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Abstract—Intelligent systems are rather smart today but still
limited to built-in functionality. To break through this barrier,
future systems must allow users to easily adapt the system by
themselves. For humans the most natural way to communicate
is talking. But what if users want to extend the systems’
functionality with nothing but natural language? Then intelligent
systems must understand how laypersons teach new skills.

To grasp the semantics of such teaching sequences, we have
defined a hierarchical classification task. On the first level, we
consider the existence of a teaching intent in an utterance; on
the second, we classify the distinct semantic parts of teaching
sequences: declaration of a new function, specification of inter-
mediate steps, and superfluous information.

We evaluate twelve machine learning techniques with mul-
tiple configurations tailored to this task ranging from classical
approaches such as naı̈ve-bayes to modern techniques such as
bidirectional LSTMs and task-oriented adaptations. On the first
level convolutional neural networks achieve the best accuracy
(96.6%). For the second task, bidirectional LSTMs are the most
accurate (98.8%). With the additional adaptations we are able
to improve both classifications distinctly (up to 1.8%).

I. INTRODUCTION

Intelligent systems are everyday companions nowadays.
Users easily arrange appointments or check their emails with
virtual assistants such as Apple’s Siri or Google Assistant.
Humanoid robots or home automation systems provide con-
versational interfaces. However, the full potential of intelligent
systems is not yet exploited. For the time being, users can
merely access built-in functionality. All too soon, users will
not only expect to use an intelligent system but extend its
functionality. They will expect to implement new functionality
with little effort, ideally using nothing but natural language.
Thus, future intelligent systems must understand how layper-
sons teach new functionality.

Up to now, this task is not well studied; it is unclear
how to grasp the semantics of teaching sequences. To better
understand how people verbalize teaching sequences we ran
a preliminary study in which subjects were supposed to teach
new skills to a humanoid robot. Each participant gave natural
language descriptions for four scenarios. We were able to
gather 3168 descriptions from 870 participants.

Based on the findings of the preliminary study we developed
the following approach. We propose to decompose the task
of understanding teaching sequences. The first objective is to
understand, whether an utterance contains a teaching intent
at all. If an utterance is a teaching effort, the second step is
to extract the distinct semantic parts. We found that teaching
efforts are usually composed of three semantic structures. The
first is the verbalization of the teaching intent, e.g. “preparing
a cup of coffee means [...]”. Second, most teaching efforts
include a description of intermediate steps to realize the new
skill, e.g. “[...] put a coffee mug under the dispenser and
then press the red button on the coffee machine [...]”. Finally,
a noteable subset contains statements that are irrelevant for
teaching sequences, e.g. “Hello” or “coffee is a beverage that
people like to drink”.

We implemented a hierarchical classification that on the
first level discovers utterances with teaching intent (binary).
Secondly, it determines the semantic structures (ternary). For
the binary classification task we implemented five basic ma-
chine learning approaches and three different types of neural
networks (e.g. RNNs) with different architectures (e.g. GRUs,
LSTMs, etc.); for the latter we tested a broad range of hyper-
parameters. On the second level we also implemented three
different types of neural networks; again we used multiple
architectures and different hyper-parameters. Finally, we added
a set of heuristics for the binary and the ternary classification
task to improve the performance of our approach; they are
tailored to the task but dataset-agnostic.

The remainder is structured as follows. First, we define
the task in Section II before we introduce the dataset in
Section III. In Section IV we compare the performance of
the different machine learning approaches (and configurations)
for the hierarchical classification task; we also present our
adaptations there. Then, we discuss related work from the field
of programming with natural language in Section V. Finally,
we conclude our work in Section VI and discuss future work.

II. TASK DEFINITION

The objective of our approach is to understand how layper-
sons teach new functions to intelligent systems. From a pre-
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Fig. 1. Schematic overview of the two-leveled hierarchical classification task.

liminary study we learned that utterances containing teaching
sequences are usually composed of three semantic parts:

• Declaration: a declaration comprises an explicitly stated
teaching intent, a name for the skill that is to be learned,
and potentially parameters. Example: “[In order to]intent
[set the table]name [for two]parameter”.

• Specification: a specification is the description of inter-
mediate steps to realize the new functionality. Example:
“[go to the cupboard]action1 [open it]action2 [and take out
two plates]action3”.

• Miscellaneous: Any other types of statements that are
irrelevant to understand the teaching effort. These include
(but are not limited to) greetings, teaching of common
sense knowledge or the environment, and observations.
Example: “setting the table is important”.

The individual parts may appear anywhere in the utterances.
Furthermore, declarative parts might be split up or repeated
(often with different wordings). The specification of interme-
diate steps is of variable length and non-contiguous in some
cases. But most importantly, we observed that humans often
struggle to express a teaching intent. Thus, many descriptions
we examined can hardly be interpreted as a teaching effort;
they instead merely state a sequence of actions.

Based on these observations, we define a two-level hierar-
chical classification task consisting of (see also Figure 1):

1) First level (binary): classify whether an utterance contains
a teaching intent and can thus be interpreted as an effort
to teach a new function or not. Labels: Teaching and Non-
Teaching, attached to entire descriptions.

2) Second level (ternary): classify the semantic parts of a
teaching sequence as defined above (only for utterances
with a teaching intent). Labels: Declaration, Specifica-
tion, and Miscellaneous, attached to each word in the
description.

TABLE I
THE NUMBER OF DESCRIPTIONS, WORDS USED IN TOTAL, AND UNIQUELY

USED WORDS PER SCENARIO AND IN THE ENTIRE DATASET.

descriptions words (total) words (unique)
scenario 1 795 18205 566
scenario 2 794 26005 625
scenario 3 794 33001 693
scenario 4 785 31797 685
dataset 3168 109008 1469

An alternative approach we considered was to drop the first
classification level. In this case the absence of declaration la-
bels would have indicated a missing teaching intent. However,
since a single word in an utterance is miss-classified easily, this
would have produced many false positives. Thus, we expect a
better overall classification performance with the hierarchical
approach. Moreover, others argued in favor of hierarchical
classification for similar tasks, e.g. Cohen et al. [1].

For both classification tasks we use machine learning ap-
proaches. Since the first classification task is a sequence-to-
single-label task, classical machine learning approaches and
neural networks are suitable. The second task is a typical
sequence-to-sequence task. Thus, we focus on neural networks
with an LSTM-like architecture, which have proven appropri-
ate in tasks of that type.

III. DATASET

The dataset we use to train, validate, and test the classifiers
originates from a preliminary study. A detailed discussion
on the study and the dataset may be found in [2]. We used
the online micro-tasking platform Prolific1 for collecting the
data. Subjects were supposed to teach a humanoid robot new
skills in four different scenarios, such as greeting someone
or preparing coffee. All of them take place in a kitchen
setting but involve different objects and actions. 870 subjects
participated in the study. We gathered 3168 teaching sequences
with more than 109,000 words in sum. The subjects used
1469 unique words in their descriptions. In the mean, the
subjects used 642 unique words per scenario. Thus, there is
not much overlap between the scenarios, which indicates a
varying diction. Table I summarizes these dataset statistics.

Besides the descriptions we also gathered some personal
information about the participants. Most of them are native
English speakers (60%) and 70% have no programming ex-
perience. Women and men participated almost equally (359
females and 366 males); their age (at the time of participation)
ranges from 18 to 76. However, nearly 60% of the participants
were 30 or younger.

The dataset is labeled according to the scheme described in
Section II. The analysis of the dataset revealed that more than
one third (37%) of the descriptions do not contain an explicitly
stated teaching intent (label Non-Teaching). Apart from that,
the semantic parts can be clearly separated in almost all cases.
Thus, the ternary labels for the second-level classification can

1Prolific: https://www.prolific.co/
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TABLE II
THE DISTRIBUTION OF THE BINARY AND TERNARY LABELS IN THE

DATASET.

amount share

bi
na

ry Teaching 1998 .63
Non-Teaching 1170 .37
Total 3168 1.00

te
rn

ar
y Declaration 15559 .21

Specification 57156 .76
Miscellaneous 2219 .03
Total 74934 1.00

TABLE III
STATISTICS ON THE WORDS PER DESCRIPTION.

quantiles
min. max. mean st. dev. .990 .995 .999

1.0 312 35.43 22.48 117 135 232

be attached unambiguously. Table II depicts the total amount
and share of the labels.

Both label sets are unequally distributed, which may affect
the quality of the machine learning models. A one-sided shift
often leads to over-fitted models that favor the dominating
label, since this approach optimizes accuracy on the dataset.
This threat concerns primarily the ternary classification task,
in which the label Specification strongly dominates the other
labels (76%).

Another factor that affects the machine learning approaches
is the length of the natural language descriptions. In the study,
we set no length restrictions. The responses of the subjects
in the dataset consist of one to 312 words with a mean of
35.48 (see Table III). Thus, the majority of descriptions is
rather short; even the responses within the .995 quantile are
not longer than 135 words. The complexity of most machine
learning models increases with maximum input length2. There-
fore, it might be beneficial to limit the input length. Since
neural networks can only deal with input of fixed length, we
have to define a maximum length anyways.

IV. LEARNING HOW LAYPERSONS TEACH NEW
FUNCTIONS TO INTELLIGENT SYSTEMS

We aim to grasp the semantics of teaching sequences
given by laypersons using nothing but natural language. In
Section II we have defined a hierarchical classification task.
To implement it, we first generate training instances (see
Subsection IV-A). This involves pre-processing the dataset
as well as extracting and pre-processing instances. Then, we
describe the general approach to the classification task (see
Subsection IV-B). Our approach is hierarchic. On the first level
we classify whole descriptions in terms of the existence of an
explicitly stated teaching intent (see Subsection IV-C). The
second classification task addresses the semantic structure of

2In particular neural network architectures are problematic as the maximum
length of the input determines the size of the input layer.

teaching sequences (see Subsection IV-D). Finally, we apply
some adaptations to improve the results (see Subsection IV-E).

A. Generation of Training Instances

According to Mihalcea [3] the generation of training in-
stances involves three consecutive steps:

1) Gathering and pre-processing the dataset
2) Extraction of training instances
3) Pre-processing of training instances
Concerning the first step, we have already gathered the

dataset (see Section III). However, we must pre-process the
data to meet the requirements of the machine learning toolkit
and to maximize the overall quality. We perform the following
actions during dataset optimization:

• Conversion to lower case, e.g. Hello → hello
• Recovering contractions, e.g. don’t → do not
• Conversion of (cardinal) numbers, e.g. 1st → first
• Deletion of enumerations, punctuation, and disfluencies
• Correction of typographical errors (but not grammatical

mistakes), e.g. thng → thing
To extract the training instances, we can simply use all

labeled descriptions from the dataset (see Section III). Note
that the pre-processing of the dataset has no effect on the
number of training instances.

The pre-processing of the training instances primarily con-
cerns the second-level instances. We create lemmatized and
tokenized versions of the instances. Additionally, we prepare
datasets with and without stopwords. Finally, we map the
instances and output labels to numeric values. The labels
are simply mapped to one-hot vectors, while we transform
the words to bag-of-words vectors and word embeddings.
We use two types of word embeddings: Facebook’s fastText
embeddings [4] and self-trained embeddings learned from the
dataset. For the latter we tested three lengths: 50, 100, and 300.
However, we used the last option only, since it produced the
best results (at reasonable processing expense). Furthermore,
the test results are comparable, since the fastText embeddings
also have 300 dimensions. Since neural networks can process
input with a fixed length only, we had to set a reasonable
value. We limit the input length to 135 tokens as 99.5% of all
descriptions in our dataset consist of 135 tokens or less (see
Table III).

B. General Approach

We used the Python libraries scikit learn, keras, and ten-
sorflow to implement the classifiers. For our experiments we
used two hardware configurations: a MacBook Pro with an
Intel Core i5 (2.9 GHz) and 16 GB RAM and a PC with an
Intel Core i7 (3.5 GHz) and 32 GB RAM.

For the first-level classification task, which is a sequence-to-
single-label task, we decided to implement classical machine
learning approaches and neural networks. We used the follow-
ing classical classification approaches: Decision Tree, Random
Forest, Support Vector Machine, Naı̈ve Bayes, and Logistic
Regression. The neural networks we implemented are of three
different types: (basic) Artificial Neural Networks (ANN),



TABLE IV
OVERVIEW OF THE TYPES, ARCHITECTURES, AND HYPER-PARAMETERS OF NEURAL NETWORKS USED IN THE TWO CLASSIFICATION TASKS.

types architectures additional layers number of units epochs batch sizes dropout values learning rates

ANN

Flatten (Flat), 10, 20, 32, 40, binary: binary: 50, 0.1, 0.2, 0.3 0.001,
Global max pooling 1D (GMax), 50, 64, 100, 300, 100, 300, 0.0005
Dense (D), 128, 150, 250 500, 400
Dropout(DO) 256, 512 1000

CNN

Max pooling 1D (Max),
Global max pooling 1D (GMax), ternary: ternary: 32,
Dense (D), 50, 100 64, 100,
Dropout(DO) 300 256, 300

RNN

LSTM Dense (D),
GRU Dropout (DO)
BiLSTM
BiGRU

Convolutional Neural Networks (CNN), and Recurrent Neural
Networks (RNN). We also implemented different architectures
(e.g. LSTMs and GRUs), added further layers (e.g. dense
and dropout layers), and varied the hyper-parameters (e.g.
number of units and epochs). On the second level, we only
implemented neural network approaches, since the problem is
a typical sequence-to-sequence task. We used the same types
and architectures, but varied the hyper-parameters. Table IV
depicts the neural network configurations we used for the
first- and second-level classification task. Note that CNNs take
another parameter besides the number of units, the convolution
factor for which we tested the values 3, 5, and 7.

We divided our dataset into train, validation, and test set.
To split the data, we used two strategies: a random split and
a scenario-based split. For the random split, we use the entire
dataset and randomly divide it into training (80%) and test
set (20%). We further divide the training set into training and
validation set; again, we use a 80-20 split.

The second split strategy selects one of the scenarios (see
Section III) as test set; the remaining are used for training
and validation, again with a 80-20 split. The rationale behind
the scenario-based is as follows. If we use a whole scenario
for testing, we can determine how the classifiers behave on
unseen data that is conceptually different. All descriptions for
a single scenario involve more or less the same actions and
objects. However, they vary between the scenarios. Thus, with
the scenario-based split we are able to measure how well a
classifier learns teaching intent verbalizations and the general
structure of teaching sequences.

C. First-level Classification: Teaching Intent

On the first level of our hierarchical classification task, we
determine whether a description contains a teaching intent or
not. The preliminary study has shown that subjects verbalize
teaching intents quite differently. Often the intent is implicitly
indicated or expressed by a single word only, e.g “do a and b to
prepare coffee”. Therefore, the classification task is anything
but straight forward.

As mentioned before, we implemented classical machine
learning and neural network approaches. We present results

TABLE V
FIRST-LEVEL CLASSIFICATION ACCURACY ACHIEVED BY THE CLASSICAL
MACHINE LEARNING TECHNIQUES ON VALIDATION (IN BRACKETS) AND

TEST SET. THE BEST RESULTS ARE PRINTED IN BOLD TYPE.

Random Scenario
Decision Tree (.893) .903 (.861) .719
Random Forest (.917) .909 (.893) .374
Support Vector Machines (.848) .861 (.870) .426
Naı̈ve Bayes (.771) .801 (.765) .300
Logistic Regression (.927) .947 (.891) .719
Baseline (MFL) .573 .547

for both and discuss the differences between the random and
scenario-based dataset splits.

1) Classical Machine Learning Techniques: The input fea-
tures for the classifiers are bag-of-words vectors and trigrams
or quadrigrams. We used the tokenized and lemmatized dataset
for training, validation, and test. However, all classifiers per-
form best on the lemmatized set. The same applies to stop
words; their exclusion degrades results in all cases. Therefore,
we only report the results for the lemmatized set including stop
words in Table V. For all classifiers we show the accuracy on
the validation set in brackets and the final (test set) results
without brackets. The best results are printed in bold type. To
provide a baseline we additionally depict the numbers of a
classifier that always classifies the most frequent label (MFL)
for each instance (usually referred to as Zero-Rule classifier).

As expected, the baseline is rather similar for the random
and scenario-based split. This indicates that our data is uni-
formly distributed. The results for the classifiers vary greatly
for the different splits. For the random split the accuracy on the
validation and test set are similar. Not suprisingly, the elaborate
approaches outperform the simple ones. The classifier that uses
logistic regression achieves the best results. An accuracy of
94.7% on the test set is a surprisingly good result. However,
the performance of all classifiers drastically declines if we use
the scenario-based split. Three of five fall behind the baseline;
the Naı̈ve Bayes classifier labels only 30% of the instances
correctly. The results for the Random Forest classifier show the
problem plainly. It works well for the random split and is the
best classifier on the validation set for the senario-based split
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Fig. 2. A schematic illustration of the general network architecture.

(89.3%). However, on the according test set its accuracy drops
to 37.4%. Solely the classifiers based on Decision Trees and
Logistic Regression achieve acceptable accuracies (71.9%).

The results clearly show that classical machine learning
approaches are insufficient for the task, since they oversimplify
the classification problem and are unable to generalize to
unseen data that is conceptually different.

2) Neural Network Approaches: For the neural networks
we use word embeddings as input, either self-trained or fast-
Text embeddings (see Subsection IV-A). The general network
structure as depicted in Figure 2 is composed of an input
and an embedding layer, followed by the basic network archi-
tecture (e.g. LSTM), additional layers (e.g. dense or dropout
layers) and an output layer.

We tested different batch sizes (see Table IV). However, no
matter how we set the other hyper-parameters, we obtained the
best results with a batch size of 100. The same applies to the
question of whether to use lemmatized or just tokenized input
and stop words; in all cases the lemmatized dataset including
stop words produced better results again.

For all other hyper-parameters we tested all possible com-
binations (as depicted in Table IV). However, in Table VI we
only present the best configurations (regarding the validation
results). Concerning the number of epochs, we observed that
the best results are achieved at different points. Usually the
networks need a few epochs only (less than 10) to converge.
Also the convergence can be predicted by means of the
validation loss. We interrupt the training process when the
validation loss stops to decrease, which is usually referred to
as early stopping. Figure 3 shows the effect for RNN4; the
validation loss optimum is reached after epoch five.

The configurations in Table VI can be read as follows.
For the fifth recurrent neural network (RNN5) we use a
bidirectional LSTM (BiLSTM) architecture with 128 units.
Additionally, the network is composed of further layers: Dense
(with 100 units), Dropout (with a dropout value of 0.3), and
another Dense (with 50 units).

For the random split most neural networks achieve sufficient

Fig. 3. The validation and training loss for RNN4 (BiLSTM(128), D(64)).

results. Only RNN1 and RNN3 fall behind considerably;
unidirectional LSTMs and GRUs seem insufficient for the
task. However, their bidirectional counterparts obtain excellent
results; RNN4 is even the best regarding the validation accu-
racy using fastText. CNN1 shows the overall best performance
including a test accuracy of 96.6% using fastText. Overall,
the majority of neural network configurations work best with
fastText embeddings (except for the ANNs). However, only
the top three outperform the baseline (Logistic Regression)
on the test set: CNN1, RNN2, and RNN4. The results for the
random split suggest, that neural network approaches are the
most suitable for the task, but must be configured with care.

Either way, the consideration of the sceario-based split is
more informative, since it models the realistic deployment of
a classifier3. The results show that the accuracy of all neural
networks decreases on the test set. This outcome was to be
expected, since the subjects used a different vocabulary and
wordings in the test scenario4. However, the magnitude of
decline differs considerably. The ANNs show the heaviest
decline. That indicates that simple ANNs tend to over-fit to
the training instances, i.e. they solely memorize a previously
seen wording. The observation that ANNs perform worse
using fastText embeddings for the random split speaks for
this assumption, too. The neural network which showed the
best accuracy on the random split (CNN1) also deteriorates
sharply. With either embeddings it only obtains an accuracy
of 86.2% for the scenario-based split (despite outstanding
accuracies on the validation sets). The bidirectional RNN
approaches show the best performances; RNN2 (BiGRU(32))
reaches accuracy levels beyond 93%. It also performs best
on fastText embeddings, which is to be expected, since the
test set comprises previously unseen vocabulary. Contrary to
expectations, the other bidirectional RNNs show their best

3Usually, classifiers are trained on existing datasets and then used for new
and potentially differing input. With a hold-out scenario these conditions are
reasonably simulated.

4As already mentioned, the validation set is randomly drawn from the
training set, which consist of the remaing three scenarios (see Section III).



TABLE VI
FIRST-LEVEL CLASSIFICATION ACCURACY ACHIEVED BY THE NEURAL NETWORKS ON VALIDATION (IN BRACKETS) AND TEST SET. THE BEST RESULTS

ARE PRINTED IN BOLD TYPE.

Name Configuration Random Scenario
self-trained fastText self-trained fastText

ANN1 Flat, D(100) (.916) .914 (.846) .867 (.905) .781 (.874) .715
ANN2 GMax, D(100) (.899) .896 (.879) .896 (.893) .668 (.918) .674
CNN1 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10) (.952) .964 (.954) .966 (.973) .862 (.977) .862
RNN1 GRU(128), D(100) (.562) .625 (.562) .625 (.519) .702 (.519) .702
RNN2 BiGRU(32), DO(0.2), D(64), DO(0.2) (.947) .944 (.952) .959 (.954) .911 (.958) .932
RNN3 LSTM(128), D(100) (.562) .625 (.562) .625 (.519) .702 (.519) .702
RNN4 BiLSTM(128), D(64) (.951) .955 (.956) .959 (.960) .927 (.962) .919
RNN5 BiLSTM(128), D(100), DO(0.3), D(50) (.936) .937 (.945) .941 (.937) .922 (.954) .917
Baseline (Log. Reg.) – (.927) .947 (.891) .719

results on self-trained embeddings. A possible cause may be
that the advanced network architectures actually focus on the
wordings that constitute a teaching intent, e.g. “... means you
have to ...”. Unfortunately, the validation accuracy is hardly
a good predictor for the test accuracy. The classifier with
the best accuracy on the test set (RNN4) showed the third-
best validation accuracy; the neural network with the best
validation accuracy (CNN1) is to be found at rank four on
the test set.

D. Second-level Classification: Semantic Structure

On the second level of our hierarchical classification task,
we determine the semantic structure of teaching sequences.
We assume that they are composed of three parts: a declarative
part that expresses the teaching intent and the name of the new
skill, a specifying part that comprises the intermediate steps,
and miscellaneous parts that are irrelevant for the task. The
preliminary study has shown that these parts occur anywhere
in an utterance and are potentially non-sequential.

For this task we waive the classical machine learning ap-
proaches. We assumed that the sequence-to-sequence labeling
task is too complex for the classical approaches and pre-tests
confirmed this assumption.

The input (word embeddings) and general network layouts
are the same as for the first-level classification. However, the
tested hyper-parameters differ slightly (see Table IV) due to
the changed boundary conditions of this task (see Section II).
For this task a batch size of 32 proved to be best performing.
Also, the results are best for the tokenized (unlemmatized)
dataset. However, we still do not exclude stop words. The
unbalanced dataset poses a challenge; the class Specification
clearly dominates (see Table II). In return, the Zero-Rule
classifier becomes a strong baseline.

In Table VII we report the results of the best performing
neural networks. We again distinguish results for the random
and scenario-based dataset split as well as using self-trained
versus fastText embeddings.

Overall, the results are promising. All approaches outper-
form the baseline clearly. However, no CNN is among the
best eight and ANN1 performs considerably worse (more
than 10%) than the remaining; the RNN approaches dominate
this task. More particularly, the bidirectional RNNs obtain

surprisingly good results. The classification accuracy of RNN6

for the random split using fastText is 98.8%. The accuracies
of all other RNNs are .3% less only. Encouragingly, the results
for the scenario split are almost on the same level. Three RNNs
exceed 97% using fastText; RNN3 (BiLSTM(128)) performs
best with 97.6%. However, there are only small differences
between the configurations. Thus, bidirectional RNNs seem to
be suitable for this task in general.

E. Adaptations

We implemented two task-based adaptations to improve the
classification results heuristically; the first concerns the binary
and the second the ternary classification. For both we use the
best neural network configuration as basis (based on the mean
results): RNN4 for the first task and RNN3 for the second.

The first adaptation works as follows. We perform the first-
level classification as usual. However, we observed that the
binary classifiers struggle to separate the classes from time to
time. Therefore, we adjust the class allocation. Originally, the
classifiers assign the label Non-Teaching to all values in the
range [0,0.5] and Teaching to (0.5,1]. We alter the separating
value to 0.1. This improves the binary classification by 0.8%
for the scenario-based split. In a second adjustment we use the
ternary classification. We apply it to all descriptions (not only
those labeled as Teaching on the first level). Then, we review
the binary result and alter the class of all instances to Teaching
that have a classification value in the range of [0.01,0.1) and
at least two Declaration-labels5. With both adjustments the
accuracy of the binary classification improves by 1.8%.

The second adaptation uses linguistic information to gen-
erate continuous semantic parts. For our heuristic we use the
semantic role labeler SENNA [5]. We interpret the roles as
chunks (and ignore their semantics) and merge these chunks
with the output of the second-level classifier as follows. For
most cases we use a simple majority decision. This means,
the heuristic attaches the dominating label to all words of the
chunk. If there is a draw, we take the first word left of the
chunk into account and if there is no left word we consider
the first to the right. Whenever there is neither a word left nor
right and the chunk contains Specification-labels, we attach

5The presence of Declaration-labels suggests that the description is a
teaching effort (first-level classification label Teaching).



TABLE VII
SECOND-LEVEL CLASSIFICATION ACCURACY ACHIEVED BY THE NEURAL NETWORKS ON VALIDATION (IN BRACKETS) AND TEST SET. THE BEST

RESULTS ARE PRINTED IN BOLD TYPE.

Name Configuration Random Scenario
self-trained fastText self-trained fastText

ANN1 D(100) (.853) .856 (.853) .848 (.851) .822 (.851) .827
RNN1 LSTM(128) (.974) .976 (.978) .977 (.973) .960 (.973) .964
RNN2 LSTM(128), D(64) (.973) .972 (.977) .976 (.970) .955 (.971) .963
RNN3 BiLSTM(128) (.986) .983 (.987) .985 (.983) .960 (.981) .976
RNN4 BiGRU(128) (.984) .984 (.985) .985 (.976) .955 (.982) .968
RNN5 BiLSTM(128), D(100), DO(0.3), D(50) (.982) .982 (.982) .985 (.978) .955 (.981) .968
RNN6 BiLSTM(128), DO(0.2) (.985) .984 (.988) .988 (.982) .958 (.981) .975
RNN7 BiLSTM(256), DO(0.2) (.986) .984 (.987) .985 (.982) .964 (.982) .975
Baseline (MFL) – .759 .757

this label to all words6. Since a re-evaluation of the sequence
labels is time-consuming, we tested the heuristic on a small
random set so far. First results are promising, but we have to
run a full-blown evaluation before we can talk about numbers.

V. RELATED WORK

Over the years, the objective of programming with natural
language has been viewed from different perspectives: Some
approaches think of it as code dictation, others try to naturalize
programming languages. Interactive systems rely on user feed-
back to solve the task, while others employ semantic parsing.
For research in the field of humanoid robotics, programming
with natural language is of particular importance. Each per-
spective focuses on different aspects and addresses the task of
teaching new skills differently.

Approaches for code dictation are basically natural language
interfaces to code editors. Developers dictate code and the
text (or speech) is literally converted into code. Thus, no
semantic transformation or mapping is necessary. However, the
respective parsers (and automatic speech recognition systems)
are tailored to preferably recognize code-like terms. Natural
Java by Price et al. uses case frame grammars for Java source
code dictation [6]. They use information retrieval techniques to
fill the roles in the frames. Begel and Graham present Spoken
Java, a voice based code dictation interface for Java [7],
[8]. According to the authors it is supposed to be used
by developers that can not use their hands due to injuries,
e.g. repetitive strain injuries. VoiceCode by Désilets et al.
allows dictating different programming languages [9]. With
all approaches new methods can be dictated just like anything
else. However, users have to dictate proper source code.

The approach to naturalize programming by Wang et al. is
set in a voxel world called Voxelurn [10]. Users may define
new aliases for API methods to naturalize the vocabulary used.
The approach also offers the composition of calls. The aliases
of composed calls constitute newly learned functions.

Other approaches are interactive; they synthesize source
code in dialog with the user. They are designed for laypersons
or programming novices. Most of them make use of mixed
or user initiative dialog to clarify ambiguous or unclear input.

6The rationale behind this decision: if in doubt, it is a specifying part, since
they occur most frequently.

Metafor by Liu and Lieberman constructs program skeletons
from English prose [11]. They use a specialized parser that
creates code-like subject-verb-object-object structures. The re-
sults are classes, attributes, method signatures, but no runnable
code. The follow-up work by Mihalcea et al. is able to create
runnable code including control structures; they also detect
comments [12]. Landhäußer et al. additionally reconstruct time
lines [13]. However, their tool NLCI provides marginal user
feedback only. Le et al. enable users to create short scripts for
smartphones with SmartSynth [14]. The scripts are synthesized
with the help of heuristics on syntactical features. The input
is limited to the following structure: a condition followed by
a sequence of actions. SmartSynth uses type inference to fill
gaps in method calls, e.g. missing parameters. If a script is
invalid the user is queried for clarification.

Another perspective on programming with natural language
was recently introduced by the semantic parsing community.
Semantic parsing denotes the task of mapping natural language
to logical forms. Recently, source code is considered as
one logical forms. Even though scripts can be synthesized,
integrating new functionality is not considered so far. Guu
et al. use reinforcement learning in combination with the
maximal marginal likelihood method to map natural language
to code [15]. Rabinovich et al. use an AST-like structured BiL-
STM to infer ASTs from textual descriptions [16] and Chen
et al. use recurrent neural networks to learn so-called action
embeddings [17]. Dong and Lapata use a two-tiered approach;
first producing a light-weight, coarse meaning representation
and then using a BiLSTM to fill in missing details [18].

Teaching new functionality to intelligent systems is of
peculiar interest in the robotic domain. The robotic systems
of the future are supposed to act like humans. Thus, they
have to be able to understand task descriptions for humans.
Most approaches aim at synthesizing actions plans or new
functions (composed of single actions). Lincoln and Verres
use a planning approach to model the shared goals and intents
of users and machines [19]. New functionality can be taught
but the used language is rather technical. The approach by
She et al. allows the usage of everyday language to teach a
robotic system new functionality [20]. For the transformation
the approach uses semantic parsing. Even though the approach
does not expect technical terms, the vocabulary and wordings



are restricted. Markievicz et al. use descriptions that were
originally created to teach humans [21]. They use dependency
parsing and specialized semantic role labeling to map the
natural language input to robotic instructions. Their approach
assumes that the input consists of known instructions and thus
is unable to cope with newly introduced functionalities.

VI. CONCLUSION & FUTURE WORK

We presented a hierarchical classification task to grasp the
semantic structure of natural language teaching sequences.
We define a hierarchical classification task. On the first level
we determine whether an utterance contains the (explicitly
stated) intent to teach new functionality. On the second we
break down these teaching sequences into semantic parts: a
declarative part that contains the teaching intent and a name
for the new skill, a specifiying part that states the intermediate
steps, and miscellaneous, useless information.

We implemented classical machine learning approaches and
neural networks to solve the task. For training, validation, and
testing we used a dataset from a preliminary study. The neural
networks outperform the classical approaches in almost all
cases. Even though we tested different types of networks and
experimented with different hyper-parameter combinations,
bidirectional RNNs proved to be the most suitable for both
classification levels. The bidirectional RNNs remain on high
accuracy levels even when they are exposed to input that is
conceptually different to the training instances. In these tests
the best RNN for the first task (BiGRU) shows an accuracy
of 93.2%; for the second task it is even 97.6% (BiLSTM).

To further improve the classification we implemented two
heuristics. The first uses overruling by the second classifier to
increase the first-level accuracy by 1.8%. The second creates
continuous semantic parts with the help of a semantic role
labeler, but is not yet fully evaluated. However, first results
are promising.

We plan to evaluate our approach on other datasets in
the near future. We could conceivably launch another online
study (with a different setting) or use open-access corpora. To
gain an even deeper understanding of the semantic structure
of teaching sequences, we might refine the label set of our
second-level task, e.g. define a label for skill naming. The next
logical step would be to use the gained knowledge on teaching
sequences to synthesize actual methods to extend intelligent
systems. We plan to create method definitions, including their
signatures and body, from natural language utterances.
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