be a vertex in ∆, then there is a unique
representant g0 ∈ gA of minimal word length. The syllable length l(gA) of gA is then defined
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as
l(gA) := min{k ∈ N0 | g0 = s1 . . . sk, si ∈ {am, bm : m ∈ Z}}.

Note that all adjacent vertices except from the vertices A and B always have a syllable length
that differs by 1, . For example, the syllable length of the vertex a3b−4a2b10B is 3 since the
minimal representant is g0 = a3b−4a2. Furthermore, this element g0 is either of the form
a∗b∗a∗b∗ . . . or b∗a∗b∗a∗ . . . , the two possible syllable patterns.

Now assume ∆ contains a closed edge path w.l.o.g. based in the vertex A (otherwise apply
a suitable G-left multiplication). This path cannot contain the edge {A,B} because this is the
only edge where the syllable pattern changes. Hence, A is the only vertex of syllable length 0
in the closed edge path. Each path starting in A and not crossing B is a sequence of vertices
such that the syllable length of the vertices increases by 1 in that sequence. So if we move
along the closed edge path in one direction starting in A the syllable length must increase
with each new vertex but on the other hand the syllable length has to be 0 again when the
path returns to A, a contradiction. Hence ∆ does not contain closed edge paths and must be a
tree.

Remark. By an edge contraction argument it is not hard to see that for all n ≥ 3 the n-regular
trees Tn are all quasi-isometric to each other. How about the infinite regular tree T∞? In order
to answer this question we need to define the following notion for metric spaces. A metric
space (X, d) has the finite packing property, shortly denoted by FPP, if there is ρ ≥ 0 such
that for all radii R ≥ r > ρ each ball of radius R contains at most finitely many disjoint balls
of radius r. The following lemma shows that having the FPP is a QI-invariant and therefore
Tn is not quasi-isometric to T∞. I thank Moishe Kohan for the proof idea, see [htt].

Lemma 3.9. Let f : (X, d)→ (Y, d′) be a quasi-isometry. Then X has the FPP if and only
if Y has the FPP. In particular, for all n ∈ N the tree Tn is not quasi-isometric to T∞.

Proof. It suffices to show that if X has the FPP then Y has the FPP. We need to make two
observations. For this let α ≥ 1, β ≥ 0 and δ ≥ 0 be the parameters of the quasi-isometry f ,
i.e. for all x1, x2 ∈ X we have

1
α
d(x1, x2)− β ≤ d′(f(x1), f(x2)) ≤ αd(x1, x2) + β,

and for each y ∈ Y there is x ∈ X such that d′(f(x), y) ≤ δ. In the following we denote by
B(x,R) the closed ball around x ∈ X of radius R ≥ 0.

Observation 1: For all y ∈ Y,R ≥ 0 there is a point x ∈ X and radius R̃ ≥ 0 such that

f−1(B(y,R)) ⊆ B(x, R̃).

In order to prove this claim let y ∈ Y,R ≥ 0. By the quasi-surjectivity there is x ∈ X such
that d′(f(x), y) ≤ δ. Now suppose that z ∈ f−1(B(y,R)), i.e. d′(f(z), y) ≤ R. Using first the
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quasi-isometry and then the triangle inequality we get

d(z, x) ≤ αd′(f(z), f(x)) + αβ

≤ α
(
d′(f(z), y) + d′(y, f(x))

)
+ αβ

≤ αR+ αδ + αβ.

Setting R̃ := αR+ αδ + αβ proves that z ∈ B(x, R̃).
Observation 2: Let ρ ≥ 0 be such that ρ−δ−β

α ≥ 0. Then for all y ∈ Y, r > ρ there is a point
x ∈ X and radius r̃ > 0 such that

f(B(x, r̃)) ⊆ B(y, r).

In order to prove this claim let ρ be as mentioned and y ∈ Y, r ≥ ρ. Define r̃ := r−δ−β
α > 0

by assumption on ρ. Again by quasi-surjectivity there is x ∈ X such that d′(f(x), y) ≤ δ.
Now let z ∈ f(B(x, r̃)), i.e. there is t ∈ X such that f(t) = z and d(t, x) ≤ r̃. Similar as for
Observation 1 we get

d′(z, y) ≤ d′(f(t), f(x)) + d′(f(x), y)

≤ αd(t, x) + β + δ

≤ αr̃ + β + δ

= r,

and therefore z ∈ B(y, r).
Now let (X, d) have the FPP with corresponding parameter ρ ≥ 0, and assume that (Y, d′)

does not. We lead this assumption to a contradiction, hence proving the first part of the
lemma. Set ρY := αρ+ β + δ ≥ 0. Since by assumption Y does not have the FPP, there are
radii R ≥ r > ρY and a point y ∈ Y such that the ball B(y,R) does contain an infinite family
of disjoint balls of radius r. Denote these balls by B(yi, r) ⊂ Y for yi ∈ Y , i ∈ I infinite. By
Observation 1 the preimage f−1(B(y,R)) is contained in a ball B(x0, R̃) for some x0 ∈ X.
By Observation 2 we have B(xi, r̃) ⊆ f−1(B(yi, r)) for some xi ∈ X, i.e. each preimage of
the pairwise disjoint balls B(yi, r) contains a ball of radius r̃ = r−δ−β

α , satisfying r̃ > ρ since
r > ρY . Altogether we have an infinite family of pairwise disjoint balls B(xi, r̃) contained in
the ball B(x0, R̃) such that r̃ > ρ. This is a contradiction to X having the FPP.

For the last part of the lemma we simply need to show that Tn, n ∈ N, has the FPP whereas
T∞ does not. Thus, both metric spaces cannot be quasi-isometric. As Tn is locally compact
we can set ρ = 0 and have that any ball of radius R contains at most finitely many balls of
radius 0 < r ≤ R. On the other hand since T∞ is a regular tree of infinte valence we can find
for all ρ > 0 a sufficiently large radius R such that a corresponding ball may contain infinitely
many balls of sufficiently small radius r > ρ.

Altogether we have seen that the F (a, b)-regular translation suface X(a,b) is quasi-isometric
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to the infinite regular tree T∞. In particular, this observation tells us that there are regular
translation surfaces that are not quasi-isometric to a Cayley graph of a finitely generated group
G with respect to a finite generating system, since such a Cayley graph always has the FPP
whereas T∞ does not. In the following section we will show however that any regular translation
surface is quasi-isometric to such a Cayley graph with respect to an infinite generating system.



CHAPTER 4

The Coarse Geometry of Translation Surfaces

4.1 Regular translation surfaces with only conical
singularities

Firstly, we consider the “simplest” possible regular translation surfaces, namely those having
no ∞-angle singularities or in other words exactly those regular translation surfaces that
are also complete. It turns out that for those surfaces it is not difficult to determine their
quasi-isometry class.

Theorem 4.1. Let Xµ be a G-regular translation surface having only conical singularities.
Then Xµ is quasi-isometric to G.

Proof. The proof generalizes the example of the 3-staircase in Section 3.6, using the Švarc-
Milnor Lemma. Since Xµ = Xµ only contains conical singularities it is a proper geodesic space.
We have the natural G-action on Xµ by left multiplication given by g.[x, h] = [x, gh] which
corresponds to the translation of glued copies of P in Xµ. This action is cocompact since
the quotient space G\Xµ is isometric to the base surface X0. For the properly discontinuous
action note that compact subsets in Xµ are bounded, closed and contain only finitely many
singularities as those lie discretely in Xµ. Since Xµ consists of copies of one and the same
Euclidean polygon, any compact set K ⊂ Xµ must be contained in the union of finitely many
of those copies. As each element g ∈ G acts on Xµ by translating the copies of the polygon
this implies that only finitely many translates g.K intersect the set K. Hence the action is
properly discontinuous. Lemma 2.5 then implies that Xµ and G are quasi-isometric.

Interestingly, the coarse geometric behaviour of regular translation surfaces changes as soon
as they contain ∞-angle singularities. For example the 2-staircase is a Z-regular translation
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surface containing four ∞-angle singularities. But as we have seen it is not quasi-isometric to
Z since it is a bounded metric space.

Example. Figure 4.1 shows an example of a Z2-regular translation surface. The base surface
X0 has one singularity of multiplicity k = 2 and the corresponding monodromy element is the
neutral element. Hence in the covering surface Xµ each singularity is again a conical singularity
of multiplicity 2 as well. The previous theorem implies that Xµ is quasi-isometric to Z2.

(
1
0

)

(
0
1

)

∼=

(
1
0

)(
0
1

)

Figure 4.1: A Z2-regular translation surface with only conical singularities and hence quasi-
isometric to Z2.

4.2 Boundedly generated subgroups

Now let us try to understand the case where Xµ does contain ∞-angle singularities. In
particular we have Xµ 6= Xµ. Note that since Xµ is obtained by removing a discrete subset of
Xµ the inclusion Xµ ↪→ Xµ is a quasi-isometry. For that reason we do not distinguish between
Xµ and Xµ when it comes to determining the quasi-isometry type of a regular translation
surface. Assuming that Xµ has an ∞-angle singularity, by Lemma 3.3 this is equivalent to the
base surface X0 having a singularity σ ∈ Σ such that a corresponding monodromy element
uσ ∈ G has infinite order in G. Geometrically this means that for any g ∈ G all the infinitely
many polygons P × {gumσ }, m ∈ Z, intersect in a common corner which corresponds to a
preimage of σ in Xµ. In other words, even if uσ has large word length in G the copies P × {g}
and P × {guσ} are very close in the metric space Xµ: Any two points lying in the union of
these copies have maximal distance 2diam(P ). In order to see this choose for each of the two
points a shortest path fully contained inside the copy of P from the point to the common
corner. Then each of the two paths then has length at most diam(P ).
The previous observation shows that it might be a good idea to identify elements g and

guσ in G such that the word length between them becomes short as well. For this, let
T := {uσ | σ ∈ Σ} for a choice of monodromy elements uσ ∈ G for each singularity σ in X0.
Then define U := Uµ ≤ G to be the subgroup generated by these finitely many elements and
call it the monodromy subgroup of G generated by T . Clearly, the monodromy subgroup U
depends on the choice of T , but if the choice T of monodromy elements is clear from the
context we will often speak of "the" monodromy subgroup of G. Now, with this definition,
each subcollection of all polygons P × {umσ }, m ∈ Z, in Xµ forms a bounded subspace since
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they all have one corner in common. Having observed this it might seem likely that Xµ and
the quotient surface U\Xµ are quasi-isometric since, loosely spoken, we collapse an infinite
but bounded subset

⊔
σ∈Σ P × {umσ } to just one copy of the base polygon. Unfortunately this

idea is wrong in general. We will see later an example where both translation surfaces are not
quasi-isometric. However, our clue turns out to be true in some special case, namely when U
is a so-called boundedly generated subgroup.

Definition 4.2. Let (G,S) be a finitely generated group with finite generating set S. Recall
that the word length of g ∈ G with respect to S is given by

|g|S = min{k | g = s1 . . . sk where si ∈ S ∪ S−1}.

A syllable of h is a maximal factor sm of g where s ∈ S ∪ S−1 and m ∈ Z. The syllable length
of g ∈ G with respect to S is defined as

|g|sylS = min{k | g = sm1
1 . . . smkk where si ∈ S ∪ S−1 and mi ∈ Z}.

Note that we always have |g|sylS ≤ |g|S for all g ∈ G. We say that G is boundedly generated
by S if there is a constant L ∈ N such that for all g ∈ G we have |g|sylS ≤ L, and the
group G is called boundedly generated if there is a finite subset S ⊆ G such that G is
boundedly generated by S. The syllable length induces a G-left invariant metric dsylS on G via
dsylS (g, h) = dsylS (1G, g−1h) := |g−1h|sylS . Here, the G-left invariance follows directly from the
definition. For the proof that dsylS is a metric note that we have |1G|sylS = 0, |g|sylS = |g−1|sylS

and |gh|sylS ≤ |g|sylS + |h|sylS for all g, h ∈ G as ending and starting syllables of g and h may
cancel out.

Example. (i) Finite groups and finitely generated abelian groups are boundedly generated.
The latter follows from the fact that we can write any element g in an abelian group as
g = sm1

1 . . . smnn where s1, . . . , sn are any generators of the group.

(ii) The Heisenberg group is defined as

H = 〈X,Y 〉 =




1 a c

0 1 b

0 0 1


∣∣∣∣∣∣∣∣ a, b, c ∈ Z

 = {Y bZcXa | a, b, c ∈ Z},

where

X =


1 1 0
0 1 0
0 0 1

 , Y =


1 0 0
0 1 1
0 0 1

 , Z =


1 0 1
0 1 0
0 0 1

 .
Since every element in H can be written as a product Y bZcXa, a, b, c ∈ Z, the Heisenberg
group H is boundedly generated by {X,Y, Z} with maximal syllable length 3.

(iii) If n ≥ 2 then the free group Fn is not boundedly generated. For example F (a, b) is
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not boundedly generated by S = {a, b} since the infinite sequence wi := (ab)i satisfies
|wi|sylS = 2i which is unbounded for i → ∞. It is more technical to show that the free
group Fn is not boundedly generated by any finite subset. However, a variety of proofs
exists using geometric or algebraic methods or methods involving bounded cohomology.
The claim follows for instance from results in [Gri80].

We need a lemma about the distance in G-regular translation surfaces before we can formulate
the quasi-isometry statement.

Lemma 4.3. Let Xµ = (P × G)/∼µ be a G-regular translation surface and let U be the
monodromy subgroup of G generated by a choice T of monodromy elements. Then for all
x, y ∈ P and for all u ∈ U we have

d([x, 1G], [y, u]) ≤ (|u|sylT + 1) · diam(P ).

Proof. Fix corners Cσ ∈ P in the polygon P respresenting the singularities of the base surface
X0 and let T = {uσ | σ ∈ Σ} be a choice of corresponding monodromy elements. It follows
then from the description of Sing(Xµ) in Lemma 3.4 that all the copies P × {gumσ }, m ∈ Z,
have the singularity [Cσ, g] = [Cσ, gumσ ] ∈ Sing(Xµ) in common for each g ∈ G.

First observe that any two points [x, g], [y, g] in Xµ lying in the same copy P × {g}, g ∈ G,
satisfy

d([x, g], [y, g]) ≤ dP (x, y) ≤ diam(P ),

since the distance between them in Xµ is at most the polygonal distance dP between x and y
inside P × {g}. For the definition of the polygonal distance, see Section 2.4.

Now let u ∈ U and k := |u|sylT . Then u is of the form u = um1
σ1 . . . u

mk
σk

and we get

d([x, 1G], [y, u]) ≤ d([x, 1G], [Cσ1 , 1G]) +
k−1∑
i=1

d([Cσi , um1
σ1 . . . u

mi−1
σi−1 ], [Cσi+1 , u

m1
σ1 . . . u

mi
σi ])

+ d([Cσk , u
m1
σ1 . . . u

mk−1
σk−1 ], [y, u])

= d([x, 1G], [Cσ1 , 1G]) +
k−1∑
i=1

d([Cσi , um1
σ1 . . . u

mi
σi ], [Cσi+1 , u

m1
σ1 . . . u

mi
σi ])

+ d([Cσk , u], [y, u])

≤ dP (x,Cσ1) +
k−1∑
i=1

dP (Cσi , Cσi+1) + dP (Cσk , y)

≤ (k + 1) · diam(P ).

See Figure 4.2 for an illustration of the proof. Here the elements denote the copy of the
corresponding polygon P in Xµ and the spiraling movement shall illustrate the lift of a singular
loop starting at a corner Cσ thus connecting two copies via one ∞-angle singularity.

Remark. Before we state the result of this section we need to make an observation about lifts
of paths in regular translation surfaces. For this consider a regular translation surface Xµ
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=

1G

x

um1
σ1

Cσ1

Cσ1

Cσ2

um1
σ1

Cσ1

Cσ2

um1
σ1 u

m2
σ2

Cσ2

Cσ3 Cσk

Cσk

y

u

um1
σ1 u

m2
σ2 . . . u

mk−1
σk−1

Figure 4.2: A path from [x, 1G] to [y, u] crossing |u|sylT + 1 copies of the polygon P .

with finite base surface X0 and the corresponding continuous map p : Xµ → X0. As the
restriction X∗µ → X∗0 is an unramified cover any path γ inside X∗0 , say starting in the point
x0, can be lifted to a unique path in X∗µ starting in x̃0 for any preimage x̃0 ∈ p−1(x0). Of
course, the same argument holds when we consider ending points instead of starting points. In
general this unique lifting property of paths is not given when considering ramified coverings.
Similarly, in the case of regular translation coverings there usually are many possible lifts of a
path in X0 which contains singularities. In the following we present a method how to choose
such a lift from these options and thus make the lift unique.
For this let γ be a path in X0 and assume it crosses only one conical singularity σ. The

case when γ crosses several singularities can be dealt with inductively. As this will be the case
for the proofs to come we may assume furthermore that γ is a concatenation of straight line
segments. Denote by α the angle in counterclockwise direction between the ingoing segment γ1

and the outgoing segment γ2 of γ at σ. We now give a construction of a unique lift γ̃: There is
a unique lift γ̃1 of the ingoing segment γ1 starting in a preimage x̃0 of x0, the starting point of
γ. Its endpoint is a singularity σ̃ ∈ p−1(σ). If σ̃ is a conical singularity of angle sum 2πd then
there are d possible lifts of γ2 starting in σ̃, and if it is an ∞-angle singularity there are even
infinitely many possible lifts. However, in both cases there is only exactly one lift γ̃2 starting
in σ̃ which forms the same angle α with γ̃1 at σ̃. The concatenation γ̃ := γ̃1 ∗ γ̃2 hence yields a
lift of γ and since the angle is fixed this lift is unique.

Theorem 4.4. Let Xµ be a G-regular translation surface. Fix a choice T of monodromy
elements and let U ≤ G be the corresponding monodromy subgroup generated by T . Suppose U
is boundedly generated by T . Then Xµ and its quotient surface U\Xµ are quasi-isometric. In
addition,

(i) If U has finite index in G, then Xµ is a bounded metric space
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(ii) If U is normal in G, then Xµ is quasi-isometric to the quotient group G/U .

Proof. We consider the surjective translation covering

πU : Xµ −→ U\Xµ, [x, g] 7→ [x, Ug]

and prove that it is a quasi-isometric embedding with respect to the metrics d resp. dU on
Xµ resp. U\Xµ. Let w.l.o.g. [x, 1G] and [y, g] be two points in Xµ where x, y ∈ P and g ∈ G.
The quotient map πU sends them to [x, U ] and [y, Ug] in U\Xµ. Let γ be a geodesic arc from
[x, U ] to [y, Ug] of length dU ([x, U ], [y, Ug]). Now lift γ to the unique path γ̃ in Xµ ending in
[y, g]. By the previous remark this lift is well defined. The starting point of γ̃ then is of the
form [x, u0] for some element u0 ∈ U and we have

d([x, u0], [y, g]) ≤ length(γ̃)

The situation is illustrated in Figure 4.3. Since πU is a translation covering both paths γ̃ and
γ have the same length and we have

d([x, 1G], [y, g]) ≤ d([x, 1G], [x, u0]) + d([x, u0], [y, g])

≤ d([x, 1G], [x, u0]) + length(γ̃)

= d([x, 1G], [x, u0]) + length(γ)

= d([x, 1G], [x, u0]) + dU ([x, U ], [y, Ug]).

By Lemma 4.3 we know that d([x, 1G], [x, u0]) ≤ (|u0|sylT + 1) · diam(P ). If U is boundedly
generated this last expression is bounded by some constant L′ := (L + 1) · diam(P ) not
depending on x, y and u0. Hence

d([x, 1G], [y, g]) ≤ dU ([x, U ], [y, Ug]) + L′.

On the other hand, consider a geodesic arc γ̃ between [x, 1G] and [y, g] of length d([x, 1G], [y, g])
in Xµ. Project this down to a path γ := πU (γ̃) in U\Xµ between [x, U ] and [y, Ug] of same
length. However, the length of γ is surely at least the distance between [x, U ] and [y, Ug] and
we get

d([x, 1G], [y, g]) = length(γ̃) = length(γ) ≥ dU ([x, U ], [y, Ug])

Both inequalities imply that πU is a quasi-isometry between Xµ and U\Xµ. Hence the
translation surfaces Xµ and U\Xµ are as well quasi-isometric.

We now prove the implications (i) and (ii). The statement (i) follows directly from Lemma 3.7
(i) since U\G is finite. For the proof of (ii) let U be a normal subgroup of G, so U\G = G/U

is a group. From Lemma 3.7 (ii) it follows that the quotient surface U\Xµ is a G/U -regular
translation surface. We claim that U\Xµ only has conical singularities. Then by Theorem 4.1
there is a quasi-isometry between U\Xµ and U\G and therefore Xµ and U\G are quasi-
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1G

u0 gUgU

x

xx

y y

pU
γ γ̃

U\Xµ Xµ

Figure 4.3: A path from [x, 1G] to [y, g] containing a subpath γ̃ which is a lift of a geodesic
segment from [x, U ] to [y, Ug].

isometric. In order to prove our claim recall that the quotient surface U\Xµ is of the form
(P × (U\G)) /∼µ′ , where µ

′ = π ◦ µ : π1(X∗0 , x0) → U\G is the projected monodromy map
and π the canonical quotient map from G to U\G. For each singularity σ in the base surface
X0 choose a singular loop rσ and let uσ = µ(rσ) ∈ U be the corresponding monodromy element
with respect to the covering X∗µ → X∗0 . Then the monodromy element of σ with respect to the
intermediate covering pU : U\X∗µ → X∗0 is µ′(rσ) = π ◦ µ(rσ) = π(uσ) = U , which has order
1 in U\G. Hence the set Σ∞ with respect to Xµ′ is empty. Lemma 3.3 finally implies that
U\Xµ only has conical singularities - having exactly the same multiplicity as their images in
X0 - and the claim is proved.

Remark. In Theorem 4.4 the condition that U ≤ G is boundedly generated is indeed necessary.
A counterexample is given by the AB-surface X(a,b) presented in Section 3.6. As we have shown,
the finite base surface X0 has four singularities all having as monodromy elements a resp. b.
Hence the monodromy subgroup U generated by a and b is the whole deck transformation
group G = F (a, b). Note that F (a, b) is not boundedly generated by {a, b}. The quotient
surface is U\Xµ = G\Xµ = X∗0 and thus a bounded metric space whereas Proposition 3.8
implies that Xµ is quasi-isometric to T∞, the∞-regular tree. Hence in that case Xµ and U\Xµ

are not quasi-isometric.

Corollary 4.5. Let Xµ be a G-regular translation surface where G is an abelian group. Let U
be a monodromy subgroup of G. Then Xµ is quasi-isometric to G/U .

Proof. As a subgroup of an abelian group U is normal in G and again abelian. In particular,
it is boundedly generated by any generating set. The claim then follows from Theorem 4.4
(ii).

We are now able to characterize the quasi-isometry class of regular translation surfaces



46 Chapter 4 The Coarse Geometry of Translation Surfaces

having at least one but at most finitely many ∞-angle singularities.

Theorem 4.6. Let Xµ be a G-regular translation surface containing at least one ∞-angle
singularity. Then Xµ has only finitely many ∞-angle singularities if and only if G is quasi-
isometric to Z. In this case Xµ is a bounded metric space.

Proof. The main argument for the proof of the equivalence was given in the proof of Corol-
lary 3.6. It implies that Xµ has finitely many ∞-angle singularities if and only if G is virtually
Z. The last statement is equivalent to G being quasi-isometric to Z, by Lemma 2.7 (ii).
It remains to show that under the mentioned conditions Xµ is a bounded space. For this

let Xµ contain only finitely many ∞-angle singularities, so G is virtually Z. Fix a choice
T = {uσ | σ ∈ Σ} of monodromy elements and let U ≤ G be the corresponding monodromy
subgroup generated by T . Since Sing∞(Xµ) 6= ∅ at least one monodromy element u ∈ T must
have infinite order and so U contains the infinite cyclic subgroup 〈u〉. Since G is virtually Z
any infinite cyclic subgroup, in particular 〈u〉, is of finite index in G and therefore U also has
finite index in G. See the proof of Lemma 3.6 for details.

We still need to prove in a last step that U is boundedly generated by T , then Theorem 4.4
(i) implies that Xµ is a bounded metric space which proves the corollary. Since 〈u〉 has
finite index in U there are finitely many cosets 〈u〉, h1〈u〉, . . . , hk〈u〉 in U/〈u〉 for representants
h1, . . . , hk ∈ U . Let L := maxi=1,...,k |hi|T be the maximum word length of these representants
h1, . . . , hk and define h0 := 1G. Now every element g ∈ U must lie in such a coset and hence is
of the form g = hiu

m with i = 0, . . . , k and m ∈ Z. So for the syllable length of g we get

|g|sylT ≤ |hi|
syl
T + |um|sylT ≤ L+ 1,

which only depends on the choice of representants but not on g. Hence U is boundedly
generated by T .

Example. Consider the Euclidean plane with horizontal slits between integral points and glued
together as illustrated in Figure 4.4. At first glance this space Xµ ’looks like R2 up to horizontal

(
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)
∼=

(
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0

)(
0
1
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σ σ′

Figure 4.4: A Z2-regular translation surface being quasi-isometric to Z.

slits’ and one might think that it is therefore quasi-isometric to R2. But this first impression is
wrong. In fact, the space Xµ is a Z2-regular translation surface covering the base surface X0
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as shown. The base surface X0 has two singularities σ, σ′ and computing the corresponding

monodromy elements u, u′ ∈ Z2 yields u = u′ =
(

0
1

)
. Hence the monodromy subgroup is

U = 〈
(

0
1

)
〉 ∼= Z,

and Corollary 4.5 implies that Xµ is quasi-isometric to G/U ∼= Z. This fact can be illustrated
by taking a closer look at the singularities of Xµ. Each such ∞-angle singularity is contained
in a copy of the 2-staircase as shown in the light gray subspace of Xµ. Each such copy is
a bounded space. Therefore, loosely spoken Xµ consists of Z copies of this bounded metric
space. Or in other words, from the two possible dimensions in R2, i.e. possible “ways to stretch
out towards infinity”, one dimension is contracted to something bounded which turns Xµ

geometrically into a strip stretching out towards infinity in only one direction.

Example. We have seen in Theorem 4.6 that if G has Z as finite index subgroup, then any
G-regular translation surface Xµ with an ∞-angle singularity is bounded. However, the
converse statement is not true. To see this, consider the Z2-regular translation surface Xµ as
shown in Figure 4.5. The finite base surface is a torus consisting of the shown three squares

(
1
0

)
∼=

(
0
1

)(
1
1

) (
1
0

)

σ1 σ2 σ3

Figure 4.5: A Z2-regular translation surface that is bounded.

where opposite sides are glued together. Here, the monodromy elements corresponding to the
singularities σ1, σ2, σ3 in X0, when computed in clockwise direction, are

u1 =
(

0
1

)
, u2 =

(
1
0

)
, u3 =

(
−1
1

)
.

It follows that the monodromy subgroup is

U = 〈
(

0
1

)
,

(
1
0

)
,

(
−1
1

)
〉 = Z2,

and Corollary 4.5 implies that Xµ is quasi-isometric to Z2/U ∼= {0} and therefore a bounded
metric space. This also makes sense illustratively since starting from one copy one can stretch
to infinity vertically (black singularity), horizontally (white singularity) and diagonally (cross-
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shaped singularity) while always being in bounded distance from the starting point. However,
Z2 is of course not virtually cyclic or equivalently, there are infinitely many singularities since
we have the bijection

Sing∞(Xµ) ∼=
(
Z2/u1Z

)
t
(
Z2/u2Z

)
t
(
Z2/u3Z

)
∼= Z t Z t Z.

Example. In the last and more abstract example we present a H-regular translation surface
Xµ as shown in Figure 4.6. Here

H = 〈X,Y 〉 =




1 a c

0 1 b

0 0 1


∣∣∣∣∣∣∣∣ a, b, c ∈ Z

 = {Y bZcXa | a, b, c ∈ Z}

is the Heisenberg group, where

X =


1 1 0
0 1 0
0 0 1

 , Y =


1 0 0
0 1 1
0 0 1

 , Z =


1 0 1
0 1 0
0 0 1

 .
The group H has the group presentation

〈X,Y, Z | XZ = ZX, Y Z = ZY, XY = ZY X〉.

Y −1

XY 2XY

σ1 σ2 σ3

Xµ :

Figure 4.6: An H-regular translation surface that is quasi-isometric to Z.

We claim now that Xµ is quasi-isometric to Z. However, as H is not abelian we may not
make use of Corollary 4.5. Consider the three top corners of the polygon associated to the
singularities σ1, σ2, σ3 as shown. Choosing singular loops in counterclockwise direction starting
in these corners yields corresponding monodromy elements

u1 = XYX−1Y −1 = Z, u2 = Y 2(XY )−1 = Y X−1, u3 = X(Y −1)−1Y −2 = XY −1.

Hence the monodromy subgroup U generated by T = {Z, Y X−1, XY −1} is

U = 〈Z, Y X−1〉.
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Consider the surjective group homomorphism

Φ : H → Z,


1 a c

0 1 b

0 0 1

 7→ a+ b,

then its kernel is given by

ker Φ =




1 −a c

0 1 a

0 0 1


∣∣∣∣∣∣∣∣ a, c ∈ Z

 = {Y aZcX−a | a, c ∈ Z}.

Note that, using the commutation relations in H, we have

(Y X−1)a = Y X−1Y X−1 . . . Y X−1 = Za
′
Y aX−a,

for some integer a′ ∈ Z. From this observation follows that U = ker Φ and hence is a normal
subgroup of H. Furthermore, U is boundedly generated by T : Since any element u ∈ U is of
the form Y aZcX−a = ZcY aX−a = Zc

′(Y X−1)a, for c′ := c− a′, we have that u has syllable
length |u|sylT = |Zc′(Y X−1)a|sylT ≤ 2.
Altogether, we have that U is a normal subgroup of H that is boundedly generated by T .

Theorem 4.4 now implies that Xµ is quasi-isometric to H/U ∼= Φ(H) = Z. Figure 4.7 shows a
part of Xµ and we see that in this example it is much more difficult to guess the quasi-isometry
class of Xµ as the group structure of H is much more complex.

1 Y −1

X XY −1XY

XYX−1 Z

YY 2

Figure 4.7: The H-regular translation surface Xµ turns out to be quasi-isometric to Z.

4.3 Quasi-isometry classes for general regular
translation surfaces

So far we have studied some examples of regular translation surfaces and their geometric
properties. For some of the examples we could generalize our observations and we were able to
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prove that they belonged to a class of regular translation surfaces which are quasi-isometric to
finitely generated groups. But not all examples had a quasi-isometry type that was as easy
to describe, for example the F (a, b)-regular translation surface X(a,b) which is quasi-isometric
to the locally infinite regular tree T∞. In the following we will take a closer look at general
regular translation surfaces and describe a locally infinite graph, in fact a Cayley graph with
respect to an infinite generating set, which the surface is quasi-isometric to.
Before we state the result we need to understand how geodesic segments in a regular

translation surface behave. In particular we only consider geodesic segments between two
singularities. Lemma 2.3 then implies for regular translation surfaces that any geodesic segment
between two singularities is a concatenation of finitely many saddle connections. It is thus
necessary to understand the role of saddle connections in a regular translation surface.

Let X0 be a finite translation surface obtained from a Euclidean polygon P with 2m paired
sides and let π : P → X0 be the natural gluing map. For any saddle connection τ in X0

its preimage π−1(τ) has finitely many connected components in P which are all straight line
segments in P parallel to the direction of τ . Denote by N(τ) := N(τ, P ) ∈ N this number of
segments. For a translation covering p : X∗µ → X∗0 this number can also be interpreted as
follows: Given a saddle connection τ̃ in Xµ the number N(p(τ̃), P ) is exactly the number of
copies of P in Xµ which are crossed by τ̃ , see Figure 4.8. The following lemma states that for
right-angled polygons we can closely relate the number N(τ, P ) to the length of τ .

pτ̃ τ

Xµ X0

Figure 4.8: The saddle connection τ̃ in Xµ crosses N(τ, P ) = 4 copies of the hexagon P . Its
image τ under p has N(τ, P ) = 4 connected components inside the polygon P .

Lemma 4.7. Let P be a right-angled polygon for X0 and τ a saddle connection in X0. Then
there are constants A ≥ 1, B ≥ 0 independent of τ such that

1
A
·N(τ, P )−B ≤ length(τ) ≤ A ·N(τ, P ) +B.

Proof. We first prove the right inequality. Let k = N(τ) ∈ N, i.e. the preimage of τ in P

consists of k parallel straight line segments t1, . . . , tk inside of P . Their lengths are clearly
bounded above by diam(P ). Hence

length(τ) =
k∑
i=1

length(ti) ≤ diam(P ) · k = diam(P ) ·N(τ).

Now let us prove the left inequality. As P is right angled we can define its minimum height
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hmin resp. minimum width wmin as follows. By assumption P only has horizontal and vertical
sides, their number being p resp. q. Let y1, . . . , yp be the y-coordinates of the p horizontal
sides and x1, . . . , xq the x-coordinates of the q vertical sides of P . Here, p+ q = 2m. Define

hmin := min{|yi − yj | : yi 6= yj , i, j = 1, . . . , p} > 0

and
wmin := min{|xi − xj | : xi 6= xj , i, j = 1, . . . , q} > 0

Let L := length(τ) > 0 be the length of the saddle connection τ whose preimage in P consists
of N := N(τ) straight line segments. The set

{x ∈ τ | π−1(x) ∈ ∂P}

then consists ofN+1 orN points on the saddle connection, depending on τ being a closed saddle
connection or not. More precisely, we denote the points in this set by σ0, x1, x2, . . . , σN where
σ0 is the starting singularity of τ , the x1, . . . , xN−1 correspond to crossings with horizontal
or vertical sides of P and σN is the ending singularity of τ . Note that if τ is closed we have
σ0 = σN . See Figure 4.9 for an example.

τ

wmin

σ0

σ7x3

x4 x1 x5

x2

x6

hmin

P

Figure 4.9: A saddle connection τ inside the polygon P . Here, N(τ, P ) = 7 and we have a = 4
horizontal and b = 2 vertical edge crossings.

Say, τ crosses a horizontal and b vertical edges, i.e. a + b = N − 1. Note that the
case a = 0 resp. b = 0 is possible, for example if τ is a vertical resp. horizontal saddle
connection. Now let xi1 , . . . , xia be the a horizontal edge crossings and consider the segments
[σ0, xi1 ], [xi1 , xi2 ], . . . [xia , σN ] forming a partition of τ into a+ 1 segments. In our example, the
horizontal edge crossings are given by the points x1, x3, x4, x6. By definition of hmin we have
that each of these a+ 1 segment has length at least hmin and this implies that the number a
of crossed horizontal edges satisfies

(a+ 1) · hmin ≤ L.
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Analoguously, for the number b of crossed vertical edges we get

(b+ 1) · wmin ≤ L.

Altogether this implies

N = a+ b+ 1 ≤ L
( 1
hmin

+ 1
wmin

)
− 1,

and therefore
N(τ) ≤ length(τ)

( 1
hmin

+ 1
wmin

)
− 1.

Note that the constants hmin and wmin only depend on the shape of P but not on the choice
of τ .

Let us return to our original problem, determining the quasi-isometry type of a G-regular
translation surface Xµ which is determined by a base surface X0 and a surjective monodromy
map µ : π1(X∗0 , x0) → G. As before we denote by si the images in G of the m edge loop
generators ci of π1(X∗0 , x0) and set S := {s1, . . . , sm}. The idea is to construct a G-invariant
graph Γ which Xµ is quasi-isometric to. More precisely, we want to construct Γ as a Cayley
graph of G with an infinite generating system S∞µ .
As before, the vertex set should naturally be G where each element g ∈ G represents the

point [x0, g] inside the polygon P × {g} in Xµ. Then, we put edges between two elements in
G whenever the two corresponding copies are “close” in Xµ. Now what does “close” mean in
this context? Firstly, it is clear that two copies sharing a common side are ’close’. Hence each
element of S should be contained in the generating set S∞µ . Secondly, we have already observed
that for each singularity σ ∈ Σ of X0 we can choose a monodromy element uσ ∈ G such that
the copy P × {1G} shares a singularity in Xµ with all the copies P × {ukσ}, k ∈ Z. But any
other monodromy element associated to σ gives us copies that are as well close to the copy
P × {1G}. Therefore it makes sense to include all elements uk in S∞µ where u is a monodromy
element of a singularity and k ∈ Z. The following definition gives the formal setup.

Definition 4.8. Let si := µ(ci) ∈ G, i = 1 . . . ,m, be the images of the edge loops and set
S := {s1, . . . , sm}. In Section 2.5 we defined the singular loops around a singularity in X0: For
σ ∈ Σ there are dσ ∈ N cyclically conjugated singular loops rσ,1, . . . , rσ,dσ ∈ π1(X∗0 , x0) around
σ plus their inverses such that the number dσ satisfies

∑
σ∈Σ

dσ = 2m,

and in particular

dσ ≤ 2m for all σ ∈ Σ. (4.1)

Let T be the set containing all corresponding monodromy elements uσ,i := µ(rσ,i) ∈ G for
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σ ∈ Σ, i = 1, . . . , dσ. Then T contains exactly 2m elements counted with possible multiplicities
of elements. If w is an element of the free group π1(X∗0 , x0) and of the form w = pq, where the
product pq already is a reduced word, then p is called a prefix of w. Similarly, a prefix of a
monodromy element u = µ(r) ∈ T is an element v = µ(p) ∈ G where p ∈ π1(X∗0 , x0) is a prefix
of the corresponding singular loop r. We now define the monodromy generating set to be

S∞µ := S ∪
{
uk ∈ G

∣∣∣ u ∈ T, k ∈ Z
}
.

With this infinite generating set S∞µ ⊂ G we can now define a locally infinite Cayley
graph similarly to Cayley graphs with finite generating sets. As for general graphs, we turn
Cay(G,S∞µ ) into a metric space by setting the length of each edge to 1. Furthermore, the
generating set S∞µ induces a word metric on G, denoted by d∞. For simplicity we define
|g|∞ := d∞(1G, g). Note that both metrics are invariant under G-left multiplication. Similarly
as for finitely generated Cayley graphs one can show: With respect to these metrics the inclusion
G ↪→ Cay(G,S∞µ ) is a quasi-surjective isometric embedding and hence a quasi-isometry.

Remark. By the previous definition we have for all g ∈ G

|g|∞ ≤ |g|S and |g|∞ ≤ |g|sylT ,

since S ⊆ S∞µ and uk ∈ S∞µ for each u ∈ T . Let r be a singular loop around σ ∈ Σ which,
as observed in Section 2.5, has word length dσ with respect to the generating edge loops
{c1, . . . , cm}. Moreover, let u ∈ G its corresponding monodromy element and v a prefix of u.
Then (4.1) implies

|v|∞ ≤ |v|S ≤ |u|S ≤ dσ ≤ 2m. (4.2)

As the following theorem shows this such defined generating set is the right candidate in
order to find a suitable quasi-isometry between Xµ and Cay(G,S∞µ ).

Theorem 4.9. Let Xµ be a G-regular translation surface. Fix a corner C in the base polygon
P . Then the map ΦC defined by

ΦC : (G, d∞)→ (Xµ, d), g 7→ [C, g],

is a quasi-isometry. In particular, Xµ is quasi-isometric to Cay(G,S∞µ ).

Proof. The second assertion follows from the first one and the previous observation. The map
ΦC is quasi-surjective since any point in Xµ lies in a copy P × {g} and thus has distance at
most diam(P ) from ΦC(g) = [C, g]. It remains to show that ΦC is a quasi-isometric embedding,
i.e. that there are constants A′ ≥ 1, B′ ≥ 0 only depending on P and µ such that for all
g, h ∈ G we have

1
A′
· d∞(h, g)−B′ ≤ d([C, h], [C, g]) ≤ A′ · d∞(h, g) +B′.
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Since both metrics are G-left invariant we can w.l.o.g. assume that h = 1G. We proceed in
three steps: In step 1 we prove the right-hand inequality. In step 2 we study saddle connections
in more detail and finally in step 3 we prove the left-hand inequality.
Step 1:

Let g ∈ G with |g|∞ = k, i.e. we can write g as g = g1 . . . gk where each gi lies in S∞µ . Set
g0 := 1G. Then, using the G-left invariance in the first equality, we get

d([C, 1G], [C, g]) ≤
k−1∑
i=0

d([C, g0 . . . gi], [C, g0 . . . gi+1])

=
k−1∑
i=0

d([C, 1G], [C, gi+1])

≤
k−1∑
i=0

2 · diam(P )

= 2 · diam(P ) · k

= 2 · diam(P ) · |g|∞,

where in the last inequality we used the fact that for gi ∈ S∞µ the copies P ×{1G} and P ×{gi}
always share either a side if gi ∈ S or a corner if gi = uk for some u ∈ T by definition of S∞µ .
Hence the distance is bounded by 2 · diam(P ). See Figure 4.10 for an illustration.

[C, s]

[C, 1G]

[C, ukσ]

[C, 1G]

1G

s

1G

ukσ

(a) (b)

[Cσ, ukσ]

[Cσ, 1G]

Figure 4.10: (a) Two copies sharing a side. (b) Two copies sharing a corner which is a singularity.

Step 2:
Let τ be an oriented saddle connection in Xµ. Let hstart ∈ G be the copy of P it crosses
first and hend ∈ G the one it crosses last. The starting point σ̃ of τ lies in Sing(Xµ) and thus
is of the form [C ′, h] for some corner C ′ of P and h ∈ G. Let u ∈ T be its corresponding
monodromy element. Then, by cyclically moving around σ̃ starting from copy h, we see that
hstart can be written as huav, where a ∈ Z and v is a prefix of u. See Figure 4.11. Hence,



4.3 Quasi-isometry classes for general regular translation surfaces 55

hendhstart = huav

h hua

[C ′, h]

[C ′, h] = [C, hstart] [C, hend]

τ

Figure 4.11: Given a saddle connection τ starting in the singularity [C ′, h], we see that we can
express the first crossed copy by τ with a term huav, where v is a prefix of u.

using (4.2) we have

|h−1hstart|∞ ≤ |ua|∞ + |v|∞ = 1 + |v|∞ ≤ 1 + 2m.

By definition, the saddle connection τ crosses N := N(τ, P ) copies of P . Hence there are
generators s1, . . . , sN−1 ∈ S such that hend = hstarts1 . . . sN−1. In case τ crosses only one copy,
we have N = 1 and hence hend = hstart. Note that

|s1 . . . sN−1|∞ ≤ |s1 . . . sN−1|S ≤ N − 1.

Step 3:
Proof of the left inequality. Let g ∈ G be arbitrary and let c be a geodesic segment from [C, 1G]
to [C, g] in Xµ realizing the length d([C, 1G], [C, g]). Then c is a concatenation of finitely many
saddle connections τ1, . . . , τs and we know

d([C, 1G], [C, g]) = length(c) =
s∑
i=1

length(τi).

Note that since the covering X∗µ → X∗0 is locally isometric, the length of each saddle connection
in Xµ is bounded by below by the length minsc(X0) > 0 of the shortest saddle connection in
X0. This constant only depends on the geometry of X0. Hence d([C, 1G], [C, g]) ≥ s ·minsc(X0)
or equivalently

s ≤ minsc(X0)−1 · d([C, 1G], [C, g]). (4.3)

Now for each i = 1, . . . , s− 1 the saddle connection τi+1 has starting and ending copies hstarti+1
and hendi+1 such that the ending copy hendi of τi and hstarti+1 have a singularity of the form [C ′i, hendi ]
in common, see Figure 4.12. From step 2 it follows that hstarti+1 = hendi uaii vi for a corresponding
monodromy element ui ∈ T , ai ∈ Z and vi a prefix of ui. And it also follows that we can write
hendi = hstarti gi for some gi ∈ G satisfying |gi|∞ ≤ N(τi, P ) − 1, for all i = 1, . . . , s. For the
first and last saddle connection, note that the copy hstart1 has a singularity with the copy 1G in
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common and similarly the copy hends with the copy g. Hence we can write

hstart1 = ua0
0 v0 and g = hends uass vs,

for appropriate elements u0, us ∈ T , prefixes v0, vs and a0, as ∈ Z. Altogether we can therefore

τ1 τ2

1G

ua0
0 v0 ua0

0 v0 · g1

ua0
0 v0 · g1 · ua1

1 v1 ua0
0 v0 · g1 . . . gs

τs

ua0
0 v0 · g1 . . . gs · uass vs

g

[C, g][C, 1G]

Figure 4.12: A geodesic segment between [C, 1G] and [C, g] consisting of s saddle connections.
Each saddle connection τi contributes to a factor gi. Each singularity contributes
to a factor uaii vi.

write g as a product
g = ua0

0 v0 · g1 · ua1
1 v1 · g2 · . . . gs · uass vs.

And using the inequalities from step 2 we get

|g|∞ ≤
s∑
i=0
|uaii vi|∞ +

s∑
i=1
|gi|∞

≤ (s+ 1) · (1 + 2m) +
s∑
i=1

(N(τi, P )− 1)

= 2m · s+ 2m+ 1 +
s∑
i=1

N(τi, P )

Now, Lemma 4.7 provides us with constants A ≥ 1, B ≥ 0 such that for all i = 1, . . . , s we
have

N(τi, P ) ≤ A · length(τi) +B.

This yields

|g|∞ ≤ 2m · s+ 2m+ 1 +
s∑
i=1

(A · length(τi) +B)

= (2m+B)s+ 2m+ 1 +A ·
s∑
i=1

length(τi)

= (2m+B)s+ 2m+ 1 +A · d([C, 1G], [C, g]).
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We now use inequality (4.3) for s and get

d∞(1G, g) = |g|∞
≤ (2m+B)minsc(X0)−1 · d([C, 1G], [C, g]) + 2m+ 1 +A · d([C, 1G], [C, g])

= d([C, 1G], [C, g]) ·
( 2m+B

minsc(X0) +A

)
+ 2m+ 1 +A.

Note that all appearing values A,B,m and minsc(X0) only depend on X0 and the choice
of polygon P for X0, and hence are independent from the points ΦC(1G) and ΦC(g). This
concludes our proof.

Remark. Using this theorem we are able to give an alternative proof of Theorem 4.1: If Xµ

only has conical singularities, then Lemma 3.3 implies that all monodromy elements in T have
finite order. In particular the set S∞µ = S ∪ {uk|u ∈ T, k ∈ Z} is a finite generating set for
G and our theorem implies that Xµ is quasi-isometric to the finitely generated Cayley graph
Cay(G,S∞µ ) and hence to the finitely generated group G.

The proofs of Lemma 4.7 and Theorem 4.9 give us concrete bounds for the metrics in some
special cases, for example regular coverings of origamis. An origami or square-tiled surface O
is a connected finite translation surface consisting of a glued family of Euclidean unit squares.
For example, we can realize an origami from a right-angled Euclidean polygon having integer
side lengths. We call it a d-origami if it consists of d squares. For an introduction to origamis,
see [Sch04], and their relation to Teichmüller space, see [Her12].

Corollary 4.10. Let Xµ be a G-regular translation surface covering a d-origami O which is
obtained from a right-angled Euclidean polygon having integer side lengths. Let | · |∞ be the
word metric on G induced by µ as defined in Definition 4.8. Then for all g ∈ G we have the
inequalities:

1
4d · d([C, 1G], [C, g]) ≤ |g|∞ ≤ (4d+ 2) · d([C, 1G], [C, g]) + 4d+ 3.

In particular, if Xµ is a G-regular square-tiled surface, i.e. if O is simply the square torus,
then

1
4 · d([C, 1G], [C, g]) ≤ |g|∞ ≤ 6 · d([C, 1G], [C, g]) + 7.

Proof. Given an Origami O with d squares and a right-angled polygon P for it, one easily
computes the values

m ≤ d+ 1, hmin ≥ 1, wmin ≥ 1, minsc(O) ≥ 1.

Note that the inequalities may occur when the base surface does not contain singularities
lying in the inner of P . Furthermore as the diameter of one unit square is

√
2 we get

diam(P ) ≤
√

2d ≤ 2d. We will from now on use the larger bound 2d for a simpler presentation
of the bounds. However, one may insert the bound

√
2d for a closer approximation. The proof
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of Lemma 4.7 implies that

length(τ) ≤ d
√

2 ·N(τ, P ) ≤ 2d ·N(τ, P ),

giving us constants A = 2d and B = 0. Inserting all these values into the inequalities of
Theorem 4.9 proves the first assertion. Setting d = 1 proves the last one.

Example. We return to our example of the AB-surface X(a,b) presented in Section 3.6. As
observed before, all singular loops have either monodromy a or b, hence the infinite generating
set S∞µ is of the form

S∞µ = {ak, bk|k ∈ Z}.

From Proposition 3.8 and Theorem 4.9 it follows then that the following three metric spaces
lie in the same quasi-isometry class:

X(a,b) ∼QI T∞ ∼QI Cay
(
F (a, b), {ak, bk|k ∈ Z}

)
.

Figure 4.13 illustrates the locally infinite Cayley graph Cay
(
F (a, b), S∞µ

)
. As an example, the

distance between the vertices 1 and a3b−4ab2 is 4.

1 aa−1
a2

b

b−1

abbaba−1

Figure 4.13: The locally infinite Cayley graph of F (a, b) with respect to the infinite generating
set {ak, bk|k ∈ Z}. It is quasi-isometric to the infinite regular tree T∞.

4.4 The space of ends of regular translation surfaces

In this section we study the ends of a G-regular translation surface Xµ and relate the number
of ends with the number of ends in G. By the definition given in Section 2.8 an end is an
equivalence class of a proper ray r : [0,∞) → Xµ. For this purpose it is necessary to
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characterize compact subsets in Xµ.

Lemma 4.11. Let K ⊆ Xµ where Xµ is of the form (P ×G)\∼µ . Then K is compact if and
only if K is closed in Xµ and intersects only finitely many copies of P .

Proof. If K is compact then it is also closed. Note that since K lies in Xµ, by defintion
of Xµ it only contains conical singularities but no ∞-angle singularities. Assume that it
intersects infinitely many copies of P . In particular, we find a sequence (gi)i∈N of pairwise
distinct elements in G such that K intersects the interior of each copy P × {gi}. For each
such intersection choose a point xi ∈ Xµ contained in it. Then the sequence (xi)i∈N ⊂ K is an
infinite sequence lying discretely in Xµ, a contradiction to K being compact.

In return let K be closed in Xµ and intersect finitely many copies of P . Let (xi)i∈N be any
sequence in K. The finiteness condition implies that there must be at least one copy P × {g}
containing an infinite subsequence of (xi)i∈N. This copy is compact as it is isometric to a
Euclidean polygon, hence the infinite subsequence has an accumulation point x in P × {g}
and therefore the whole sequence (xi)i∈N has the accumulation point x in K. The latter is
equivalent to K being compact.

Example. Let us compute the number of ends in the example of the 2- resp. 3-staircase X2 resp.
X3. Using Lemma 4.11 any compact set K ⊂ X2 intersects finitely many copies of the base
polygon. Therefore there is a minimal distance ε > 0 between K and any ∞-angle singularity,
see Figure 4.14 (a). This implies that the complement X2\K is connected: Any two points in
X2\K can be connected via a path which spirals around an ∞-angle singularity at a distance
less than ε if necessary. This shows that the bounded translation surface X2 has one end.

X2 X3

K K

r−

r+

(a) (b)

Figure 4.14: (a) The 2-staircase has one end. (2) The 3-staircase has two ends given by the
equivalence classes of the rays r+ and r−.

Remark. The example of the 2-staircase is very insightful for the study of Cayley graphs with
respect to infinite generating sets. Computing the monodromy subgroup of Z in the 2-staircase
example results in U = 2Z. Therefore, by Theorem 4.5 the surface X2 is quasi-isometric to
Z/2Z and hence bounded. On the other hand Theorem 4.9 implies that X2 is quasi-isometric
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to the infinitely generated Cayley graph Cay(Z, 2Z) which consequently is bounded as well.
The discussion in the previous example shows that Cay(Z, 2Z) as well has exactly one end.
This follows from the fact that any compact set K of Cay(Z, 2Z) only contains finitely many
vertices which therefore lie in an interval of the form [−n, n], n ∈ N. But then the vertices
−(n+ 1) and n+ 1 are adjacent and hence Cay(Z, 2Z)\K has one connected component and
thus one end.
Altogether we see that for a finitely generated group the locally infinite Cayley graphs, i.e.

those with respect to infinite generating systems, in general behave very different from locally
finite ones. As observed for G = Z in general they are not quasi-isometric to each other and
do not have the same number of ends.

On the other hand, consider the subset K ⊂ X3 which consists of one copy of the closed
base polygon inside X3. Since all singularities are conical this copy indeed is compact. The
resulting complement X3\K has two unbounded path components as there is no path between
points “above” and “below” the deleted copy, see Figure 4.14 (b). Each such unbounded path
component corresponds to one end of X3 and therefore X3 has two ends.

Definition 4.12. Let σ̃ be an ∞-angle singularity of Xµ. Fix any point x̃ ∈ Xµ. We define
three proper rays

rσ̃, r
+
σ̃ , r

−
σ̃ : [0,∞)→ Xµ

as follows. Let rσ̃ be a ray with rσ̃(0) = x̃ which ends in the singularity σ̃, i.e. the closure
of rσ̃([0,∞)) in Xµ contains the additional point σ̃. And let r+

σ̃ resp. r−σ̃ be rays with
r+
σ̃ (0) = r−σ̃ (0) = x̃ that spiral sufficiently close around σ̃ in counterclockwise resp. clockwise
direction. Note that rσ̃ is a proper ray: Each compact set K ⊂ Xµ intersects only finitely
many copies of the base polygon and hence there is a minimal distance ε = ε(K) > 0 between
K and any ∞-angle singularity, see the example of the 2-staircase. This means that for each
compact K there is a time T > 0 such that rσ̃(T ) has distance less than ε from σ̃ and hence
the ray rσ̃ leaves the compact K. See Figure 4.15 for an illustration of the three rays.

As in the 2-staircase example we see that all three rays are equivalent since for each compact
set K ⊂ Xµ there is an ε > 0 such that the ε-disc around σ̃ does not intersect K. And since
K is contained in the union of only finitely many copies of the base polygon, each spiraling ray
leaves K after some finite time.
We denote the common end of these three rays by end(σ̃) ∈ Ends(Xµ) and say that this is

the end of the singularity σ̃. Notice that distinct∞-angle singularities do not necessarily induce
distinct ends of singularities. As an example, the 2-staircase has four ∞-angle singularities
that all induce one and the same end of X2.

If we recall the construction pattern of the metric space Xµ as gluing G copies of the original
polygon P along parallel edges we might recognize similarities with the way edges were defined
in the Cayley graph Γ := Cay(G,S) in Section 2.7. Firstly fix a point x0 in X∗0 and embed the
wedge product of m circles into X0 using the m closed edge paths based in x0 whose homotopy
class is given by the generators ci of π1(X∗0 , x0). This wedge product is the embedding of
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σ̃

rσ̃

r−σ̃

r+
σ̃

r−σ̃

r+
σ̃

x̃

Figure 4.15: Three equivalent proper rays in Xµ whose equivalence class is the end end(σ̃) of
the ∞-angle singularity σ̃.

a graph on one vertex and m loop edges into X0. Define Γ̃ ⊂ Xµ as the preimage of that
embedded graph under the G-covering p. It has vertex set {x0} ×G ∼= G and a path between
[x0, g] and [x0, h] whenever g and h are connected by an edge in Γ. Note that this embedding
of Γ into Xµ is quasi-surjective since any point in Xµ is at most diam(P ) <∞ away from some
vertex [x0, g]. This embedding, denoted by ι : Γ→ Xµ, will turn out helpful for describing
ends of Xµ. See Figure 4.16 for an example.

∼=

−1 +1

0

1

0

−1

←↩

X0 Xµ Cay(Z, {0,−1,+1})

2

x0

ι

Figure 4.16: Embedding a Cayley graph of Z into the Z-regular 2-staircase X2.

Theorem 4.13. The embedding ι induces a surjective map

ιE : Ends(Γ) � Ends(Xµ),

end(r) 7→ end(ι(r)).

Remark. In other words, Theorem 4.13 states that all ends of a G-regular translation surface Xµ

can be described by Ends(G). However the map ιE is not injective in general. For example if
Xµ does contain an ∞-angle singularity the two corresponding clockwise and counterclockwise
rays around it yield one and the same end in Ends(Xµ).

Proof. We firstly prove that the map ιE is well-defined. Let r, r′ : [0,∞)→ Γ be two proper
rays with end(r) = end(r′). We need to show that end(ι(r)) = end(ι(r′)). Note that ι is a
proper map, hence the rays ι(r) and ι(r′) are again proper rays. For this, let K ⊂ Xµ be a
compact subset. Define K0 := ι−1(K) which is a compact subset of Γ since ι is proper. Since
r and r′ are equivalent there is T > 0 such that r([T,∞)) and r′([T,∞)) lie in the same path
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component of Γ\K0. Applying ι this implies that ι(r)([T,∞)) and ι(r′)([T,∞)) lie in the same
path component of ι(Γ)\K, and in particular of Xµ\K. Hence ι(r) and ι(r′) are equivalent.
We now prove the surjectivity of ιE . Consider end(r) ∈ Ends(Xµ) for a proper ray

r : [0,∞)→ Xµ. We distinguish two cases.

Case 1: ∀g ∈ G,T > 0 ∃t > T : r(t) /∈ P × {g}, i.e. the ray exits each polygon it enters. We
show in two steps that we can homotope r into the image ι(r0) of a proper ray r0 in Γ.
Step 1: Suppose r contains a conical singularity σ̃ of Xµ. Then there is a copy P × {g}
where r enters the singularity and a copy P×{h} where it leaves it. We can then homotope
r locally around σ̃ into r′ such that r′ forms the segment of a circle of sufficiently small
radius, see Figure 4.17 (a).
Step 2: Suppose r does not contain any singulariy of Xµ, otherwise apply Step 1. This
means that whenever r crosses a copy P × {g} it must intersect an entering and an
exiting edge of P . More precisely, let r(t0) < r(t1) ∈ (∂P ) × {g} be the entering and
exiting point of r. Then r([t0, t1]) is a path lying inside the copy P × {g}. Since P is
simply connected we can locally homotope r|[t0,t1] into a segment ι(r0)|[t′0,t′1] of the image
of a ray r0 in Γ. See Figure 4.17 (b) for an illustration of the homotopy. Altogether we
can combine this to a homotopy between the rays r and ι(r0). Since both rays always
“travel together”, i.e. cross exactly the same copies of P they cannot be separated by an
compact set K ⊂ Xµ. It follows that both rays are equivalent and we have

end(r) = end(ι(r0)) = ιE(end(r0)).

σ̃

h

g r

r′

(a) (b)

rι(r0)

ι(Γ)

Figure 4.17: (a) A ray r crossing a conical singularity can be homotoped to r′ only crossing
edges of P . (b) A ray r only crossing edges of P can be homotoped to a ray of
the form ι(r0) where r0 is a ray in Γ.

Case 2: ∃g ∈ G,T > 0 : r([T,∞)) lies inside one copy P × {g}, i.e. the ray r ends up in a
polygon and never leaves it. Then, as r is proper, it must converge to a corner C of
P ×{g} which necessarily represents an∞-angle singularity in Xµ. More precisely we can
construct compact sets K ⊂ P ×{g} as illustrated in Figure 4.18, and we see that r must
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end in one path component of (P ×{g})\K and thus converge to a corner of the polygon.
Hence the point σ̃ = [C, g] is an ∞-angle singularity and we have end(r) = end(σ̃) is

K ⊂ P × {g}

r

Figure 4.18: As r remains inside K for a finite time, it must end up converging to a white
∞-angle singularity. Black singularities represent conical singularities.

the end of σ̃. Consider a proper ray r− that spirals clockwise around σ̃ as constructed
in Definition 4.12. It follows that the ray r is equivalent to r−. Since σ̃ is an ∞-angle
singularity this clockwise ray exits each polygon it enters. Hence we can apply Case 1 to
r− and we see that r− is equivalent to a proper ray of the form ι(r0) for a ray r0 in Γ.
Hence

end(r) = end(r−) = end(ι(r0)) = ιE(end(r0)).

Corollary 4.14. Let Xµ be a G-regular translation surface having only conical singularities.
Then Ends(G) and Ends(Xµ) are homeomorphic.

Proof. Since Xµ does not have ∞-angle singularities it is a proper geodesic space and The-
orem 4.1 implies that there is a quasi-isometry between Xµ and G with respect to a finite
generating system. By Lemma 2.8, this quasi-isometry induces a homeomorphism between the
corresponding spaces of ends.

Corollary 4.15. Let Xµ be a G-regular translation surface having at least one ∞-angle
singularity. If G has finitely many ends, then Xµ has exactly one end.

Proof. Since Xµ has at least one ∞-angle singularity this implies that G is an infinite group
and thus has 1, 2 or infinitely many ends, see Lemma 2.9. If it has finitely many ends it
therefore must have 1 or 2 ends. If G has one end there is nothing to prove since ιE is a
surjection and Xµ an unbounded space.

Now suppose that G has two ends. By assumption Xµ has an ∞-angle singularity σ̃ which
by Lemma 3.4 is of the form [C, g〈u〉] for a corner C of the base polygon, a monodromy element
u for the conical singularity of the base surface corresponding to C and some element g ∈ G.
Moreover, by Lemma 3.3 the monodromy element u has infinite order in G. Now consider
the clockwise resp. counterclockwise proper rays r+

σ̃ resp. r−σ̃ around σ̃ together yielding one
end end(σ̃) as described in Definition 4.12. We can assume that both rays start in the copy
g of the base polygon P . Then r+

σ̃ resp. r−σ̃ crosses the copies P × {gum} resp. P × {gu−m}
for m ∈ N0. Applying Case 1 from the proof of Theorem 4.13 shows that the rays r±σ̃ can be
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homotoped into rays ι(r±) which are images of proper rays r± in Γ := Cay(G,S) for a choice
of finite generating system S for G. It follows that the ray r+ resp. r− contains all vertices of
the form gum resp. gu−m for m ∈ N0 and therefore r+ and r− induce two distinct ends in G.
As G only has two ends by assumption and both ends are mapped to the one end end(σ̃) of
Xµ under the surjective map ιE it then follows that Xµ can only have one end.

Summarizing our observations from Theorem 4.6 and Corollary 4.15 so far in the case of
Z-regular translation surfaces we get the following result.

Corollary 4.16. Let X be a Z-regular translation surface. If X contains at least one ∞-angle
singularity, then it is a bounded metric space having finitely many ∞-angle singularities and
exactly one end. If X only has conical singularities, then it is quasi-isometric to Z and has
two ends.

Note that the converse statement of Corollary 4.15 is false in general. The following example
presents a G-regular translation surface Xµ where G has infinitely many ends but Xµ only one.

Example. Consider the F (a, b)-regular translation surface Xµ as shown in Figure 4.19. It is a
common fact that the free group F (a, b) has infinitely many ends. However, we prove that Xµ

is a simply connected non-compact surface and hence homeomorphic to an open disc. The
open disc has exactly one end corresponding to a ray inside it converging to the boundary.
This implies that Xµ also has one end.

a

b

∼=
1

ba1 b ba a2b

a2aa−1

b−1Xµ

Figure 4.19: A G-regular translation surface having only one end while G = F (a, b) has
infinitely many ends.

Proof that Xµ is simply connected: Similar to our previous examples Xµ is a non-compact
surface only having ∞-angle singularities. We have the natural embedding

ι : Cay(F (a, b), {a, b}) =: Γ→ Xµ

which in this case is a homotopy equivalence. Its homotopy inverse is the map ρι : Xµ � Γ
illustrated in Figure 4.20, which projects any point of Xµ onto ι(Γ). Hence Γ and Xµ are
homotopy equivalent. More precisely, ι(Γ) ⊂ Xµ is a deformation retract. This homotopy
equivalence induces an isomorphism between fundamental groups π1(Xµ) ∼= π1(Γ), the last
one being trivial since the Cayley graph Γ is isomorphic to the simply connected 4-regular tree
T4. Therefore, Xµ is as well simply connected.
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1 a a2a−1

b ba a2bba−1

b−1

ι

Γ ι(Γ) ⊂ Xµ

Figure 4.20: The map ρι which projects any point of Xµ to ι(Γ) and via ι−1 to Γ is a homotopy
equivalence with homotopy inverse ι.

We end this discussion with a last example which shows that when |Ends(G)| = ∞, the
space of ends Ends(Xµ) may be more complex to describe: We again consider the AB-
surface X(a,b) already introduced in Section 3.6. Into X(a,b) we embed the Cayley graph Γ :=
Cay(F (a, b), {a, b, 1, 1, 1}) as described before and denote this embedding by ι : Γ→ X(a,b).
Note that Γ is isomorphic to a 4-regular tree with three loops of unit length attached to each
vertex in F (a, b). Therefore, each end of Γ is the equivalence class of a unique geodesic ray
starting in 1. Moreover, each such ray corresponds to a unique infinite sequence of words in
F (a, b) whose word length increases by 1, namely these are exactly the vertices of Γ the ray is
crossing. As an example the horizontal ray in Γ starting in 1 and moving to the right along
a-edges corresponds to the sequence (am)m∈N0 . For simplicity, we shortly identify the ends
of Γ with its geodesic rays starting in 1. This way we call an end (or ray) of Γ horizontal
if it is of the form (ga±m)m∈N0 and vertical if it is of the form (gb±m)m∈N0 for g ∈ G, and
alternating otherwise. Two horizontal resp. vertical ends (or rays) are opposite if they are of
the form (gam)m∈N0 and (ga−m)m∈N0 resp. (gbm)m∈N0 and (gb−m)m∈N0 . See Figure 4.21 for
an example.

1 a

b

b2a

a2

ababab
r2 r3

r1

Figure 4.21: Three possible ends in Γ. The ray r1 = (am)m∈N0 is horizontal, r2 = (b2abm)m∈N0

is vertical and r3 = ((ab)m)m∈N0 is alternating.

Corollary 4.17. The AB-surface X(a,b) has infinitely many ends. More precisely, we have
a bijection Ends(X(a,b)) ∼= Ends(F (a, b))/∼ where each horizontal end (gam)m∈N0 is identified
with its opposite (ga−m)m∈N0 and each vertical end (gbm)m∈N0 is identified with its opposite
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(gb−m)m∈N0.

Proof. By Theorem 4.13 we have a surjective map

ιE : Ends(Γ) � Ends(X(a,b)), end(r) 7→ end(ι(r)).

Let us describe the ends of singularities of X(a,b): By Lemma 3.4 we have the bijection

Sing∞(X(a,b)) ∼= F (a, b)/A t F (a, b)/A t F (a, b)/B t F (a, b)/B,

where A := 〈a〉 and B := 〈b〉. Therefore all singularities of the form gA induce one end in
Ends(X(a,b)) denoted by end(gA). The image under ι of a horizontal ray (gam)m∈N0 resp. its
opposite (ga−m)m∈N0 are equivalent to the clockwise resp. counterclockwise rays in X(a,b)

that form the end end(gA) of the singularity gA. This follows from the fact that all these
rays cross exactly the same copies P × {gam} resp. P × {ga−m} for m ∈ N0, and hence
cannot be separated by any compact set. In other words, the two opposite ends (gam)m∈N0

and (ga−m)m∈N0 are mapped to one end end(gA) under ιE . An analogue statement holds for
ends end(gB) of singularities gB. This observation implies that the map ιE descends to a
well-defined surjective map

ι∗E : Ends(Γ)/∼ � Ends(X(a,b)).

We prove that this map is also injective by showing that distinct ends in Ends(Γ)/∼ are
mapped to distinct ends in X(a,b). Consider two distinct ends of Γ that are not opposite. They
correspond to two geodesic rays r, r′ in Γ starting in 1. Let v ∈ F (a, b) be the last vertex
both rays have in common. W.l.o.g. v = 1, otherwise apply a left multiplication by v−1 on Γ.
Consider the bi-infinite path R : R→ Γ whose image is the union of the images of r and r′.
Since r and r′ are not opposite rays this new path R is not of the form (am)m∈Z or (bm)m∈Z.
Therefore there is a vertex f in the path R which is adjacent to a vertex in R of the form
fa±1 and to a vertex in R of the form fb±1. Geometrically spoken, the path R "has a corner
in f" in the Cayley graph Γ. Now define the compact set Kf ⊂ X(a,b) as shown in Figure 4.22
which is a subset of the copy P × {f}. Note that X(a,b)\Kf has two path components, one
containing the singularities fA and one containing fB. Since r′ and r only have the vertex 1
in common, one of the components contains r′([T,∞]) while the other component contains
r[(T,∞)] for sufficiently large T > 0. Thus we have that Kf separates the embedded rays ι(r)
and ι(r′). This implies that the ends end(ι(r)) = ιE(end(r)) and end(ι(r′)) = ιE(end(r′)) are
distinct.
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P × {f}

Kf

fA fA fB fB

a b11

1

r

f

1

fa

fb−1 ι(r)ι

Figure 4.22: The ray r in Γ has a corner at the vertex f . Hence ι(r) must cross the compact
set Kf in Xµ. So, Kf separates r and r′.





CHAPTER 5

Applications of Theorem 4.9

5.1 A generalization of the surface X(a,b)

Theorem 4.9 allows us to compute the quasi-isometry class of a whole family of regular
translation surfaces. Namely, the study of the AB-surface X(a,b) can be extended to the family
of regular translation surfaces which are obtained in a similar fashion but having as deck
transformation group any free group on n ≥ 2 generators. After defining this family properly
we will show that all these surfaces obtained this way are quasi-isometric to the infinite regular
tree T∞. This argument furthermore gives us an alternative proof of Proposition 3.8. In this
section we make use of common notions in graph theory. For a detailed introduction to graph
theory, see [Die18].

Definition 5.1. Let n ≥ 2 and consider Fn := F (a1, . . . , an), the free group on n generators
a1, . . . , an. Similar to the definition of X(a,b) we define the Fn-regular translation surface
XFn := X(a1,...,an) as shown in Figure 5.1. Furthermore, we define the graph Tn,∞ which is the

1 1 1a1 a2 an

C1 C2 Cn

Figure 5.1: The F (a1, . . . , an)-regular translation surface XFn .

bipartite (n,∞)-regular tree, i.e. it is a tree whose vertices either have valence n or ∞ and
such that any vertex of valence n is only adjacent to vertices of valence ∞ and vice versa. An
illustration of T5,∞ is given in Figure 5.2.

As we will see in this section, all three spaces XFn , Tn,∞ and T∞ are quasi-isometric. In
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Figure 5.2: The bipartite (5,∞)-regular tree T5,∞. Vertices of infinite valence are marked by
black dots.

particular, for all n,m ≥ 2 we have that the regular translation surfaces XFn and XFm are
quasi-isometric. Before we can prove this we need to study the coarse geometry of infinite
graphs in more detail. Let Γ = (V,E) be an infinite graph. A block cover B = {Bi | i ∈ I}
on Γ is a collection of complete subgraphs Bi of size ≥ 2, called blocks, of Γ such that each
edge of Γ is contained in at least one block Bi. The star graph S := S(Γ,B) of Γ with respect
to B is a graph constructed as follows: The vertex set of S is V (Γ) t B and there are only
edges between vertices v ∈ V and B ∈ B if and only if v lies in the block B. This makes S a
bipartite graph with vertex partitions V (Γ) and B. The name “star graph” comes from the
fact that when constructing S from Γ each block B is replaced by a star graph having B as
central vertex, see Figure 5.3 for an example.

K8 S(K8)

Figure 5.3: The star graph of the complete graph K8 on 8 vertices with respect to the block
B = {K8}.

Note that restricting the natural graph metric of a graph Γ = (V,E) to the vertex set V
induces a metric on V . In particular with respect to this induced metric on V the inclusion
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V ↪→ Γ is a quasi-surjective isometric embedding, and hence a quasi-isometry. This is useful
for us since instead of studying embeddings Γ ↪→ Xµ we can study the simpler restrictions onto
V . Also, the following lemma implies that a graph Γ and its star graph S(Γ,B) are always
quasi-isometric.

Lemma 5.2. Let B = {Bi | i ∈ I} be a block cover of Γ. Then the inclusion

Φ : V (Γ)→ V (S) = V (Γ) t B,

v 7→ v

is a quasi-isometry satisfying for all v, v′ ∈ V (Γ):

dS(Φ(v),Φ(v′)) = 2 · d(v, v′),

where d resp. dS is the natural graph metric on Γ resp. S.

Proof. The map Φ is quasi-surjective: Each vertex in S is either of the form v ∈ V (Γ) or
B ∈ B. In the first case, we clearly have dS(v,Φ(v)) = 0 and in the latter case choose any
vertex w ∈ V (Γ) lying inside B. Then dS(B,Φ(w)) = 1, by definition of the star graph.

Let v, v′ ∈ V (Γ), v 6= v′, and k := d(v, v′) ∈ N. Choose a geodesic in Γ between v and v′,
which is a path consisting of a sequence v = v0, v1, . . . , vk = v′ of pairwise distinct vertices.
Since B is a block cover each edge {vi−1, vi} lies inside a block Bi for i = 1, . . . , k. Hence in S
we have that Bi is adjacent to both vi−1 and vi. We can now form a path in S from Φ(v) = v

to Φ(v′) = v′ given by the vertex sequence v,B1, v1, B2, . . . , Bk, vk = v′ having length 2k, see
Figure 5.4. This proves the inequality

dS(Φ(v),Φ(v′)) ≤ 2 · d(v, v′).

Φ

Γ S

v v′ v v′

Bi

vjvj

Bi

Figure 5.4: A geodesic path in Γ of length 4 and its image under Φ in the star graph S(Γ)
having length 8. Here all maximal complete subgraphs of Γ yield the blocks of B.

We claim that this path v,B1, v1, B2, . . . , Bk, v
′ is a geodesic segment in S from v to
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v′. This proves that the inequality is indeed an equality. Assume there was a shorter
path from v to v′ inside S, say of length 2j < 2k. This path then must be of the form
v = v′0, B

′
1, v
′
1, . . . , B

′
j , v
′
j = v′. By definition of the edges in S we see that for all i = 1, . . . , j

the vertices v′i−1 and v′i lie in the block B′i and thus are adjacent in Γ. However, this implies
that v, v′1, . . . , v′j = v′ is a path in Γ from v to v′ of length j < k = d(v, v′), a contradiction.

We are now able to prove that all regular translation surfaces XFn and bipartite trees Tn,∞
are quasi-isometric to T∞.

Theorem 5.3. Let n ≥ 2. Then:

(i) The surface XFn is quasi-isometric to Tn,∞,

(ii) The trees Tn,∞ and T∞ are quasi-isometric.

In particular, for all n ≥ 2 the surfaces XFn are quasi-isometric to T∞.

Proof. (i) The base surface has 2n singularities and the corresponding monodromy elements
for each singularity are given by a±1 , a

±
2 , . . . , a

±
n . By Lemma 3.4 and similarly to the

AB-surface we can describe the singularities of XFn by

Sing(XFn) = Sing∞(XFn) ∼=
n⊔
i=1

(Fn/Ai t Fn/Ai) ,

where Ai := 〈ai〉 ≤ Fn is the infinite cyclic subgroup generated by ai. Define σgAi :=
[Ci, g], where Ci is a corner of the base polygon, see Figure 5.1. In other words σgAi
is the unique ∞-angle singularity which lies in the preimage of the conical singularity
corresponding to Ci and which is contained in all copies gami , m ∈ Z, of the base polygon.

We define a graph ∆, analogously as for the surface X(a,b), as follows: Let the vertex
set of ∆ be V :=

⊔n
i=1 Fn/Ai and put an edge between gAi and hAj if and only if i 6= j

and gAi ∩ hAj 6= ∅. This makes ∆ an Fn-left invariant n-partite graph with partitions
Fn/A1, . . . , Fn/An.

Step 1:
We prove that ∆ is quasi-isometric to Cay(Fn, {am1

1 , . . . , amnn | mi ∈ Z}). Theorem 4.9
implies then that ∆ and XFn are quasi-isometric. Note that Cay(Fn, {am1

1 , . . . , amnn | m ∈
Z} is isometric to the group Fn equipped with the syllable metric dsylT with respect to
the generating set T = {a1, . . . , an}. Consider the following map

Φ : (Fn, dsylT )→ (V (∆), d∆), g 7→ gA1.

The map is quasi-surjective: Given a vertex hAi in ∆ we have that hA1 and hAi are
either equal or adjacent vertices since h ∈ hA1 ∩ hAi. Hence d∆(Φ(h), hAi) ≤ 1.

Let us prove the first of two inequalities for a quasi-isometric embedding. Let g ∈ Fn
with |g|sylT = k ∈ N. Then g is of the form g = am1

i1
am2
i2
. . . amkik with m1, . . . ,mk ∈ Z\{0}
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and air 6= air+1 . In ∆ we construct a path from A1 = Φ(1) to gA1 = Φ(g) given by the
following sequence of adjacent vertices

A1 ∼ Ai1 ∼ a
m1
i1
Ai2 ∼ a

m1
i1
am2
i2
Ai3 ∼ · · · ∼

k−1∏
j=1

a
mj
ij
Aik = gAik ∼ gA1.

Note that the cases i1 = 1 and ik = 1 are possible. In these cases the corresponding
adjacencies at the beginning and end of the path have to be replaced by equalities. Hence
this path has length at most k + 1 and we have

d∆(Φ(1),Φ(g)) ≤ k + 1 = dsylT (1, g) + 1,

and the Fn-left invariance of the metrics proves the corresponding inequality for d∆(Φ(h),Φ(g))
for any g, h ∈ Fn.

For the last inequality let g ∈ Fn such that d∆(Φ(1),Φ(g)) = d∆(A1, gA1) = k ∈ N. This
means there is a geodesic in ∆ from A1 =: Ai0 to gA1 of length k which is given by a
sequence of adjacent vertices of the form

Ai0 ∼ v1Ai1 ∼ v2Ai2 ∼ · · · ∼ vkAik = gA1,

where v1, . . . , vk ∈ Fn are minimal representatives of the cosets. Note that since ∆ is
n-partite subsequent indices must be distinct, i.e. we have 1 = i0 6= i1 6= i2 6= . . . 6= ik = 1.
Consider now the first edge of the geodesic. Since Ai0 and v1Ai1 are adjacent they have
an element of Fn in common. It follows that the minimal representant v1 must be of the
form v1 = am0

i0
for some m0 ∈ Z. Similarly, since v1Ai1 = am0

i0
Ai1 and v2Ai2 are adjacent

it follows that v2 is of the form v2 = am0
i0
am1
i1

for some m1 ∈ Z. Inductively, it follows
that vk is of the form vk = am0

i0
am1
i1
. . . a

mk−1
ik−1

for integer exponents. Since vkAik = gA1 it
follows that g is of the form g = am0

i0
am1
i1
. . . a

mk−1
ik−1

amk1 and thus |g|sylT ≤ k + 1. Therefore,
we have

dsylT (1, g)− 1 ≤ d∆(Φ(1),Φ(g)),

which proves step 1.

Step 2:
In order to finish the proof of (i) we need to show that ∆ is quasi-isometric to Tn,∞.
For each g ∈ Fn define the induced subgraph Bg of ∆ on n vertices gA1, . . . , gAn. Since
g ∈

⋂n
i=1 gAi 6= ∅, this subgraph Bg is a complete subgraph of ∆. We claim that the

collection B := {Bg | g ∈ Fn} is a block cover on ∆: Consider any edge with vertices gAi
and hAj , i 6= j. Then by definition the intersection gAi ∩ hAj contains an element, say
v ∈ Fn. It follows that vAi = gAi ∈ Bv and vAj = hAj ∈ Bv. Since Bv is a complete
subgraph the whole edge {gAi, hAj} is then contained in Bv which proves the claim. We
compute the star graph S := S(∆,B). Its vertex set is given by V (∆) t B which we
identify with

⊔n
i=1 Fn/Ai t Fn. By definition of the star graph there are no edges of the
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form {gAi, hAj} and {v, w} where g, h, v, w ∈ Fn. The edges are precisely of the form
{gAi, v} where v ∈ gAi, see Figure 5.5 for an example when n = 4. In other words, S
consists of stars with center g ∈ Fn and neighbors gAi, i = 1, . . . , n.

A1

A2

A3

A4

a1A4

a1A3

a1A2

am1 A4

am1 A3

am1 A2

S
Ba1

B1

Bam1

A1

A2

A3

A4

a1A4

a1A3

a1A2

am1 A4

am1 A3

am1 A2

1

a1

am1

∆ S(∆,B)

Figure 5.5: The neighborhood of A1 in ∆ consists of infinitely many blocks Bam1 , m ∈ Z. In
the star graph S the vertex A1 has valence ∞ and each block vertex has valence 4.
The star graph S is isomorphic to T4,∞.

We claim that S is isomorphic to Tn,∞, where Fn forms the vertex set of valence n and⊔n
i=1 Fn/Ai the vertex set of infinite valence. Clearly, each vertex v ∈ Fn is only adjacent

to vA1, . . . , vAn and thus has valence n. On the other hand each vertex gAi is only
adjacent to all the vertices gami , m ∈ Z\{0} and thus has infinite valence. Since there
are only edges in S between vertices having distinct valence we have that S is bipartite.
We need to show that S is a tree, this then concludes the proof. The proof that S is
acyclic is very similar to step 2 in the proof of Lemma 3.8. Assume that S contains a
closed path. W.l.o.g. this path contains the vertex 1 ∈ Fn. Starting from 1 the vertex
sequence of the path then is of the form

1 ∼ Ai1 ∼ a
m1
i1
∼ am1

i1
Ai2 ∼ a

m1
i1
am2
i2
∼ am1

i1
am2
i2
Ai3 ∼ . . .

for integers m1,m2,m3, · · · ∈ Z\{0}, see Figure 5.5. Every second vertex is an element
in Fn whose syllable length with respect to the generating set {a1, . . . , an} is increasing
by 1. This is a contradiction, since in a closed path this sequence of syllable lengths must
again decrease in order to return to 1 having syllable length 0.

(ii) We prove the statement using a contraction argument. For this denote the two vertex
partitions of Tn,∞ by Vn and V∞ corresponding to the valency of the vertices. Fix a
vertex v0 ∈ Vn, called the root. The root v0 now induces an orientation of the tree Tn,∞
as follows: Given two adjacent vertices v, w ∈ V (Tn,∞) we orient the edge from v to w
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if and only if d(v, v0) < d(w, v0). See Figure 5.6 for an illustration of the oriented tree
T4,∞. This way, the root v0 has n outgoing edges and each vertex v ∈ Vn\{v0} has n− 1
outgoing edges and one incoming edge. For v ∈ Vn we call w ∈ V∞ a lower neighbor if v
and w are adjacent and there is an edge from v to w. For any v ∈ Vn, v 6= v0, we define
Sv to be the subtree of Tn,∞ induced by the vertices v and its n− 1 lower neighbors, i.e.
the smallest subtree containing these vertices. For v0 choose some n− 1 lower neighbors
and let Sv0 be the corresponding induced subtree. Clearly for all v ∈ Vn the subgraphs
Sv are disjoint stars with center v and n− 1 leaves.

v0

Sv0

v

Sv

z

Figure 5.6: The oriented (4,∞)-regular tree T4,∞ with root v0. To each vertex of finite valence
we construct the star subgraph Sv.

Define T to be the graph obtained from Tn,∞ after contracting each star Sv, v ∈ Vn, to
one distinct vertex and let f : Tn,∞ → T be the corresponding quotient map which
clearly is surjective. In a first step we show that T is graph-isometric to T∞ and then we
prove that f is a quasi-isometry.

Step 1:
Since we contract each subtree Sv of the tree Tn,∞ to one distinct vertex the resulting
graph is a tree again. Hence it remains to prove that each vertex in T has countably
infinite valence. Consider a vertex z ∈ V (T ). If z is not a contracted star f(Sv) for some
v ∈ Vn then z has to be the unique neighbor of the root v0 which is not contained in the
subtree Sv0 . If z = f(Sv) for some v ∈ Vn then its neighbors in T are all vertices f(Sw)
where w ∈ Vn with d(v, w) = 2, see figure 5.7. This shows that the set of neighbors of
z is countably infinite as it is a finite union of countably infinitely many vertices. This
concludes step 1.

Step 2:
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Sv0

Sv

z

Figure 5.7: The image of T4,∞ under the contraction f . Each contracted star is a vertex having
countably infinitely many neighbors.

Since f is a contraction of subgraphs we directly have

dT (f(v), f(w)) ≤ d(v, w),

for all vertices v, w ∈ V (Tn,∞) where d resp. dT denotes the natural graph metric on
Tn,∞ resp. T . Now let v, w ∈ V (Tn,∞) and k := d(v, w) ∈ N0. Note that since the stars
Sx, x ∈ Vn, are disjoint, any geodesic segment in Tn,∞ has only connected subpaths of
length at most 2 which are contracted under f . See Figure 5.8 for an example. In other
words, at least every third edge of a geodesic segment must be an edge not contracted
under f , which implies for the geodesic segment between v and w of length k

dT (f(v), f(w)) ≥ 1
3(k − 2),

and hence
d(v, w) ≤ 3 · dT (f(v), f(w)) + 2.

v
w

Figure 5.8: The vertices v and w have distance 5 in T4,∞. Since all star subgraphs are disjoint
at least one third of all edges in the geodesic segment from v to w are not contracted
under f . Here, the images f(v) and f(w) have distance 2.
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Remark. The fact that XFn is quasi-isometric to Tn,∞ can also be visualised using an embedding
of the graph Tn,∞ into the translation surface XFn as follows. In each copy P ×{g} of the base
polygon fix a point [x, g] which we identify with g ∈ Fn. See Figure 5.9 for an illustration when
n = 4. From this point consider the n straight line segments from [x, g] to the singularities
of XFn given by gA1, . . . , gAn as shown. These form the edges of the embedded graph. Note
that this graph is bipartite and that each vertex g has valency n while each vertex that is a
singularity has infinite valence. Hence this embedded graph is isomorphic to Tn,∞. Theorem 5.3
tells us that this embedding indeed is a quasi-isometry.

g

gA1 gA2 gA3 gA4

Figure 5.9: An embedding of the star graph S(∆) into XF4 . Each copy of the base polygon
represents a vertex g ∈ F4 which is adjacent to the four cosets gA1, . . . , gA4
representing singularities in XF4 .

5.2 The Teichmüller space of translation structures

Another observation we can conclude from Theorem 4.9 deals with the Teichmüller space of
translation structures. It is defined analoguously to the well studied Teichmüller space of
hyperbolic structures on a topological surface, as explained in [IT92] and [FM14].
For this, we fix a closed surface S0 together with a finite subset Σ ⊂ S0. Furthermore also

fix a regular topological covering p : S → S∗0 where S∗0 := S0\Σ. We define an equivalence
relation on the set of translation structures on S∗0 as follows. Two translation structures T , T ′

are equivalent if there is a translation f : (S0,Σ, T )→ (S0,Σ, T ′) between the corresponding
finite translation surfaces which is isotopic to the identity on S0. Then the Teichmüller space
of translation structures on S0, denoted by ΩT (S0), is the space of equivalence classes of
translation structures on S0. Given such a translation structure T in a class of ΩT (S0) this
defines a finite translation surface X0,T := (S0,Σ, T ) as in the geometric definition given in
Section 2.1. We can now lift the translation structure T via p to a translation structure T̃ on
S. In this way the space X∗T := (S, T ) is equipped with a flat metric and hence is a possibly
punctured translation surface. In particular the covering p : X∗T → X0,T is a translation
covering. From this follows that the metric completion X∗T consists of X∗T with additional
conical and ∞-angle singularities. Let XT be the translation surface obtained by removing all
∞-angle singularities from X∗T . By definition this is a regular translation surface with base
surface X0,T .

Corollary 5.4. For all T , T ′ ∈ T (S0) we have that the regular translation surfaces XT and
XT ′ are quasi-isometric.
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Proof. Let T ∈ ΩT (S0). By Theorem 4.9 the resulting regular translation surface XT is
quasi-isometric to the Cayley graph Γ := Cay(G,S∞µ ) where G is the deck transformation
group of the regular covering p and µ is the corresponding monodromy map. Note that Γ only
depends on the covering p and the choice of singular loops on S0 which is purely topological
data. In particular, the graph Γ does not depend on the choice T of translation structure on
S0. Hence we have for all T , T ′ ∈ ΩT (S0) that

XT ∼QI Γ ∼QI XT ′ .

Remark. In other words Corollary 5.4 tells us that the quasi-isometry class of a regular
translation surface does not depend on the choice of translation structure on the base surface.
For example in Figure 5.10 we see two different translation structures on a genus 2 surface
with one puncture. The resulting regular translation surfaces however are quasi-isometric.

e2

e1

0
0

e2

e1

0
0

Figure 5.10: A Z2 covering of a genus 2 surface equipped with two different translation struc-
tures. The corresponding regular translation surfaces are quasi-isometric. Here,
e1 and e2 are the standard generators of Z2.
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