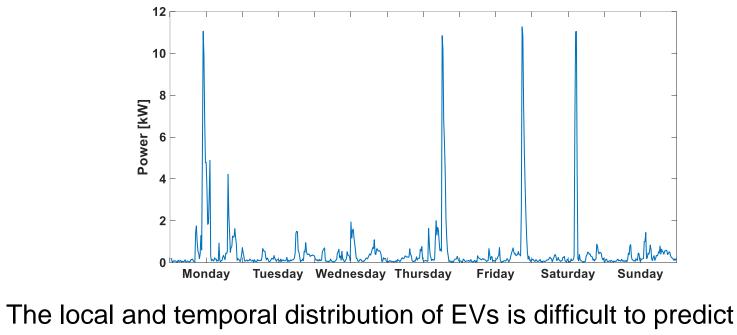


Dimensioning of battery storage as temporary equipment during grid reinforcement caused by electric vehicles

Lukas Held Karlsruhe Institute of Technology

INSTITUTE OF ELECTRIC ENERGY SYSTEMS AND HIGH-VOLTAGE TECHNOLOGY (IEH)



Influence of EV charging on distribution grids

- EV charging stresses power grids significantly
 - Especially low-voltage grids are concerned
 - High simultanities in charging processes

Problems can not be foreseen

Influence of EV charging on distribution grids

- EV owner want to charge their car immediately after the purchase
- Distribution system officer should be informed when charging infrastructure is installed
- Grid expansion (3 6 months duration) will be necessary in several distribution grids
 - A stopgap measure has to be found to enable EV charging until grid expansion is completed

Battery storage is one possibility

Project "E-Mobility-Allee"

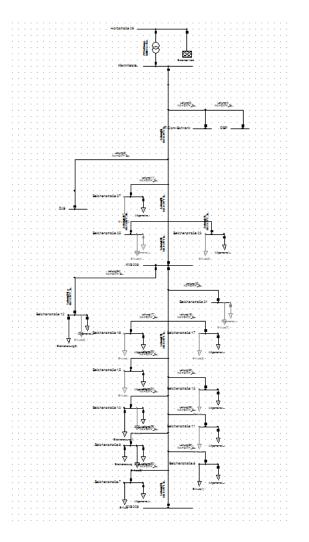
- Netze BW GmbH (German distribution system operator) tests the influence of EV charging on distribution grids in a existing street
- 10 households that are connected to the same feeder line are equipped with an EV
- Project period: May 2018 March 2019
- Project partner: Netze BW GmbH
 - Karlsruhe Institute of Technology
 - **RWTH** Aachen
 - **TU Dresden**

5 26.03.2020

Dimensioning of battery storage as temporary equipment during grid reinforcement caused by electric vehicles – Lukas Held

Project "E-Mobility-Allee"

- The following topics are in the focus of the project
 - User acceptance
 - User behaviour
 - Power quality measurements
 - Voltage limits
 - Harmonics
 - Voltage unbalance
 - Charging management
 - Time-based approaches
 - Measurement-based approaches
 - Battery storage
 - One central storage
 - Several decentral storages

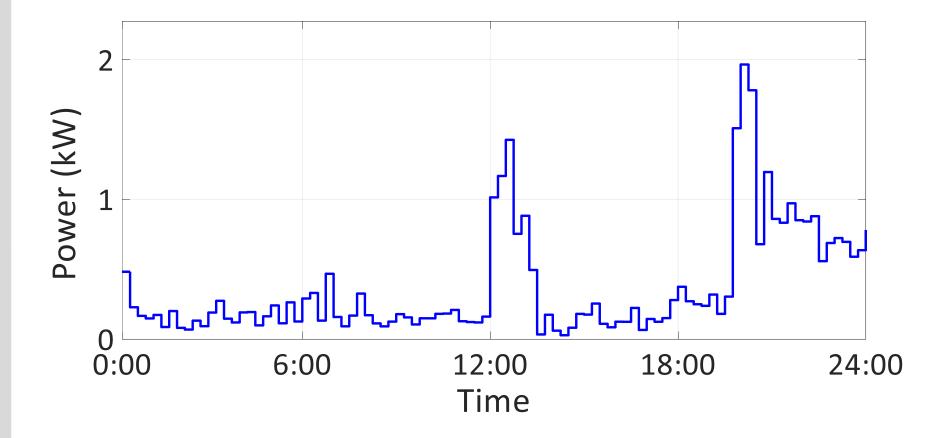


Grid data

- Project area is a 400V low-voltage grid in a suburban area
- Different population structure
- Consists of 14 houses
- In total 15 similar low-voltage grids are connected via 630 kVA transformer to the MV

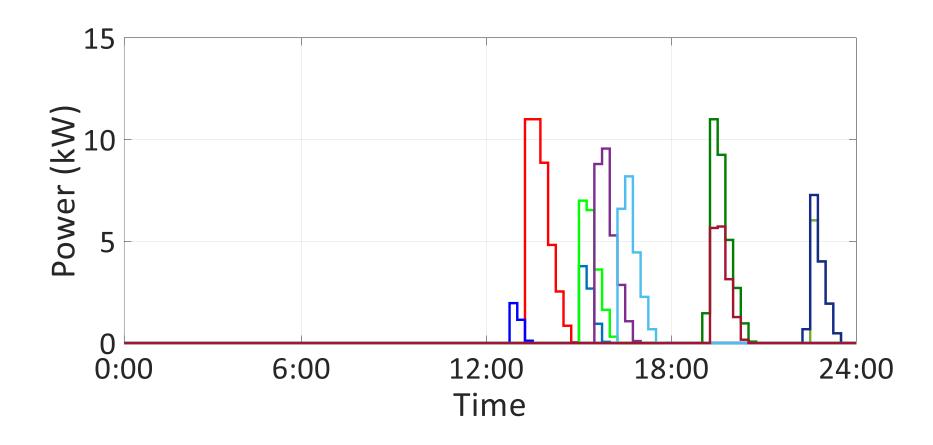
$$S_{tr_{,}\max} = \frac{630 \ kVA}{15 \ *0.7} = 60 \ kVA$$

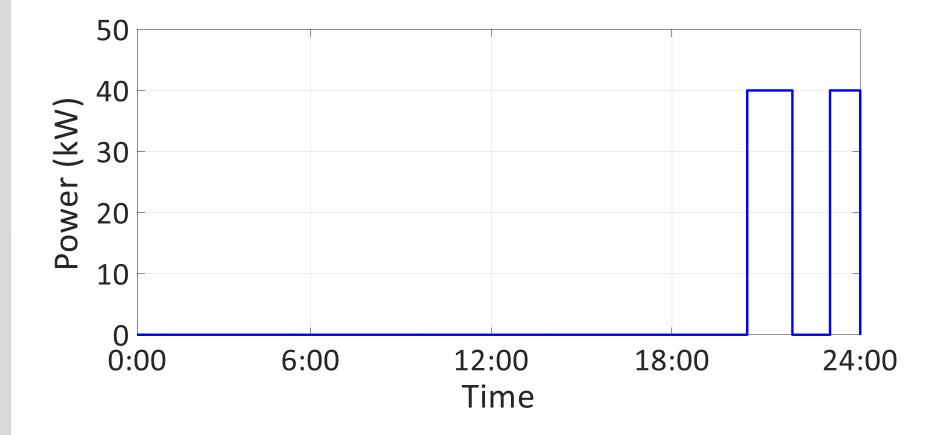
Simulation framework



- Simulations are performed over one year to take seasonal effects into account
- A receding horizon with an intervall of one day and a horizon of two days is used
- Time series data with a resolution of 15 min are used
- Input
 - Profiles for EV charging
 - Different charging profiles depending on the weekday
 - Profiles for the energy consumption
 - Profiles for Electric heating
 - Electric heating is used depending on the season
- The input profiles are chosen randomly for each day

Input profiles: Energy consumption




Input profiles: EV charging

Input profiles: Electric heating

Grid operation limits

Voltage limits

- The standard EN 50160 defines that the voltage has to be within +/- 10 % of the nominal voltage at a household
- For the low-voltage grid the maximum allowed voltage drop is assumed to be 5 % in this presentation

Overloading of equipment

Equipment (lines, transformers, etc.) may not be overloaded

Optimal power flow algorithm

A dynamic optimal power flow algorithm is used to dimension the battery storage

$$E_s^{t} = E_s^{(t-1)} + \Delta E_s^{t}$$
$$\Delta E_s^{t} = (\eta_C P_{SC}^{t} - \eta_D^{-1} P_{SD}^{t}) \Delta t$$

Two generators are used to model import and export from the MV grid

$$0 \le P_{G1}^{t} \le S_{tr,max}$$
$$- S_{tr,max} \le P_{G2}^{t} \le 0$$

Objective function

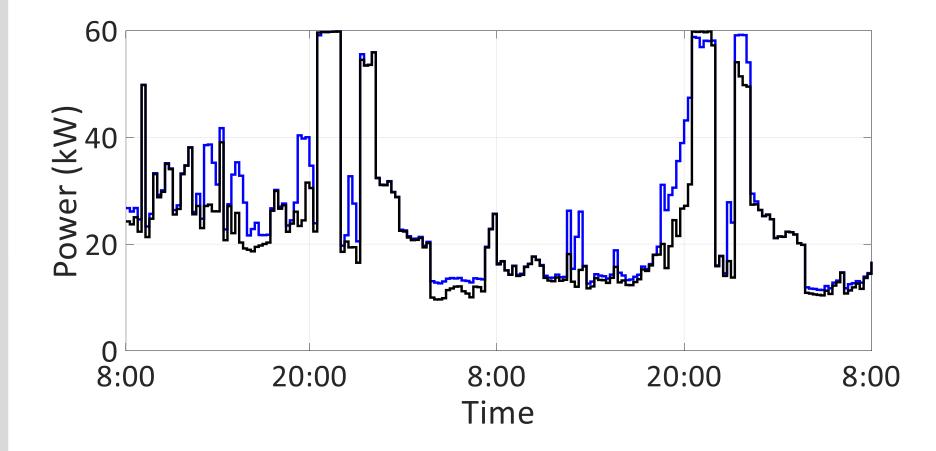
on
$$F^{t} = (C_{exp} P_{G2}^{t} + C_{imp} P_{G1}^{t}) \Delta t$$

 $C_{imp} > C_{exp}$
 $F = \sum F^{t}$

Optimal power flow algorithm

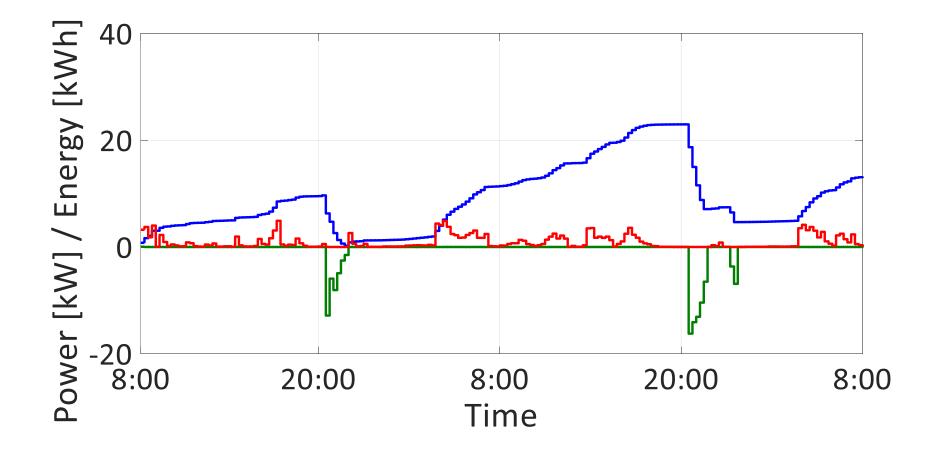
Constraints:

$$\frac{(\underline{S}_{br}^{t})^{2}}{(\underline{S}_{tr}^{t})^{2}} \leq (\underline{S}_{tr,max})^{2}$$
$$\frac{(\underline{S}_{tr}^{t})^{2}}{(\underline{S}_{tr,max})^{2}} \leq (\underline{S}_{tr,max})^{2}$$


 $(V_{min})^2 \le (e^t)^2 + (f^t)^2 \le (V_{max})^2$ with $\underline{V} = e + jf$

- E_s^t, P_{sc}^t, P_{sd}^t not constrained or part of the objective function
- Solver: MIPS (MATPOWER Interior Point Solver)

Simulation results



Simulation results

Results: Without EV charging

	Minimum	Average	Maximum
Minimum voltage	0.9754 pu	0.9766 pu	0.9778 pu
Maximum line utilization	47.9 %	64.6 %	80.9 %
Maximum transformer utilization	100.0 %	100.0 %	100.0 %
Maximum stored energy	27.0 kWh	33.2 kWh	38.2 kWh
Maximum charging power	6.6 kW	7.3 kW	8.0 kW
Maximum discharging power	39.1 kW	49.3 kW	60.2 kW

Results of ten simulations with a horizon of one year

Results: 5 EVs with 11 kW charging power

	Minimum	Average	Maximum
Minimum voltage	0.9754 pu	0.9764 pu	0.9774 pu
Maximum line utilization	47.9 %	65.0 %	80.9 %
Maximum transformer utilization	100.0 %	100.0 %	100.0 %
Maximum stored energy	37.0 kWh	43.9 kWh	54.8 kWh
Maximum charging power	7.5 kW	8.6 kW	9.3 kW
Maximum discharging power	45.3 kW	53.1 kW	61.6 kW

Results of ten simulations with a horizon of one year

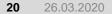
Results: 10 EVs with 11 kW charging power

	Minimum	Average	Maximum
Minimum voltage	0.9751 pu	0.9764 pu	0.9775 pu
Maximum line utilization	48.6 %	63.8 %	80.9 %
Maximum transformer utilization	100.0 %	100.0 %	100.0 %
Maximum stored energy	49.5 kWh	60.7 kWh	74.6 kWh
Maximum charging power	7.6 kW	10.3 kW	12.8 kW
Maximum discharging power	52.8 kW	67.6 kW	79.8 kW

Results of ten simulations with a horizon of one year

Outlook

- Measurement data is used to improve input profiles
- First test phase for central battery storage started last week
- Methodology shall be used also for other grids in the future
- Modelling of the charging process has to be improved
- Control strategy for the battery storage



Thanks!

