
Load-Balanced Bottleneck Objectives in Process Mapping∗

Johannes Langguth† Sebastian Schlag‡ Christian Schulz§

Abstract

We propose a new problem formulation for graph partition-

ing that is tailored to the needs of time-critical simulations

on modern heterogeneous supercomputers.

1 Introduction

Among the many combinatorial problems, graph parti-
tioning (GP) has a central role in the area of parallel
high performance computing. Irregular inputs such as
graphs, sparse matrices and many meshes typically have
to be distributed among the nodes of a supercomputer
to allow parallel processing, and the distribution should
both balance the workload and minimize the communi-
cation. In the last two decades, sophisticated software
has been developed for computing high-quality parti-
tionings fast. However, the underlying model, which as-
sumes homogeneous nodes connected by a full-bisection
bandwidth network, no longer represents current super-
computers. We therefore propose a new problem formu-
lation which overcomes these drawbacks and discuss its
suitability for future challenges in parallel computing.

Irregular inputs can roughly be divided into two
main groups. The first consists of problems whose
data access pattern resembles sparse-matrix-dense-
vector multiplications (SpMV), where the communica-
tion is irregular but follows a repeated pattern, such
as PageRank [21] and many scientific computations on
irregular meshes. The second group represents prob-
lems resembling sparse-matrix-sparse-vector multiplica-
tions (SpMSpV). Here, only a subset of vertices is ac-
tive at a time, leading to changing communication pat-
terns. While minimizing cut sizes helps to reduce the
communication cost in both cases, in the first case, the
overall communication time is determined by the max-
imum communication per node, assuming the network
links of a distributed memory computer operate inde-
pendently. Thus, minimizing the maximum (i.e., the

∗This work was partially supported by the Austrian Science
Foundation (FWF, project P 31763-N31), and it was partially

supported by the Research Council of Norway (project RCN

251186).
†Simula Research Laboratory, Oslo, Norway
‡Karlsruhe Institute of Technology, Karlsruhe, Germany
§University of Vienna, Faculty of Computer Science, Vienna,

Austria

makespan) is a better partitioning objective, and as-
suming there are no slowdowns such as concurrent traf-
fic in the network, it is actually optimal in this case. In
the second case, it is harder to compare the partitioning
objectives. In low-diameter graphs such as social net-
works, breadth-first search and similar algorithms typi-
cally perform a low number of high-volume communica-
tion rounds. Consequently, minimizing the maximum
communication among the nodes may lead to better
results than cut-size optimization. For high diameter
graphs this no longer holds, which renders makespan
partitioning less attractive in this case.

Finally, current single-criterion partitioning does
not allow trade-offs between load balance and cut size.
For SPMV type computations, where both commu-
nication and computation performance is typically to
a certain degree predictable, incorporating this trade-
off has the potential to provide better solutions than
using a fixed load-balance constraint on the vertices.
And while SpMSpV computations are typically less pre-
dictable, they are often highly communication-bound,
which means that load-balance is less important than
communication minimization and might benefit from
the trade-off formulation. All this however implies that
we must provide a ratio between the cost of communi-
cation and computation for the trade-off to function.

2 Related Work

There has been an enormous amount of research on
GP, and we refer the reader to Refs. [2, 3, 26] for ex-
tensive material and references. The most common
objective function is to minimize the total cut size∑

i<j ω(Eij). There are well known software packages
based to find partitions minimizing this objective in-
cluding KaHIP [24], Jostle [29], Metis [15], and Scotch
[22]. A related objective is to minimize the maximum
cut size maxi<j ω(Eij). The first accurate communica-
tion volume metrics for sparse-matrix vector multipli-
cation, using hypergraph models, are due to Catalyurek
and Aykanat [5]. When graph partitioning is used
in parallel computing to map the graph nodes to dif-
ferent processors, the communication volume is often
more representative than the cut [13]. Let V` be the
block containing vertex v. Then, we let D(v) denote
the number of blocks in which vertex v has a neigh-

bor, excluding the block containing v and c(v) be a
vertex weight. That is, D(v) = |{j | ∃u ∈ Vj 6=
V` s.t. {u, v} ∈ E}|. For a block Vi, the communica-
tion volume is cvol(Vi) :=

∑
v∈Vi

c(v)D(v). Similar to
cut size, one can minimize the maximum communica-
tion volume max1≤i≤k cvol(Vi), or the total communi-
cation volume

∑
1≤i≤k cvol(Vi). The choice of either

the total or maximum variant of the objective function
here is typically dictated by the topology of the inter-
connection network between the machines [13]. Other
objectives are less common, these include the maxi-
mum degree in the quotient graph (the graph formed
by blocks and their connections), expansion and conduc-
tance [16], and optimizing the “shape” of partitions [20].
Specialty partitioners tailor-made for applications can
give better quality [7]. Furthermore, there are meth-
ods for maximizing multiple objective functions simul-
taneously [25, 28, 6], and finding Pareto-optimal solu-
tions [11].

There is likewise a large literature on process map-
ping, i.e., decomposition techniques that takes the given
connection network into account, often in the context of
scientific applications using MPI (Message-Passing In-
terface). Refs. [30, 23, 4, 12] were among the first to
tackle the process mapping problem. Hatazaki [12] and
Walshaw [30] proposed graph partitioning to solve the
MPI process mapping problem for unweighted process
topologies. Mercier and Clet-Ortega and later Jean-
not [18, 19] simplify the mapping problem by only con-
sidering the topology inside the compute nodes them-
selves and ignoring the topology of the network. Multi-
ple placement policies are investigated to enhance over-
all system performance. Yu et al. [31] discuss and im-
plement embedding heuristics for the BlueGene 3d torus
system. Hoefler and Snir [14] instead optimize the con-
gestion of the mapping and show that this problem is
NP-complete. Routing-aware mapping heuristics tak-
ing the hierarchy of specific hardware topologies into
account were discussed in Ref. [1]. Later, based on a
variety of techniques, more sophisticated algorithms to
compute mappings for hierarchical systems have been
published [27, 10, 8].

The Lynx code [17] is an SpMV-type computation
for large scale simulations in cardiac electrophysiology
on heterogeneous supercomputers. As the problem is
relatively communication heavy, high-quality partition-
ing is crucial for its performance, especially when using
nodes equipped with multiple GPUs. Scalability was
achieved via hierarchical partitioning. However, due
to the lack of actual hierarchical partitioning software,
it was emulated by applying conventional partitioning
twice. This proved to be highly effective, but difficult
to program. As this type of compute node has become

common in modern supercomputers, we believe that the
need for hierarchical partitioning software will increase
in the near future.

3 Problem Specification

We define the basic version of the graph-constrained
makespan partitioning problem as follows:

Given a tree C = (B,L), an undirected graph
G = (V,E), and a communication cost factor F . Find a
partitioning P : V → B which maps each vertex v ∈ V
to a vertex b ∈ B such that the makespan is minimized.
We refer to the vertices B of C as bins, and the edges
L as links. The makespan M is defined as:

M(P) = max(max
b∈B

comp(b), F ·max
l∈L

comm(l))

where comp(b) = |{v ∈ V | P (v) = b}| is the com-
putational load of vertex b ∈ B, comm(l) = |{{u, v} ∈
E | l ∈ STP (P (u), P (v))}| is the communication vol-
ume along edge l ∈ L, and STP (P (u), P (v)) is the
shortest path (as a set of edges) between the bins P (u)
and P (v) that the endpoints u and v of some edge were
assigned to in P . Because C is a tree, the shortest path
is unique. Note that C is unweighted, which means that
the length of a path is simply the number of edges con-
tained in it. This is based on the intuition that if an
edge is cut, communication will be necessary between
the compute nodes represented by these bins.

3.1 Generalizations. The most basic generalization
is the introduction of a set R ⊂ B of routers, i.e.,
bins r ∈ R that cannot be assigned any work (i.e.,
load(r) = 0 ∀r ∈ R). This is needed to correctly model
the networks of most supercomputers. We refer to this
variant as the interconnect graph-constrained makespan
partitioning problem.

To take more complicated interconnects with dif-
ferent routing protocols into account, the protocols be-
come part of the problem formulation. Thus, the routing
graph-constrained partitioning problem differs from the
standard version in that C is no longer required to be a
tree. Any algorithm for this problem is given access to
an oracle (such as a routing table) which for every pair
of bins returns a unique path between them. If we allow
for multipath routing, the oracle may instead return a
set of paths. In that case, assuming k paths, each path
P adds 1/k to the load of each edge l ∈ P.

The hierarchical network structure of interconnect
topologies such as fat trees implies that some links
need to have much higher capacities than the injection
bandwidth of a single node. In order to model this,
we change the communication factor F from globally
applying to all links to a link-specific factor Fl, thereby

obtaining the edge-weighted variant. By the same token,
we can define a vertex-weighted variant where every
v ∈ V is given a weight w(v). The load of a bin is
then computed as the sum of the weights of all vertices
assigned to that bin.

3.2 NP Hardness. Unlike the traditional graph par-
titioning problem, graph constrained makespan parti-
tioning does not have a simple reduction from Mini-
mum Bisection. However, the vertex weighted case
can easily be proven to be NP-Hard by reduction from
Minimum multiprocessor scheduling [9].

References

[1] A. H. Abdel-Gawad, M. Thottethodi, and A. Bhatele.
RAHTM: routing algorithm aware hierarchical task
mapping. In Intl. Conference for High Performance
Computing, Networking, Storage and Analysis (SC),
pages 325–335, 2014.

[2] C. Bichot and P. Siarry, editors. Graph Partitioning.
Wiley, 2011.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent Advances in Graph Partition-
ing. In Algorithm Engineering – Selected Topics,
ArXiv:1311.3144, 2014.

[4] Ü. V Catalyürek and C. Aykanat. Hypergraph model
for mapping repeated sparse matrix-vector product
computations onto multicomputers. In Proceedings of
International Conference on High Performance Com-
puting (HiPC), 1995.

[5] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. Parallel
Distrib. Syst., 10(7):673–693, 1999.

[6] Ü. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar.
UMPa: A Multi-objective, Multi-level Partitioner for
Communication Minimization. In 10th DIMACS Impl.
Challenge Workshop: Graph Partitioning and Graph
Clustering. Georgia Institute of Technology, Atlanta,
GA, February 13-14 2012.

[7] D. Delling, A. V. Goldberg, I. Razenshteyn, and
R. F. Werneck. Graph partitioning with natural
cuts. In 2011 IEEE International Parallel Distributed
Processing Symposium, pages 1135–1146, May 2011.

[8] M. Fonseca Faraj, A. van der Grinten, H. Meyerhenke,
J. L. Träff, and C. Schulz. High-Quality Hierarchical
Process Mapping. CoRR, abs/2001.07134, 2020.

[9] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical
Sciences). W. H. Freeman, first edition edition, 1979.

[10] R. Glantz, M. Predari, and H. Meyerhenke. Topology-
induced enhancement of mappings. In Proceedings of
the 47th International Conference on Parallel Process-
ing, ICPP 2018, pages 9:1–9:10. ACM, 2018.

[11] M. Hamann and B. Strasser. Graph Bisection with
Pareto-Optimization. In Proc. of the 18th Algorithm
Engineering and Experiments, pages 90–102. SIAM,
2016.

[12] T. Hatazaki. Rank reordering strategy for MPI topol-
ogy creation functions. In 5th European PVM/MPI
User’s Group Meeting, volume 1497, pages 188–195,
1998.

[13] B. Hendrickson and T. G. Kolda. Graph Partitioning
Models for Parallel Computing. Parallel Computing,
26(12):1519–1534, 2000.

[14] T. Hoefler and M. Snir. Generic topology mapping
strategies for large-scale parallel architectures. In Proc.
25th Intl. Conf. on Supercomputing (ICS), pages 75–84,
2011.

[15] G. Karypis and V. Kumar. Multilevel k-way Partition-
ing Scheme for Irregular Graphs. Journal on Parallel
and Distributed Compututing, 48(1):96–129, 1998.

[16] K. Lang and S. Rao. A Flow-Based Method for Im-
proving the Expansion or Conductance of Graph Cuts.
In Proceedings of 10th International Integer Program-
ming and Combinatorial Optimization Conference, vol-
ume 3064 of LNCS, pages 383–400. Springer, 2004.

[17] J. Langguth, M. Sourouri, G. T. Lines, S. B. Baden,
and X. Cai. Scalable heterogeneous cpu-gpu computa-
tions for unstructured tetrahedral meshes. IEEE Mi-
cro, 35(4):6–15, July 2015.

[18] G. Mercier and J. Clet-Ortega. Towards an efficient
process placement policy for MPI applications in mul-
ticore environments. In European Parallel Virtual Ma-
chine/Message Passing Interface Users Group Meeting,
pages 104–115. Springer, 2009.

[19] G. Mercier and E. Jeannot. Improving MPI appli-
cations performance on multicore clusters with rank
reordering. In 18th Eur. MPI Users’ Group Meeting,
pages 39–49, 2011.

[20] H. Meyerhenke and T. Sauerwald. Beyond good parti-
tion shapes: An analysis of diffusive graph partitioning.
Algorithmica, 64(3):329–361, Nov 2012.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order to the
web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-
0120.

[22] F. Pellegrini. Scotch Home Page.
http://www.labri.fr/perso/pelegrin/scotch/.

[23] P. Sadayappan, F. Erçal, and J. Ramanujam. Cluster
partitioning approaches to mapping parallel programs
onto a hypercube. Parallel Computing, 13(1):1–16,
1990.

[24] P. Sanders and C. Schulz. KaHIP – Karl-
sruhe High Qualtity Partitioning Homepage.
http://algo2.iti.kit.edu/documents/kahip/index.html.

[25] K. Schloegel, G. Karypis, and V. Kumar. A new algo-
rithm for multi-objective graph partitioning. In Pro-
ceedings of the 5th International Euro-Par Conference
on Parallel Processing (Euro-Par 1999), volume 1685
of LNCS, pages 322–331. Springer, 1999.

[26] C. Schulz and D. Strash. Graph partitioning: Formu-
lations and applications to big data. In Encyclopedia
of Big Data Technologies. Springer, 2019.

[27] C. Schulz and J. L. Träff. Better process mapping
and sparse quadratic assignment. In 16th International
Symposium on Experimental Algorithms, volume 75 of
LIPIcs, pages 4:1–4:15, 2017.

[28] N. Selvakkumaran and G. Karypis. Multi-objective
hypergraph partitioning algorithms for cut and max-
imum subdomain degree minimization. In ICCAD-
2003. International Conference on Computer Aided
Design (IEEE Cat. No.03CH37486), pages 726–733,
Nov 2003.

[29] C. Walshaw and M. Cross. JOSTLE: Parallel Multi-
level Graph-Partitioning Software – An Overview. In
Mesh Partitioning Techniques and Domain Decompo-
sition Techniques, pages 27–58. 2007.

[30] C. Walshaw, M. Cross, M. G. Everett, S. P. Johnson,
and K. McManus. Partitioning & Mapping of Un-
structured Meshes to Parallel Machine Topologies. In
Afonso Ferreira and José D. P. Rolim, editors, Pro-
ceedings of Parallel Algorithms for Irregularly Struc-
tured Problems, Second International Workshop, IR-
REGULAR ’95, volume 980 of LNCS, pages 121–126.
Springer, 1995.

[31] H. Yu, I-H. Chung, and J. E. Moreira. Topology map-
ping for Blue Gene/L supercomputer. In ACM/IEEE
Supercomputing, page 116, 2006.

