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Zusammenfassung

Plastische Deformationen induzieren in kleinskaligen metallischen Proben
Größeneffekte. Um das zugehörige, nichtlokale Materialverhalten zu
modellieren, werden häufig verallgemeinerte Kontinuumsmodelle ver-
wendet. Diese berücksichtigen, im Gegensatz zum klassischen Cauchy-
Boltzmann Kontinuum, zusätzliche Freiheitsgrade und führen intrinsisch
eine Längenskala ein.

Die vorliegende Thesis gibt zunächst einen Überblick über verschiedene
Methoden zur Herleitung erweiterter Kontinuumsmodelle. Hierbei
werden die grundlegenden Annahmen und Einschränkungen der jew-
eiligen Methode dargestellt. Zudem werden unterschiedliche Kontinu-
umsmodelle sowie deren Wechselbeziehungen untereinander ausführlich
diskutiert.

Basierend auf diesen Erkenntnissen wird eine selbstkonsistente Theorie
hergeleitet, indem die Invarianz einer erweiterten Energiebilanz bezüglich
der euklidischen Transformation betrachtet wird. Die Erweiterung der
Energiebilanz basiert auf einem zusätzlichen Freiheitsgrad, für den die
Anwendung des Coleman-Noll-Verfahrens eine thermodynamisch kon-
sistente, nichtlokale Fließregel liefert. Die Äquivalenz zwischen dem
betrachteten Ansatz und einem erweiterten Prinzip der virtuellen Leistung
wird dargestellt. Eine Gradientenplastizitätstheorie wird im Rahmen
kleiner Deformationen und Einfachgleitung aufgestellt, indem die plas-
tische Abgleitung als zusätzlicher Freiheitsgrad betrachtet wird. Die
Partitionierung der nichtlokalen Fließregel für die plastische Abgleitung
liefert eine lokale Fließregel sowie eine partielle Differentialgleichung, die
häufig als Mikrokraftbilanz bezeichnet wird.
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Zusammenfassung

Im Rahmen der erweiterten Energiebilanz wird eine materielle singuläre
Fläche berücksichtigt, um das mechanische Verhalten an der Korngrenze
abzubilden. Es werden thermodynamisch konsistente Fließregeln für
die plastische Gleitung an der Korngrenze hergeleitet. Hierbei wird eine
Klassifizierung der erhaltenen Fließregeln vorgenommen.

Abschließend wird die hergeleitete Theorie auf ein zwei- sowie ein
dreiphasiges Laminat angewendet. Während das Zweiphasenlaminat
aus einer elastoplastischen und einer elastischen Phase besteht, weist das
Dreiphasenlaminat zwei benachbarte elastoplastische Phasen und eine
elastische Phase auf. Die elastoplastische Phase repräsentiert ein Korn mit
einem aktiven Gleitsystem. Die Auswirkungen der internen Längenskala
und der Kornbreite auf die Verteilung der plastischen Abgleitung im Korn
und auf der Korngrenze werden untersucht. Hierbei werden analytische
Lösungen für die Verteilung der plastischen Abgleitung sowohl für das
zwei- als auch für das dreiphasige Laminatmaterial diskutiert.
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Summary

Plastic deformations induce size effects in small-scale metallic samples.
Generalized continuum models are often used to model the associated
nonlocal material behavior. In contrast to the classical Cauchy-Boltzmann
continuum, these models consider additional degrees of freedom and
intrinsically introduce a length scale.

This thesis first gives an overview of different methods for the derivation
of extended continuum models. The basic assumptions and limitations of
each method are presented. In addition, different continuum models and
their interrelations are discussed in detail.

Based on these findings, a self-consistent theory is derived by considering
the invariance of an extended energy balance with respect to the Euclidean
transformation. The extension of the energy balance is based on an
additional degree of freedom for which the application of the Coleman-
Noll method provides a thermodynamically consistent, nonlocal flow
rule. The equivalence between the approach considered and an extended
principle of virtual power is presented. A gradient plasticity theory
is established in the context of small deformations and single slip by
considering the plastic slip as an additional degree of freedom. The
partitioning of the nonlocal flow rule for the plastic slip provides a local
flow rule as well as a partial differential equation, which is often referred
to as the micro-force balance.

Within the framework of an extended energy balance, a material singular
surface is considered in order to model the mechanical behavior at the
grain boundary. Thermodynamically consistent flow rules for the plastic
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Summary

slip at the grain boundary are derived. Thereby, a classification of the
obtained flow rules is carried out.

Finally, the derived theory is applied to a two-phase and a three-phase
laminate. While the two-phase laminate consists of an elastoplastic and
an elastic phase, the three-phase laminate has two adjacent elastoplastic
phases and an elastic phase. The elastoplastic phase represents a grain with
an active slip system. The effects of internal length scale and grain width
on the distribution of the plastic slip in the grain and on the grain boundary
are examined. In this context, analytical solutions for the distribution of
the plastic slip for both the two-phase and three-phase laminate material
are discussed.
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Chapter 1

Introduction

1.1 Motivation

The plastic deformation of metals is a crucial characteristic with respect
to their processing. Metals are used for tools since thousands of years.
However, it was not until the beginning of the 20th century that theories
were developed describing the mechanisms of plastic deformation of
metals. Amongst others, seminal works concerning this topic are by
Mises (1928), Orowan (1934a;b;c; 1935a;b), Polanyi (1934) and Taylor
(1934). Since metals are crystals, they consist, theoretically, of a periodic
arrangement of unit cells. However, this lattice structure is not perfectly
periodic as it contains defects. A line defect in this lattice is referred to as
dislocation. The movement of dislocations in a metallic specimen under
applied load causes its plastic deformation. In this context, the movement
of the dislocations is not arbitrary. It occurs with respect to so-called
slip directions and slip planes that are characteristic for a specific class of
crystals.

Molecular dynamic (MD) simulations as well as discrete dislocation dy-
namics (DDD) simulations are used to investigate the basic mechanisms
of dislocation motion such as the interaction of dislocations with each
other or with obstacles. Both methods, however, require a comparably
high numerical effort and are, therefore, time consuming. Consequently,
they are not applied if grain aggregates are considered. If the plastic
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1 Introduction

deformation of oligo- or polycrystals is of interest, continuum mechanical
approaches are commonly applied. In the continuum mechanical context,
the individual, discrete dislocations are not resolved separately. Instead,
either a density of dislocations or the plastic slip is considered. This makes
the continuous description numerically more efficient than, e.g., the MD
or DDD calculations. Regarding small strain theories, it is common to
presume that the plastic strain tensor is given by a linear combination of
the plastic slips and the corresponding Schmid tensors that specify the
slip directions and the slip planes. If a constitutive law for the evolution
of the plastic slips can be established, it is possible to describe the plastic
deformation of polycrystals. This approach is denoted as classical crystal
plasticity theory. It yields reasonable results, if the considered specimen
exhibits a sufficient size, e.g., in the context of deep drawing of sheet
metals. However, if the specimen size or the grain size under consideration
decreases to the scale of a few micrometers, the results obtained are not in
line with corresponding experiments. Size effects such as an increase in
the total yield strength are observed but are not reproducible within the
framework of classical crystal plasticity. They are related to the pile-up of
geometrically necessary dislocations (GNDs) at grain boundaries (GBs) or
other obstacles.

The crystal lattice is locally compressed or stretched due to the presence
of dislocations. Therefore, each dislocation carries a stress field with it.
Consequently, pile-ups of GNDs are associated with inhomogeneities of
stress and therefore with strain gradients. To take this into account, gra-
dient plasticity theories were developed. Some of these theories account
for the plastic slips at the individual slip systems as additional degrees of
freedom (DOFs). Thus, the stored free energy depends on the gradients
of the plastic slips. If additional DOFs are accounted for each material
point, the continuum under consideration is not referred to as classical
but as generalized or extended continuum. A prominent example for an
extended continuum is the Cosserat continuum. It considers three addi-

2



1.2 Research Objectives and Originality

tional rotational DOFs for each material point. In general, the influence
of the supplementary DOFs on the common balance equations has to be
discussed. In this context, mainly two questions arise.

• Which balance equations of the classical continuum will be preserved
in their standard form?

• Are there additional balance equations associated with the additional
DOF?

Both questions can be answered by deriving the balance equations for an
extended continuum. In order to obtain a closed theoretical framework,
constitutive equations as well as flow rules for additional DOFs are needed.
For the derivation of balance and constitutive equations, several methods
are applicable and known from literature. However, the interrelation
between these methods as well as their fundamental assumptions and their
limitations are commonly not discussed. In fact, however, the restrictions
associated with each method are of particular interest for the development
of a thermodynamically consistent, extended plasticity theory. After these
questions have been clarified, the influence of geometrical properties of
the GB, e.g., its mean curvature, on the balance equations can be discussed.

1.2 Research Objectives and Originality

Research objectives The main objective of this thesis is the thermodynam-
ically consistent development of extended plasticity models describing
scale effects. Thereby, materials with a crystalline microstructure, such
as metals, are considered. To this end, a generalization of the classical
Cauchy continuum is used that takes into account additional degrees of
freedom (DOFs). The treatment of this topic by means of either variational
principles or an extended principle of virtual power (PoVP) is widely
spread. A third approach, the consideration of invariance properties of an
extended energy balance, is underrepresented in modern literature. While
the exploitation of a variational principle is straightforward, it does not

3



1 Introduction

take into account the second law of thermodynamics. Instead, a dissipation
potential is considered. The description of the problem by means of an
extended PoVP is both elegant and effective to apply. However, the balance
of internal energy is commonly introduced in addition, to account for
supplementary contributions in the dissipation inequality by means of
the Legendre transformation. For this purpose, in addition to the virtual
rates used by the PoVP, actual rates are introduced. This gives rise to
some redundancy. In contrast to this, the invariance considerations of an
extended energy balance naturally yield a balance of internal energy which
accounts for additional contributions. Consequently, the last approach
is self-consistent. However, it is not possible to obtain additional field
equations by means of invariance considerations of an extended energy
balance. This raises the question of the relationship between the results of
an extended PoVP and the invariance of an extended energy balance.

The second objective of the work at hand is the development of an extended
plasticity model that takes into account the mechanical behavior at the
GB. As known from experiments on oligo- or polycrystals, the overall
mechanical behavior is significantly influenced by GBs. They constitute a
resistance against the movement of dislocations and result in a pile-up at
the GB. These pile-ups are associated with strain gradients.

Finally, the third objective is to apply the derived framework to a slip
gradient crystal plasticity theory in the context of small deformations.
The qualitative characteristics of the distribution of the plastic slip are
discussed by means of analytic solutions. In this context, single slip within
a two- and a three-phase laminate material is considered. The two-phase
laminate material is used to discuss the mechanical behavior within the
bulk material. In addition, the three-phase laminate yields results with
respect to the mechanical behavior at the GB.

Originality of this thesis The following novelties are obtained.

• The invariance considerations of an extended energy balance allow
for a self-consistent development of extended plasticity models. In

4



1.3 State of the Art

this context, an extended energy balance and an extended PoVP are
compared with respect to regular points. Thereby, the notion of the
micro-force balance is discussed. In contrast to common approaches
using an extended PoVP, associated micro-inertia terms are taken into
account, here.

• An extended energy balance that accounts for a material singular surface
as a model for a GB is considered. The mean curvature of the GB is
explicitly accounted for by its corresponding balance of mass. Moreover,
flow rules for a rate-independent, nonlinear behavior of the plastic slip
at the GB are obtained. Boundary conditions obtained by an extended
PoVP constitute a special case of the rate-independent behavior.

• Considering a small strain slip gradient crystal plasticity, an analytical
solution for the plastic slip is provided for a three-phase laminate
material with respect to single slip. This enables to discuss the sensitivity
of the plastic slip at the GB by analytical means with respect to a change
of the material parameters. In this context, the influence of the defect
parameter, which is associated with an initial dislocation density, is
considered. Regarding adjacent grains with geometrically coherent slip
systems, slip gradients are obtained at the GB based solely on a jump of
the defect parameter and, thus, the initial dislocation density.

1.3 State of the Art1

Basic ideas of extended continua An extensive review on extended
continua is given in the subsequent chapter. Here, the development
of extended continua throughout the 20th and the early 21st century is
briefly outlined and the corresponding seminal publications are given.
Classical continuum mechanics considers a body as a set of undeformable
material points. Each material point of such a Boltzmann continuum

1 Most of the content of this section is taken directly from the articles Prahs and Böhlke
(2019b;a). Minor linguistic changes and abbreviations have been made.
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1 Introduction

exhibits three degrees of freedom (DOFs) describing its displacement,
cf. Hellinger (1913, p. 606) and Eugster and dell’Isola (2017; 2018a;b). The
Boltzmann continuum, cf. Vardoulakis (2019, p. 1), is also referred to as
Cauchy continuum as described in Maugin (2017, p. 3), cf. also dell’Isola
et al. (2015); Giorgio (2016); Rahali et al. (2015). Extended continuum
models account for the underlying microstructure of the material by
introducing additional, internal DOFs. One of the first suggested extended
continuum models is the so-called Cosserat continuum, cf. Cosserat
and Cosserat (1909). It allows for the orientation of a material point.
Thus, each material point is supplemented by three rotational DOFs in
addition. Many authors addressed this topic in the mid of the 20th century
focusing on generalizations or extensions to the Cosserat continuum,
cf. Ericksen (1961); Eringen (1964; 1968); Germain (1973); Green and Rivlin
(1964a); Mindlin (1964). Especially the micromorphic continuum according
to Eringen and Suhubi (1964) can be considered as a direct generalization of
the Cosserat continuum. It treats each material point as a micro-continuum.
Consequently, a micro-deformation tensor associated with each material
point is introduced in Eringen and Suhubi (1964). Conceptually similar
is the consideration of a micro-medium as discussed by Mindlin (1964).
Continua that account for couple stresses are discussed by Toupin (1962;
1964). Velocity gradients of higher order or multipolar displacements
are introduced in the context of extended continua by Green and Rivlin
(1964c;a). An extensive overview of generalized continua is given in Capriz
(1989) and Neff et al. (2014). Further applications of extended continua
are to be found in the context of liquid crystals, cf. Ericksen (1961); Leslie
(1968), continuum theory of dislocations, cf. Fox (1966; 1968), nonlocal
plasticity, cf. Peerlings et al. (2004); Placidi (2016), nonlocal damage,
cf. Germain et al. (2007); Placidi and Barchiesi (2018); Placidi et al. (2018a;b)
and nonlocal diffusion, cf. Ubachs et al. (2004).

Methods to obtain field equations of an extended continuum Addi-
tional DOFs are associated with the corresponding equations of motion

6



1.3 State of the Art

relating the kinematic of the DOFs to the underlying forces, cf. remark in
Maugin (2015). Consequently, the total energy describing the system is
supplemented by contributions related to the additionally introduced
DOFs. The comparison of a mathematical pendulum with a double
pendulum serves as an illustrative example with respect to discrete sys-
tems, cf. Landau and Lifshitz (1969). In the continuum mechanical
context, several approaches exist to derive or motivate additional balance
equations associated with additional DOFs. An overview is given in
the review paper of Mariano (2016) or others, e.g., Misra et al. (2017);
Placidi et al. (2017). In a nondissipative context, Hamilton’s principle
of least action is a suitable method for the derivation of associated field
equations, cf. Hellinger (1913). It can be considered as the predecessor
of many other variational principles. An application to continua with a
microstructure based on elastic micro-trusses is given by Seppecher et al.
(2011). However, this is getting more involved for dissipative systems,
cf. Planck (1960, p. 81). Closely related to variational principles is the
principle of virtual power. Its classical formulation can be supplemented
by additional work terms accounting for the virtual power of additional
DOFs, cf. Forest (2009). According to Mariano (2016), a drawback of an
extended principle of virtual power is that quantities, such as the stress
and micro-stress tensor, are presumed. Another approach is to consider
the invariance properties of an extended energy balance with respect
to a superimposed rigid-body motion. Additionally, the ‘tetrahedron’
argument, cf., e.g., dell’Isola et al. (2016), is applied to prove the existence
of, e.g., the stress and micro-stress tensor. This approach is often referred to
as Green-Naghdi-Rivlin (GNR) theorem, cf. Marsden and Hughes (1994);
Maugin (1980). Its first application can be found in Green and Rivlin
(1964b). With this method, however, it is difficult to obtain additional field
equations, as already noted by Planck (1960). In Germain (1973, p. 574) it
is stated that invariance considerations of an extended energy balance do
not lead to the same field equations as obtained by an extended principle
of virtual power. Maugin (1980) confirms this issue referring to the seven
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1 Introduction

parameter invariance that is commonly applied to the energy balance
in this context. The number of field equations obtained by the energy
balance is less compared to the number obtained by Hamilton’s principle,
cf. Planck (1960), or the principle of virtual power, cf. Maugin (1980, p. 63).
This topic is recaptured by Yavari and Marsden (2009, p. 10). They show
that an extended energy balance only leads to modifications of the common
balance equations if the ambient space is chosen Euclidean rather than
a Riemannian manifold. However, it is not possible to obtain additional
field equations. In Yavari and Marsden (2009), the extensions to the energy
balance, which is discussed in the context of the GNR-theorem, are due to
additional vectorial DOFs. As discussed in Svendsen (2001a, footnote 2), it
is regardless whether the invariance of the energy balance is considered
with respect to a superimposed rigid-body motion or a change of observer.
Both approaches yield the same balance equations.2 In fact, some authors
state the invariance of an extended energy balance with respect to a
change of observer, e.g., Capriz et al. (1982). Invariance considerations
of an extended energy balance are discussed by Svendsen (2001b) in the
context of a fibre bundle framework, thereby extending the framework
of Capriz (1989). Svendsen (2011) generalized the treatment of Capriz
(1989) from simple materials to first-order gradient continua. Moreover,
the covariance of an extended energy balance with respect to a spatial and
a microstructural diffeomorphism is considered in Yavari and Marsden
(2009). This procedure is applied to a classical Boltzmann continuum
in Marsden and Hughes (1994, pp. 165-167). However, they explicitly
emphasize that the stress vector transforms objectively, irrespective of the
underlying material behavior, if the considered spatial diffeomorphism
describes a rigid deformation. Regarding a generic spatial diffeomorphism,
an objective transformation of the stress vector is postulated only in the

2 In the context of material theory, invariance considerations with respect to a change of
observer or a superimposed rigid-body motion are denoted as PMO or PISM, respectively.
In contrast to the PMO, the PISM is not always valid, cf. Krawietz (1986, p. 161), Svendsen
and Bertram (1999) and Svendsen (2001a).

8
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purely elastic case, cf. Marsden and Hughes (1994, p. 163). Consequently,
the consideration of dissipative processes by means of this framework
is quite involved. This limitation to purely elastic material behavior can
be seen as the most critical point of this approach. Following Truesdell
and Toupin (1960, p. 529), a clear separation between balance equations
and constitutive equations has to be drawn. This arises from the demand
that balance equations should be of generic nature, valid for all materials.
Hence, as stated in Truesdell and Toupin (1960), constitutive laws cannot
be obtained from balance equations. Contrarily, the approach of Marsden
and Hughes (1994) and Yavari and Marsden (2009) yields a constitutive
equation for the stress tensor, denoted as Doyle-Ericksen formula.

Extended continua in the context of crystalline materials Regarding
crystalline materials, the pile-up of dislocations at obstacles, such as
GBs, is associated with inhomogeneous plastic slips, cf. Aifantis et al.
(2006); Bayerschen et al. (2015). Thus, interactions between dislocations
and obstacles play an important role with respect to nonlocal mechanical
behavior. Such interactions always involve an internal length scale, e.g., the
intermediate distance between two dislocation lines. A coarse grained
measure for such an internal length scale is given, for instance, by the
dislocation density stored in the material. The smaller the size of a
considered specimen, the more pronounced are so-called size effects due
to interactions at the internal length scale. A conspicuous example is given
by the Hall-Petch effect, cf. Hall (1951) and Petch (1953), which has been
experimentally investigated for several metals, cf. Armstrong et al. (1962).
To account for such phenomena, the plastic slip is introduced as additional
degree of freedom (DOF) at each material point. The internal length scale
is commonly associated with gradient terms of the plastic slip. Continua
that consider additional DOFs are commonly denoted as extended, or
generalized continua, cf. Forest (2009).

Grain boundaries as obstacles against dislocation movements Consid-
ering oligo- or polycrystals, the nonlocal mechanical behavior can be

9
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traced back to the presence of GBs and their resistance against dislocation
movement, cf. Aifantis and Willis (2005). A continuum mechanical
treatment of GBs is given by Gurtin and Needleman (2005) regarding
small deformations. The influence of the misorientation of adjacent grains
and of the GB is discussed in detail by Gurtin (2008) and Gottschalk et al.
(2016). Moreover, an extensive overview of slip transmission criteria at
the GB is presented by Bayerschen et al. (2016a). GBs can be modeled
as material singular surfaces in a thermodynamical context. Regarding
gradient plasticity theories based on an extended principle of virtual
power or on a variational principle, additional terms are introduced on the
singular surface, cf. Gurtin (2008); Aifantis et al. (2006). Consequently, a
specific free energy accounts for mechanisms at the GB such as a constant
slip resistance or a slip transmission-like characteristic, cf. Wulfinghoff
et al. (2013); Bayerschen et al. (2016a). However, the principle of virtual
power exhibits some redundancy regarding extended continua, cf. Hütter
(2016). In this context, the dissipation inequality is exploited to obtain ther-
modynamically consistent interface conditions. By contrast, the relation
between the virtual, supplementary contributions and both the energy
and entropy balance is commonly not discussed. In addition, aspects that
are intrinsic to the surface are often not taken into account. Particularly,
the influence of the curvature of the considered material surfaces on the
overall mechanical behavior is neglected from the outset. Regarding an
extended energy balance with contributions on the singular surface, the
transport theorem for surfaces naturally has to be applied, cf. Müller
(1985). This transport theorem automatically accounts for the curvature of
the singular surface, cf. Cermelli et al. (2005); Moeckel (1975); Müller (1985).
The invariance of the energy balance with respect to a change of observer,
cf. Marsden and Hughes (1994), yields the balance equations in regular and
singular points. An entropy balance supplemented by additional terms on
the singular surface provides the dissipation inequality in both regular and
singular points by means of the second law of thermodynamics. Finally,
the evaluation of the dissipation inequality for singular points can be
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used to derive constitutive equations at the GB. In this context, Triani and
Cimmelli (2012) extend the interpretation of Muschik (1996) concerning
the second law of thermodynamics to media involving material singular
surfaces.

1.4 Outline of the Thesis

A review on extended continua is given in Chapter 2. To this end, the
notion of a classical continuum is introduced first. Thereby, continuum
mechanical fundamentals such as kinematics and deformation measures
are briefly presented. Invariance of the energy balance with respect to a
change of observer yields the balance of mass, linear and angular momen-
tum. In addition, the entropy balance and the Clausius-Duhem inequality
are given. Moreover, the principle of virtual power is formulated, and a
variational principle for conservative forces and a hyperelastic material
behavior is provided. After this brief review of classical continuum
mechanics, the notion of an extended continuum is introduced. Different
extended continuum models from literature are briefly presented. Thereby,
the relationship between the different models is outlined. In this context,
the invariance as well as the covariance of an extended energy balance,
an extended principle of virtual power and a variational principle based
on an extended Lagrangian density are considered. Finally, theories that
postulate an additional balance equation associated to additional DOFs
are listed.

In Chapter 3, the invariance properties of an extended energy balance
are presented regarding a material volume. At first, an extension by
an additional scalar-valued DOF is considered. The balance equations
concerning mass, linear and angular momentum as well as the internal
energy are derived extensively. A nonlocal evolution equation for an
additional DOF is obtained by the exploitation of the Clausius-Duhem
inequality. Finally, the set of resulting equations is compared to the
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equations obtained from an extended principle of virtual power. Moreover,
an extension by a vectorial DOF is considered.

An extended energy balance for a material volume divided by a material
singular surface is given in Chapter 4. The supplementary contributions
to the energy balance are based on the plastic slip as additional DOF. For
brevity, single slip is considered. The material singular surface serves
as model for a GB. Mathematical preliminaries such as the divergence
theorem in the presence of a material singular surface, and the transport
theorem for a material surface are provided. Invariance considerations of
the extended energy balance as well as the implications on the dissipation
inequality are discussed. Potential relations and boundary conditions
at the GB are obtained. Thereby, different possible flow rules for the
plastic slip at the GB are discussed. Finally, the connection to an extended
principle of virtual power is outlined.

An application of the presented theory to a slip gradient crystal plasticity
with respect to small deformations and single slip is given in Chapter 5.
A two-phase as well as a three-phase laminate material are considered.
The analytical solutions for the distribution of the plastic slip are derived
for both laminate materials. The two-phase laminate material consists of
an elastoplastic and an elastic phase. Therefore it is used to consider the
distribution of the plastic slip within a single crystal. The sensitivity of the
solution with respect to a change of the material parameters is discussed
and an upper bound for the plastic slip is given. The three-phase laminate
material consists of two elastoplastic and one elastic phase. The transition
between both elastoplastic phases is considered as GB. For geometrically
coherent slip systems, the sensitivity of the plastic slip with respect to the
defect parameter is discussed.

Finally, the main results and concluding remarks of this thesis are provided
in Chapter 6.
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1.5 Notation, Frequently Used Acronyms,
Symbols, and Operators

Acronyms

DDD Discrete dislocation dynamics
DOF Degree of freedom
GB Grain boundary
GND Geometrically necessary dislocation
MD Molecular dynamics
PDE Partial differential equation
PoVP Principle of virtual power
PoVW Principle of virtual work

Latin letters

𝑎, 𝑏, 𝐴,𝐵,𝒟, . . . Scalar quantities
𝑢,𝑣,𝑤, . . . First-order tensors
𝐴,𝐵,𝐶, . . . Second-order tensors
A,B,C, . . . Fourth-order tensors
𝐴 Micro-inertia
𝑏̃ Micro-body force
𝐶++, 𝐶−− Intra-grain interaction moduli
𝐶−+ Inter-grain interaction moduli
𝑒 Specific internal energy
𝐸 Young’s modulus
𝐺 Shear modulus
𝐾𝑔 Defect parameter
𝐾𝑚 Mean curvature
𝑡 Micro-traction force
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𝑣 Spatial velocity of additional DOF
𝒲 Euclidean vector space
𝑏 Body force
𝑑 Slip direction
𝑔 Temperature gradient
𝑛 Normal vector
𝑞 Heat flux vector
𝑡 Stress vector
𝑢 Displacement field
𝑥 Position vector of a material point in the current

configuration
𝑋 Position vector of a material point in the reference

configuration
𝐵 Left Cauchy-Green tensor
𝐶 Right Cauchy-Green tensor
𝐹 Deformation gradient
𝐺 Grain boundary Burgers tensor
𝐼 Identity tensor of second order
𝐾 Curvature tensor
𝑀 Schmid tensor
𝑄(𝑡) Time-dependent isometry between two vector

spaces
𝑅 Rigid body rotation tensor
𝑈 Right stretch tensor
𝑉 Left stretch tensor
C Stiffness tensor

Greek letters

𝛿 Specific dissipation
𝜂 Specific entropy
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𝜙𝑡 Microstructure function
Ψ Specific free energy
Ψ𝑒 Specific elastic energy
Ψ𝑔 Specific defect energy
Ψℎ Specific hardening energy
𝜌 Mass density
𝜌0 Initial dislocation density
Θ0 Initial hardening modulus
𝜃 Temperature
𝛾 Additional degree of freedom (e.g., plastic slip)
𝜙𝑡(𝑋) Deformation function
𝜉 Gradient stress vector
𝜀 Infinitesimal strain tensor
𝜀e Elastic strain tensor
𝜀p Plastic strain tensor
𝜎 Cauchy stress tensor
𝜖 Permutation tensor

Operators

𝐴𝐵 Linear mapping of a second-order tensor
𝐴 = C [𝐵] Linear mapping of a second-order tensor

by a fourth-order tensor
𝐴 ·𝐵 Dot product of two tensors𝐴,𝐵
𝐴⊗𝐵 Dyadic product of two tensors𝐴,𝐵
det(·) Determinant
div(·) Eulerean divergence of a vector or tensor
div𝒮(·) Surface divergence of a vector or tensor
Grad(·) Lagrangian gradient of a quantity
grad(·) Eulerean gradient of a quantity
grad𝒮(·) Surface gradient of a quantity
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∇n Planar gradient
Δn Laplacian with respect to a planar gradient
sym(·) Symmetric part of a quantity
tr(·) Trace of a tensor
(·)𝒮 , (·)𝒮 Quantity with respect to the surface 𝒮
(·)𝒱 , (·)𝒱 Quantity with respect to the volume 𝒱
(·)+ Right-hand limit of a quantity
(·)− Left-hand limit of a quantity
(·)′ Derivative of a quantity with respect to 𝑥1

(·)TH Major transposition, 𝐶TH
𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 , 𝜖TH

𝑖𝑗𝑘 = 𝜖𝑘𝑗𝑖

(·)TL Left transposition, 𝐶TL
𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙, 𝜖TL

𝑖𝑗𝑘 = 𝜖𝑗𝑖𝑘

(·)TR Right transposition, 𝐶TR
𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘, 𝜖TR

𝑖𝑗𝑘 = 𝜖𝑖𝑘𝑗

𝑓 ∘ 𝑔 Composition between two maps 𝑓 and 𝑔
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Chapter 2

Review on Extended Continua

Motivation Microstructured materials exhibit a nonlocal mechanical
behavior, e.g., the Hall-Petch effect, cf. Hall (1951). Classical continuum
models are not capable of reproducing such size effects, since they do not
possess an internal length scale. Extended continuum models, such as
gradient plasticity theories, overcome this drawback by introducing an
internal length scale, e.g., by means of a defect energy, e.g. Bayerschen
et al. (2016b). Various methods are known to derive the corresponding
field equations associated with the additional DOFs, cf. the review pa-
per of Mariano (2016). Here, the notion of a generalized continuum is
introduced. To this end, the basic equations of a classical continuum
are revisited first. Subsequently, extended continua from literature are
presented that are based on invariance considerations of an extended
energy balance, an extended principle of virtual power or work, and on
an extended variational principle. Finally, some theories are listed that
propose balance laws without further derivation.
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2 Review on Extended Continua

2.1 The Notion of Classical and
Generalized Continua

2.1.1 Classical continua

The concept of a classical continuum Classical continuum mechanics
considers a body as a set of undeformable material points. Each material
point exhibits three degrees of freedom (DOFs), describing its displace-
ment, cf., e.g., Hellinger (1913, p. 606)1. Such a continuum is often referred
to as Cauchy or Boltzmann continuum, cf. Vardoulakis (2019, p.1) or
Maugin (2017, p. 3).

Kinematics and deformation The current configuration, referred to as 𝒞,
is occupied by a body that is exposed to arbitrary, external loads. An
arbitrary reference configuration is denoted as ℬ. Within the scope of this
thesis, 𝒞 and ℬ are considered to be embedded in the Euclidean space, i.e.,
an Euclidean ambient space is considered, cf. Yavari and Marsden (2009).
A material point, identified by its position vector 𝑋 , is mapped from ℬ
to 𝒞 by the deformation function 𝜙𝑡. Regarding the current configuration,
a material point is identified by its position vector 𝑥. The spatial velocity
field 𝑣 is obtained by means of the time derivative of the deformation
mapping 𝜙𝑡 and is calculated by

𝑣(𝑥, 𝑡) =
(︂
𝜕𝜙𝑡(𝑋)
𝜕𝑡

⃒⃒⃒⃒
𝑋=const.

)︂
∘𝜙𝑡

−1, 𝑥 = 𝜙𝑡(𝑋). (2.1)

Here, the composition between two maps, 𝑓 and 𝑔, is denoted as 𝑓 ∘ 𝑔. The
displacement field 𝑢 is defined by

𝑢(𝑋, 𝑡) = 𝜙𝑡(𝑋) −𝑋. (2.2)

1 cf. also the note in Toupin (1964, p. 86)
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The first spatial derivative of the deformation mapping is referred to as
deformation gradient 𝐹 ∈ Inv. While 𝐹 is not a gradient in the mathemat-
ical sense, cf. Marsden and Hughes (1994, p. 3), the following definition is
frequently given in the continuum mechanical literature

𝐹 = Grad (𝜙𝑡(𝑋)) , (2.3)

cf., e.g., Holzapfel (2000, p. 71). Here, Grad (·) denotes the derivation with
respect to𝑋 . Since 𝐹 is a so-called two-point tensor, it maps line segments
from ℬ to 𝒞, cf. Bertram (2005). In this context, a line segment of the
reference configuration is referred to as d𝑋 , and a line element of the
current configuration as d𝑥. Thus, the following relation holds true

d𝑥 = 𝐹 d𝑋, (2.4)

cf. Bertram (2005, p. 96).

Polar decomposition of the deformation tensor The following multi-
plicative decomposition of 𝐹 is referred to as its polar decomposition and
is given by

𝐹 = 𝑅𝑈 = 𝑉 𝑅, (2.5)

cf. Gurtin et al. (2010, p. 33). Here, 𝑅 ∈ Orth+ describes the rigid-body
rotation. The occurring stretches are given by the right and left stretch
tensor 𝑈 and 𝑉 , respectively. Both 𝑈 and 𝑉 are symmetric and positive
definite, i.e., 𝑈 ,𝑉 ∈ Psym, and their eigenvalues coincide. The first
relation of Eq. (2.5) is referred to as right polar decomposition and the
second one as left polar decomposition. Using Eq. (2.5),

𝐹 T𝐹 = 𝑈T𝑅T𝑅𝑈 = 𝑈T𝑈 =: 𝐶, (2.6)

𝐹𝐹 T = 𝑉 𝑅𝑅T𝑉 T = 𝑉 𝑉 T =: 𝐵 (2.7)
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holds true. The two tensors 𝐶 and𝐵 ∈ Psym have the same eigenvalues
and are referred to as the right and left Cauchy-Green tensor, cf. Bertram
(2005). Consequently, for the eigenvalues 𝜇𝛼 and 𝜆𝛼 of 𝑈 and 𝐶, respec-
tively, the following relationship applies

𝜆𝛼 = 𝜇2
𝛼. (2.8)

Deformation measures The eigenvalues of 𝑈 are also denoted as prin-
ciple stretches, cf. Marsden and Hughes (1994, p. 4). They are commonly
used to define generalized strain measures as proposed by Hill (1968). A
generalized strain measure of the Seth-type can be formulated as

𝐸gen =
3∑︁

𝛼=1
𝑓(𝜇𝛼)𝛽𝛼 ⊗ 𝛽𝛼, 𝑓(𝜇𝛼) =

⎧⎪⎨⎪⎩
𝜇𝑚

𝛼 −1
𝑚 , 𝑚 ̸= 0

log𝜇𝛼, 𝑚 = 0
(2.9)

cf. Bertram (2005, p. 114) and Hill (1968, Eq. (1)). Here, 𝛽𝛼 denotes an
eigenvector of 𝑈 . The function 𝑓(𝜇𝛼) is twice differentiable and fulfills
the criteria

𝑓 ′ > 0 ∀ 𝜇𝛼, 𝑓(1) = 0, 𝑓(1)′ = 1. (2.10)

Specific choices of 𝑚 lead to well known strain measures. Thus, Green’s
strain tensor is obtained for 𝑚 = 2. Regarding small deformations, all
strain tensors reduce to the infinitesimal strain tensor 𝜀, reading

𝜀 = 1
2

(︁
grad (𝑢) + grad (𝑢)T

)︁
. (2.11)

This property is independent of the choice of 𝑚. In case of small deforma-
tions, no difference is made between grad (·) and Grad (·).

Energy balance of a classical continuum Regarding the current config-
uration of a material volume, the balance of total energy of a classical
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continuum is given by

d
d𝑡

∫︁
𝒱𝑡

𝜌

(︂
𝑒+ 1

2𝑣 · 𝑣
)︂

d𝑣 =
∫︁

𝒱𝑡

𝜌 (𝑏 · 𝑣 + 𝑟) d𝑣 +
∫︁

𝜕𝒱𝑡

𝑡 · 𝑣 + ℎd𝑎,

(2.12)

cf. Marsden and Hughes (1994). The volume of the continuum is referred
to as 𝒱𝑡 and its boundary as 𝜕𝒱𝑡. Equation (2.12) also holds true for
a material volume that contains a singular surface. However, singular
surfaces are not considered throughout this chapter. Here, 𝑒 denotes the
mass specific internal energy and 𝜌 the mass density. The spatial velocity
field of the body is denoted by 𝑣. Mechanical power is expended by the
body and traction forces 𝑏 and 𝑡, respectively. The thermal contribution is
given by the heat supply 𝑟 and the heat flux ℎ.

Invariance consideration of the energy balance Given are two indepen-
dent Euclidean vector spaces 𝒲 and 𝒲 ′. While Euclidean vector spaces
are isomorphic in general, 𝒲 and 𝒲 ′ are distinguished, here. Each vector
space is associated with an observer. The relation between quantities
described by the corresponding observer is given by the Euclidean trans-
formation

𝑥′(𝑡) = 𝑄(𝑡)𝑥(𝑡) + 𝑐′(𝑡). (2.13)

In this context, 𝑄(𝑡) describes a time-dependent isometry between the
two vector spaces. Consequently, 𝑄 is invertible and det(𝑄) = 1 holds
true. The origins of both vector spaces are related to each other by the
time-dependent vector 𝑐′(𝑡). Regarding 𝒲 and 𝒲 ′, 𝑥 ∈ 𝒲 , 𝑥′ ∈ 𝒲 ′,
𝑐′ ∈ 𝒲 ′ and 𝑄 : 𝒲 → 𝒲 ′ holds true. Thus, the isometry 𝑄 is given
by 𝑄 = 𝑄𝑖𝑗𝑒

′
𝑖 ⊗ 𝑒𝑗 with 𝑒′

𝑖 ∈ 𝒲 ′ and 𝑒𝑗 ∈ 𝒲 , cf. Krawietz (2015) for
more details. Both observers consider the same physical process in their
respective vector space. This motivates to assume the invariance of the
energy balance with respect to a change of observer which yields the
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existence of the Cauchy stress tensor 𝜎 and the heat flux vector 𝑞, reading

𝑡 = 𝜎𝑛, and ℎ = −𝑞 · 𝑛, (2.14)

cf. Šilhavý (1997). In this context, the surface normal vector is denoted
as 𝑛. Moreover, the balance of mass, linear and angular momentum, and
the balance of internal energy are obtained

𝜌̇+ 𝜌div (𝑣) = 0, 𝜌 (𝑎− 𝑏) − div (𝜎) = 0, 𝜎 = 𝜎T,

𝜌𝑒̇− 𝜌𝑟 − 𝜎 ·𝐷 + div (𝑞) = 0.
(2.15)

The material time derivative is denoted by ˙( ). The acceleration is abbrevi-
ated as 𝑎 = 𝑣̇ and the symmetric part of the velocity gradient is denoted as

𝐷 = sym(grad (𝑣)). (2.16)

A continuum satisfying the balance equations according to Eq. (2.12)
and Eq. (2.15) is referred to as classical Boltzmann continuum or Cauchy
continuum in the literature.

Entropy balance Regarding the current configuration of a material vol-
ume, the standard form of the entropy balance is given by

d
d𝑡

∫︁
𝒱𝑡

𝜌𝜂 d𝑣 = −
∫︁

𝜕𝒱𝑡

𝜑𝜂 · 𝑛d𝑎+
∫︁

𝒱𝑡

𝜌 𝑝𝜂 + 𝑠𝜂 d𝑣, (2.17)

cf. Müller (1985). Here, 𝜂 denotes the mass specific entropy considering
the bulk material, 𝜑𝜂 the entropy flux across the boundary 𝜕𝒱𝑡, 𝑝𝜂 the
mass specific entropy production, and 𝑠𝜂 the entropy supply.

Clausius-Duhem inequality As common in classical thermodynamics,
cf. Coleman and Noll (1963), the entropy flux is assumed to be given
by 𝜑𝜂 = 𝑞/𝜃, and the entropy supply is assumed to be 𝑠𝜂 = 𝜌𝑟/𝜃. The
bulk dissipation is defined as 𝛿 := 𝑝𝜂𝜃. Accounting for the previous
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assumptions as well as Reynold’s transport theorem and the divergence
theorem, localization of Eq. (4.24) yields

𝜌𝛿 = 𝜌𝜃𝜂̇ − 𝜌𝑟 + 𝜃div
(︁𝑞
𝜃

)︁
(2.18)

Moreover, the relation between the specific free energy 𝜓, the specific
internal energy 𝑒 and the specific entropy 𝜂 is given as𝜓 = 𝑒− 𝜃𝜂, resulting
from the Legendre transformation, cf. Beegle et al. (1974). The second
law of thermodynamics states that the dissipation is always non-negative.
This yields the dissipation inequality based on Eq. (2.18), reading

𝜌𝛿 = 𝜌𝑒̇− 𝜌𝜓̇ − 𝜌𝜃𝜂 − 𝜌𝑟 + div (𝑞) − 1
𝜃
𝑞 · 𝑔 ≥ 0, (2.19)

with 𝑔 = grad (𝜃). In this form, the dissipation inequality according
to Eq. (2.19) is also often referred to as Clausius-Duhem inequality,
cf. Coleman and Gurtin (1967).

Thermodynamically consistent material modeling The application of
the Coleman-Noll procedure to the Clausius-Duhem inequality yields
constitutive equations such as the potential relation for the stress ten-
sor, cf. Coleman and Noll (1963); Coleman and Gurtin (1967). Due
to its simplicity, this method is applied to an extended continuum in
a subsequent chapter of the work at hand. However, there exist more
elaborated procedures to obain thermodynamically consistent, constitutive
restrictions. Among these is, e.g., the Müller-Liu procedure, cf. Liu
(1972) and Müller (1985). Moreover, the so-called GENERIC-framework
(general equation for non-equilibrium reversible-irreversible coupling)
establishes a powerful method for the thermodynamical constitutive
modeling, cf. Grmela and Öttinger (1997); Öttinger and Grmela (1997).
Hütter and Svendsen (2011; 2013) formulate various material models in
the context of GENERIC and discuss corresponding examples, respectively.
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Principle of virtual power Mutliplication of the balance of linear mo-
mentum with a test function 𝑓 , integration over 𝒱𝑡 and application of the
divergence theorem yieds the corresponding weak form as∫︁

𝒱𝑡

𝜌 (𝑎− 𝑏) · 𝑓 + 𝜎 · grad (𝑓) d𝑣 −
∫︁

𝜕𝒱𝑡

𝑡 · 𝑓 d𝑎 = 0. (2.20)

Choosing the test function to be the variation of the spatial velocity,
i.e., 𝑓 = 𝛿𝑣, yields the principle of virtual power (PoVP)∫︁

𝒱𝑡

𝜌 (𝑎− 𝑏) · 𝛿𝑣 + 𝜎 · grad (𝛿𝑣) d𝑣 −
∫︁

𝜕𝒱𝑡

𝑡 · 𝛿𝑣 d𝑎 = 0. (2.21)

Similar to the balance laws stated in Eq. (2.12) and Eq. (2.15), the PoVP
according to Eq. (2.21) is not restricted to a specific material behavior.

Variational principle Assuming a specific, material behavior as well as
conservative body and traction forces, the PoVP according to Eq. (4.40)
represents the stationary condition of a variational formulation, cf. Lanczos
(1949) and Auffray et al. (2015, p. 379). Thus, the principle of least action
serves as starting point for the continuum mechanical considerations.
In both continuum mechanics and classical mechanics, this approach
is referred to as analytical mechanics, cf. Auffray et al. (2015); Willner
(2003), and Landau and Lifshitz (1969), respectively. In the context of
nondissipative processes, Hamilton’s principle of least action is widely
used, cf. Planck (1960, p. 81), reading

𝛿ℋ = 0, ℋ =
∫︁ 𝑡1

𝑡0

ℒ d𝑡, ℒ = ℰkin − Πtot. (2.22)

Here, ℒ is referred to as Lagrange density and ℋ as action integral. The
kinetic energy is denoted as ℰkin and the potential energy as Πtot. Regard-
ing a classical continuum, the kinetic energy with respect to the current
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configuration reads

ℰkin =
∫︁

𝒱𝑡

𝜌

2𝑣 · 𝑣 d𝑣. (2.23)

The potential energy Πtot can be written as

Πtot =
∫︁

𝒱𝑡

ΦV +𝑊 d𝑣 +
∫︁

𝜕𝒱𝑡

ΦA d𝑎. (2.24)

In this context, ΦV and ΦA denote the potentials of the conservative body
and surface forces. Moreover, the stored energy is represented by 𝑊 .
Since conservative body and traction forces are considered, the following
relations hold true

𝛿ΦV = 𝜌𝑏 · 𝛿𝑢, 𝛿ΦA = 𝑡 · 𝛿𝑢. (2.25)

Regarding a specific material, the stored free energy 𝑊 can be given
explicitly. In case of a hyperelastic material behavior 𝑊 and 𝛿𝑊 read

𝑊 = 1
2𝜀 · (C[𝜀]) , 𝛿𝑊 = 𝜎 · 𝛿𝜀, 𝛿𝜀 = sym(𝛿𝑢). (2.26)

The symmetry of the Cauchy stress 𝜎 is presumed from the outset. To
account for dissipative processes, Hamilton’s principle has to be extended
by an additional potential, cf. Maugin (1980, p. 64) as well as Sedov
(1968b;a). This so called dissipation potential represents a continuum
mechanical equivalent of the Rayleigh potential which is commonly used
in the context of discrete dynamics, cf. Ganghoffer (2007, p. 193). In
contrast to the balance equations according to Eq. (2.12) and Eq. (2.15),
and the PoVP according to Eq. (2.21), the material behavior, cf. Eq. (2.26)1,
has to be specified in order to state the considered Lagrange density used
for a variational principle. Thus, a variational principle always accounts
for constitutive assumptions, defining the material behavior, cf. Willner
(2003, p. 172).
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2.1.2 Generalized continua

The concept of a generalized continuum Any continuum model that is
based on other assumptions than the classical continuum is denoted as an
extended or generalized continuum, cf. Maugin (2017, p. 15). Generalized
continua can be subdivided into local and nonlocal continuum models,
cf. Forest (2019, p. 500). Regarding a local continuum model, it is possible
to define the field equations point-wise. Contrarily, only integral formula-
tions are available for nonlocal continuum models. The theory of nonlocal
continua is described extensively by Eringen (2002). Thermodynamical
considerations of nonlocal continua are discussed by Edelen and Laws
(1971). Applications of this class of continua can be found, e.g., in the
context of dislocations, cf. Eringen (1977a;b). Subsequently, only gener-
alized continua of local type are considered. In this context, a material
point of an extended continuum exhibits more than three translational
DOFs. One of the first extended continuum models is the so called
Cosserat continuum, cf. Cosserat and Cosserat (1909). It allows for the
orientation of a material point. Thus, each material point is supplemented
by three rotational DOFs in addition. The micromorphic continuum
according to Eringen and Suhubi (1964) can be considered as a direct
generalization of the Cosserat continuum. It treats each material point as
a micro continuum. Consequently, a microdeformation tensor associated
with each material point is introduced in Eringen and Suhubi (1964).
Restricting the microdeformation to pure rotations yields the Cosserat
continuum as a special case of the micromorphic continuum. Furthermore,
prohibiting the rotation of a material point yields the classical Cauchy
continuum. A detailed comparison of these continua, relations between
them, as well as examples of application are given in Eringen (1999,
p. 13). In Fig. 2.1 the Cauchy, Cosserat and micromorphic continuum
are sketched. The Cosserat and micromorphic continuum account for
extensions of kinematic nature. Moreover, it is possible to introduce more
generic extensions that are not associated with an underlying kinematic,
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Figure 2.1: The upper left sketch illustrates the Cauchy continuum. A Cosserat continuum is
depicted in the upper right sketch. The attached direction vectors illustrate the additional
rotational DOFs. The micromorphic continuum is depicted in the lower sketch. The shape of
the material points deviaties from a sphere, illustrating the microdeformation of a material
point.

but significantly contribute to the mechanical behavior, cf. Svendsen (2004).
Examples for generic DOFs are order or damage parameters, cf. Svendsen
(1999), as well as the dislocation density, cf. Svendsen (2002). Subsequently,
extensions of various kind are considered.

Microstructure function The kinematics of an additionally considered
DOF is given by means of a microstructure function. The spatial velocity
of, e.g., an additional scalar-valued DOF 𝑝 is given by the material time
derivative of the microstructure function 𝜙𝑡, reading

𝑣(𝑥, 𝑡) =
(︂
𝜕𝜙𝑡(𝑋)
𝜕𝑡

⃒⃒⃒⃒
𝑋=const.

)︂
∘𝜙𝑡

−1, 𝑝 = 𝜙𝑡(𝑋). (2.27)

Supplementary contributions that are power conjugated to 𝑣(𝑥, 𝑡) are
accounted for by various approaches to generalized continua. The sub-
sequent sections consider the invariance and covariance of an extended
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energy balance, an extended PoVP, and an extended variational approach.
In this context, approaches from the literature are classified and the idea of
the corresponding approach is roughly recited. The focus is on additional
field equations or balance laws with respect to regular points. Thus,
singular surfaces are not considered throughout this chapter. The tensorial
order of the additional degree of freedom considered differs from theory
to theory.

2.2 Methods Based on an Extended
Energy Balance

2.2.1 Invariance of energy balance

The notion of invariance In literature, invariance considerations of the
energy balance are formulated concerning a change of observer or a
superimposed rigid body motion, respectively. As far as the derivation
of balance equations is concerned, it makes no difference whether the
invariance is assumed with regard to a superimposed rigid-body motion
or a change of observer. However, it is essential to distinguish between
these two methods when considering material behavior, cf. Svendsen
(2001a, footnote 2), and Svendsen and Bertram (1999). Subsequently, only
balance equations are discussed. Thus, the notion ’invariance of the energy
balance’ is used for both approaches. In general, an extended energy
balance is considered with respect to the current configuration as

𝜖 = d
d𝑡

∫︁
𝒱𝑡

𝜌

(︂
𝑒+ 1

2𝑣 · 𝑣 + 𝜅

)︂
d𝑣 −

∫︁
𝒱𝑡

𝜌 (𝑏 · 𝑣 + 𝛽 + 𝑟) d𝑣

−
∫︁

𝜕𝒱𝑡

𝑡 · 𝑣 + 𝑠+ ℎd𝑎 = 0. (2.28)

The additional contributions 𝜅, 𝛽 and 𝑠 differ for each considered approach.
In most approaches, the extensions are related to additional kinematical
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DOFs of various kinds. However, it is also possible to consider more
general DOFs that are not associated to kinematics, cf., e.g., Dunn and
Serrin (1986). Thermal contributions are often considered unaltered,
compared to a classical continuum. Assuming invariance of Eq. (2.28)
with respect to a change of observer, cf. Eq. (2.13), yields the following.

• No additional momentum-like balance equations are obtained, cf. Yavari
and Marsden (2009), Prahs and Böhlke (2019b).

• The balance of internal energy deviates from its standard form, taking
into account supplementary terms associated with the additional DOFs,
cf. Maugin (1980, p. 63), and Yavari and Marsden (2009, p. 10).

• If the additional DOF is scalar-valued, the balance of angular momen-
tum retains its standard form according to Eq. (2.15) and the stress
tensor is symmetric.

• If the additional DOF is a vector or a tensor of higher order, the balance
of angular momentum is affected as well by the additional contributions.
In this case, the stress tensor is no longer necessarily symmetric.

The invariance properties of an extended energy balance is addressed in
detail by Prahs and Böhlke (2019b), first considering a scalar-valued DOF
and then a vectorial one. The idea to obtain conservation laws by means
of an invariance consideration of the specific total energy is closely related
to Noether’s theorem, cf. the reprint Noether (1971).

Fundamental assumptions

• The primal quantity is the rate of energy which is balanced by power
contributions.

• The power contributions are of mechanical and thermal nature.

• Mechanical power is expended by body and surface forces.

• Surface forces are assumed to depend on the normal vector of the
surface.

• The lemma of Cauchy is fundamental to this theory, proving the exis-
tence of a stress tensor associated with the surface force. Some theories
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directly give the surface power in terms of stress tensors and a heat
flux vector, thereby implicitly taking into account the result of Cauchy’s
lemma. Nevertheless, these theories can also be formulated in terms of
the corresponding surface forces, instead.

• Here, an Euclidean ambient space is considered, cf. Yavari and Marsden
(2009, p. 1).

• The microstructure manifold is identified with the tangent space of the
Euclidean space, cf. Yavari and Marsden (2009, p. 1).

• The material behavior is not specified from the outset.

• To consider a specific material behavior, the balance of entropy has to
be introduced and exploited, in addition.

Micromorphic medium according to Eringen The micromorphic con-
tinuum according to Eringen and Suhubi (1964) consists of material points
admitting a deformation by analogy to the common deformation of the
material body. It is assumed, that a material point is described by its
center of mass𝑋 and a corresponding direction vector Ξ. Both,𝑋 and Ξ
are given regarding an arbitrary reference placement. In general, it is
possible to specify a material point in more detail by several direction
vectors Ξ𝛼 with 𝛼 = 1, . . . , 𝑁 , leading to a micromorphic continuum of
grade 𝑁 , cf. Eringen (1970). However, the special case of a single direction
vector is extensively discussed in the literature, cf. Eringen (1999), and
considered in the following. The corresponding framework is denoted
as micromorphic continuum of grade one, or birefly as micromorphic
continuum. Three DOFs are associated with the translational motion of
the centroids of the material points, referred to as macromotion or briefly
motion 𝑥 = 𝑥̂(𝑋, 𝑡). Moreover, nine DOFs are related to the (affine) defor-
mation of each material point, denoted as micromotion 𝜉 = 𝜉(𝑋,Ξ, 𝑡). The
micromotion is given by the linear mapping 𝜉 = 𝜒(𝑋, 𝑡)Ξ, where 𝜒 de-
notes the microdeformation tensor, cf. Eringen (1999, p. 5). Consequently,
the micromotion represents the deformation of the direction vector fixed
at each material point. Thus, each material point admits twelve DOFs
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in contrast to three DOFs for a classical continuum, cf. Eringen (1992).
The material time derivative of 𝜉 is given by 𝜉̇ = 𝜈E𝜉, cf. Eringen (1992,
Eq. (2.6)). The second-order tensor 𝜈E is referred to as gyration tensor.
Related to the additional DOFs, the extensions to the energy balance are
given as

𝜅 = 1
2 (𝜈E𝑖E) · 𝜈E, 𝛽 = 𝐵E · 𝜈E, 𝑠 = (𝑚E[𝜈E]) · 𝑛, (2.29)

cf. Eringen (1992, Eq. (2.12), Eq. (3.1)). Here, the second-order tensors 𝑖E
and 𝐵E denote the micro-inertia and the body moment density, respec-
tively. The micro-inertia is associated with the additional DOFs, cf. Erin-
gen (1992, Eq. (2.10)). It is formulated as a volumetric moment of second
order, cf. Eringen (1999, Eq. 1.10.3). The stress moment tensor 𝑚E is a
third order tensor. A relation between the micro-inertia of the reference
and the current configuration is established by means of 𝜒. The material
time derivative of this relation is referred to as conservation of micro-
inertia, cf. Eringen (1992, Eq. (2.11)). Note that, the conservation of
micro-inertia constitutes rather an identity than a balance or conservation
law. Thus, the designation as a conserved quantity is misleading. While
the framework was originally introduced by Eringen and Suhubi (1964)
and Suhubi and Eringen (1964), the notion of conservation of micro-inertia
was first given in Eringen (1964). The conservation of mass of a micro-
continuum is an axiom of the theory, cf. Eringen (1999, p. 31), Eringen and
Suhubi (1964, p. 191). This yields the conservation of mass in its standard
form as stated in Eq. (2.15). Invariance of the extended energy balance
under superimposed rigid body motions, as given by Eq. (2.13), and a
transformation of the form

𝜒′ = 𝑄(𝑡)𝜒 (2.30)

is stated, cf. Eringen (1999, Eq. 1.9.1, Eq. 1.9.6). Here, the orthogonal
tensor𝑄(𝑡) describes the rigid body rotation. Evidently, a time-dependent,
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rigid body rotation and translation of 𝑥, but only a rotation of 𝜒 is
considered. The modifed balance of angular momentum is obtained by
fulfilling the requirement of a vanishing scalar product of a second-order
tensor and a skew symmetric tensor. This provides both possibilities that
either the second-order tensor is symmetric or identical to zero. Eringen
(1992) uses the more restrictive option and, thus, the vanishing second-
order tensor constitutes the modified balance of angular momentum. A
statement concerning the symmetry of the stress tensors is not provided.
The corresponding modified balances of angular momentum and internal
energy are given by Eringen (1992, Eq. (3.17), Eq. (3.19))2. While a brief
summary and revision of the framework is given by Eringen (1992), the
framework is elaborated to full extent in Eringen (1999). However, the
notation in Eringen (1992) and Eringen (1999) differs slightly, cf. Eringen
(1999, footnote 8 at p. 33). The subsequently presented microstretch and
micropolar continua are special cases of the micromorphic continuum.
They are based on restrictions concerning the introduced direction vectors
and, thereby, the microdeformation 𝜒.

Microstretch continuum according to Eringen Preventing a shearing of
the direction vector of a micromorphic continuum, a so-called microstretch
continuum ist obtained. In this context, the following decompositions
of𝐵E and𝑚E are introduced

𝑚E = 1
3

(︁
𝐼 ⊗𝑚⟨1⟩

)︁TH
+ 1

2
(︀
𝜖[𝑚̃T]

)︀TH
, 𝐵E = 1

3𝑏𝐼 − 1
2𝜖[𝐵̃], (2.31)

cf. Eringen (1999, Eq. (2.1.8)). Here, 𝑚⟨1⟩ is a vector, 𝑚̃ a second-order
tensor, and 𝜖 represents the permutation symbol. The identity of second
order is given by 𝐼 . Moreover, the body moment density is decomposed by
means of the scalar 𝑏 and the vector 𝐵̃. In addition, the gyration tensor 𝜈E

2 cf. also (Eringen, 1999, Eq. 2.2.32, Eq. 2.2.33)
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and the micro-inertia tensor 𝑖E are decomposed as well according to

𝜈E = 𝜈𝐼 − 𝜖[𝜈̃], 𝑖E = 1
2𝑗0𝐼 − 𝑗, 𝑗 = 𝑖0𝐼 − 𝑖E, (2.32)

with 𝑗0 = sp(𝑗) and 𝑖0 = 𝑗0/2, cf. Eringen (1999, Eq. (1.10.18), Eq. (1.10.20)).
Here, 𝜈, 𝑗0 and 𝑖0 are scalar-valued, 𝜈̃ represents a vector and 𝑗 a second-
order tensor. Accounting for these decompositions, the additional contri-
butions to the energy balance are given by

𝜅 = 1
4𝑗0𝜈

2 + 1
2𝑗 · (𝜈̃ ⊗ 𝜈̃), 𝛽 = 𝐵̃ · 𝜈̃ + 𝑏𝜈,

𝑠 =
(︀
𝑚̃T𝑛

)︀
· 𝜈̃ + 𝜈𝑛 ·𝑚⟨1⟩, (2.33)

cf. Eringen (1999, Eq. (1.10.21), Eq. (2.1.9)). In contrast to the micromorphic
continuum, the microstretch continuum provides six additional DOFs at
each material point. In line with the micromorphic continuum model, the
extended balance of energy is stated invariant with respect to a change
of observer described by the transformations according to Eq. (2.13) and
Eq. (2.30). The corresponding modifed balances of angular momentum and
internal energy are given by Eringen (1999, Eq. (2.2.41-a), Eq. (2.2.42-a)).

Micropolar continuum according to Eringen The micropolar contin-
uum is first introduced by Kafadar and Eringen (1971) and extensively
discussed in Eringen (1999). Further limitation of the microstretch con-
tinuum to solely rotations of the direction vector leads to a micropolar
continuum. Thereby, the decompositions according to Eqs. (2.31) and (2.32)
are further specified as follows

𝑚⟨1⟩ = 0, 𝑏 = 0, 𝜈 = 0, (2.34)
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cf. Eringen (1999, pp. 33, 39). Thus, the supplementary contributions to the
energy balance are given by

𝜅 = 1
2𝑗 · (𝜈̃ ⊗ 𝜈̃), 𝛽 = 𝐵̃ · 𝜈̃, 𝑠 =

(︀
𝑚̃T𝑛

)︀
· 𝜈̃, (2.35)

cf. Eringen (1999, Eq. (2.1.10)). The micropolar continuum provides three
additional DOFs in contrast to a micromorphic continuum. The balance
of energy is stated again invariant with respect to a change of observer,
cf. Eq. (2.13) and Eq. (2.30). Thereby obtained balances of angular and
internal energy are modified and given by Eringen (1999, Eq. (2.2.46-a),
Eq. (2.2.47-a)). The notion micropolar continuum is closely related to the
Cosserat continuum. In contrast to a micropolar continuum, the Cosserat
continuum does not provide a micro-inertia nor a conservation law of
micro-inertia, cf. Eringen (1999, p. xiii, p. 12 footnote 3). Finally, neglecting
any direction vectors fixed at a material point yields a classical contin-
uum, denoted as Cauchy continuum. Further correlations concerning the
kinematics and the obtained balances of the corresponding continuum
due to the mentioned restrictions, as well as an extensive overview of
the micromorphic, microstretch, and miropolar framework are given in
Eringen (1999).

Higher order velocity gradients according to Green and Rivlin (1964c)
In this framework, the balance of energy is extended by contributions
accounting for velocity gradients of higher order. Power expended by
the second up to the Ω-th gradient of the velocity is taken into account.
This is similar to the series evolution of the specific energy in terms of
velocity gradients. The corresponding generalized forces, power conjugate
to the velocity gradients, are denoted as surface and body force multipoles.
In Green and Rivlin (1964c), the extension 𝜅 to the kinetic energy is
neglected. However, the kinetic energy also has to be extended by higher-
order velocity gradients, in general. It is also possible to account for
the corresponding inertia effects by modifying the body force multipoles.

34



2.2 Methods Based on an Extended Energy Balance

The term 𝛽 is associated to body force multipoles and 𝑠 to surface force
multipoles. Thus, the considered extensions to the balance of energy are

𝜅 = 0, 𝛽 =
Ω∑︁

𝛼=1
𝐵̃

(𝛼) · grad(𝛼) (𝑣) , 𝑠 =
Ω∑︁

𝛼=1
𝑇

(𝛼) · grad(𝛼) (𝑣) . (2.36)

Here, grad(𝛼) (·) denotes the 𝛼-th gradient. Consequently, the tensors 𝐵̃
(𝛼)

and 𝑇
(𝛼)

, power-conjugate to grad(𝛼) (𝑣), are tensors of order (𝛼+ 1). The
postulated energy balance according to Green and Rivlin (1964c, Eq. 6.1)
already implicitly accounts for the conservation of mass according to
Eq. (2.15). Thus, it is presumed from the outset. Invariance of the extended
energy balance is stated with respect to a superimposed rigid body motion,
given by Eq. (2.13), cf. Green and Rivlin (1964c, Eq. 3.1). Contrarily to
other theories, only the transformation law for 𝑥 is considered since the
additional contributions to the energy balance are higher-order velocity
gradients. The modified balances of angular momentum and internal
energy are given by Green and Rivlin (1964c, Eq. (6.15), Eq. (6.16)). This
framework serves as predecessor for subsequent theories of Green and
Rivlin, that account for other DOFs than the velocity gradients of arbitrary
order.

Multipolar continuum mechanics according to Green and Rivlin (1964a)
The multipolar continuum can be seen as a generalization of Green and
Rivlin (1964c), cf. Green and Rivlin (1964a, comment on p. 113). Moreover,
it serves as basis for the frameworks according to Green (1965); Green et al.
(1965). Contrarily to Green and Rivlin (1964c), multipolar displacement
fields 𝜒(𝛼) are introduced instead of higher-order velocity gradients. The
multipolar displacement fields are not related to the usual displacement
field. They are tensors of (𝛼+ 1)th order. Moreover, the extensions to the
kinetic energy are accounted for by the term 𝛽. Hence, the introduced
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extensions to the energy balance are given by

𝜅 = 0, 𝛽 =
Ω∑︁

𝛼=1

(︁
𝐵(𝛼) − 𝑖(𝛼)𝜈̇(𝛼)

)︁
· 𝜈(𝛼), 𝑠 =

Ω∑︁
𝛼=1

𝑇 (𝛼) · 𝜈(𝛼). (2.37)

Here,𝐵(𝛼) and 𝑇 (𝛼) are generalized so-called multipolar body and surface
forces. Moreover, 𝑖(𝛼) is the corresponding micro-inertia tensor, and 𝜈(𝛼)

the time derivative of 𝜒(𝛼). The tensors 𝐵(𝛼), 𝑇 (𝛼), 𝜈(𝛼) and 𝑖(𝛼) are
tensors of order (𝛼+ 1). The extended energy balance is stated invariant
under a superimposed rigid body motion, defined by Eq. (2.13). In this
context, the mutlipolar displacement fields are assumed to transform
objectively with respect to a rigid body rotation. Thus, for, e.g., 𝛼 = 1, it
follows

𝜒′(1) = 𝑄(𝑡)𝜒(1)𝑄(𝑡)T
, (2.38)

cf. Green and Rivlin (1964a, Eq. 4.6). The modified balances of angular
momentum and internal energy are given by Green and Rivlin (1964a,
Eq. (8.19), Eq. (8.21)). Here, the same definitions of additionally introduced
body and surface forces are considered as in Truesdell and Toupin (1960,
Sec. 232), cf. Green and Rivlin (1964a, remark on p. 114). Furthermore, con-
ditions for the applicability of the mentioned framework of Truesdell and
Toupin (1960), which is based on an extended virtual work formulation,
are given. A comparison of the derivation and the framework of Green
and Rivlin (1964a) with Eringen and Suhubi (1964) and Eringen (1964) is
given in Green (1965).

Director theory according to Green et al. (1965) The director theory is
a special case of the framework given by Green and Rivlin (1964a). It
can be obtained by choosing Ω = 2. The director 𝑑 is defined by the
relation 𝜒(2) = 𝑑⊗ 𝐼 . A detailed discussion on this is given in Green et al.
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(1965, p. 614). The extensions to the energy balance are given by

𝜅 = 0, 𝛽 = 𝐵(1) · 𝜈(1) + 𝑏̃ · 𝜔, 𝑠 = 𝑇 (1) · 𝜈(1) + 𝑡̃ · 𝜔. (2.39)

While the director velocity 𝜔 is a vector, the velocity 𝜈(1) of the multipolar
displacement is a second-order tensor. Following the notation of Green
and Rivlin (1964c), 𝐵(1) and 𝑏̃ are denoted as mutlipolar body forces,
while 𝑇 (1) and 𝑡̃ are referred to as multipolar surface forces. The micro-
inertia effects associated with 𝜈(1) and 𝜔 are accounted for by𝐵(1) and 𝑏̃
implicitly. However, they are not given explicitly by Green et al. (1965).
The invariance of the extended energy balance is stated concerning the
superimposed rigid body motion given in Eq. (2.13). Moreover, the
transformations for the director and the multipolar displacement field
read

𝜒′(1) = 𝑄(𝑡)𝜒(1)𝑄(𝑡)T
, 𝑑′ = 𝑄(𝑡)𝑑, (2.40)

cf. Green et al. (1965, Eq. (2.6), Eq. (2.7)). The modified balances of angular
momentum and internal energy are given by Green et al. (1965, Eq. (4.21),
Eq. (4.20)). If only the director 𝑑 is considered as additional DOF and the
mutlipolar displacement of first order is neglected, i.e., 𝜈(1) = 0, the theory
reduces to that of Ericksen (1961), cf. Green et al. (1965, p. 618). In this
case, the balances of angular momentum and internal energy are further
modified and given by Green et al. (1965, Eq. (4.31), Eq. (4.30)).

Micro-materials according to Green (1965) This continuum also consti-
tutes a special case of the multipolar continuum according to Green and
Rivlin (1964a). It provides a comparison between the theory according
to Eringen and Suhubi (1964); Eringen (1964) and the theories of Green,
especially with respect to Green and Rivlin (1964a). To this end, only a
mutlipolar displacement field of first order is considered as additional
DOF. The multipolar displacement field is chosen according to the theory
of Eringen and Suhubi (1964). Thus, the additional contributions to the
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energy balance are in line with Eq. (2.29). The extended energy balance is
stated invariant with respect to a change of observer described by Eq. (2.13)
and Eq. (2.30). The modified balances of angular momentum and internal
energy are given in Green (1965, Eq. (3.16), Eq. (3.14)). Similar to the
micromorphic continuum, the conservation of micro-inertia is obtained,
cf. Green (1965, Eq. (3.19)) and Eringen (1992, Eq. (2.11)).

Affine degrees of freedom according to Capriz et al. (1982) In order
to describe the deformation of the microstructure of a material point, a
second-order tensor𝐺 is introduced in Capriz et al. (1982). This approach
is quite similar to Eringen’s micromorphic theory, i.e., the mapping 𝜒
resembles𝐺. Contrarily to the micromorphic continuum, the framework
of Capriz et al. (1982) is not associated to the deformation of a direc-
tion vector fixed at a material point. In fact, it is a generalization of
the deformation of the microstructure. Thus, it accounts for, e.g., rigid
granular materials and materials with voids. Based on the kinematic
descriptor𝐺, the tensor𝑊 T = 𝐺̇𝐺−1 is introduced in order to formulate
the extension of the kinetic and mechanical energy contributions. The
considered extensions are given by

𝜅 = 1
2 (𝑖𝑊 ) ·𝑊 , 𝛽 = 𝐵 ·𝑊 , 𝑠 = (𝑚𝑛) ·𝑊 . (2.41)

The micro-inertia 𝑖 is a second-order, symmetric and positive semi-definite
tensor. Moreover, 𝐵 and 𝑚 are tensors of second and third order, re-
spectively. The surface normal is again denoted as 𝑛. Invariance of the
extended energy balance is stated with respect to a change of observer,
described by Eq. (2.13). The microstructure tensor 𝐺 is assumed to
transform according to

𝐺′ = 𝑄(𝑡)𝐺. (2.42)

Based on the proposed invariance properties, the modified balances of
angular momentum and internal energy are given by Capriz et al. (1982,
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Eq. (4.11), Eq. (4.17)). In addition, the conservation of micro-inertia is
obtained in Capriz et al. (1982, Eq. (4.12))3. This is in contrast to Eringen’s
framework where conservation of mass and microinertia are not derived
by invariance considerations, cf. Eringen (1999, p. 32).

Additional, generic scalar DOFs The extension of the energy balance
does not require the introduction of additional kinematic quantities, such
as a microdeformation or higher velocity gradients. Moreover, the addi-
tionally introduced DOFs can be of a more general nature. For instance,
the movement of point effects or the density of geometrically necessary
dislocations can be accounted for as additional DOFs, cf. Svendsen (2001a;
2002). Moreover, the additional DOFs can be related to order parameters
of different phases regarding phase transition, or the volume fraction
of grains in the context of granular media, cf. Svendsen (1999). Thus,
an internal length scale is introduced associated with the considered
additional, scalar valued DOFs. While the energy balance is extended
by means of several scalar valued DOFs in Svendsen (1999; 2001a; 2002;
2004), only one additional DOF is considered, here, for brevity. Hence, the
extensions to the energy balance are given as

𝜅 = 1
2𝐴𝑣

2, 𝛽 = 𝑏̃𝑣, 𝑠 = 𝑡𝑣, (2.43)

cf. Prahs and Böhlke (2019b). The proposed energy balance is stated to
be Euclidean frame-indifferent, i.e., invariant under the transformation
described by Eq. (2.13). The scalar valued additional DOF as well as its
rate 𝑣, and the conjugated forces 𝑏̃ and 𝑡, as well as the micro-inertia 𝐴 are
invariant with respect to Eq. (2.13). Since the considered additional DOF is
scalar-valued, the balance of angular momentum retains its standard form,
cf. Prahs and Böhlke (2019b, Eq. (31)). However, the balance of internal
energy is affected by the additional contributions as given by Prahs and
Böhlke (2019b, Eq. (36)). In case of a scalar-valued DOF, a conservation
3 In Capriz et al. (1982) the dot placed over 𝑖, denoting the material time derivative, is

missing in Eq. 4.12. However, this issue is clarified by the corresponding, given footnote.
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of micro-inertia cannot be obtained by invariance considerations. Based
on the contribution power-conjugated to 𝑣, a nonlocal material behav-
ior can be constitutively modeled regarding the dissipation inequality.
In Svendsen (1999) this is done by means of the Müller-Liu procedure,
cf. Müller (1985).

The special case of isothermal processes is extensively described by Svend-
sen (2011), regarding not only scalar-valued DOFs but also additional
DOFs of higher tensorial order. Thereby, the energy balance considered
differs from Eq. (2.28). It directly takes into account the constitutive
assumptions used in the context of the Clausius-Duhem inequality.

The interstitial work hardening framework according to Dunn and Serrin
(1986, Eq. 1.9) is obtained if the kinetic and volumetric extensions are
neglected, i.e., 𝜅 = 0 and 𝛽 = 0, and the surface contribution is simplified
as 𝑠 = 𝑢, with 𝑢 as the interstitial working.

Formal extension of the energy balance An energy balance, differing
from the energy balance given in Eq. (2.12) with respect to its form, is
derived in the appendix of Green and Naghdi (1995a). This energy
balance is extended in order to account for additional vector fields in
Green and Naghdi (1995b). Consequently, its form also differs from
the energy balance given in Eq. (2.28). In order to keep the extended
continuum generic, the additionally introduced kinematic quantities are
no further specified. However, connection is established to a Cosserat
continuum with a single director. Regarding the invariance discussions of
the previously recited frameworks, the additional DOF was affected only
by the rotational transformation, if it is vector-valued or a tensor of higher
order. Contrarily, an additional transformation is considered in Green
and Naghdi (1995b). It is assumed, that the introduced director exhibits a
translational transformation not related to the translational transformation
of the classical displacement, cf. Green and Naghdi (1995b, Eq. (2.17)).
Invariance of the extended energy balance with respect to the translational
transformations is stated, cf. (Green and Naghdi, 1995b, Eq. (2.18)). In
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contrast to all previously presented frameworks, it is not possible to obtain
a modified balance of angular momentum, cf. (Green and Naghdi, 1995b,
p. 365). However, a modified balance of momentum, an additional balance
of director momentum and conservation laws for micro-inertia coefficients
are obtained, cf. (Green and Naghdi, 1995b, Eq. (2.29), Eq. (2.30), Eq. (2.31)).
However, the arbitrariness of the considered, independent rigid body
translations give rise to criticism, cf. (Yavari and Marsden, 2009, p. 8). A
critical point is that the additional director is introduced on the same
manifold as the displacements. The introduced rigid body translations
seem to be artificially introduced in order to derive the additional balance
equations. Furthermore, no physical nor mathematical motivation is
presented with respect to these transformations.

Summary of the considered theories Regarding the previously outlined
extended continua, an overview of the considered additional contributions
is given in Tab. 2.1. Moreover, the corresponding references are listed.
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Limitations concerning the Euclidean space as ambient space Subse-
quently, the limitations of the previously described extended continua,
except the formal extension according to Green and Naghdi (1995b), are
given. This theory is deliberately omitted, as the transformations listed
there lack any physical or mathematical justification.

• The consideration of additional DOFs only affects the balance of angular
momentum and the balance of internal energy.

• However, no additional balance equation associated with the supple-
mentary DOFs is obtained.

• This is caused by the fact that the considered ambient space is an
Euclidean space instead of, e.g., a Riemannian manifold, cf. Yavari
and Marsden (2009).

• The additional DOFs are defined on the tangent space of the current
configuration of the deformed body, cf. Capriz et al. (1982, p. 81). Hence,
they are also defined on an Euclidean space. Consequently, they are
rotated by the same transformation as the macro fields, i.e., by 𝑄(𝑡).
However, a rigid body translation is not considered in this context.
Thus, the additional DOFs can only enter the conservation law which is
associated with the invariance under rotational transformation, namely
the balance of angular momentum. This is similar to the implications of
Noether’s theorem, cf., e.g., the reprint Noether (1971).

• If the additional DOFs are scalar valued, they are commonly assumed
invariant under a change of observer, cf. Svendsen (1999). In this
case, the balance of angular momentum remains in its standard form.
Only the balance of internal energy is modified due to the additional
contributions.

• Some extended continua provide a conservation law for the micro-
inertia. Regarding a scalar-valued DOF, the conservation of micro-
inertia cannot be shown by invariance considerations, cf. Prahs and
Böhlke (2019b).
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2.2.2 Covariance of energy balance

Motivation for the generalisation of the ambient space Classical con-
tinuum mechanics is based on the assumption, that a three dimensional
body is embedded in the Euclidean space, cf., e.g., Noll (1958, p. 200).
The deformation of the body and accompanied stresses are described
with respect to an arbitrary, stress free reference configuration that is also
embedded in the Euclidean space. This viewpoint holds true if a body
can be regarded phenomenologically as a simply connected set. If the
deformation of a body has to be described in more detail, its microstructure
has to be accounted for. This incorporates, e.g., dislocations and defects
that are already present and quantifiable in the reference configuration.
For instance, it is possible to measure an initial dislocation density for a
given specimen. Consequently, describing a body as a generic manifold,
rather than a subset of Euclidean space, seems to be more adequate,
cf. Yavari and Goriely (2012, p. 60) and Maugin (2017). Moreover, this
topic is already addressed by Kondo (1955); Bilby et al. (1955). This
entails a geometric treatment of continuum mechanics as proposed by,
e.g., Marsden and Hughes (1994). Several approaches can be found in
literature, cf. Panoskaltsis and Soldatos (2014); Yavari and Goriely (2012);
Yavari and Marsden (2009). The framework of Yavari and Marsden (2009)
is briefly summarized in the following.

Transition to Riemannian manifolds In this context, the reference con-
figuration is defined as a so-called material manifold ℬ, whereas the
current configuration is defined as spatial manifold 𝒞, cf., e.g., Marsden
and Hughes (1994). Moreover, the considered microstructure is assigned
to a separate microstructure manifold ℳ. The elements of ℬ, 𝒞 and ℳ are
denoted as 𝑋 , 𝑥 and 𝑝, respectively, cf. Yavari and Marsden (2009, p. 4).
They are related by the mappings

𝑥 = 𝜙𝑡(𝑋), 𝑝 = 𝜙̃𝑡(𝑋), 𝜓𝑡 = 𝜙̃𝑡 ∘𝜙𝑡
−1, (2.44)
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cf. Yavari and Marsden (2009, pp. 4,5). A graphical illustration is given
by Yavari and Marsden (2009, Fig. 2.1). Consequently, the energy balance
is formulated with respect to these manifolds and, thus, more generic.
Instead of the scalar products in Eq. (2.12), inner products

⟨︀⟨︀
·, ·

⟩︀⟩︀
𝑔 are

considered with respect to the metric 𝑔 of the spatial manifold 𝒞. A concise
comparison between classical tensor algebra and tensor algebra on mani-
folds is given by Stumpf and Hoppe (1997). The common contributions of
the energy balance are replaced as follows

𝑣 · 𝑣 →
⟨︀⟨︀
𝑣,𝑣

⟩︀⟩︀
𝑔 , 𝑏 · 𝑣 →

⟨︀⟨︀
𝑏,𝑣

⟩︀⟩︀
𝑔 , 𝑡 · 𝑣 →

⟨︀⟨︀
𝑡,𝑣

⟩︀⟩︀
𝑔 . (2.45)

The covariance of the energy balance of a classical Cauchy continuum is
extensively discussed by Yavari et al. (2006) and Marsden and Hughes
(1994, pp. 165-167). Naturally, the velocity field is an element of the tangent
space 𝑇𝑥𝒞 of 𝒞, cf. Yavari and Marsden (2009, Eq. (2.1)). Here, 𝑏 and 𝑡
are also introduced as elements of 𝑇𝑥𝒞, i.e., as vectors, cf. Marsden and
Hughes (1994). It is also possible to introduce 𝑏 and 𝑡 as elements of the
cotangent space 𝑇 *

𝑥 𝒞 of 𝒞, i.e., as one-forms. This bears the advantage
that the notion of power is defined without the consideration of a metric,
cf. Kanso et al. (2007). However, this is omitted, here.

The notion of covariance Here, the covariance of the energy balance
instead of its invariance concerning a change of observer is stated, cf. Mars-
den and Hughes (1994). The covariance of the energy balance connotes its
invariance under arbitrary diffeomorphisms. It is assumed, that 𝒞 and ℳ
are independent of each other, i.e., that the transformation of 𝒞 does not
affect ℳ, and vice versa. This is one of the approaches proposed by Yavari
and Marsden (2009). Consequently, instead of the transformation accord-
ing to Eq. (2.13), the push-forward of 𝑥 and 𝑝 by the diffeomorphisms 𝜉𝑡

and 𝜂𝑡 is considered, respectively, reading

𝑥′ = 𝜉𝑡*𝑥, 𝑝′ = 𝜂𝑡*𝑝. (2.46)
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Here, 𝜉𝑡 is referred to as spatial and 𝜂𝑡 as microstructure diffeomorphism.
The subscript * denotes the push-forward.

Fundamental assumptions Regarding the covariance of the energy bal-
ance, the primal assumptions are comparable to those listed in Section 2.2.1.
However, the following points are significantly different:

• Here, the ambient space is a Riemannian manifold instead of an Eu-
clidean space, cf. Yavari and Marsden (2009, p. 10).

• The additional DOFs are element of an additionally introduced Rie-
mannian manifold ℳ representing the microstructure, cf. Yavari and
Marsden (2009, p. 4).

• The specific internal energy 𝑒 depends not only on 𝑥 and 𝑡 but also
on the metric tensors 𝑔 and 𝑔̃ of the manifolds 𝒞 and ℬ, and on the
additional DOF 𝑝, cf. Yavari and Marsden (2009, Eq. (4.8)).

• A specific material behavior is taken into account implicitly. The trans-
formation of the stress vector with respect to an arbitrary diffeomor-
phism is specified for a material class, cf. Marsden and Hughes (1994,
pp. 163, 164). While it is clear regarding pure elasticity, an altered
transformation is necessary, e.g., for plasticity.

Supplementary contributions associated with an additional vectorial
DOF In general, additional DOFs are introduced as elements of ℳ.
Following the generic framework of Yavari and Marsden (2009), there
exists no restriction on the tensorial order of the considered additional
DOFs. For brevity, one vectorial DOF 𝑝(𝑋, 𝑡) is introduced, which is
referred to as director field. Its velocity is denoted as 𝑣̃. Thus, the
additional contributions to the energy balance are given by

𝜅 = 𝐴
⟨︀⟨︀
𝑣̃, 𝑣̃

⟩︀⟩︀
𝑔̃ , 𝛽 =

⟨︀⟨︀
𝑏̃, 𝑣̃

⟩︀⟩︀
𝑔̃ , 𝑠 =

⟨︀⟨︀
𝑡̃, 𝑣̃

⟩︀⟩︀
𝑔̃ . (2.47)

While 𝑏̃ is denoted as micro-body force, 𝑡̃ is referred to as micro-traction
force. In contrast to, e.g., the micromorphic continuum according to
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Eringen (1964), the micro-inertia is given by the scalar 𝐴, here. The
quantities 𝑣̃, 𝑏̃ and 𝑡̃ are elements of the tangent space 𝑇𝑝ℳ, cf. Yavari
and Marsden (2009, p. 4).

Implications of the stated covariance Covariance of the extended en-
ergy balance under the spatial diffeomorphism yields conservation of
mass as well as the standard balances of linear and angular momentum,
given by Eq. (2.15). It is explicitly emphasized by Marsden and Hughes
(1994) that the stress vector transforms objectively, if the considered spatial
diffeomorphism 𝜉𝑡 describes a rigid deformation. A rigid deformation can
always be expressed by an Euclidean transformation. This statement holds
true irrespective of the underlying material behavior. However, regarding
the assumed, generic diffeomorphism, an objective transformation of the
stress vector is only postulated in the purely elastic case, cf. Marsden and
Hughes (1994, p. 163, bottom line). This is in contrast to all previously
discussed extended continua that are derived by means of the invariance
of the energy balance under a change of observer or a superimposed rigid
body motion. Since the internal energy is assumed to depend on the
metric of 𝒞, a constitutive equation is obtained, in addition. It is denoted
as Doyle-Ericksen formula, cf. Marsden and Hughes (1994), and serves as
potential relation for the Cauchy stress in the purely elastic case reading

𝜎 = 2𝜌 𝜕𝑒
𝜕𝑔
. (2.48)

Further, covariance with respect to the microstructure diffeomorphism
leads to the conservation of micro-inertia and as well as balances of linear
and angular microstructure momentum. Thus, the additionally obtained
balance equations are given by

˙̃𝐴 = 0, 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
− div (𝜎̃) = 0, (𝐹 0𝜎̃)T = 𝐹 0𝜎̃. (2.49)
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The conservation of micro-inertia is given by Eq. (2.49)1. Contrarily to
the theories presented in Section 2.2.1 an additional balance equation
for the additional DOF is obtained. This balance, given by Eq. (2.49)2,
resembles the balance of linear momentum. Therefore, it is often referred
to as micro-force balance. The symmetry properties of the micro-stress
tensor 𝜎̃ is described by Eq. (2.49)3. Here, 𝐹 0 is the differential 𝑇𝜓𝑡. Its
relation to the differentials of 𝜙𝑡 and 𝜙𝑡 is given by

𝐹 = 𝑇𝜙𝑡, 𝐹̃ = 𝑇𝜙𝑡, 𝐹 0 = 𝐹̃ 𝐹−1. (2.50)

As a consequence of the assumed independence of the considered mani-
folds, the balance equations on micro scale according to Eq. (2.49) are com-
pletely decoupled from the standard balance equations given by Eq. (2.15).
A relation between the fields of the common and the microstructure
balances can be established by means of constitutive equations, i.e., due to
exploitation of the second law of thermodynamics. Another approach is to
assume constraints between the manifolds 𝒞 and ℳ as discussed in Yavari
and Marsden (2009). However, this exceeds the scope of the review at
hand, and is not discussed.

Limitations of the covariance considerations

• The transformation of the stress vector depends on the considered
material behavior. The summarized framework according to Yavari
and Marsden (2009) is limited to elastic materials. The same holds true
for the treatment of a classical continuum according to Marsden and
Hughes (1994, pp. 163, 164). This limitation is regarded as its most
critical point.

• The consideration of dissipative processes by means of this framework
is quite involved. Nondissipative processes are accounted for by in-
ternal variables in Panoskaltsis et al. (2013, p. 2107). They state that
for this approach the covariance of the energy balance cannot hold
true, cf. Panoskaltsis et al. (2013, p. 2116). In order to circumvent this
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issue, a dissipative process is described by means of micro-forces that
act on additional DOFs instead by Panoskaltsis and Soldatos (2014).
However, both approaches assume the transformation of the stress
vector as used in the purely elastic case. This choice is not justified
according to Marsden and Hughes (1994, p. 163).

• Following Truesdell and Toupin (1960), a clear separation between
balance equations and constitutive equations has to be drawn. This
arises from the demand that balance equations should be of generic
nature, and, thus, valid for all materials. Hence, as stated by Truesdell
and Toupin (1960, p. 529), constitutive laws cannot be obtained from
balance equations. Contrarily, the covariance of the energy balance
provides a potential relation for the Cauchy stress in terms of the Doyle-
Ericksen formula, cf. Marsden and Hughes (1994, p. 167) and Yavari and
Marsden (2009, Eq. (4.24)).

2.3 Extended Principle of Virtual Power

2.3.1 Fundamentals

Principle of virtual power or virtual work for extended continua As
already mentioned in Section 2.1.1, variational principles such as the
principle of virtual work (PoVW) or the principle of virtual power (PoVP),
cf. Eq. (4.40), can be used axiomatically to introduce continuum mechanics,
cf. Willner (2003, p. 172) and Willner (2003, references at p. 175). Evidently,
it can be used as a starting point for the formulation of extended continua.
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In this context, an extended variational principle is given by

𝛿𝒫 = 𝛿𝒫a + 𝛿𝒫i + 𝛿𝒫c + 𝛿𝒫d = 0, (2.51)

𝛿𝒫a =
∫︁

𝒱𝑡

−𝜌 (𝑣̇ · 𝑓 + 𝜅̃) d𝑣, (2.52)

𝛿𝒫d =
∫︁

𝒱𝑡

𝜌 (𝑏 · 𝑓 + 𝛽) d𝑣, (2.53)

𝛿𝒫i =
∫︁

𝒱𝑡

− (𝜎 · grad (𝑓) + 𝑙) d𝑣, (2.54)

𝛿𝒫c =
∫︁

𝜕𝒱𝑡

𝑡 · 𝑓 + 𝑠d𝑎, (2.55)

cf. Forest et al. (2011, pp. 71, 72). Here, 𝛿𝒫a denotes the virtual power
of inertial forces, 𝛿𝒫i the virtual power of internal forces, 𝛿𝒫c the virtual
power of contact forces, and 𝛿𝒫d the virtual power of far field body forces.
The test function is referred to as 𝑓 . If the test function is chosen as
virtual displacement, i.e. 𝑓 = 𝛿𝑢, the PoVW is obtained. Consequently,
choosing the test function as virtual velocity, i.e. 𝑓 = 𝛿𝑣, yields the PoVP. In
literature, both the PoVW as well as the PoVP are used to define extended
continuum models. The additional contributions 𝜅, 𝛽, 𝑠 and 𝑙 differ for
each considered approach. Regarding a classical Cauchy continuum, these
extensions vanish. It appears obvious to relate the additional contributions
to DOFs of kinematic nature. Thus, higher-order velocity gradients can
be taken into account. For some applications, it is also convenient to
supplement a material point by additional, rotational DOFs. Moreover,
generic extensions such as a plastic slip, a damage parameter, or an order
parameter concerning phase transition are also possible additional DOFs.
Subsequently, several extended continua based on their specific extensions
are revisited.

Fundamental assumptions

• The primal mechanical principle is that of work, cf. Eugster and
dell’Isola (2017, comment on p. 492).
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• The notion of stress is presumed from the outset, cf. Eugster and
dell’Isola (2017, comment on p. 492).

• The power caused by surface forces is not considered to be fundamental.
It is considered as logical consequence arising from the definition of
stresses, cf. Eugster and dell’Isola (2017, comment on p. 492).

• Cauchy’s lemma is not considered as fundamental concept to derive
a continuum mechanical field theory, cf. Eugster and dell’Isola (2017,
comment on p. 493).

• After application of partial integration, the localization of volume in-
tegrals yields field equations that are commonly referred to as balance
equations.

• The material behavior is not specified from the outset.

• To consider a specific material behavior, the dissipation inequality is
commonly exploited, cf. Forest (2009). To this end, the definition of both
an energy and entropy balance is necessary, in addition, cf. Forest (2005).

2.3.2 Extended principle of virtual power

Micromorphic medium according to Germain (1973) The previously
presented micromorphic medium according to Eringen (1999) is treated
by means of the principle of virtual power by Germain (1973, pp. 559-566).
For brevity, the quasi-static case is presented, here. However, details on a
dynamic version can also be found in Germain (1973). The supplementary
contributions to the PoVP are given as follows

𝜅̃ = 0, 𝛽 = 𝐵E · 𝛿𝜈E,

𝑙 = (𝑠− 𝜎) · 𝛿𝜈T
E +𝑚E ·

(︀
grad

(︀
𝛿𝜈T

E
)︀)︀TH

, 𝑠 = (𝑚E[𝛿𝜈E]) · 𝑛,
(2.56)

cf. Germain (1973, pp. 560, 561). The tensors involved correspond to those
of Eringen (1999). In contrast to Eq. (2.29), the symmetric second-order
tensor 𝑠 is used in Eq. (2.56). The tensor 𝑠 is introduced by Eringen in the
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context of the derivation of the balance of angular momentum, cf. Eringen
(1999, p. 44). Thereby, it is noted that 𝑠 is arbitrary but symmetrical. The
micropolar continuum as a special case of the micromorphic continuum is
considered by Germain (1973, pp. 570, 571).

Cosserat continuum according to Forest (2005) This continuum is
closely related to the micropolar continuum discussed by Kafadar and
Eringen (1971); Eringen (1999). According to Eringen (1999, p. 12), the
continuum by Cosserat and Cosserat (1909) does not exhibit a micro-inertia.
Contrarily, the Cosserat continuum discussed by Forest (2005) provides
a micro-inertia. However, a discussion concerning the conservation of
micro-inertia is still omitted. The micro-inertia is considered constant. The
additional contributions to the PoVP are given by

𝜅̃ = 𝑗 · (𝛿 ˙̃𝜈 ⊗ 𝛿𝜈̃), 𝑗 = 𝐴 𝐼, 𝛽 = 𝐵̃ · 𝛿𝜈̃,

𝑙 = 𝜎 · (𝜖[𝛿𝜈̃]) + 𝑚̃ · grad (𝛿𝜈̃) , 𝑠 = (𝑚̃𝑛) · 𝛿𝜈̃,
(2.57)

cf. Forest (2005, pp. 4, 5). In this context, the micro-inertia tensor is chosen
isotropic, with the micro-inertia constant 𝐴.

Second gradient continuum according to Germain (1973) The exten-
sion by means of the second gradient of the displacement field can be
also considered as a particular case of the micromorphic continuum. The
connection is drawn in Germain (1973, p. 571).

Indeterminate couple-stress theory according to Germain (1973) This
continuum is a special case of the micromorphic continuum. It is obtained
by the restriction

𝜈E = skw(grad (𝑣)), (2.58)

cf. Germain (1973, Eq. (76)). This theory is also discussed by Fleck and
Hutchinson (1997, pp. 337-339).
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Formal extension of the principle of virtual power Regarding a quasi-
static behavior, a generic extension to the principle of virtual power is
given by Forest (2009). This is extended by dynamical contributions in
Forest et al. (2011). The corresponding additional terms are given by

𝜅̃ = 𝐴Φ̈ 𝛿Φ̇, 𝛽 = 𝑎𝛽 𝛿Φ̇ + 𝑏𝛽 · grad
(︀
𝛿Φ̇

)︀
,

𝑙 = 𝑎𝑙 𝛿Φ̇ + 𝑏𝑙 · grad
(︀
𝛿Φ̇

)︀
, 𝑠 = 𝑎𝑠 𝛿Φ̇,

(2.59)

cf. Forest et al. (2011, pp. 71, 72). Here, the additionally introduced
fields are scalar- and vector-valued. However, the tensorial order of the
additional fields and thereby the additional DOF is arbitrary, cf. Forest
(2009). Thus, the extensions according to Eq. (2.59) describe not a spe-
cific continuum but a class of continua. This method is referred to as
micromorphic approach. Choosing Φ = 𝜒, the micromorphic continuum
according to Eringen (1999) is obtained, cf. Forest (2009, Eq. (36)). Since
the contributions consist of arbitrary fields, the micromorphic approach
comprises a variety of generalized continua.

Additional scalar DOF Regarding the micromorphic approach, a special
case is given, if the additional DOF is considered to be scalar-valued. By
this choice, phenomena such as microstrain gradient plasticity, micro-
damage, micro-diffusion, and others can be described, cf. Forest (2009,
Tab. 1). If the additional DOF is considered to be the accumulated plastic
slip, an accumulated slip gradient crystal plasticity theory can be obtained,
cf. Wulfinghoff and Böhlke (2012); Wulfinghoff et al. (2013); Bayerschen
et al. (2015; 2016b). Since the field of application is that vast, the specific
additional contributions are omitted, here.

Limitations of the methods based on an extended PoVP

• The PoVP does not require the use of Reynolds’ transport theorem. This
is based on the use of 𝜅̃ and not 𝜅 in the context of the PoVP. This has
the following consequences.
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– The material time derivative of, e.g., the micro-inertia is not discussed.
Consequently, no conservation of micro-inertia can be obtained or
discussed.

– Regarding a body that contains a singular surface, the curvature of
the singular surface is not intrinsically considered.

• The method provides as many field equations as DOFs are considered,
cf. Maugin (1980, p. 64). These are commonly denoted as balance
equations. The question, if these field equations are really independent
balances or constraints that have to be considered, remains unanswered.
The additional field equations are not necessarily coupled to the vari-
ables describing the overall deformation of the body.

• In order to model the constitutive material behavior, an extended
balance of internal energy along with the dissipation inequality is
considered. Therefore, actual but not virtual contributions are required,
cf. Hütter (2016, p. 1936). The relation between virtual and actual
contributions is commonly not discussed.

• The conservation of mass cannot be proven and is, thus, assumed.

• The existence of the considered stresses is assumed. Regarding not only
one but several additional DOFs, the unambiguity of the corresponding
stresses cannot be shown.

2.3.3 Extended principle of virtual work

Higher-order velocity gradients The consideration of higher-order gra-
dients of the virtual displacement with respect to the volume-specific
work is briefly presented by Hellinger (1913, p. 622). In this context,
the second gradient of the virtual displacement is considered in addi-
tion. This is motivated by the equations of motion for rods and shells,
cf. Hellinger (1913, p. 623). However, only the static version of Eq. (2.55)
is considered with respect to an extension, i.e. 𝛿𝒫a = 0 holds true. The
additional contributions to the PoVW are given by Hellinger (1913, p. 622).
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A further discussion of the subsequent exploitation of Eq. (2.55) based on
the additional contributions is omitted in the original work. Gradients
of the virtual displacement that exceed the second order are considered
by Bertram and Forest (2007, p. 9). The original work by Hellinger (1913)
is formulated in German. A commented english translation of Hellinger
(1913) is given by the articles Eugster and dell’Isola (2017; 2018a;b).

Oriented media Following the idea of Cosserat and Cosserat (1909), an
extended, statical principle of virtual work is presented by Hellinger (1913)
accounting for the orientation of a material point. Thus, it is assumed that
an infinitesimal rotation of the continuum expends virtual work. In this
context, the additionally considered extensions are given by

𝜅̃ = 0, 𝛽 = 𝐵̃ · 𝛿𝑑, 𝑙 = 𝑚̃ · grad (𝛿𝑑) , 𝑠 = (𝑚̃𝑛) · 𝛿𝑑. (2.60)

Here, 𝛿𝑑 denotes an infinitesimal axial vector, cf. Hellinger (1913, p. 623).
It can be considered as virtual director field. This is comparable to the
additional terms in Eq. (2.57). There is no constraint between the virtual
displacement field 𝛿𝑢 and the virtual director field 𝛿𝑑. Thus, both virtual
fields can be varied independently of each other. Further discussion of
the simplifications concerning two and one dimensional continua can
be found in Hellinger (1913). Moreover, a discussion on continua with
internal constraints is given there as well.

Higher-order tensorial DOFs as generic extension In Truesdell and
Toupin (1960, Section 232), the additional contributions to the PoVW are
of generic nature. Thus, they are not related to DOFs that describe the
continuum’s kinematic in more complexity. The additionally introduced
terms consists of work conjugate tensors of second and higher order.

Limitations of the methods based on an extended PoVW The same
restrictions apply to the principle of virtual work as to the principle of
virtual power.
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2.4 Variational Approaches

2.4.1 Fundamentals

Variational principles for extended continua As already mentioned in
Section 2.1.1, the principle of virtual power constitutes the stationary
condition of the Hamiltonian. Presuming a hyperelastic material be-
havior for each extended continuum model presented in Section 2.3, a
corresponding Lagrange density ℒ can be formulated that fulfills the
principle of least action according to Eq. (2.22). The Lagrangian of an
extended continuum depends additionally on the rate and the gradients
of the supplementary DOF. Regarding dissipative processes, a dissipation
potential has to be taken into account. For brevity, only elastic theories
are considered subsequently. It exceeds the work at hand to provide
an extensive overview of variational principles. Thus, focus is put on
selected works concerning extended continua. A detailed presentation of
the Lagrangian of the corresponding continuum is omitted, here.

Fundamental assumptions

• The Lagrangian accounts for a specific material behavior.

• The equations of motion associated with the corresponding DOF are
obtained as stationary condition of the Hamiltonian.

• In its original formulation, the principle of least action does not account
for dissipative processes.

2.4.2 Extended continua specified by an
extended Lagrangian

Cosserat continuum This continuum is originally proposed by Cosserat
and Cosserat (1909). The corresponding Lagrange density is formulated
on p. 4 of the extensive treatment. Similar to this, a body with oriented
media is considered by Hellinger (1913).
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Continua with couple-stress This special case of the Cosserat contin-
uum, cf. Germain (1973), is treated by Mindlin and Tiersten (1962); Toupin
(1962; 1964) in a variational context. An error in the equation of the
couple-stress, given in Truesdell and Toupin (1960), is discussed. The
essay by Toupin (1964) constitutes a review on different continua with
couple-stresses.

Microdeformation Similar to Eringen’s extended continuum, Mindlin
(1964) introduces a micro-displacement related to a micro-volume included
in a material point. Materials with a complex microstructure are consid-
ered by Capriz and Mariano (2003). The material time derivative of the
specific internal energy is used as Lagrangian by Rahouadj et al. (2003).

Displacement gradients of higher order The continuum according
to Agiasofitou and Lazar (2009) considers a linear elastic continuum of
grade three. To this end, the Lagrangian depends on the second gradient
of the displacement field.

Limitations of variational approaches

• The form of the Lagrangian depends on the constitutive assumptions.
Therefore, the validity of the preserved field equations is very restricted.

• Accounting for dissipative processes can be quite involved.

2.5 Postulates

In order to derive balance equations of generalized continua, several
procedures are available as discussed previously. Mariano (2016) lists
ten approaches that are admissible from his point of view. This canon of
methods also considers the postulation of balance equations in a local or
an integral form. In this context, he lists the disadvantages of this proce-
dure. Moreover, the postulation of an additional microstructural balance
equation in integral form is critically discussed by Mariano (2016, p. 14).
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In addition, the postulation of arbitrary additional balance equations
is also questioned in Yavari and Marsden (2009, p. 7). Nevertheless,
several authors postulate appropriate balance laws suitable for their field
of application. Some of the publications that directly postulate balance
equations are given along with the number of the corresponding equation:
Leslie (1968, Eq. (3.2)), Naghdi and Srinivasa (1993, Eq. (4.10), Eq. (4.11)),
Gurtin (1993, Eq. (10.2)), Gurtin (1994, Eq. (2.2)), Gurtin (1995, Eq. (3.23)),
Fried (1996, Eq. (3.2)), Rahaman et al. (2016, (2.16)), Rahaman et al. (2017,
Eq. (2.12)).

2.6 Interim Conclusions

The following results and concluding remarks are given with respect to
the current chapter.

• Methods are presented that are used to obtain balance equations as-
sociated with additional degrees of freedom. In this context, various
extended continua are outlined.

• Invariance considerations of an extended energy balance as well as an
extended principle of virtual work do not consider material behavior.
They are therefore not restricted in their application.

• Both the covariance of an extended energy balance as well as variational
principles take into account constitutive equations describing the mate-
rial behavior a priori. Consequently, obtained balance laws are always
associated with a specific material behavior.

• Some publications directly postulate additional balance equations which
are in line with balance equations obtained by the previously men-
tioned methods. However, this approach induces a certain degree of
arbitrariness.

• In order to obtain thermodynamically consistent constitutive equations,
the second law of thermodynamics has to be exploited. Regarding an
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extended energy balance, supplementary contribution enter the dissi-
pation inequality by means of the Legendre transformation, cf. Beegle
et al. (1974). In the context of an extended principle of virtual power, an
extended balance of internal energy has to be postulated in addition,
cf. Forest (2009). Thus, actual supplementary contributions have to
be postulated alongside the virtual contributions, cf. Hütter (2016).
Consequently, the principle of virtual power is not self-consistent in
deriving a closed theory.

• This motivates the question of the relationship between the modified
equations obtained by an extended energy balance and the additional
balance equations obtained by an extended principle of virtual power.

The relationship between the previously outlined theories concerning
the invariance of an extended energy balance and an extended PoVP is
illustrated in Fig. 2.2.

Figure 2.2: This graphic illustrates the relation between the extended continua previously
outlined. Equivalent theories are indicated by a straight double-headed arrow. The wavy
arrow indicates theories that are obtained by means of simplifications or specifications of the
additional contributions of the energy balance.
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Chapter 3

On Invariance Properties of an
Extended Energy Balance1

Motivation Gradient plasticity theories are of utmost importance for
accounting for size effects in metals, especially on the grain scale. Today,
there are several methods used to derive the governing equations for
the additional degrees of freedom in gradient plasticity theories. Here,
the equivalence between an extended principle of virtual power and an
extended energy balance is shown. The energy balance of a Boltzmann
continuum is supplemented by contributions based on a scalar-valued
degree of freedom. It is considered to be invariant with respect to a change
of observer. This yields unambiguously the existence of a corresponding
gradient stress vector, which is presumed from the outset in the context of
an extended principle of virtual power. A thermodynamically consistent
nonlocal evolution equation for the additional, scalar-valued degree of
freedom is obtained by evaluation of the dissipation inequality in terms
of the Clausius-Duhem inequality. Partitioning the nonlocal flow rule
yields a partial differential equation, often referred to as micro-force
balance. Moreover, a discussion concerning an additional vectorial DOF
and the derivation of the corresponding conservation of micro-inertia is
also provided.

1 The content of this chapter is taken directly from the article Prahs and Böhlke (2019b).
Minor linguistic changes and abbreviations have been made.
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3.1 Additional Scalar-Valued DOF

3.1.1 Extended energy balance

Deformation and microstructure function The energy balance accord-
ing to Eq. (2.28) is given with respect to a current configuration referred to
as 𝒞. The spatial velocity field 𝑣 is given by Eq. (2.1). Subsequently, the
additional DOF is referred to as 𝛾. The spatial velocity 𝑣 of 𝛾 is calculated
according to Eq. (2.27).

Energy balance The considered extensions to the energy balance, based
on the additional DOF, are given by Eq. (2.43). Thus, the extended energy
balance according to Eq. (2.28) can be written in the form

𝜖 =
∫︁

𝒱𝑡

(𝜌̇+ 𝜌div (𝑣))
(︂
𝑒+ 1

2𝑣 · 𝑣 + 1
2𝐴𝑣

2
)︂

+ 𝜌𝑒̇+ 𝜌 (𝑎− 𝑏) · 𝑣

+ 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
𝑣 + 1

2𝜌
˙̃𝐴𝑣2 − 𝜌𝑟 d𝑣 −

∫︁
𝜕𝒱𝑡

𝑡 · 𝑣 + 𝑡𝑣 + ℎd𝑎 = 0. (3.1)

As discussed in Sec. 2.1.1, it is assumed that the energy balance is invari-
ant with respect to a change of observer, described by Eq. (2.13). The
additionally considered DOF is scalar-valued and, thus, not affected by a
change of observer. The energy balance described by the observer of the
vector space 𝒲 is denoted by 𝜖. Consequently, the observer of the vector
space 𝒲 ′ refers to the energy balance as 𝜖′. To obtain the balance laws, the
difference

Δ𝜖𝑡0 = (𝜖′ − 𝜖)|𝑡=𝑡0
(3.2)

is introduced and evaluated. The considered calculations are closely
related to the discussion given in Marsden and Hughes (1994, pp. 145-149).
Instead of the Euclidean transformation according to Eq. (2.13), it is also
possible to consider a pure translational transformation first and a pure
rotational one subsequently.
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3.1.2 Translational transformation

Applied transformations Regarding a pure translational transformation
implies that both observers exhibit the same orientation, i.e.,𝑄 = 𝑒′

𝑖 ⊗ 𝑒𝑖.
Consequently, the Euclidean transformation according to Eq. (2.13) is
simplified. The relations between 𝑥 and 𝑥′,𝑣 and 𝑣′, as well as 𝑎 and 𝑎′

are given by

𝑥′ = 𝑥+ 𝑐′, 𝑣′ = 𝑣 +𝑤, 𝑎′ = 𝑎+ 𝑤̇, (3.3)

with 𝑤 = 𝑐̇′. All scalar quantities, including the contributions associated
with the additional DOF, are invariant under the considered transforma-
tions. Moreover, the surface traction 𝑡 remains unchanged under the
translational transformation. Regarding the body force 𝑏′, an additional
contribution associated with the acceleration 𝑐̈′ of the relative translation
has to be taken into account. This contribution is referred to as fictitious
body force, cf. Marsden and Hughes (1994, p. 147). Consequently, the
transformation

𝑎′ − 𝑏′ = 𝑎− 𝑏 (3.4)

holds true. Alternatively, the requirement of 𝑐̈′ = 0 also ensures the
validity of Eq. (3.4), cf. Yavari and Marsden (2009, p. 9) and Marsden and
Hughes (1994, p. 146). As a consequence of the transformations according
to Eq. (3.3), the kinetic contribution to the energy 𝑣 · 𝑣/2 is not invariant
under the translational transformation. It contains additional terms that
are linear and quadratic in 𝑐̇′. The arbitrariness of 𝑐′ and, thus, 𝑐̇′ is used
to derive the balance of mass, subsequently. This is an essential aspect for
further invariance considerations of the extended energy balance.
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Existence of the Cauchy stress tensor Evaluation of Eq. (4.16) yields

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

(𝜌̇+ 𝜌div (𝑣))
(︂
𝑣 ·𝑤 + 1

2𝑤 ·𝑤
)︂

+ 𝜌 (𝑎− 𝑏) ·𝑤 d𝑣

−
∫︁

𝜕𝒱𝑡

𝑡 ·𝑤 d𝑎 = 0. (3.5)

Application of Eq. (3.5) to an infinitesimal tetrahedron yields the existence
of the Cauchy stress tensor 𝜎

𝜎𝑛 = 𝑡, (3.6)

cf. Bertram (2005, p. 138).

Conservation of mass Accounting for Eq. (3.6), Eq. (3.5) can be formu-
lated as

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

(𝜌̇+ 𝜌div (𝑣))
(︂
𝑣 ·𝑤 + 1

2𝑤 ·𝑤
)︂

+ (𝜌 (𝑎− 𝑏) − div (𝜎)) ·𝑤 − 𝜎 · grad (𝑤) d𝑣 = 0. (3.7)

The vector field 𝑤 is arbitrary and given by 𝑤 = 𝑐̇′. Thus, 𝑤 = 𝜆𝑢 is
considered, with the constant unit vector 𝑢 and 𝜆 ̸= 𝜆(𝑥), cf. Marsden and
Hughes (1994, p. 148). This leads to

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

(𝜌̇+ 𝜌div (𝑣))
(︂
𝜆𝑣 · 𝑢+ 1

2𝜆
2𝑢 · 𝑢

)︂
+ 𝜆 (𝜌 (𝑎− 𝑏) − div (𝜎)) · 𝑢d𝑣 = 0. (3.8)

Differentiating Eq. (3.8) twice with respect to lambda yields

𝑑2Δ𝜖𝑡0

𝑑𝜆2 =
∫︁

𝒱𝑡

(𝜌̇+ 𝜌div (𝑣)) (𝑢 · 𝑢) d𝑣 = 0. (3.9)
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Since 𝑢 is a constant unit vector, i.e., 𝑢 · 𝑢 = 1, conservation of mass is
obtained in its local form, reading

𝜌̇+ 𝜌div (𝑣) = 0. (3.10)

Balance of linear momentum Accounting for conservation of mass,
cf. Eq. (3.10), Eq. (3.8) can be formulated as

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

𝜆 (𝜌 (𝑎− 𝑏) − div (𝜎)) · 𝑢d𝑣 = 0. (3.11)

Since 𝜆 and 𝑢 are arbitrary, localization of Eq. (3.11) yields the local form
of the balance of linear momentum as

𝜌 (𝑎− 𝑏) − div (𝜎) = 0. (3.12)

3.1.3 Rotational transformation

Applied transformations Considering a pure rotational transformation
implies that both observers share the same origin, i.e., 𝑐′ = 0. Conse-
quently, the relation between 𝑥 and 𝑥′, respectively, between 𝑣 and 𝑣′ is
given by

𝑥′ = 𝑄𝑥, 𝑣′ = 𝑄𝑣 +𝑤, (3.13)

with 𝑤 = 𝑄̇𝑥. The traction force is assumed to transform objectively,
reading

𝑡′ = 𝑄𝑡. (3.14)

Contrarily, the acceleration 𝑎 does not transform objectively, which is a
consequence of the transformation law for 𝑣′, cf. Eq. (3.13). Additional
contributions associated with the centripetal and Coriolis forces are added.
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3 On Invariance Properties of an Extended Energy Balance

Taking into account these fictitious forces, the difference between body
force and acceleration is assumed to transform objectively(︀

𝑎′ − 𝑏′)︀ = 𝑄 (𝑎− 𝑏) , (3.15)

cf. Marsden and Hughes (1994). It is assumed that𝑄(𝑡0) = 𝐼 holds true.
According to the assumptions of the previous section, all scalar quantities
are considered invariant with respect to the applied transformations.
This implies that 𝑝, 𝑡, 𝑏̃ and 𝑣 are invariant with respect to the rotational
transformations.

Conservation of micro-inertia Evaluation of Eq. (4.16) leads to a form
that does not contain any microstructural quantities associated with the
additional DOFs, reading

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

−𝜎 · grad (𝑤) d𝑣 = 0. (3.16)

Thus, the existence of a micro-inertia conservation cannot be proved based
on invariance considerations regarding a change of observer. The same
holds true if invariance with respect to a superimposed rigid-body motion
is considered. This is different from the consideration of an additional
vectorial DOF, cf. Eq. (3.58).

Balance of angular momentum Substituting 𝑤 according to Eq. (3.13)
into Eq. (3.16) yields

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

−𝜎 · 𝑄̇d𝑣 = 0. (3.17)

Since 𝑄̇(𝑡0) ∈ Skw, the localization of Eq. (3.17) yields the standard balance
of angular momentum, as given in Eq. (2.15), reading

𝜎 = 𝜎T. (3.18)
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Existence of the gradient stress vector Accounting for the results in
Eqs. (3.6), (3.10) and (3.12), Eq. (3.1) reads∫︁

𝒱𝑡

𝜌𝑒̇+ 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
𝑣 + 1

2𝜌
˙̃𝐴𝑣2 − 𝜌𝑟 − 𝜎 · grad (𝑣) d𝑣

−
∫︁

𝜕𝒱𝑡

𝑡𝑣 + ℎd𝑎 = 0. (3.19)

Application of Eq. (3.19) to an infinitesimal tetrahedron yields∫︁
𝜕𝒱𝑡

𝑡𝑣 + ℎd𝑎 = 0. (3.20)

The integrand of the surface integral consists of the contribution due to
the micro surface traction 𝑡 and the heat flux ℎ. The existence of a flux
term 𝑘(𝑥, 𝑡) can be proven for which

𝑘(𝑥, 𝑡) · 𝑛 = 𝑡(𝑥, 𝑡,𝑛) 𝑣(𝑥, 𝑡) + ℎ(𝑥, 𝑡,𝑛) (3.21)

holds, cf. Marsden and Hughes (1994, p. 127). Both, 𝑡 and ℎ do not depend
on 𝑣. Thus, the only possible choice for 𝑘(𝑥, 𝑡) that provides the integrand
of Eq. (3.20) is given by

𝑘(𝑥, 𝑡) = 𝜉𝑣 + ℎ, with 𝑡 = 𝜉 · 𝑛 and ℎ = ℎ · 𝑛. (3.22)

Consequently, the existence of the gradient stress vector 𝜉 is shown un-
ambiguously. This is different from the treatment of extended continua
by an extended principle of virtual power. In this context, the existence of
both the Cauchy stress tensor and the gradient stress vector is presumed
from the outset, cf. the remark on this topic in the review paper of Mariano
(2016, p. 14).
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3 On Invariance Properties of an Extended Energy Balance

Existence of heat flux vector Regarding Eq. (3.22), the heat flux vector 𝑞
is introduced such that

𝑞 = −ℎ, with 𝑞 · 𝑛 = −ℎ, (3.23)

cf. Marsden and Hughes (1994, p. 148).

Balance of internal energy Considering the results in Eqs. (3.6), (3.10),
(3.12), (3.18) and (3.22), localization of Eq. (3.1) yields the local form of the
balance of internal energy, reading

𝜌𝑒̇+ 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
𝑣 + 1

2𝜌
˙̃𝐴𝑣2 − 𝜌𝑟 − 𝜎 ·𝐷

− 𝜉 · grad (𝑣) − div (𝜉) 𝑣 + div (𝑞) = 0. (3.24)

Simplifying assumptions Additionally considered DOFs are commonly
used to describe the evolution of the underlying microstructure. Nonlocal
damage, cf. Germain et al. (2007), nonlocal diffusion, cf. Ubachs et al.
(2004) and nonlocal plasticity, cf. Wulfinghoff et al. (2013), are prominent
examples for the application of extended continua. In this context, effects
due to micro-inertia and micro-body forces are usually neglected, i.e.,
𝐴 = 0 and 𝑏̃ = 0. Only micro-traction forces are considered. Thus, the
balance of internal energy Eq. (3.24) reads

𝜌𝑒̇− 𝜌𝑟 − 𝜎 ·𝐷 − 𝜉 · grad (𝑣) − div (𝜉) 𝑣 + div (𝑞) = 0. (3.25)

3.1.4 Nonlocal evolution equation for an additional DOF

Exploitation of the Clausius-Duhem inequality To discuss the evolu-
tion equation for the additional DOF, the simplified balance of internal
energy according to Eq. (3.25) is considered, subsequently. Moreover,
a small strain framework is considered for brevity, i.e., 𝐷 = 𝜀̇ holds.
Consequently, the Clausius-Duhem inequality according to Eq. (2.19) is
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given by

𝜌𝛿 = 𝜎 · 𝜀̇+ 𝜉 · ∇𝛾̇ + div (𝜉) 𝛾̇ − 𝜌𝜓̇ − 𝜌𝜃𝜂 − 1
𝜃
𝑞 · 𝑔 ≥ 0, (3.26)

where 𝛾̇ = 𝑣 and ∇𝛾̇ = grad (𝛾̇) is used. An additive split of the infinites-
imal strain 𝜀 into a purely elastic part 𝜀e and a part 𝜀p(𝛾) related to the
additional DOF 𝛾 is assumed, i.e., 𝜀 = 𝜀e + 𝜀p holds true. The specific free
energy is assumed to depend on 𝜀, 𝜀p, 𝛾, ∇𝛾, 𝜃, i.e.,

𝜓 = 𝜓(𝜀, 𝜀p, 𝛾,∇𝛾, 𝜃) (3.27)

holds true. It is assumed that the elastic properties are not affected
by 𝜀p during the deformation process, similar to Bertram and Krawi-
etz (2012, p. 2262). This motivates that 𝜓 only depends on the elastic
strain 𝜀e = 𝜀− 𝜀p. Furthermore, for simplicity, it is assumed that the
specific free energy 𝜓 can be additively decomposed into an elastic con-
tribution 𝜓e, a contribution 𝜓h that depends on the additional DOF 𝛾, a
gradient contribution 𝜓g that accounts for the effects of the gradient of the
additional DOF, and a thermal contribution 𝜓𝜃, i.e.,

𝜓(𝜀− 𝜀p, 𝛾,∇𝛾, 𝜃) = 𝜓e(𝜀− 𝜀p) + 𝜓h(𝛾) + 𝜓g(∇𝛾) + 𝜓𝜃(𝜃). (3.28)

Naturally, this assumed split of the specific free energy represents a special
case, cf. Bertram and Krawietz (2012). Regarding rate-dependent material
behavior, the Clausius-Duhem inequality, cf. Eq. (3.26), reads

𝜌𝛿 =
(︂
𝜎 − 𝜌

𝜕𝜓e

𝜕𝜀

)︂
· 𝜀̇− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝛾
𝛾̇ − 𝜌

(︂
𝜂 + 𝜕𝜓𝜃

𝜕𝜃

)︂
𝜃 − 𝑞 · 𝑔/𝜃

+
(︂

div (𝜉) − 𝜌
𝜕𝜓h

𝜕𝛾

)︂
𝛾̇ +

(︂
𝜉 − 𝜌

𝜕𝜓g

𝜕∇𝛾

)︂
· ∇𝛾̇ ≥ 0. (3.29)

The standard procedure of Coleman and Noll is applied, cf. Coleman and
Noll (1963). It is assumed that the gradient stress 𝜉 is purely energetic.
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This yields the potential relations for the Cauchy stress, the entropy and
the generalized stress

𝜎 = 𝜌
𝜕𝜓e

𝜕𝜀
, 𝜂 = −𝜕𝜓𝜃

𝜕𝜃
, 𝜉 = 𝜌

𝜕𝜓g

𝜕∇𝛾
. (3.30)

Thus, the reduced dissipation inequality is given by(︂
div (𝜉) − 𝜌

𝜕𝜓h

𝜕𝛾
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝛾

)︂
𝛾̇ − 𝑞 · 𝑔/𝜃 ≥ 0. (3.31)

While the first term of Eq. (3.31) refers to the mechanical dissipation, the
thermal dissipation is represented by the second expression.

Evolution equation Subsequently, no coupling is assumed between the
mechanical and the thermal dissipation. Thus, Fourier’s law, cf. Bertram
(2015), ensures the positivity of the second term in Eq. (3.31). Linear
irreversible thermodynamics yields an admissible choice for 𝑝̇, consistent
with the reduced dissipation inequality, reading

𝛾̇ = 𝛾̇0

(︂
div (𝜉) − 𝜌

𝜕𝜓h

𝜕𝛾
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝛾

)︂
, with 𝛾̇0 ≥ 0. (3.32)

Here, 𝛾̇0 denotes a referential rate. Equation (3.32) constitutes a nonlocal
evolution equation for the additionally considered DOF. Partitioning
of Eq. (3.32) leads to a partial differential equation (PDE) and a local
evolution equation, given by

𝜋 − div (𝜉) = 0, 𝛾̇ = 𝛾̇0

(︂
𝜋 − 𝜌

𝜕𝜓h

𝜕𝛾
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝛾

)︂
. (3.33)

For vanishing rates, i.e., 𝛾̇ = 0, the nonlocal evolution equation according
to Eq. (3.32) reduces to a partial differential equation, reading

div (𝜉) − 𝜌
𝜕𝜓h

𝜕𝛾
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝛾
= 0. (3.34)
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Equation (3.34) characterizes the distribution of the additional DOF 𝛾 in
thermodynamical equilibrium. The same result is obtained by requiring an
isothermal behavior along with a homogeneous temperature distribution
and neglecting any effects associated with an energy supply, cf. Eq. (3.39).
This is outlined, subsequently.

Vanishing dissipation in regular points Applying the material time
derivative to the Legendre transformation yields 𝑒̇ = 𝜓̇ + 𝜃𝜂 + 𝜃𝜂̇. Since
𝜓𝜃 = 𝜓𝜃(𝜃) and 𝜂 = −𝜕𝜓𝜃/𝜕𝜃, cf. Eq. (3.30), the material time derivative of
the specific entropy reads 𝜂̇ = 𝜃𝜕𝜂/𝜕𝜃 = −𝜃𝜕2𝜓𝜃/𝜕𝜃

2. Consequently, the
material time derivative of the Legendre transformation can be written as

𝑒̇ = 𝜓̇ + 𝜃 (𝜂 + 𝜃𝜕𝜂/𝜕𝜃) . (3.35)

Thus, 𝑒̇ = 𝜓̇ holds true for an isothermal material behavior, i.e., 𝜃 = 0,
which is commonly assumed in the context of plasticity, cf. Hochrainer
(2016, p. 17). Accounting for a homogeneous temperature distribution
leads to 𝑔 = grad (𝜃) ≡ 0 and thereby 𝑞 = 0 by means of Fourier’s law,
cf., e.g., Bertram (2015). Furthermore, any effects due to heat supply are
neglected, i.e., 𝑟 = 0. Thus, the balance of internal energy Eq. (3.25) reads

𝜌𝜓̇ − 𝜎 · 𝜀̇− (𝜉 · ∇𝛾̇ + div (𝜉) 𝛾̇) = 0. (3.36)

Moreover, the dissipation inequality according to Eq. (3.26) is given by

𝜌𝛿 = −𝜌𝜓̇ + 𝜎 · 𝜀̇+ (div (𝜉) 𝛾̇ + 𝜉 · ∇𝛾̇) ≥ 0. (3.37)

Comparison of Eq. (3.36) and Eq. (3.37) reveals, that the dissipation van-
ishes under the met assumptions. Regarding small deformations and
accounting for Eq. (3.28) with vanishing thermal contriubtion as well as
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3 On Invariance Properties of an Extended Energy Balance

for Eq. (3.30), the balance of internal energy according to Eq. (3.36) reads(︂
div (𝜉) − 𝜌

𝜕𝜓h

𝜕𝛾
+ 𝜏

)︂
𝛾̇ = 0. (3.38)

The equation above is fullfilled for arbitrary 𝛾̇, if the terms in brackets van-
ish. This leads to an additional field equation as already given by Eq. (3.34),
often referred to as micro-force balance

div (𝜉) − 𝜌
𝜕𝜓h

𝜕𝛾
+ 𝜏 = 0, (3.39)

cf. Bayerschen et al. (2016b); Gurtin (2002; 2008); Wulfinghoff et al. (2013).
Consequently, Eq. (3.34) does not only describe the distribution of the
additional DOF in thermodynamical equilibrium, but also for arbitrary
rates of the DOF, if the mentioned restrictions are considered.

3.1.5 Connection to an extended principle of virtual power

Weak forms Subsequently, the connection of the presented framework
to an extended principle of virtual work is discussed. To this end, the
weak forms of the PDE according to Eq. (3.33)1 and the balance of linear
momentum Eq. (3.12) are provided, first. Multiplication of Eq. (3.33)1 with
a test function f , integration over 𝒱𝑡 and application of the divergence
theorem yield the corresponding weak form

−
∫︁

𝒱𝑡

𝜋f + 𝜉 · grad (f ) d𝑣 +
∫︁

𝜕𝒱𝑡

𝑡f d𝑎 = 0, (3.40)

with 𝑡 = 𝜉 · 𝑛. Moreover, the weak form of the balance of linear momen-
tum in Eq. (3.12) is given by,∫︁

𝒱𝑡

𝜌 (𝑎− 𝑏) · 𝑓 + 𝜎 · grad (𝑓) d𝑣 −
∫︁

𝜕𝒱𝑡

𝑡 · 𝑓 d𝑎 = 0, (3.41)
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where 𝑓 is the vectorial test function.

Extended principle of virtual power Subsequently, the quasi-static case
is considered and body forces are neglected, i.e., 𝑎 = 0 and 𝑏 = 0. Replac-
ing the test functions f and 𝑓 by the virtual rates 𝛿𝑣 and 𝛿𝑣, respectively,
the sum of Eq. (4.43) and Eq. (4.40) yields 𝛿𝒫int = 𝛿𝒫ext, with

𝛿𝒫int =
∫︁

𝒱𝑡

𝜋𝛿𝑣 + 𝜉 · grad (𝛿𝑣) + 𝜎 · grad (𝛿𝑣) d𝑣,

𝛿𝒫ext =
∫︁

𝜕𝒱𝑡

𝑡𝛿𝑣 + 𝑡 · 𝛿𝑣 d𝑎 (3.42)

denoting the internal and external virtual power, respectively. After
exploitation of the Coleman-Noll procedure, the set of equations obtained
by this extended principle of virtual power is equivalent to the set of
equations obtained by an extended energy balance, cf. Section A.1. With
respect to isothermal processes, the equivalence between both approaches
is mentioned in Svendsen (2011, p. 14). In this context, reference is made
to the nondissipative continua discussed by Toupin (1964). The applica-
tion of an extended principle of virtual power is widely used to derive
additional field equations regarding extended continua, cf. Forest (2009).
The extended principle of virtual power using Eq. (3.42) is structurally
equivalent to Wulfinghoff et al. (2013, Eqs. (3) and (4)), Bayerschen and
Böhlke (2016, Eqs. (3) and (4)), similar to, e.g., Cermelli and Gurtin (2002,
Eq. (3.2)), Gurtin et al. (2007, Eq. (3.2)). In this context, Eq. (3.33)1 is
referred to as additional balance equation. It is denoted as micro-force
balance, however, the notion of a balance is misleading according to the
previous discussions. It is rather part of a partitioned, time-dependent
partial differential equation.
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3.2 Additional Vector-Valued DOF

3.2.1 Extended energy balance

Subsequently, the additionally considered DOF is referred to as 𝑝 and
defined on the tangent space of the Euclidean ambient space. It is given
in terms of the microstructure function 𝜙̃𝑡. The spatial velocity 𝑣̃ of 𝑝 is
calculated by means of the time derivative of 𝜙̃𝑡, i.e.,

𝑣̃(𝑥, 𝑡) =
(︂
𝜕𝜙̃𝑡(𝑋)
𝜕𝑡

⃒⃒⃒⃒
𝑋=const.

)︂
∘𝜙𝑡

−1, 𝑝 = 𝜙̃𝑡(𝑋). (3.43)

Regarding Eq. (2.28), the considered extensions to the energy balance,
based on the vectorial DOF, are given by

𝜅 = 1
2𝐴𝑣̃ · 𝑣̃, 𝛽 = 𝑏̃ · 𝑣̃ , 𝑠 = 𝑡̃ · 𝑣̃ . (3.44)

Here, 𝑏̃ denotes a generalized micro-body force and 𝑡̃ a generalized micro-
traction. The micro-inertia is referred to as 𝐴. Thus, the extended energy
balance Eq. (2.28) can be written in the form

𝜖 =
∫︁

𝒱𝑡

(𝜌̇+ 𝜌div (𝑣))
(︂
𝑒+ 1

2𝑣 · 𝑣 + 1
2𝐴𝑣̃ · 𝑣̃

)︂
+ 𝜌𝑒̇+ 𝜌 (𝑎− 𝑏) · 𝑣

+ 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
· 𝑣̃ + 1

2𝜌
˙̃𝐴𝑣̃ · 𝑣̃ − 𝜌𝑟 d𝑣 −

∫︁
𝜕𝒱𝑡

𝑡 · 𝑣 + 𝑡̃ · 𝑣̃ + ℎd𝑎 = 0.

(3.45)

The additional vectorial DOF 𝑝 is assumed to transform objective concern-
ing a change of observer, i.e.,

𝑝′ = 𝑄(𝑡)𝑝 (3.46)

holds true. Thus, 𝑝 is unaffected if a pure translational transformation is
considered. The implications for the spatial velocity fields are given in
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the first row of Tab. 3.2. The considered calculations are closely related to
the discussion given in Marsden and Hughes (1994, pp. 145-149). As for
the additional scalar-valued DOF, a pure translational transformation is
considered first, and a pure rotational one subsequently.

3.2.2 Translational transformation

Since the same transformations are considered as discussed in Section 3.1.2,
the additional DOFs are not affected by the rigid-body translation. Thus,
the existence of the Cauchy stress, cf. Eq. (3.6) as well as the conservation
of mass, cf. Eq. (3.10) and the balance of linear momentum, cf. Eq. (3.12)
are obtained, respectively.

𝑥′ 𝑣′ 𝑤 𝑝′ 𝑣̃′ 𝑧

Euclidean 𝑄𝑥+ 𝑐′ 𝑄𝑣 +𝑤 𝑄̇𝑥+ 𝑐̇′ 𝑄𝑝 𝑄𝑣̃ + 𝑧 𝑄̇𝑝
Translation 𝑥+ 𝑐′ 𝑣 +𝑤 𝑐̇′ 𝑝 𝑣̃ 0
Rotation 𝑄𝑥 𝑄𝑣 +𝑤 𝑄̇𝑥 𝑄𝑝 𝑄𝑣̃ + 𝑧 𝑄̇𝑝

Table 3.2: Transformations of the material points and the additionally considered vectorial
DOF in the context of a change of observer.

3.2.3 Rotational transformation

Accounting for the results in Eqs. (3.6), (3.10) and (3.12), a pure rotational
transformation is considered subsequently, according to the transforma-
tion laws in the third row of Tab. 3.2. In line with Eq. (3.14), the traction
forces are assumed to transform objectively with respect to a change of
observer, reading

𝑡′ = 𝑄𝑡, 𝑡̃
′ = 𝑄𝑡̃. (3.47)
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Similar to Eq. (3.15), the difference between body forces and accelerations
is assumed to transform objectively(︀

𝑎′ − 𝑏′)︀ = 𝑄 (𝑎− 𝑏) ,
(︁
𝐴′𝑎̃′ − 𝑏̃′)︁ = 𝑄

(︀
𝐴𝑎̃− 𝑏̃

)︀
, (3.48)

cf. Marsden and Hughes (1994). As in Section 3.1.3, all scalar quantities
are invariant with respect to the considered transformations. It is assumed
that𝑄(𝑡0) = 𝐼 holds true.

Existence of gradient stress tensor Evaluation of Eq. (4.16) yields

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

− 𝜎 · grad (𝑤) + 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
· 𝑧 + 𝜌 ˙̃𝐴

(︂
𝑣̃ · 𝑧 + 1

2𝑧 · 𝑧
)︂

d𝑣

−
∫︁

𝜕𝒱𝑡

𝑡̃ · 𝑧 d𝑎 = 0. (3.49)

Application of Eq. (3.49) to an infinitesimal tetrahedron yields the existence
of the gradient stress tensor 𝜎̃ given by

𝜎̃𝑛 = 𝑡̃, (3.50)

cf. Yavari and Marsden (2009, p. 9).

Conservation of micro-inertia Accounting for Eq. (3.50) and applying
the divergence theorem, Eq. (3.49) can be formulated as

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

− 𝜎 · grad (𝑤) + 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
· 𝑧 + 𝜌 ˙̃𝐴

(︂
𝑣̃ · 𝑧 + 1

2𝑧 · 𝑧
)︂

− div (𝜎̃) · 𝑧 − 𝜎̃ · grad (𝑧) d𝑣 = 0. (3.51)
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3.2 Additional Vector-Valued DOF

Moreover, substituting 𝑤 and 𝑧 according to the third row of Tab. 3.2
yields

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

− 𝜎 · grad
(︀
𝑄̇𝑥

)︀
+ 𝜌

(︀
𝐴𝑎̃− 𝑏̃

)︀
·
(︀
𝑄̇𝑝

)︀
+ 𝜌 ˙̃𝐴

(︂
𝑣̃ ·

(︀
𝑄̇𝑝

)︀
+ 1

2
(︀
𝑄̇𝑝

)︀
·
(︀
𝑄̇𝑝

)︀)︂
− div (𝜎̃) ·

(︀
𝑄̇𝑝

)︀
− 𝜎̃ · grad

(︀
𝑄̇𝑝

)︀
d𝑣 = 0. (3.52)

Manipulations of Eq. (3.52) lead to

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

− 𝜎 · 𝑄̇+ 𝜌
(︀
𝐴𝑎̃− 𝑏̃

)︀
·
(︀
𝑄̇𝑝

)︀
+ 𝜌 ˙̃𝐴

(︂
𝑣̃ ·

(︀
𝑄̇𝑝

)︀
+ 1

2

(︁
𝑄̇

T
𝑄̇

)︁
· (𝑝⊗ 𝑝)

)︂
− div (𝜎̃) ·

(︀
𝑄̇𝑝

)︀
− 𝜎̃ ·

(︀
𝑄̇ grad (𝑝)

)︀
d𝑣 = 0. (3.53)

In general, a rotation tensor can be expressed by means of its rotation
axis 𝑛 and its rotation angle 𝜃, cf. Spring (1986), reading

𝑄 = 𝑛⊗ 𝑛+ cos 𝜃 (𝐼 − 𝑛⊗ 𝑛) − sin 𝜃𝜖[𝑛]. (3.54)

If the rotation axis is considered as a constant unit vector, the time depen-
dency of𝑄 is due to the rotation angle 𝜃 = 𝜃(𝑡). Thus, the time derivative
of the rotation tensor is given by

𝑄̇(𝑡) = − (sin 𝜃) 𝜃𝐴− (cos 𝜃) 𝜃𝐵, (3.55)
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3 On Invariance Properties of an Extended Energy Balance

with 𝐴 = (𝐼 − 𝑛⊗ 𝑛) and 𝐵 = 𝜖[𝑛]. Thus, the second derivative of
Eq. (3.53) with respect to 𝜃 reads

𝑑2Δ𝜖𝑡0

𝑑𝜃2
=

∫︁
𝒱𝑡

1
2𝜌

˙̃𝐴
𝑑2

(︁
𝑄̇

T
𝑄̇

)︁
𝑑𝜃2

· (𝑝⊗ 𝑝) d𝑣

=
∫︁

𝒱𝑡

𝜌 ˙̃𝐴
(︀
(sin 𝜃)2𝐴𝐴− (cos 𝜃)2𝐵𝐵

)︀
· (𝑝⊗ 𝑝) d𝑣 = 0. (3.56)

Localization of Eq. (3.56) yields

𝜌 ˙̃𝐴
(︀
(sin 𝜃)2𝐴𝐴− (cos 𝜃)2𝐵𝐵

)︀
· (𝑝⊗ 𝑝) = 0. (3.57)

Since 𝜌 ̸= 0, (sin 𝜃)2𝐴𝐴− (cos 𝜃)2𝐵𝐵 ̸= 0 and 𝑝⊗ 𝑝 ̸= 0, the conserva-
tion of micro-inertia is obtained, reading

˙̃𝐴 = 0. (3.58)

Balance of angular momentum Accounting for conservation of micro-
inertia as stated in Eq. (3.58), Eq. (3.53) can be formulated as

Δ𝜖𝑡0 =
∫︁

𝒱𝑡

(︁
− 𝜎 +

(︀
𝜌

(︀
𝐴𝑎̃− 𝑏̃

)︀
− div (𝜎̃)

)︀
⊗ 𝑝

− 𝜎̃(grad (𝑝))T
)︁

· 𝑄̇d𝑣 = 0. (3.59)

Since 𝑄̇(𝑡0) ∈ Skw, the localization of Eq. (3.59) yields the modified balance
of angular momentum

−𝜎 +
(︀
𝜌

(︀
𝐴𝑎̃− 𝑏̃

)︀
− div (𝜎̃)

)︀
⊗ 𝑝− 𝜎̃(grad (𝑝))T ∈ Sym. (3.60)

Consequently, the Cauchy stress 𝜎 is not symmetric as in Eq. (2.15).
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Existence of heat flux vector Accounting for the results in Eqs. (3.6),
(3.10), (3.12), (3.50) and (3.58), Eq. (3.45) can be written as∫︁

𝒱𝑡

𝜌𝑒̇− 𝜎 · grad (𝑣) +
(︀
𝜌

(︀
𝐴𝑎̃− 𝑏̃

)︀
− div (𝜎̃)

)︀
· 𝑣̃

− 𝜎̃ · grad (𝑣̃) − 𝜌𝑟 d𝑣 −
∫︁

𝜕𝒱𝑡

ℎd𝑎 = 0. (3.61)

Application of Eq. (3.61) to an infinitesimal tetrahedron yields the existence
of the heat flux vector 𝑞 given by

𝑞 · 𝑛 = −ℎ, (3.62)

cf. Marsden and Hughes (1994, p. 148).

Balance of internal energy Under consideration of all previously dis-
cussed results, localization of Eq. (3.45) yields the local form of the balance
of internal energy, reading

𝜌𝑒̇− 𝜎 · grad (𝑣) +
(︀
𝜌

(︀
𝐴𝑎̃− 𝑏̃

)︀
− div (𝜎̃)

)︀
· 𝑣̃

− 𝜌𝑟 − 𝜎̃ · grad (𝑣̃) + div (𝑞) = 0. (3.63)

3.3 Interim Conclusions

Subsequently, the results of the current chapter are briefly summarized
and concluding remarks are given.

• An additional balance equation for the supplementary introduced de-
gree of freedom cannot be obtained by invariance considerations.

• The existence of a conservation law for micro-inertia cannot be obtained
for a scalar-valued DOF, but for a vector-valued DOF.

• The unambiguous existence of the Cauchy stress tensor, the gradient
stress vector and the heat flux vector can be shown. This is in direct
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3 On Invariance Properties of an Extended Energy Balance

contrast to a corresponding extended principle of virtual power, which
assumes the existence of stress quantities from the outset.

• The conservation of mass and the balance of linear momentum are not
affected by contributions associated with the additional DOF.

• In addition, the Cauchy stress tensor remains symmetric only for a
scalar-valued DOF.

• A thermodynamically consistent nonlocal flow rule for the scalar-valued
DOF is obtained by the exploitation of the Clausius-Duhem inequality.

• The so-called micro-force balance results from partitioning of the nonlo-
cal flow rule.

• Regarding an isothermal behavior with a homogeneous temperature
distribution and neglecting effects due to heat supply, the nonlocal flow
rule for the additional DOF reduces to a PDE.

• In the context of an additional scalar DOF, the equivalence between the
extended energy balance and an extended principle of virtual power is
shown. Thereby the micro-inertia and micro-body forces are neglected.
It is outlined, that the notion of balance is misleading with respect to
the micro-force balance.
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Chapter 4

On Interface Conditions on a
Material Singular Surface1

Motivation The presence of grain boundaries (GBs) significantly influ-
ences the overall mechanical behavior of materials with an underlying
crystalline microstructure. They act as an obstacle against the movement
of dislocations and, thus, significantly contribute to size effects as for
example the Hall-Petch effect. Hence, the thermodynamically consistent
modeling of the behavior of the plastic slip at a GB is of utmost interest. To
this end, balance equations at a GB are derived from an extended energy
balance by means of invariance considerations. The GB is considered
as a material singular surface with own internal and kinetic energy as
well as energy supply. Consequently, the balances at the grain boundary
depend on its mean curvature. The implications of the mean curvature
of the GB on the balance equations are briefly addressed. The framework
presented is applied to a small strain slip gradient crystal plasticity theory,
regarding single slip. Accounting for the derived balance equations,
thermodynamically consistent flow rules for the plastic slip at the GB are
obtained by exploitation of the Coleman-Noll procedure. In this context, a
classification of flow rules for the plastic slip at the GB is provided. The
equivalence between the illustrated theory and an extended principle of
virtual power is shown.

1 The content of this chapter is taken directly from the article Prahs and Böhlke (2019a).
Additional content concerning the connection to an extended principle of virtual power is
considered. Minor linguistic changes and abbreviations have been made.
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4 On Interface Conditions on a Material Singular Surface

4.1 Balance Equations and
Dissipation Inequality

4.1.1 Extended energy balance

A material volume divided by a material singular surface Figure 4.1
illustrates a material volume 𝒱 separated by a material singular surface 𝒮
into two subvolumes 𝒱+ and 𝒱−. The subvolumes 𝒱+ and 𝒱− are
bounded by the surfaces ℱ+ and ℱ− towards the surrounding and sep-
arated by the singular surface 𝒮 from each other. While 𝑛𝒱 denotes the
outer normal vector of the surfaces ℱ+ and ℱ−, 𝑛𝒮 denotes the normal
vector of the singular surface. Here, 𝑛𝒮 points from 𝒱− to 𝒱+. As result of
the so called pill-box theorem, cf. Müller (1985), 𝑛𝒮 = 𝑛+

𝒱 = −𝑛−
𝒱 holds

true. Moreover, the outer normal vector of the boundary 𝜕𝒮 of the singular
surface 𝒮 is denoted as𝑚. Regarding an arbitrary quantity 𝑎, its jump at
a singular surface is defined as [𝑎] = 𝑎+ − 𝑎−, with 𝑎+ and 𝑎− denoting
the right- and left-hand limit of 𝑎, respectively, cf. Truesdell and Toupin
(1960, p. 492).

Deformation and microstructure function The position of a material
point is denoted as 𝑥 regarding the current configuration. It can be
described in dependency of the position of the material point 𝑋 in the
reference configuration by means of the deformation function 𝜙𝑡. Thus,
the spatial velocity field 𝑣(𝑥, 𝑡) can also be expressed in terms of the
deformation function, reading

𝑣(𝑥, 𝑡) =
(︂
𝜕𝜙𝑡(𝑋)
𝜕𝑡

⃒⃒⃒⃒
𝑋=const.

)︂
∘𝜙𝑡

−1, 𝑥 = 𝜙𝑡(𝑋). (4.1)

Here, the symbol ∘ is used to describe the composition between two
maps. A generic additional scalar-valued DOF is introduced that is
related to the evolution of the microstructure. In a subsequent chapter, the
framework presented is applied to a slip gradient crystal plasticity theory.
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4.1 Balance Equations and Dissipation Inequality

In this context, the additional DOF is considered as plastic slip. Similar
to Eq. (4.1), the additional DOF 𝛾 as well as its rate 𝛾̇ can be described
using a microstructure function 𝜙𝑡, reading

𝛾̇(𝑥, 𝑡) =
(︂
𝜕𝜙𝑡(𝑋)
𝜕𝑡

⃒⃒⃒⃒
𝑋=const.

)︂
∘𝜙𝑡

−1, 𝛾 = 𝜙𝑡(𝑋). (4.2)

Figure 4.1: Material volume, separated by a material singular surface 𝒮, cf. also Müller (1985).
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4 On Interface Conditions on a Material Singular Surface

Energy balance Regarding the current configuration 𝒞 of a material
volume, an extended balance of total energy is given by

d
d𝑡

∫︁
𝒱+∪𝒱−

𝜌

(︂
𝑒+ 1

2𝑣 · 𝑣 + 1
2𝐴𝛾̇

2
)︂

d𝑣 + d
d𝑡

∫︁
𝒮

𝜌𝒮

(︂
𝑒𝒮 + 1

2𝑣
𝒮 · 𝑣𝒮

)︂
d𝑎

−
∫︁

𝒱+∪𝒱−

𝜌
(︀
𝑏 · 𝑣 + 𝑏̃𝛾̇ + 𝑟

)︀
d𝑣 −

∫︁
ℱ+∪ℱ−

𝑡 · 𝑣 + 𝑡𝛾̇ + ℎd𝑎

−
∫︁
𝒮

𝜌𝒮

(︁
𝑏𝒮 · 𝑣𝒮 + 𝑟𝒮

)︁
d𝑎 = 0. (4.3)

The contributions 𝐴𝛾̇2/2, 𝑏̃𝛾̇ and 𝑡𝛾̇ are associated with the additional,
scalar-valued DOF 𝛾, cf. Prahs and Böhlke (2019b), and, thus, supplement
the balance of total energy of a classical continuum, cf. Müller (1985). In
this context, 𝐴 denotes the micro-inertia, 𝑏̃ and 𝑡 the generalized body and
traction forces associated with 𝛾. For brevity only one additional degree of
freedom is considered, here. The mass densities with respect to 𝒱+ ∪ 𝒱−

and 𝒮 are referred to as 𝜌 and 𝜌𝒮 , respectively. Here, 𝑒 and 𝑒𝒮 denote the
specific internal energy with respect to the bulk material and the singular
surface, respectively. The spatial velocity field of the body is denoted
by 𝑣 and the velocity field of the singular surface by 𝑣𝒮 . Here, a material
singular surface is considered, which is interpreted as a GB in the context
of a crystal plasticity framework. Thus, 𝑣𝒮 = 𝑣 and [𝑣] = 0 hold true,
cf. (Cermelli et al., 2005, pp. 345, 346). The velocity of the surface consists
of a contribution 𝑣|| parallel and a contribution 𝑣⊥ perpendicular to 𝒮 . In
contrast to a non-material surface, for a material one the tangential veloc-
ity 𝑣|| can be uniquely defined. Moreover, the normal component of the
velocity of the singular surface is given by 𝑣𝒮

⊥ ≡ 𝑣⊥ = 𝑣 · 𝑛𝒮 . Concerning
the bulk material and the singular surface, 𝑏 and 𝑏𝒮 denote the specific
body force, respectively. The surface traction is referred to as 𝑡. While 𝑟
denotes the specific energy supply regarding the bulk material, 𝑟𝒮 denotes
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4.1 Balance Equations and Dissipation Inequality

the specific energy supply concerning the singular surface. The heat flux
is referred to as ℎ.

4.1.2 Mathematical preliminaries

Divergence theorem In the presence of a singular surface the divergence
theorem is given by∫︁

ℱ+∪ℱ−

𝑎 · 𝑛 d𝑎 =
∫︁

𝒱+∪𝒱−

div (𝑎) d𝑣 +
∫︁
𝒮

[𝑎] · 𝑛𝒮 d𝑎, (4.4)

where [𝑎] · 𝑛𝒮 = [𝑎 · 𝑛𝒮 ] holds true, cf. Gurtin et al. (2010, p. 215).
Here, [𝑎] denotes the jump of an arbitrary vector field 𝑎 at the singular
surface.

Transport theorem for a material volume divided by a singular surface
In order to derive the local form of the energy balance according to Eq. (4.3),
transport theorems for the volume and the singular surface have to be
applied. In the context of a material singular surface, Reynolds’ transport
theorem reads

d
d𝑡

∫︁
𝒱+∪𝒱−

Ψ𝒱 d𝑣 =
∫︁

𝒱+∪𝒱−

𝜕Ψ𝒱

𝜕𝑡
d𝑣 +

∫︁
ℱ+∪ℱ−

Ψ𝒱 𝑣 · 𝑛d𝑎−
∫︁
𝒮

[Ψ𝒱 ] 𝑣⊥ d𝑎,

(4.5)

cf. Truesdell and Toupin (1960, p. 526). Here, Ψ𝒱 denotes a bulk density.
Application of the divergence theorem according to Eq. (4.4) yields a
formulation without a jump

d
d𝑡

∫︁
𝒱+∪𝒱−

Ψ𝒱 d𝑣 =
∫︁

𝒱+∪𝒱−

Ψ̇𝒱 + Ψ𝒱 div (𝑣) d𝑣, (4.6)

cf. Cermelli et al. (2005).
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4 On Interface Conditions on a Material Singular Surface

Transport theorem for a material surface Regarding a singular surface,
the differential geometry of the surface has to be taken into account,
cf. Moeckel (1975). The transport theorem for a material surface is given by

d
d𝑡

∫︁
𝒮

Ψ𝒮 d𝑎 =
∫︁
𝒮

Ψ̇𝒮 + Ψ𝒮
{︀

div𝒮
(︀
𝑣||

)︀
− 𝑣⊥2𝐾m

}︀
d𝑎, (4.7)

cf. Müller (1985, p. 50) and Cermelli et al. (2005, p. 346). Here,

Ψ̇𝒮 := 𝜕Ψ𝒮

𝜕𝑡
(4.8)

refers to the corresponding material time derivative of Ψ𝒮 . Since a ma-
terial singular surface is considered, the surface coordinates are material
coordinates and, thus, regarded as constant with respect to time. The
divergence div𝒮 (·) is a planar operator, cf. Slattery et al. (2007, p. 647)
for a detailed discussion on surface differential operators. The mean
curvature 𝐾m of the surface is correlated to the trace of its curvature
tensor𝐾 as 𝐾m = tr(𝐾)/2, cf. Itskov (2015, p. 82) or Müller (1985, p. 44).
Moreover, 𝐾m can be expressed in terms of the surface divergence of the
outer normal vector of the singular surface, reading

2𝐾m = −div𝒮 (𝑛𝒮) , (4.9)

cf. Cermelli et al. (2005, p. 341). Hence, it is possible to write

div𝒮
(︀
𝑣||

)︀
− 𝑣⊥2𝐾m = div𝒮

(︀
𝑣||

)︀
+ (𝑣 · 𝑛𝒮) div𝒮 (𝑛𝒮)

= div𝒮
(︀
𝑣||

)︀
+ div𝒮 ((𝑣 · 𝑛𝒮)𝑛𝒮) − 𝑛𝒮 · grad𝒮 (𝑣 · 𝑛𝒮)

= div𝒮
(︀
𝑣||

)︀
+ div𝒮 (𝑣⊥)

= div𝒮 (𝑣) , (4.10)

cf. Cermelli et al. (2005). The surface gradient grad𝒮 (𝑣 · 𝑛𝒮) is a vec-
tor field tangential to the surface. Consequently, the scalar product
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4.1 Balance Equations and Dissipation Inequality

𝑛𝒮 · grad𝒮 (𝑣 · 𝑛𝒮) vanishes. Thus, Eq. (4.7) can be expressed as

d
d𝑡

∫︁
𝒮

Ψ𝒮 d𝑎 =
∫︁
𝒮

Ψ̇𝒮 + Ψ𝒮 div𝒮 (𝑣) d𝑎. (4.11)

In contrast to Eq. (4.7), this specific form of the transport theorem does not
explicitly contain a contribution that is related to the mean curvature 𝐾m.

4.1.3 Invariance considerations of an extended
energy balance

Balances in singular points Balance equations in singular points are
commonly provided by means of the localization of a master balance
equation that accounts for a singular surface, cf. Müller (1985, p. 52).
In this context, specific balance equations are obtained by substituting
the respective terms of the master balance equation. Thus, each balance
equation is treated separately. In contrast, here, the balance equations
in singular points are derived by means of the invariance considerations
presented for regular points. Subsequently, the corresponding calculations
are carried out in detail to ensure that the work at hand is self-contained.
Accounting for the results according to Eqs. (3.6), (3.10), (3.12), (3.18), (3.22)
and (3.23), the transport theorems according to Eq. (4.6) and Eq. (4.11)
as well as the divergence theorem according to Eq. (4.4) are applied
to Eq. (4.3). Motivated by the pill-box theorem, cf. Müller (1985), only
singular points are considered. Thus, localisation yields

𝜖 = (𝜌̇𝒮 + 𝜌𝒮 div𝒮 (𝑣))
(︂
𝑒𝒮 + 1

2𝑣 · 𝑣
)︂

+ 𝜌𝒮 𝑒̇𝒮

+
(︁
𝜌𝒮𝑎− 𝜌𝒮𝑏

𝒮 − [𝑡]
)︁

· 𝑣 − 𝜌𝒮𝑟𝒮 + [𝑞] · 𝑛𝒮 − [𝜉𝛾̇] · 𝑛𝒮 = 0. (4.12)
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4 On Interface Conditions on a Material Singular Surface

Invariance of Eq. (4.12) with respect to a change of observer according
to Eq. (2.13) is assumed. In line with Eq. (3.15), the transformation(︁

𝑎′ − 𝑏𝒮 ′
)︁

= 𝑄
(︁
𝑎− 𝑏𝒮

)︁
(4.13)

is assumed. Regarding Eq. (4.3), the generalized traction force 𝑡 and the
heat flux ℎ are invariant with respect to a change of observer according
to Eq. (2.13). Both, 𝑡 and ℎ are linear in 𝑛 according to Eq. (3.22). Con-
sequently, the heat flux vector 𝑞 as well as the gradient stress vector 𝜉
transform objectively regarding a change of observer, i.e.,

𝑞′ = 𝑄𝑞, 𝜉′ = 𝑄𝜉. (4.14)

Moreover,

div′
𝒮 (𝑣′) = div𝒮 (𝑣) (4.15)

holds true. All scalar quantities as well as their rates are invariant with
respect to the Euclidean transformation. The energy balance in singular
points described by the observer of the vector space 𝒲 is referred to
as 𝜖, cf. Eq. (4.12). Consequently, the energy balance in singular points
described by the observer of 𝒲 ′ is designated by 𝜖′. To obtain the field
equations, the difference

Δ𝜖𝑡0 = (𝜖′ − 𝜖)|𝑡=𝑡0
(4.16)

is introduced and evaluated. Regarding 𝑡 = 𝑡0,𝑄(𝑡0) = 𝐼 and 𝑄̇(𝑡0) ∈ Skw
holds true, cf. Marsden and Hughes (1994). Subsequently, a pure transla-
tional transformation is considered according to Sec. 3.1.2. Thus, Eq. (4.16)
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yields

Δ𝜖𝑡0 = (𝜌̇𝒮 + 𝜌𝒮 div𝒮 (𝑣))
(︂
𝑣 ·𝑤 + 1

2𝑤 ·𝑤
)︂

+
(︁
𝜌𝒮𝑎− 𝜌𝒮𝑏

𝒮 − [𝑡]
)︁

·𝑤 = 0. (4.17)

Since the vector field 𝑤 is arbitrary, 𝑤 = 𝜆𝑢 is considered with a constant
unit vector 𝑢. Thus, Eq. (4.17) reads

Δ𝜖𝑡0 = (𝜌̇𝒮 + 𝜌𝒮 div𝒮 (𝑣))
(︂
𝜆𝑣 · 𝑢+ 1

2𝜆
2𝑢 · 𝑢

)︂
+ 𝜆

(︁
𝜌𝒮𝑎− 𝜌𝒮𝑏

𝒮 − [𝑡]
)︁

· 𝑢 = 0. (4.18)

Differentiating Eq. (4.18) twice with respect to 𝜆 yields

𝑑2Δ𝜖𝑡0

𝑑𝜆2 = (𝜌̇𝒮 + 𝜌𝒮 div𝒮 (𝑣)) (𝑢 · 𝑢) = 0. (4.19)

Thus, the conservation of the mass of the material singular surface is
obtained, reading

𝜌̇𝒮 + 𝜌𝒮 div𝒮 (𝑣) = 0. (4.20)

Taking into acount the identity given in Eq. (4.10), the balance of mass
according to Eq. (4.20) can alternatively be written as

𝜌̇𝒮 + 𝜌𝒮
(︀
div𝒮

(︀
𝑣||

)︀
− 𝑣⊥2𝐾m

)︀
= 0. (4.21)

Accounting for Eq. (4.20), the balance of linear momentum in singular
points is obtained from Eq. (4.17) as

𝜌𝒮𝑎− 𝜌𝒮𝑏
𝒮 − [𝑡] = 0. (4.22)
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4 On Interface Conditions on a Material Singular Surface

Finally, taking into account Eqs. (4.20) and (4.22) with respect to Eq. (4.12),
the balance of internal energy for singular points is given by

𝜌𝒮 𝑒̇𝒮 − 𝜌𝒮𝑟𝒮 + [𝑞] · 𝑛𝒮 − [𝜉𝛾̇] · 𝑛𝒮 = 0. (4.23)

The balance of mass in singular points, cf. Eq. (4.21), explicitly depends on
the mean curvature 𝐾m. However, the balance of linear momentum and
internal energy in Eqs. (4.22) and (4.23) are affected by the mean curvature
only via the balance of mass from Eq. (4.21).

4.1.4 Dissipation inequality

Entropy balance The global form of the entropy balance is given in its
standard form, reading

d
d𝑡

⎛⎝ ∫︁
𝒱+∪𝒱−

𝜌𝜂 d𝑣 +
∫︁
𝒮

𝜌𝒮𝜂𝒮 d𝑎

⎞⎠
= −

∫︁
ℱ+∪ℱ−

𝜑𝜂
𝒱 · 𝑛𝒱 d𝑎+

∫︁
𝒱+∪𝒱−

𝜌 𝑝𝜂
𝒱 + 𝑠𝜂

𝒱 d𝑣 +
∫︁
𝒮

𝜌𝒮 𝑝
𝜂
𝒮 + 𝑠𝜂

𝒮 d𝑎,

(4.24)

cf. Müller (1985). While 𝜂 denotes the specific entropy considering the
bulk material, 𝜂𝒮 indicates the specific entropy with respect to the singular
surface. As common in classical thermodynamics, the entropy flux 𝜑𝜂

𝒱
across the boundary ℱ+ ∪ ℱ− is assumed to be given by the ratio of the
heat flux 𝑞 and the temperature 𝜃, cf. , e.g., Coleman and Noll (1963).
The specific entropy production is denoted as 𝑝𝜂

𝒱 and 𝑝𝜂
𝒮 regarding bulk

material and the singular surface, respectively. In regular points, the
entropy supply is assumed to be 𝑠𝜂

𝒱 = 𝜌𝑟/𝜃. Accordingly, the entropy
supply is assumed as 𝑠𝜂

𝒮 = 𝜌𝒮𝑟𝒮/𝜃 in singular points. Accounting for the
assumptions concerning the entropy flux and supply, the dissipation in-
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4.1 Balance Equations and Dissipation Inequality

equality is also often referred to as Clausius-Duhem inequality, cf. Coleman
and Gurtin (1967); Coleman and Noll (1963).

Clausius-Duhem inequality inequality in singular points On the sin-
gular surface, the dissipation is defined as 𝛿𝒮 := 𝑝𝜂

𝒮𝜃. In analogy to the
derivation for regular points, the relation between the specific internal
energy 𝑒𝒮 , the specific free energy 𝜓𝒮 and the specific entropy 𝜂𝒮 on 𝒮
is given by 𝜓𝒮 = 𝑒𝒮 − 𝜃𝜂𝒮 . Moreover, the continuity of the temperature
across the material singular surface is assumed, i.e., [𝜃] = 0, cf. Müller
(1985, p. 11) and Struchtrup (2008, p. 494). Furthermore, taking into ac-
count Eq. (4.23), the Clausius-Duhem inequality in singular points reads

𝜌𝒮𝛿𝒮 = −𝜌𝒮 𝜓̇𝒮 − 𝜌𝒮𝜃𝜂𝒮 + [𝜉𝛾̇] · 𝑛𝒮 ≥ 0. (4.25)

This dissipation inequality poses restrictions on the constitutive equations
that describe the material behavior, cf. Triani and Cimmelli (2012). In line
with Eq. (4.23), the Clausius-Duhem inequality according to Eq. (4.25) is
affected only implicitly by the mean curvature 𝐾m in terms of the balance
of mass according to Eq. (4.21). For brevity, the jump in Eq. (4.25) can be
written as

[𝜉𝛾̇] · 𝑛𝒮 = 𝜉+
⊥ 𝛾̇

+ + 𝜉−
⊥ 𝛾̇

−,

𝜉+
⊥ = 𝜉+⃒⃒

𝒮 · 𝑛+
𝒱 , 𝜉−

⊥ = 𝜉−⃒⃒
𝒮 · 𝑛−

𝒱 , (4.26)

with 𝑛𝒮 = 𝑛+
𝒱 = −𝑛−

𝒱 .

4.1.5 Potential relations and boundary conditions at
the singular surface

Potential relations and reduced dissipation inequality The specific sur-
face free energy 𝜓𝒮 is assumed to consist of a contribution 𝜓𝛾

𝒮 depending
on the plastic slips of two adjacent grains and a contribution 𝜓𝜃

𝒮 depending
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4 On Interface Conditions on a Material Singular Surface

on the absolute temperature. Therefore, the specific surface free energy
can be written as

𝜓𝒮
(︀
𝛾+, 𝛾−, 𝜃

)︀
= 𝜓𝛾

𝒮
(︀
𝛾+, 𝛾−)︀

+ 𝜓𝜃
𝒮 (𝜃) . (4.27)

Thus, the Clausius-Duhem inequality in singular points, cf. Eq. (4.25),
reads

𝜌𝒮𝛿𝒮 =
(︂
𝜉+

⊥ − 𝜌𝒮
𝜕𝜓𝛾

𝒮
𝜕𝛾+

)︂
𝛾̇+ +

(︂
𝜉−

⊥ − 𝜌𝒮
𝜕𝜓𝛾

𝒮
𝜕𝛾−

)︂
𝛾̇−

− 𝜌𝒮

(︂
𝜂𝒮 + 𝜕𝜓𝜃

𝒮
𝜕𝜃

)︂
𝜃 ≥ 0. (4.28)

Similar to regular points, the Coleman-Noll procedure is applied, cf. Triani
and Cimmelli (2012). The potential relation

𝜂𝒮 = −𝜕𝜓𝜃
𝒮

𝜕𝜃
(4.29)

for the entropy is obtained, leading to the reduced dissipation inequality
in singular points(︂

𝜉+
⊥ − 𝜌𝒮

𝜕𝜓𝛾
𝒮

𝜕𝛾+

)︂
𝛾̇+ +

(︂
𝜉−

⊥ − 𝜌𝒮
𝜕𝜓𝛾

𝒮
𝜕𝛾−

)︂
𝛾̇− ≥ 0. (4.30)

In general, the specific surface free energy 𝜓𝒮 is considered inversely
proportional to 𝜌𝒮 . Thus, the mean curvature does not have to be taken
into account for the constitutive modeling of the plastic slip at the GB.
Subsequently admissible flow rules for 𝛾+ and 𝛾− are presented that fulfill
the reduced dissipation inequality according to Eq. (4.30). If the rates 𝛾̇+

and 𝛾̇− are considered independent of each other, the following special
case of the rate equations for the slips can be discussed .
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4.1 Balance Equations and Dissipation Inequality

Rate-dependent, nonlinear A rate-dependent flow rule for modeling a
viscoplastic behavior is given in terms of a power-law, reading

𝛾̇± = 𝛾̇±
0

⟨
𝜉±

⊥ − 𝜌𝒮𝜕𝜓
𝛾
𝒮/𝜕𝛾

±

𝜏±
𝐷

⟩𝑚

sgn
(︀
𝜉±

⊥ − 𝜌𝒮𝜕𝜓
𝛾
𝒮/𝜕𝛾

±)︀
. (4.31)

The strain rate sensitivity is referred to as 𝑚 and the respective drag stress
as 𝜏±

𝐷 . Moreover, 𝛾̇±
0 denote referential shear rates in the respective grain,

and 𝜉±
⊥ is defined according to Eq. (4.26). The Macaulay brackets are

denoted by ⟨ · ⟩. Thus, the expression ⟨𝑎⟩ takes the value 𝑎, if 𝑎 ≥ 0 and
vanishes otherwise.

Linear irreversible thermodynamics In this context, choosing the rate
of the plastic slips 𝛾̇+ and 𝛾̇− proportional to their corresponding prefactor
in Eq. (4.30) guarantees the positivity of the reduced dissipation inequal-
ity. Thus, the flow rule according to linear irreversible thermodynamics
constitutes the special case of Eq. (4.31) for 𝑚 = 1, reading

𝛾̇± = 𝛾̇±
0

⟨
𝜉±

⊥ − 𝜌𝒮𝜕𝜓
𝛾
𝒮/𝜕𝛾

±

𝜏±
𝐷

⟩
sgn

(︀
𝜉±

⊥ − 𝜌𝒮𝜕𝜓
𝛾
𝒮/𝜕𝛾

±)︀
= 𝛾̇±

0
𝜏±

𝐷

(︂
𝜉±

⊥ − 𝜌𝒮
𝜕𝜓𝛾

𝒮
𝜕𝛾±

)︂
. (4.32)

Rate-independent The dislocation motion is intrinsically rate-dependent.
For numerical applications, however, it is useful to consider the special
case of a rate-independent behavior. In this context, the Clausius-Duhem
inequality in singular points according to Eq. (4.30) serves as motivation
for the following yield conditions

𝑓±
𝒮 =

(︂
𝜉±

⊥ − 𝜌𝒮
𝜕𝜓𝛾

𝒮
𝜕𝛾±

)︂
. (4.33)
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The corresponding Kuhn-Tucker conditions are given by

𝑓±
𝒮 ≤ 0, 𝛾̇± ≥ 0, 𝑓±

𝒮 𝛾̇± = 0, (4.34)

cf. Bayerschen (2017, p. 93), Bayerschen et al. (2015, p. 8) and Wulfinghoff
(2014, p. 116). Regarding single slip, no active-set search for the activated
slip systems has to be considered. According to Eq. (4.34)3, the GB is
assumed to deform dissipation free, i.e., the entropy production on the
GB vanishes. In this context, the GB is referred to as purely energetic and,
thus, elastic. If the yield criterion is fulfilled, i.e., 𝑓±

𝒮 = 0 hold true, the
following boundary conditions for the plastic slip at the GB are obtained

𝜉±
⊥ = 𝜌𝒮

𝜕𝜓𝛾
𝒮

𝜕𝛾± . (4.35)

Equation (4.35) explicitly prescribes the gradient of the plastic slip at
the GB. The density of geometrically necessary dislocations is directly
correlated to the gradient of the plastic slip, cf. Ashby (1970, Eq. (1.1)).
Thus, an information on the dislocation pile-up at the GB is implicitly
given. The obtained boundary conditions are structurally equivalent to
those given by Özdemir and Yalcinkaya (2014, Eq. (40)). Moreover, the
same boundary conditions can be obtained by requiring an isothermal
behavior and a homogeneous temperature distribution, and by neglecting
any effects due to heat supply, cf. Eq. (4.39).

Micro-free and micro-hard grain boundaries A micro-free GB does not
resist against the movement of dislocations and, thus, the plastic slip.
It is characterized by 𝜓𝛾

𝒮 = 0 and 𝜉±
⊥ = 0, cf. Wulfinghoff and Böhlke

(2012, p. 2696). In contrast, a micro-hard GB, cf. Aifantis et al. (2009);
Bayerschen et al. (2015), completely prevents the flow of dislocations at
the GB. Thus, the plastic slip at the GB vanishes and the corresponding
boundary conditions are given by 𝛾± = 0.
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Vanishing dissipation in singular points Similar to the derivations for
regular points, 𝑒̇𝒮 = 𝜓̇𝒮 + 𝜃𝜂𝒮 + 𝜃𝜂̇𝒮 is obtained. Due to the potential
relation 𝜂𝒮 = −𝜕𝜓𝜃

𝒮/𝜕𝜃, cf. Eq. (4.29), the material time derivative of the
Legendre transformation can be written as

𝑒̇𝒮 = 𝜓̇𝒮 + 𝜃 (𝜂𝒮 + 𝜃𝜕𝜂𝒮/𝜕𝜃) . (4.36)

Consequently, 𝑒̇𝒮 = 𝜓̇𝒮 holds true for an isothermal material behavior,
i.e., 𝜃 = 0. Since a homogeneous temperature distribution is assumed, the
jump of the temperature flux vanishes as well, i.e., [𝑞] = 0. Moreover,
effects due to heat supply are neglected, i.e., 𝑟𝒮 = 0. Thus, the local form
of the balance of internal energy in singular points according to Eq. (4.23)
reads

𝜌𝒮 𝜓̇𝒮 − [𝜉𝛾̇] · 𝑛𝒮 = 0. (4.37)

In addition, the dissipation inequality according to Eq. (4.25) reads

𝜌𝒮𝛿𝒮 = −𝜌𝒮 𝜓̇𝒮 + [𝜉𝛾̇] · 𝑛𝒮 ≥ 0. (4.38)

Comparing Eq. (4.37) with Eq. (4.38) illustrates that the dissipation on the
singular surface vanishes under the met assumptions, which corresponds
to the concept of an ideal wall, cf. Müller (1985). Accounting for Eq. (4.26)
as well as for Eq. (4.27) and neglecting the thermal contriubtion, Eq. (4.37)
can be written as(︂

𝜉+
⊥ − 𝜌𝒮

𝜕𝜓𝛾
𝒮

𝜕𝛾+

)︂
𝛾̇+ +

(︂
𝜉−

⊥ − 𝜌𝒮
𝜕𝜓𝛾

𝒮
𝜕𝛾−

)︂
𝛾̇− = 0. (4.39)

In order to fullfill Eq. (4.39), the terms in each bracket could be assumed
to vanish leading to the boundary conditions for the plastic slip at the
GB given by Eq. (4.35). Finally, a purely energetic GB is obtained as a
consequence of the above mentioned restrictions.
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4.2 Connection to an Extended Principle of
Virtual Power

4.2.1 Weak forms

Balance of linear momentum To compare the presented framework
with an extended principle of virtual power, the weak forms of the balance
of linear momentum, cf. Eq. (3.12), and the PDE often referred to as
micro-force balance, cf. Eq. (3.33)1, are used. To this end, the balance of
linear momentum is multiplied by a test funtion 𝑓 , which is conmtinuous
across 𝒮, and integrated over the volume 𝒱 . Moreover, the divergence
theorem according to Eq. (4.4) is applied, leading to∫︁

𝒱+∪𝒱−

𝜌 (𝑎− 𝑏) · 𝑓 + 𝜎 · grad (𝑓) d𝑣

−
∫︁

ℱ+∪ℱ−

𝑡 · 𝑓 d𝑎+
∫︁
𝒮

[𝑡 · 𝑓 ] d𝑎 = 0. (4.40)

Subsequently, a quasi-static process without body forces is considered, i.e.,

𝑎 = 0, 𝑏 = 0, 𝑏𝒮 = 0. (4.41)

Moreover, recalling the balance of linear momentum in singular points
according to Eq. (4.22), Eq. (4.40) yields∫︁

𝒱+∪𝒱−

𝜎 · grad (𝑓) d𝑣 −
∫︁

ℱ+∪ℱ−

𝑡 · 𝑓 d𝑎 = 0. (4.42)

Micro-force balance Multiplication of Eq. (3.33)1 by a test function 𝑓 ,
integration over 𝒱 and application of the divergence theorem according
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to Eq. (4.4) yields

−
∫︁

𝒱+∪𝒱−

𝜋f + 𝜉 · grad (f ) d𝑣

+
∫︁

ℱ+∪ℱ−

(𝜉 · 𝑛)f d𝑎−
∫︁
𝒮

[𝜉𝑓 ] · 𝑛𝒮 d𝑎 = 0. (4.43)

Considering Eq. (3.22) and Eq. (4.26), Eq. (4.43) can be written as

−
∫︁

𝒱+∪𝒱−

𝜋f + 𝜉 · grad (f ) d𝑣

+
∫︁

ℱ+∪ℱ−

𝑡 f d𝑎−
∫︁
𝒮

𝜉+
⊥𝑓

+ + 𝜉−
⊥𝑓

− d𝑎 = 0. (4.44)

4.2.2 Extended principle of virtual power

Virtual rates The weak forms according to Eq. (4.42) and Eq. (4.44) are
used to formulate an extended principle of virtual power. To this end, the
test functions 𝑓 and 𝑓 are replaced by the corresponding virtual rates 𝛿𝑣
and 𝛿𝛾̇, respectively.

Comparison to models used in the literature Using the virtual rates 𝛿𝑣
and 𝛿𝛾̇, the sum of Eq. (4.42) and Eq. (4.44) yields the principle of virtual
power as 𝛿𝒫 int = 𝛿𝒫ext with

𝛿𝒫int =
∫︁

𝒱+∪𝒱−

𝜋𝛿𝛾̇ + 𝜉 · grad (𝛿𝛾̇) + 𝜎 · grad (𝛿𝑣) d𝑣

+
∫︁
𝒮

𝜉+
⊥𝛿𝛾̇

+ + 𝜉−
⊥𝛿𝛾̇

− d𝑎,

𝛿𝒫ext =
∫︁

ℱ+∪ℱ−

𝑡 𝛿𝛾̇ + 𝑡 · 𝛿𝑣 d𝑎. (4.45)
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This extended principle of virtual power equals structurally the formula-
tion given by Erdle and Böhlke (2017, Eq. (10)) regarding single slip.

4.3 Interim Conclusions

Regarding small deformations and single slip, thermodynamically con-
sistent flow rules of the plastic slip on the GB are provided. To this end,
invariance considerations of an extended energy balance with respect to a
change of observer are exploited. The framework discussed is based on
the assumptions listed below.

• The GB is considered as a material singular surface.

• The GB separates two grains from each other.

• The grains are considered as material volumes.

• The temperature is continuous across the GB.

• The energy balance is supplemented by an additional flux term across
the boundary of the material volumes.

• The additional flux term is associated with an additional scalar-valued
DOF, representing the plastic slip.

• No energy flux is present across the boundary of the GB.

• Contrarily to, e.g., Eringen (1999), the energy balance considered here
accounts for contributions defined on the singular surface such as a
specific internal energy and a specific kinetic energy.

• Effects due to micro-inertia and generalized micro-body forces are
neglected.

• The balance of energy is invariant with respect to a change of observer.

The results of the present chapter are summarized below.

• Invariance considerations regarding the extended energy balance yield
the conservation of mass as well as the balance of linear momentum
and internal energy in singular points.
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• In singular points, the mean curvature of the GB is taken into account
by the balance of mass, explicitly. Contrarily, the balance of linear
momentum and internal energy depend only implicitly on the curvature
of the GB by means of the balance of mass.

• If an isothermal material behavior with a homogeneous temperature
distribution is considered, and effects due to heat supply are neglected,
the dissipation vanishes at the GB. Thus, the behavior of the GB is purely
elastic.

• Taking into account the obtained balance equations, the exploitation of
the Coleman-Noll procedure yields the flow rule for the plastic slip at
the GB.

• A classification of thermodynamically consistent flow rules for the
plastic slip at the GB is provided.

• The equivalence between an extended energy balance and an extended
principle of virtual power is shown.
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Chapter 5

Application to a Slip Gradient
Crystal Plasticity1

Motivation The framework, presented in the previous two chapters,
is now applied to a slip gradient crystal plasticity. In this context, the
distribution of the plastic slip with respect to a two- and a three-phase
laminate material is presented by means of analytical solutions. The
elastoplastic phase mimic a grain of an FCC crystal with one active slip
system. The adjacent elastoplastic phases of the three-phase laminate
represent the grains of a bicrystal. The effect of the internal length scale on
the distribution of the plastic slip is considered. A grain boundary effect is
discussed which is based on a variation of the internal length scale in one
of the two elastoplastic phases.

5.1 General Remarks on Crystal Plasticity

5.1.1 Deformation behavior

Small deformations Subsequently, small deformations are considered,
for brevity. Thus, the stress power 𝜎 ·𝐷 is given by 𝜎 · 𝜀̇. Here, 𝜀 denotes

1 Most of the content of this chapter is taken directly from the articles Prahs and Böhlke
(2019b;a). Additional content concerning the influence of the defect parameter, the
inital hardening modulus, the grain width and the orientation of the slip system on the
distribution of the plastic slip is considered. Minor linguistic changes and abbreviations
have been made.
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the infinitesimal strain tensor, defined as the symmetric gradient of the
displacement 𝑢, i.e., 𝜀 = sym(grad (𝑢)). An additive decomposition of the
strain 𝜀 into an elastic 𝜀e and a plastic contribution 𝜀p is assumed.

5.1.2 Crystal plasticity

Plastic slip as additional degree of freedom In the context of a slip gra-
dient crystal plasticity theory, the plastic slip 𝛾 within a slip system is con-
sidered as additional DOF. Thus, the additional energy flux 𝑡𝛾̇, cf. Eq. (4.3),
is associated with the movement of dislocations. Single slip is considered
for simplicity in the following. Consequently, the rate 𝛾̇ is regarded as
plastic slip rate while the vector field 𝜉 is considered as corresponding
gradient stress vector. Additionally, it is assumed that the plastic part 𝜀p

of the strain tensor and its rate are given by 𝜀p = 𝛾𝑀 and 𝜀̇p = 𝛾̇𝑀 ,
respectively, with the corresponding Schmid tensor 𝑀 = sym(𝑑⊗ 𝑛).
Here, the slip direction is denoted as 𝑑 and the slip plane normal as 𝑛. The
scalar product between the Cauchy stress and the Schmid tensor yields
the resolved shear stress 𝜏 = 𝜎 ·𝑀 , cf., e.g., Bertram (2005).

Grain boundary as material singular surface In the context of a slip
gradient crystal plasticity theory, the material volumes 𝒱+ and 𝒱−, as
depicted in Fig. 4.1, can be considered as grains of a grain aggregate, and
the material singular surface 𝒮 as a grain boundary (GB) separating two
grains from each other. Consequently, quantities indicated by a ′+′-sign
are associated with 𝒱+, quantities indicated by a ′−′-sign to 𝒱−.

5.2 Bulk Material - Regular Points

5.2.1 Application to a two-phase laminate material

Two-phase laminate material An analytical, one-dimensional solution
of Eq. (3.34) is discussed in the context of a laminate material consisting of
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5.2 Bulk Material - Regular Points

Figure 5.1: Considered laminate material subjected to shear in 𝑒1- and periodic fluctuation
in 𝑒2-direction. The elastoplastic phase is illustrated in light gray, the elastic phase in dark
gray. The coordinate system is located in the center of the elastoplastic phase.

two phases. The material behavior of one phase is assumed to be purely
elastic. Contrarily, the material behavior of the second phase is considered
to be elastoplastic. The plastic behavior is characterized by an individual
slip system of a face-centered cubic (FCC) single crystal. A schematic
illustration of the considered laminate is given in Fig. 5.1. The elastic
phase is illustrated in dark gray, the elastoplastic phase in light gray. The
normal vector and the slip direction of the considered slip system are given
by 𝑛 = 𝑒2 and 𝑑 = 𝑒1. The coordinate system is located within the center
of the elastoplastic phase. While the elastoplastic phase has a width of 2ℎ,
the width of the elastic phase is 𝑠.

Specific free energy and material parameters The plastic slip 𝛾 cannot
be measured and, thus, is not an internal state variable, cf. Maugin (1992,
p. 277). Regarding monotonic loading, the evolution of the plastic slip is
closely related to the evolution of the dislocation density by the Kocks-
Mecking law, cf. Kocks (1976). For single slip, this law establishes a relation
between the plastic slip within the slip system and the corresponding
dislocation density, if the slip rate is considered constant, cf. Bayerschen
(2017, p. 53). Thus, the plastic slip can nevertheless be used as internal
state variable in an approximate sense.

103



5 Application to a Slip Gradient Crystal Plasticity

The contributions to the specific free energy are given by

𝜓e(𝜀− 𝜀p) = 1
2𝜌 (𝜀− 𝜀p) · (C [𝜀− 𝜀p]) ,

𝜓g(∇n𝛾) = 1
2𝜌𝐾𝑔∇n𝛾 · ∇n𝛾,

𝜓h(𝛾) = 1
2𝜌Θ0𝛾

2. (5.1)

Here, the elastic stiffness tensor of fourth order is referred to as C and the
initial hardening modulus as Θ0. The defect parameter 𝐾𝑔 is inversely
proportional to the stored initial dislocation density, referred to as 𝜌0,
cf. Bayerschen et al. (2016b), and, thus, introduces an internal length scale
to the model, cf. Wulfinghoff et al. (2013). The planar gradient with respect
to the considered slip system is denoted as ∇n. Accounting for the lattice
stretch and rotation, the elastic contribution 𝜓e is assumed to be quadratic
in the difference of the total strain 𝜀 and the plastic strain 𝜀p. While the
specific defect energy 𝜓g is related to hardening on the basis of geometrical
necessary dislocations, the hardening contribution 𝜓h accounts for hard-
ening due to statistically stored dislocations in the context of monotonic
loadings, cf. Bayerschen et al. (2015). Subsequently, an analytical solution
of Eq. (3.34) is discussed. To obtain a linear differential equation, the defect
contribution 𝜓g as well as the hardening contribution 𝜓h are considered
to be quadratic. Regarding a numerical implementation of the presented
theory, more complex contributions are feasible such as Voce-hardening,
cf. Wulfinghoff et al. (2013), latent hardening, cf. Ortiz and Repetto (1999),
or a power-law defect energy, cf. Bardella (2010); Bayerschen and Böhlke
(2016). Assuming a power-law for the defect contribution 𝜓g yields
gradients at the GB that are more in line with results obtained by discrete
dislocation dynamics simulations, cf. Bayerschen et al. (2015). Thermal
effects are neglected, i.e.,the thermal contribution 𝜓𝜃(𝜃) vanishes. The
density of mass is referred to as 𝜌. In the following, it is assumed that the
stiffness tensor, the defect parameter and the initial hardening modulus
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5.2 Bulk Material - Regular Points

are constant parameters. Assuming the elastic material behavior to be
isotropic, the elastic constants are chosen to be 𝐺 = 27 GPa and 𝜈 = 0.347,
representing the elastic behavior of aluminum. Moreover, the defect
parameter and the initial hardening modulus are chosen as 𝐾𝑔 = 84 µN
and Θ0 = 1075 MPa, respectively. The material parameters are in line with
Bayerschen et al. (2015). Under consideration of the contributions to the
specific free energy, cf. Eq. (5.1), Eq. (3.34) reads

Δn𝛾 − 𝛾
Θ0

𝐾𝑔
= − 𝜏

𝐾𝑔
, (5.2)

were Δn denotes the Laplacian that uses the planar gradient.

5.2.2 Solution of the considered boundary value problem

Kinematics Subsequently, the following ansatz for the displacement
field 𝑢(𝑥) is considered

𝑢 = 𝛾𝑥2𝑒1 + 𝑢̃(𝑥1)𝑒2. (5.3)

This ansatz is an approximation if a small elastic phase is considered; it
is related to Forest (2013); Forest and Guéninchault (2013), Wulfinghoff
et al. (2015). Here, 𝛾 denotes the constant macroscopic shear and 𝑢̃(𝑥1) a
periodic fluctuation. The corresponding infinitesimal strain tensor and the
plastic strain tensor are given by

𝜀 =1
2 (𝛾 + 𝑢̃′(𝑥1)) (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) , (5.4)

𝜀p =1
2𝛾(𝑥1) (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) . (5.5)

Based on the applied deformation, the plastic slip depends purely on 𝑥1.
The derivative of a quantity with respect to 𝑥1 is denoted by (·)′. The elastic
strain 𝜀e = 𝜀− 𝜀p is obtained by the assumed additive decomposition of
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5 Application to a Slip Gradient Crystal Plasticity

the infinitesimal strain tensor in an elastic and a plastic contribution. For
brevity, an isotropic elastic behavior is assumed in the following. Hooke’s
law for linear elasticity yields the corresponding Cauchy stress 𝜎 as

𝜎 = 𝐺 (𝛾 + 𝑢̃′(𝑥1) − 𝛾(𝑥1)) (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) , (5.6)

with the shear modulus 𝐺. The balance of linear momentum, given
by Eq. (3.12), yields the differential equation

𝑢̃′′(𝑥1) = 𝛾′(𝑥1). (5.7)

Regarding Eq. (5.2), the Laplacian Δn𝛾 can be replaced by 𝛾′′(𝑥1). More-
over, the resolved shear stress 𝜏 = 𝐺 (𝛾 + 𝑢̃′(𝑥1) − 𝛾(𝑥1)) can be reformu-
lated by means of Eq. (5.7). Thus, Eq. (5.2) reads

𝛾′′ − Θ0

𝐾𝑔
𝛾 = − 𝜎0

𝐾𝑔
, 𝜎0 = 𝐺 (𝛾 + 𝑐) , (5.8)

where 𝑐 denotes the integration constant if Eq. (5.7) is integrated once
with respect to 𝑥1. At the boundaries between both phases, the plastic
slip vanishes, i.e.,𝛾 (−ℎ) = 0 and 𝛾 (ℎ) = 0 hold true. The function 𝑢̃(𝑥1)
is considered to be a periodic fluctuation. Thus,∫︁ ℎ+𝑠

−ℎ

𝑢̃(𝑥1) d𝑥1 = 0,
∫︁ ℎ+𝑠

−ℎ

𝑢̃′(𝑥1) d𝑥1 = 0 (5.9)

hold true, cf. Wulfinghoff et al. (2015, eq. (27)). These conditions are used
to determine the integration constants that arise in the context of Eq. (5.7).
Finally, solving Eq. (5.8) closes the ansatz for the displacement field, given
by Eq. (5.3).
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Solution The ordinary, linear differential equation, cf. Eq. (5.8), can be
solved analytically. The solution is given in dependency of 𝜎0 and reads

𝛾(𝑥1) = − 𝜎0

Θ0

⎛⎝e

√︁
Θ0
𝐾𝑔

𝑥1
+ e

−
√︁

Θ0
𝐾𝑔

𝑥1

⎞⎠ ⎛⎝e

√︁
Θ0
𝐾𝑔

ℎ
+ e

−
√︁

Θ0
𝐾𝑔

ℎ

⎞⎠−1

+ 𝜎0

Θ0
.

(5.10)

For brevity, the integration constants to determine 𝑢̃(𝑥1) are not given
explicitly, here. They are documented in the appendix, cf. Eq. (A.11)
and Eq. (A.12). Regarding a sequence of equilibrium states, the distribu-
tion of the plastic slip 𝛾(𝑥1) is depicted in Fig. 5.2. The amplitude 𝜎0 is
chosen as 15 MPa, 25 MPa and 35 MPa, respectively. For the illustration, ℎ
is chosen as 0.5µm. The solution according to Eq. (5.10) is shown in purple.
Due to the quadratic defect energy, a parabolic distribution of the plastic
slip is obtained. The analytical solution is qualitatively in line with the
numerical results presented in Bayerschen et al. (2015). Neglecting the
contribution due to the defect energy leads to a constant distribution of the
plastic slip. This solution represents the classical distribution of the plastic
slip without gradient effects and is illustrated in Fig. 5.2 in orange. The
absolute value of the classical distribution of the plastic slip is significantly
higher compared to the parabolic distribution.

5.2.3 Influence of the defect parameter and the initial
hardening modulus on the solution

Effect of the defect parameter Subsequently, the influence of the de-
fect parameter 𝐾𝑔 on the distribution of the plastic slip is illustrated
for 𝜎0 = 35 MPa. It is depicted in Fig. 5.3. To this end, the defect parameter
is varied within an interval of [0 µN, 840 µN]. The choice of 𝐾𝑔 = 0 µN
corresponds to a vanishing defect energy. Consequently, the distribution
of the plastic slip is constant throughout the plastic phase. This solution,
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Figure 5.2: Parabolic distribution of the plastic slip 𝛾(𝑥1) as a consequence of the quadratic
defect energy. Three different amplitudes 𝜎0 are considered. If the defect energy is neglected,
the solution for the plastic slip is homogeneous.

referred to as classical distribution, is given by the second term of Eq. (5.10).
The first term is based on the non-vanishing defect energy. Thus, the
classical contribution constitutes an upper bound for the distribution of
the plastic slip, here. Regarding the limiting case 𝐾𝑔 → ∞, the plastic
slip vanishes, i.e., lim𝐾𝑔→∞ 𝛾(𝑥1) = 0. Consequently, the plastic slip takes
values in the interval [0,Θ0/𝜎0]. The absolute value of the plastic slip
decreases for an increase of the defect parameter. While the distribution of
the plastic slip has a distinct plateau for small values of𝐾𝑔 , the distribution
becomes parabolic for higher values of the defect parameter. The higher
the value of the defect parameter, the smaller the absolut value of 𝛾′

becomes at the transition to the purely elastic phases.
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Figure 5.3: The classical distribution of the plastic slip constitutes an upper bound.
Regarding an increasing defect parameter, the plastic slip decreases compared to the classical
distribution. Increasing the defect parameter yields a decrease of the absolute value of
gradient of the plastic slip at the GB. The plastic slip shows a plateau-like behavior for small
values of the defect parameter. For increasing defect parameter, the distribution of the plastic
slip is of parabolic shape.

Effect of the initial hardening modulus The influence of the initial
hardening modulus Θ0 on the distribution of the plastic slip is illustrated
for 𝜎0 = 35 MPa and 𝐾𝑔 = 84 µN in Fig. 5.4. Here, Θ0 is varied within the
interval [0 MPa, 10750 MPa]. If the initial hardening modulus is neglected,
the ordinary differential equation (ODE) according to Eq. (5.8) is simplified
and the distribution of the plastic slip is given by

𝛾(𝑥1) = 𝜎0

𝐾𝑔

(︀
ℎ2 − 𝑥2

1
)︀
. (5.11)
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This distribution constitutes an upper bound for the plastic slip. Increasing
values of Θ0 lead to a decrease of the absolute value of the plastic slip.
At the transition to the elastic phase, the absolute value of 𝛾′ is highest
for Θ0 = 0. An increase of Θ0 yields a decrease of the absolute value of the
gradient of the plastic slip. The choice of the initial hardening modulus
does not affect the parabolic shape of the distribution of the plastic slip.
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Figure 5.4: Regarding different values of the initial hardening modulus, an upper bound is
given by 𝜃0 = 0 MPa. An increasing value of 𝜃0 yields a decrease of the value of the plastic
slip. Moreover, an increase of the initial hardening modulus yields a decrease of the absolute
value of the gradient of the plastic slip at the GB. The distribution of the plastic slip exhibits
a parabolic profile for all considered choices of 𝜃0.
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5.2.4 Orientation of the slip system

Kinematics In contrast to the previous example, a rotated slip sys-
tem with the slip plane normal 𝑛 = 𝑛1𝑒1 + 𝑛2𝑒2 and the slip direc-
tion 𝑑 = 𝑑1𝑒1 + 𝑑2𝑒2 is now considered. Both, 𝑛 and 𝑑 are unit vectors.
The plastic strain tensor reads

𝜀p =𝛾 (𝑛1𝑑1 𝑒1 ⊗ 𝑒1 + 𝑛2𝑑2 𝑒2 ⊗ 𝑒2)

+ 𝛾

2 (𝑛1𝑑2 + 𝑛2𝑑1) (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) . (5.12)

The infinitesimal strain tensor 𝜀 is given unalteredly by Eq. (5.4).

Exploitation of the balance of linear momentum Taking into accout
Eq. (5.12), the balance of linear momentum according to Eq. (3.12) yields
the differential equations

0 =− 𝜕𝛾

𝜕𝑥1
𝑛1𝑑1 − 1

2
𝜕𝛾

𝜕𝑥2
(𝑛1𝑑2 + 𝑛2𝑑1), (5.13)

0 = 1
2

d2𝑢̃

d𝑥2
1

− 1
2
𝜕𝛾

𝜕𝑥1
(𝑛1𝑑2 + 𝑛2𝑑1) − 𝜕𝛾

𝜕𝑥2
𝑛2𝑑2. (5.14)

Consequently, the balance of linear momentum does not yield a restriction
of the dependency of the plastic slip on 𝑥1 as in the previous example.
Thus, the PDE according to Eq. (5.2) cannot be simplified to an ODE similar
to Eq. (5.8). Solving the PDE by analytical means to obtain the distribution
of the plastic slip can get quite involved. To this end, a numerical solution
of the PDE is suggested.
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5.3 Grain Boundary - Singular Points

5.3.1 Application to a three-phase laminate material

Three-phase laminate material The considered three-phase laminate
material is schematically illustrated in Fig. 5.5. Two of the three phases are
considered to behave elastoplastic representing the grains of a bicrystal.
The left grain is referred to as 𝒱− and the right grain as 𝒱+. An individual
slip system of an FCC crystal characterizes the plastic behavior within
each grain. The normal and slip directions of the considered coherent
slip systems are given by 𝑛 = 𝑒2 and 𝑑 = 𝑒1. The third phase is purely
elastic. Thus, micro-hard boundary conditions regarding the plastic slip
are present at the transition between the elastic and an elastoplastic phase.
A GB with the normal vector 𝑛𝒮 = 𝑒1 separates both elastoplastic phases.
While the width of the left and the right grain is referred to as ℎ− and ℎ+,
respectively, the width of the elastic phase is denoted as 𝑠. The origin of
the coordinate system lies on the GB.

Figure 5.5: Considered three-phase laminate material subjected to shear in 𝑒1- and periodic
fluctuation in 𝑒2-direction. The elastoplastic phases are represented by the light gray and
the white areas. The elastic phase is illustrated in dark gray. Both elastoplastic phases are
separated by a GB, depicted as dashed, red line. The coordinate system is located on the GB.
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Specific free energy of the bulk material Regarding the bulk material,
the contributions to the specific free energy are given by Eq. (5.1). More-
over, an isothermal behavior is considered, i.e., the thermal contribution 𝜓𝜃

is neglected. While the elastic and the hardening contribution are chosen
to be the same throughout 𝒱+ and 𝒱−, the defect parameter is assumed to
differ in both grains. Consequently, the defect parameter with respect to 𝒱+

is denoted by 𝐾+
𝑔 and with respect to 𝒱− as 𝐾−

𝑔 . Throughout the work at
hand, the quantities C, Θ0 and 𝐾±

𝑔 are considered constant. For brevity,
the elastic material behavior is considered to be isotropic with the shear
modulus 𝐺 = 27 GPa and Poisson’s ratio 𝜈 = 0.35, representing the elastic
behavior of aluminum, cf. Bayerschen et al. (2015). The initial hardening
modulus is chosen as Θ0 = 1075 MPa. The material parameters 𝐺, 𝜈
and Θ0 are chosen according to Bayerschen et al. (2015). Accounting
for the contributions according to Eq. (5.1), the PDE given by Eq. (3.34)
reads

Δn𝛾
± − Θ0

𝐾±
𝑔
𝛾± = − 𝜏±

𝐾±
𝑔
. (5.15)

The resolved shear stress in the respective grain is referred to as 𝜏− and 𝜏+.
In case of coherent slip systems, the normal and slip directions of the slip
systems are identical in both grains, and briefly referred to as 𝑛 and 𝑑
instead of 𝑛± and 𝑑±. Thus, 𝜏± = 𝜎± ·𝑀 holds true.

Specific free energy of the grain boundary Subsequently, the special
case of energetic grain boundaries, characterized by Eq. (4.35), is con-
sidered. Based on the GB burgers tensor 𝐺, cf. Gurtin (2008), the GB
contribution 𝜓𝛾

𝒮 can be formulated as a quadratic form reading

𝜓𝛾
𝒮 = 𝜅

2 𝜌𝒮
‖𝐺‖2. (5.16)

Here, 𝜅 denotes the GB strength, cf., e.g., Özdemir and Yalcinkaya (2014).
It is chosen as 𝜅 = 100 N/m similar to Wulfinghoff et al. (2013). The
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expression ‖𝐺‖ can be formulated in terms of the so-called interaction
moduli. Regarding single slip and the more general case of non-coherent
slip systems, the simplified intra-grain interaction moduli 𝐶±± and the
inter-grain interaction moduli 𝐶−+ are given by

𝐶±± = ‖𝑛± × 𝑛𝒮‖2,

𝐶−+ =
(︀
𝑑− · 𝑑+)︀ (︀

𝑛− × 𝑛𝒮
)︀

·
(︀
𝑛+ × 𝑛𝒮

)︀
, (5.17)

cf. Gurtin (2008); Özdemir and Yalcinkaya (2014). Thus, the GB contribu-
tion 𝜓𝛾

𝒮 can be written in terms of the interaction moduli, reading

𝜓𝛾
𝒮

(︀
𝛾+, 𝛾−)︀

= 𝜅

2 𝜌𝒮

(︀
𝐶++𝛾+2 + 𝐶−−𝛾−2 − 2𝐶−+𝛾−𝛾+)︀

. (5.18)

Here, the slip system considered in 𝒱+ is specified by 𝑛+ and 𝑑+, the slip
system in 𝒱− by 𝑛− and 𝑑−, respectively. While the intra-grain interaction
moduli 𝐶±± depend on the slip plane normal of an individual grain, the
inter-grain interaction moduli 𝐶−+ depend on the slip directions and slip
plane normals of two adjacent grains. Moreover, both moduli depend
on the normal of the GB. Thus, the intra-grain interaction moduli carry
information about the orientation of slip systems with respect to the GB
within an individual grain. Conversely, the inter-grain interaction moduli
constitute a measure for the geometrical mismatch between slip systems
of adjacent grains, cf. Özdemir and Yalcinkaya (2014). Moreover, the
range of values is between 0 and 1, concerning the intra-grain interaction
moduli 𝐶±±, and between -1 and 1, regarding the interaction moduli 𝐶−+.
With respect to the range of values, three special cases are to be discussed.
If 𝐶−+ = 𝐶++ = 𝐶−− holds, then slip system 𝛼 in grain 𝒱+ and slip
system 𝛽 in grain 𝒱− are coherent. If 𝐶++ = 0 or 𝐶−− = 0 holds, the slip
plane in 𝒱+ or 𝒱− is parallel to the GB. Consequently, if at least one slip
system is parallel to the GB, 𝐶−+ = 0 holds. From Eq. (5.17) it follows that
the slip system in grain 𝒱− or 𝒱+ is perpendicular to the GB if 𝐶−− = 1
or 𝐶++ = 1 holds, respectively.
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Subsequently, the special case of coherent slip systems is discussed. In
this context, 𝐶−+, 𝐶++ and 𝐶−− are briefly replaced by 𝐶. As stated
previously for the bulk material, thermal effects are also neglected with
respect to the GB. Therefore, the thermal contribution 𝜓𝜃

𝒮 vanishes. Using
the constitutive equation for the generalized stress 𝜉, cf. Eq. (3.30), the
left hand side of the boundary conditions for the plastic slip at the GB,
cf. Eq. (4.35), yields

𝜉±
⊥ = 𝜉± ⃒⃒

𝒮 · 𝑛±
𝒱 ≡ 𝜌

𝜕𝜓±
g

𝜕∇n𝛾±

⃒⃒⃒⃒
𝒮

· 𝑛±
𝒱 . (5.19)

Regarding Eq. (5.19) and the quadratic specific defect energy according
to Eq. (5.1), the boundary conditions following Eq. (4.35) read

∇n𝛾
+ ⃒⃒

𝒮 · 𝑛+
𝒱 = 𝜌𝒮

𝐾+
𝑔

𝜕𝜓𝛾
𝒮

𝜕𝛾+

⃒⃒⃒⃒
𝒮

= 𝐶𝜅

𝐾+
𝑔

(︀
𝛾+ − 𝛾−)︀⃒⃒⃒⃒

𝒮
,

∇n𝛾
− ⃒⃒

𝒮 · 𝑛−
𝒱 = 𝜌𝒮

𝐾−
𝑔

𝜕𝜓𝛾
𝒮

𝜕𝛾−

⃒⃒⃒⃒
𝒮

= 𝐶𝜅

𝐾−
𝑔

(︀
𝛾− − 𝛾+)︀⃒⃒⃒⃒

𝒮
. (5.20)

5.3.2 Solution of the considered boundary value problem

Formulation of the boundary value problem Regarding the displace-
ment field 𝑢(𝑥), the following ansatz is considered, subsequently

𝑢(𝑥1, 𝑥2) = 𝛾𝑥2𝑒1 + 𝑢̃(𝑥1)𝑒2,

𝑢̃(𝑥1) =
{︃

𝑢̃−(𝑥1), 𝑥 ∈ [−ℎ−, 0)
𝑢̃+(𝑥1), 𝑥 ∈ [0, ℎ+ + 𝑠]

. (5.21)

This ansatz, which is chosen as an approximation for a small elastic
phase, is closely related to that by Forest (2013), Wulfinghoff et al. (2015),
and Prahs and Böhlke (2019b) in the context of a two-phase laminate
material. The constant macroscopic shear is denoted as 𝛾 and the periodic
fluctuation as 𝑢̃(𝑥1). The considered boundary value problem (BVP) is

115



5 Application to a Slip Gradient Crystal Plasticity

quasi-static. Body forces are neglected. The infinitesimal strain tensor 𝜀
and the plastic strain tensor 𝜀p read

𝜀± = 1
2

(︀
𝛾 + 𝑢̃′

±(𝑥1)
)︀

(𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) ,

𝜀p
± = 1

2𝛾
±(𝑥1) (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) . (5.22)

Here, (·)′ denotes the derivative of a quantity with respect to 𝑥1. Applica-
tion of Hooke’ law yields the Cauchy stress, given by

𝜎± = 𝐺
(︀
𝛾 + 𝑢̃′

±(𝑥1) − 𝛾±(𝑥1)
)︀

(𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) . (5.23)

Exploitation of the balance of linear momentum, cf. Eq. (3.12), for the
quasi-static case and without body forces yields

𝑢̃′′
±(𝑥1) = 𝛾±′(𝑥1), 𝜕𝛾±/𝜕𝑥2 = 0. (5.24)

Equation (5.24)2 states that the plastic slips 𝛾± do not depend on 𝑥2. Based
on Eq. (5.24)1, it is possible to give the following formulation for the
fluctuation 𝑢̃± and its first derivative 𝑢̃′

±

𝑢̃′
±(𝑥1) = 𝛾±(𝑥1) + 𝑘±,

𝑢̃±(𝑥1) =
∫︁
𝛾±(𝑥1) d𝑥1 + 𝑥1𝑘

± + 𝑑±. (5.25)

The integration constants that occur in this case are referred to as 𝑘±

and 𝑑±. Thus, the resolved shear stress reads

𝜏± = 𝐺
(︀
𝛾 + 𝑢̃′

± − 𝛾±)︀
. (5.26)
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Replacing the Laplacian Δn𝛾
± by 𝛾±′′, Eq. (5.15) reduces to a an ODE

with respect to 𝑥1, reading

𝛾±′′ − Θ0

𝐾±
𝑔
𝛾± = −𝐺 (𝛾 + 𝑘±)

𝐾±
𝑔

. (5.27)

The slip plane normals of the considered slip systems are orthogonal to the
GB and, thus, 𝐶 = 1 holds true. The corresponding boundary conditions
according to Eq. (5.20) read

𝛾+′(0) = 𝜅

𝐾+
𝑔

(︀
𝛾+(0) − 𝛾−(0)

)︀
,

𝛾−′(0) = 𝜅

𝐾−
𝑔

(︀
𝛾+(0) − 𝛾−(0)

)︀
. (5.28)

Since the transition between the elastic phase and an elastoplastic phase
is considered as micro-hard, 𝛾−(ℎ−) = 0 and 𝛾+(ℎ+) = 0 hold true.
Moreover, Eq. (3.12) reduces to 𝜎±′

12 = 0. Consequently, the stress 𝜎 is
constant throughout the three-phase laminate material.

Analytic solution To determine the integration constants 𝑘± and 𝑑±,
four additional conditions are necessary. Here, 𝑢̃(𝑥1) is considered to be
a periodic fluctuation. Thus, the following two conditions have to be
fulfilled∫︁ ℎ++𝑠

−ℎ−
𝑢̃(𝑥1) d𝑥1 =

∫︁ 0

−ℎ−
𝑢̃−(𝑥1) d𝑥1 +

∫︁ ℎ++𝑠

0
𝑢̃+(𝑥1) d𝑥1 = 0, (5.29)∫︁ ℎ++𝑠

−ℎ−
𝑢̃′(𝑥1) d𝑥1 =

∫︁ 0

−ℎ−
𝑢̃′

−(𝑥1) d𝑥1 +
∫︁ ℎ++𝑠

0
𝑢̃′

+(𝑥1) d𝑥1 = 0, (5.30)

cf. Wulfinghoff et al. (2015). Moreover, to ensure the continuity of the
displacement field,

𝑢̃+(0) = 𝑢̃−(0) (5.31)
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has to be satisfied. Regarding the quasi-static case and neglecting body
forces, the balance of linear momentum at the GB, cf. Eq. (4.22), yields

𝑢̃′
+(0) − 𝑢̃′

−(0) = 𝛾+(0) − 𝛾−(0). (5.32)

Solving the ODE according to Eq. (5.27) along with the boundary con-
ditions given in Eq. (5.28) yields the solutions of 𝛾±(𝑥1) parameterized
in 𝑘±. The parameterized solutions are linear in 𝑘±. Thus, according to
Eq. (5.25), 𝑢̃′(𝑥1) as well as 𝑢̃(𝑥1) are linear in 𝑘± and in 𝑑±. Consequently,
Eqs.(5.29) to (5.32) constitute four equations, linear in 𝑘± and 𝑑±, which
can be solved by analytical means. As a consequence of Eq. (5.32), 𝑘+ = 𝑘−

holds true.

5.3.3 Influence of the defect parameter, the grain width,
and the grain boundary strength on the solution

Effect of the defect parameter Subsequently the influence of a variation
of 𝐾+

𝑔 on the distribution of the plastic slip and the fluctuation of the dis-
placement field 𝑢̃(𝑥1) is discussed. Regarding the left grain of the laminate,
the defect parameter is chosen as 𝐾−

𝑔 = 84 µN, cf. Bayerschen et al. (2015).
The defect parameter 𝐾+

𝑔 is considered to be less than or equal to 𝐾−
𝑔 .

Both grains exhibit the same width. In this context, ℎ− = ℎ+ = 0.5 µm
is considered. The width of the elastic phase is chosen as 𝑠 = ℎ+/4.
Regarding a macroscopic shear of 𝛾 = 0.01, the distribution of the plastic
slips 𝛾−(𝑥1) and 𝛾+(𝑥1) is depicted in Fig. 5.6. If both defect parameters
coincide, the distribution of the plastic slip is continuous across the GB and
the gradient of the plastic slips at the GB vanishes. Thus, 𝛾+(0) = 𝛾−(0)
and 𝛾+′(0) = 𝛾−′(0) = 0 hold true. Regarding the case 𝐾+

𝑔 < 𝐾−
𝑔 , the

distribution of the plastic slip becomes discontinuous at the GB. According
to 𝛾+′(0)/𝛾−′(0) = 𝐾−

𝑔 /𝐾
+
𝑔 , cf. Eq. (5.28), the smaller the value of 𝐾+

𝑔 ,
the higher the absolute value of the gradient of 𝛾+ at the GB. Thus,
the GB, which is of artificial nature for coinciding defect parameters,
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5.3 Grain Boundary - Singular Points

becomes clearly visible for different values of 𝐾+
𝑔 and 𝐾−

𝑔 . Moreover, the
absolute value of 𝛾+′(0) is significantly bigger than 𝛾−′(0) for a decreasing
value of 𝐾+

𝑔 . The defect parameter 𝐾±
𝑔 is inversely proportional to the

initial dislocation density 𝜌±
0 , cf. Bayerschen et al. (2016b). Thus, the

case 𝐾+
𝑔 < 𝐾−

𝑔 implies that the initial dislocation density in the right grain
is higher than in the left grain, i.e., 𝜌+

0 > 𝜌−
0 . Consequently the pile-up of

dislocations in the right grain is expected to be more pronounced than
in the left grain. This expectation is met by the model at hand. A high
gradient of the plastic slip reflects a big dislocation pile-up at the GB,
cf. Bayerschen and Böhlke (2016).
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Figure 5.6: Distribution of the plastic slips 𝛾−(𝑥1) and 𝛾+(𝑥1) with respect to different
values of 𝐾+

𝑔 . The distribution is continuous if the defect parameters 𝐾−
𝑔 and 𝐾+

𝑔 coincide.
The absolute value of 𝛾+′(0) increases with decreasing 𝐾+

𝑔 , indicating a bigger dislocation
pile-up in the right grain.
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5 Application to a Slip Gradient Crystal Plasticity

Figure 5.7 depicts the distribution of 𝑢̃(𝑥1) for different values of the defect
parameter. It is continuously differentiable at the GB in case of coinciding
defect parameters. The absolute value of 𝑢̃(0) is zero. If 𝐾+

𝑔 < 𝐾−
𝑔 is

considered, the distribution of 𝑢̃(𝑥1) is not continuously differentiable
at the GB. Hence, the jump of 𝐾𝑔 at the GB induces a jump of the total
strain. However, the Hadamard condition, cf. (Gurtin et al., 2010, p. 210),
is fulfilled, cf. Eq. (A.16). The decrease in 𝐾+

𝑔 shifts 𝑢̃(0) toward negative
values. Moreover, the amplitude of 𝑢̃(𝑥1) increases with a decrease in 𝐾+

𝑔 .
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Figure 5.7: Distribution of the fluctuation 𝑢̃(𝑥1) with respect to different values of 𝐾+
𝑔 . The

distribution is continuously differentiable at the GB, if both defect parameters 𝐾+
𝑔 and 𝐾−

𝑔

coincide. If the parameters differ in their value, the distribution exhibits a kink at the GB.
The amplitude of 𝑢̃(𝑥1) increases if 𝐾+

𝑔 decreases.
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5.3 Grain Boundary - Singular Points

Effect of the relative width of the plastic phases The influence of a
variation of the width of the right grain on the distribution of the plastic
slips and the fluctuation 𝑢̃(𝑥1) is presented, in the following. To this end,
the defect parameters are chosen equal, with the amplitude 𝐾±

𝑔 = 84 µN.
The width of the left grain is considered as ℎ− = 0.5 µm, and the width of
the elastic phase as 𝑠 = ℎ−/4. The width ℎ+ of the right grain is chosen less
than or equal to ℎ−. The distribution of the plastic slips 𝛾−(𝑥1) and 𝛾+(𝑥1)
is depicted for a macroscopic shear of 𝛾 = 0.01 in Fig. 5.8.
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Figure 5.8: Distribution of the plastic slips 𝛾−(𝑥1) and 𝛾+(𝑥1) with respect to different values
of ℎ+. The width of the right grain is indicated by a vanishing value of the respective 𝛾+(𝑥1)
distribution. The defect parameters coincide, i.e., 𝐾+

𝑔 = 𝐾−
𝑔 . The distribution is continuous

across the GB if the width of both grains coincide. The gradients of the plastic slips at the GB
coincide, irrespective of the choice of ℎ+, i.e., 𝛾−′(0) = 𝛾+′(0) holds true.
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If both grains are of the same width, i.e., ℎ− = ℎ+, the distribution of the
plastic slips is continuous across the GB and the corresponding gradi-
ents are vanishing, i.e., 𝛾−(0) = 𝛾+(0) and 𝛾−′(0) = 𝛾+′(0) = 0. Regard-
ing ℎ+ < ℎ−, the distribution of the plastic slips exhibits a jump at the GB.
This behavior is somehow unphysical. The distribution of the plastic slip
as well as its gradient are expected to be continuous if the same material
parameters and coherent lattice orientations are considered. Here, only the
value of the gradients of the plastic slip coincide at the GB. Subsequently,
it is shown that the jump of the plastic slip, induced by the variation of the
width of the right grain, can be compensated by an appropriate choice of
the defect parameters in both grains.

The distribution of 𝑢̃(𝑥1), cf. Fig. 5.9, is continuously differentiable across
the GB, if ℎ+ = ℎ− holds true. Consequently, the jump of the width of
both grains induces a jump of the total strain at the GB. Nevertheless, the
Hadamard condition is fulfilled, cf. Eq. (A.16). Regarding a decrease in ℎ+

leads to a kink of the distribution at the GB and a shift of 𝑢̃(0) towards
positive values.

Consistency and continuous differentiability at the GB Both the varia-
tion of 𝐾+

𝑔 while holding 𝐾−
𝑔 fixed, or the variation of ℎ+ for a fixed value

of ℎ−, yields discontinuities of the plastic slip and the total strain at the
GB. This motivates the question if it is possible to find a relation between
the defect parameters, 𝐾+

𝑔 and 𝐾−
𝑔 , and the widths, ℎ+ and ℎ−, of both

grains such that both the plastic slip and the total strain are continuous
across the GB. Such a relationship is provided by the analytical solution
of the plastic slip in case of the laminate material under consideration.
Regarding the case ℎ+ = 𝛼ℎ−, the specific choice 𝐾+

𝑔 = 𝛼2𝐾−
𝑔 yields a

continuous distribution of 𝛾 and a continuously differentiable distribution
of 𝑢̃ across the GB, as depicted in Fig. 5.10 and Fig. 5.11. Thus, consistency
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Figure 5.9: Distribution of the fluctuation 𝑢̃(𝑥1) with respect to different values of ℎ+. The
defect parameters coincide, i.e., 𝐾+

𝑔 = 𝐾−
𝑔 . The distribution is continuously differentiable

at the GB if both grains are of the same width. If the width ℎ+ decreases, the distribution
exhibits a kink at the GB.

of the plastic slip and the total strain is obtained, if

𝐾+
𝑔

𝐾−
𝑔

=
(︂
ℎ+

ℎ−

)︂2

(5.33)

holds true. Taking into account 𝐾±
𝑔 = 𝐸/𝜌±

0 , cf. Bayerschen et al. (2016b),
Eq. (5.33) can be formulated in terms of the initial dislocation densities of
the corresponding grain, reading

𝜌−
0
𝜌+

0
=

(︂
ℎ+

ℎ−

)︂2

. (5.34)
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Consequently, holding 𝜌−
0 and ℎ− fixed, the initial dislocation density 𝜌+

0
increases quadratically for a decrease of ℎ+ in order to guarantee the
continuity of the distributions of the plastic slip and the total strain at
the GB.

Effect of the grain boundary strength Subsequently, the influence of
the grain boundary strength 𝜅 on the distribution of the plastic slip and
the fluctuation 𝑢̃(𝑥1) is illustrated in Fig. 5.12 and Fig. 5.13. The defect
parameters are chosen as 𝐾−

𝑔 = 84 µN and 𝐾+
𝑔 = 𝐾−

𝑔 /2. The width of
both grains is ℎ+ = ℎ− = 0.5 µm. The grain boundary strength 𝜅 is varied
in the interval [100 N/m, 106 N/m]. For small values of 𝜅, a distinct jump
of the plastic slip is obtained at the transition between both elastoplastic
phases. In contrast, high values of 𝜅 yield to a decrease of the jump of the
plastic slip at the transition.

Compared to small values of 𝜅, increasing values lead to a higher
smootheness of the distribution 𝑢̃(𝑥1) at the transition. Contrarily, small
values of 𝜅 yield a jump of the strain at the GB. The overall shape of the
fluctuation 𝑢̃(𝑥1) is nearly not affected by the choice of the grain boundary
strength 𝜅.

124



5.3 Grain Boundary - Singular Points

−0.4 −0.2 0.0 0.2 0.4
x1 in µm

0.00

0.01

0.02

0.03

0.04

0.05
γ

(x
1
)

h+ = h−, K+
g = K−g

h+ = h−/
√

2, K+
g = K−g /2

h+ = h−/2, K+
g = K−g /4

h+ = h−/4, K+
g = K−g /16

Figure 5.10: Distribution of the plastic slips 𝛾−(𝑥1) and 𝛾+(𝑥1) with respect to different
values of ℎ+ and 𝐾+

𝑔 . While ℎ− and 𝐾−
𝑔 are fixed, ℎ+ = 𝛼ℎ− and 𝐾+

𝑔 = 𝛼2𝐾−
𝑔 are

considered with 𝛼 ∈ {1, 1/
√

2, 1/2, 1/4}, 𝐾−
𝑔 = 84 µN, ℎ− = 0.5 µm and 𝑠 = ℎ−/4. For

the specific choice of 𝐾+
𝑔 and ℎ+, the distribution of the plastic slips is continuous across

the GB.
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Figure 5.11: Distribution of the fluctuation 𝑢̃ with respect to different values of ℎ+

and 𝐾+
𝑔 . While ℎ− and 𝐾−

𝑔 are fixed, ℎ+ = 𝛼ℎ− and 𝐾+
𝑔 = 𝛼2𝐾−

𝑔 are considered
with 𝛼 ∈ {1, 1/

√
2, 1/2, 1/4}, 𝐾−

𝑔 = 84 µN, ℎ− = 0.5 µm and 𝑠 = ℎ−/4. For the specific
choice of 𝐾+

𝑔 and ℎ+, the distribution of 𝑢̃ is continuously differentiable across the GB. Thus,
the distribution of the total strain is continuous across the GB.
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Figure 5.12: Choosing a high value of 𝜅 leads to a continuous distribution of the plastic slip
at the transition between both elastoplastic phases. Small values of 𝜅 lead to a distinct jump
of the plastic slip.

127



5 Application to a Slip Gradient Crystal Plasticity

−0.4 −0.2 0.0 0.2 0.4 0.6
x1 in µm

−0.0020

−0.0015

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

ũ
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Figure 5.13: A high value of 𝜅 yields a smooth distribution of the fluctuation 𝑢̃(𝑥1) at
the transition between both elastoplastic phases. Small values of 𝜅 leads to a kink in the
distribution of 𝑢̃, and, thus, to a jump of the strain at the transition. The choice of 𝜅 shows
nearly no influence on the shape of the fluctuation 𝑢̃(𝑥1).
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5.4 Interim Conclusions

Regarding the two- and three-phase laminate in the context of a slip
gradient crystal plasticity theory, the obtained results are summarized.

Two-phase laminate

• A vanishing defect parameter yields a constant distribution of the plastic
slip without any gradients. This constitutes the upper bound for the
plastic slip.

• Regarding small values of the defect parameter, the distribution of the
plastic slip exhibits a plateau-like behavior.

• The higher the defect parameter the more parabolic the distribution of
the plastic slip.

• If the initial hardening modulus is neglected, a parabolic distribution of
the plastic slip is obtained as upper bound.

• Increasing the initial hardening modulus decreases the absolut value of
the plastic slip and its gradient at the transition to the elastic phase.

Three-phase laminate

• Regarding the two elastoplastic phases of the considered three-phase
laminate material, GB effects are present due to different values of
the defect parameter in each grain. This effect is present even though
coherent slip systems are considered within the elastoplastic phases.

• The variation of the width of one elastoplastic phase leads to a discon-
tinuity of the distribution of the plastic slip at the GB. This somehow
nonphysical behavior of the plastic slips at the GB, i.e., the inconsistency
in the coherent case, is based on the assumption that the slip rates are
independent. Alternatively, the special case of a continuous plastic slip
and its gradient in case of a coherent crystal structure could be obtained
by adding additional slip transfer criteria.

• A specific choice of the defect parameters of both elastoplastic phases
with respect to their widths yields a continuous distribution of the
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plastic slip. Regarding the same defect parameter for both elastoplastic
phases, the absolute value of the gradients of the plastic slip at the GB
coincide.

• High values of the grain boundary strength yield a continuous distribu-
tion of the plastic slip at the GB.

130



Chapter 6

Summary and Conclusions

In the context of micro-structured materials, extended continua are applied
to account for size effects and nonlocal mechanical behavior. Regarding
crystals such as metals, slip gradient crystal plasticity theories yield re-
sults that are in good agreement with experiments. To obtain such an
enriched theory, several methods are available from literature to extend
the classical Cauchy continuum theory. Especially the application of an
extended PoVP is widely spread. It offers a straight-forward derivation of
additional field equations. However, the PoVP also exhibits redundancies
if thermodynamically consistent constitutive equations are to be derived
and is, consequently, not a self-consistent method to obtain a closed theory.
Moreover, singular surfaces such as GBs are commonly considered in
a quasi-static sense. The curvature of such material singular surfaces
is not accounted for intrinsically. In the work at hand it is shown that
the results obtained by invariance considerations of an extended energy
balance are equivalent to an extended PoVP. In contrast to an extended
PoVP, the invariance of an extended energy balance naturally provides an
extended balance of internal energy. In addition, the geometrical properties
of a material singular surface are also automatically taken into account.
However, the derivation of the necessary field equations is more involved
than the application of an extended PoVP. Subsequently, the main results
of the work at hand are summarized and concluding remarks are given
for each chapter separately.
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Review on extended continua

• Regarding the presented methods, only the invariance of an extended
energy balance or the application of an extended PoVP yields results
that are not restricted to a specific class of materials.

• To obtain thermodynamically consistent constitutive equations, an
extended PoVP requires the statement of an extended balance of internal
energy, in addition.

• The invariance of an extended balance of energy automatically provides
the extended balance of internal energy. However, no additional balance
equations are obtained.

• Thus, the question concerning the relationship between the balance
equations obtained by an extended PoVP and an extended energy
balance is motivated.

Regarding the mentioned methods, only the invariance considerations
of an extended energy balance exhibits self-consistency with respect to
the derivation of a closed theoretical framework of balance laws and
corresponding constitutive equations.

On invariance properties of an extended energy balance

• The consideration of an additional DOF does not provide an associated,
additional force balance.

• Regarding a scalar or a vectorial additional DOF, the conservation of
mass as well as the balance of linear momentum are obtained in the same
form as for a classical continuum. However, only with an additional
scalar DOF, the Cauchy stress tenor remains symmetric.

• The exploitation of the Clausius-Duhem inequality leads to a thermo-
dynamically consistent, nonlocal flow rule for the scalar-valued DOF.
Partitioning of the obtained flow rule yields the so-called micro force
balance as a constitutive equation. For an isothermal material behavior
with a homogeneous temperature distribution and negligible effects
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due to heat supply, the nonlocal flow rule for the additional DOF is
reduced to a PDE.

• The equivalence between the extended energy balance and an extended
PoVP is shown for a scalar-valued DOF.

It is not possible to obtain an additional balance equation related to a
supplementary DOF. However, the set of equations defining the theoretical
framework are equivalent for both an extended PoVP and an extended
energy balance. Starting with an extended energy balance, the so-called
micro-force balance is merely a PDE obtained by the partitioning of the
nonlocal flow rule. In this context, the notion of balance is misleading for
this PDE.

On interface conditions on a material singular surface

• The balance of mass, linear momentum and internal energy are obtained
by invariance considerations. The balance of mass explicitly considers
the mean curvature of the GB. Both the balance of linear momentum
and internal energy depend on the curvature of the GB only via the
balance of mass.

• As a result of the balance equations, obtained by invariance considera-
tions, and the exploitation of the Coleman-Noll procedure, flow rules
for the plastic slip at the GB are obtained.

• The GB behaves purely elastically if the material behavior is considered
to be isothermal with a homogeneous temperature distribution and if
effects due to heat supply are omitted.

• It is shown that the framework discussed is equivalent to an ex-
tended PoVP.

The mean curvature of the GB is directly accounted for by the conservation
of mass at the GB. This result is automatically obtained in the context
of an extended energy balance, since the transport theorem for singular
surfaces is directly applied. Several flow rules are admissible in general.
However, the GB behaves purely elastic in the context of an isothermal
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material behavior with homogeneous temperature distribution and neg-
ligible effects due to heat supply. This special case is considered by the
majority of gradient crystal plasticity theories in literature. Moreover, the
invariance considerations of an extended energy balance yield the same
set of equations obtained by an extended principle of virtual power.

Application to a slip gradient crystal plasticity In this context, a small
strain framework is considered with respect to single slip. Both a two-
phase and a three-phase elastoplastic laminate material is considered. The
periodic two-phase laminate material periodically consists of alternating
elastoplastic and elastic phases. Thereby, the elastoplastic phase mimicks
the behavior of a single crystal. The three-phase laminate material consists
of two adjacent elastoplastic phases and a subsequent elastic phase. Thus,
the two elastoplastic phases reflect the behavior of a bicrystal. For brevity,
the slip systems in both grains are considered geometrically coherent. With
this setup, the following results are obtained.

• An upper bound for the plastic slip is obtained by either the choice of a
vanishing defect parameter, or a vanishing initial hardening modulus.

• Regarding two coherent slip systems of a bicrystal, GB effects occur
based on different defect parameters, and, thus, different initial disloca-
tion densities in each grain.

• At the GB, discontinuities of the plastic slip are obtained by a jump of
the defect parameter or the grain width. A continuous distribution of
the plastic slip results from a specific choice of the grain widths and the
defect parameter.

• The GB strength significantly influences the behavior of the plastic slip
at the GB. A continuous distribution can be achieved for high values of
the GB strength.

The obtained distribution of the plastic slip is highly sensitive to a change
of the material parameters. The variation of the defect parameter indicates,
that GB effects are not only present at actual GBs separating two grains
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with different orientation from each other. Slip gradients and discontinu-
ities of the plastic slip are also observed at the transition of regions that
differ solely with respect to the corresponding initial dislocation density.

Outlook Slip gradient crystal plasticity theories constitute coarse grained
models with respect to the prediction of dislocation based plasticity. In-
stead, the dislocation density tensor, i.e., the curl of the plastic distortion
can be considered as additional DOF. This yields a continuum mechanical
model which is closely related to the physical mechanisms of plasticity.
To this end, the invariance properties of an energy balance extended by a
second-order tensor should be considered.

135





Appendix A

Appendix

A.1 Equivalence of an Extended Principle of
Virtual Power and an Extended
Energy Balance

Micro-force balance The exploitation of an extended principle of virtual
power yields the so-called micro-force balance, reading

𝑎𝑙 = div
(︁
𝑏𝑙

)︁
, (A.1)

cf. Forest (2009, Eq. (32)).

Balance of internal energy Accounting for 𝑙 according to Eq. (2.59), the
balance of internal energy is given by

𝜌𝑒̇ = 𝑝(𝑖) − div (𝑞) + 𝜌𝑟, 𝑝(𝑖) = 𝜎 · 𝜀̇+ 𝑎𝑙 𝛿Φ̇ + 𝑏𝑙 · grad
(︀
𝛿Φ̇

)︀
, (A.2)

cf. Forest (2009, Eq. (13)).

Clausius-Duhem inequality regarding an additional scalar-valued DOF
The dissipation inequality in terms of the Clausius-Duhem inequality can
be written as

−𝜌𝜓̇ − 𝜌𝜂𝜃 + 𝑝(𝑖) − 1
𝜃
𝑞 · 𝑔 ≥ 0, (A.3)
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cf. Forest (2009, Eq. (15)). Similar to Eq. (3.28), the following decomposition
of the specific free energy is considered

𝜓(𝜀− 𝜀p, 𝜑,∇𝜑, 𝜃) = 𝜓e(𝜀− 𝜀p) + 𝜓h(𝜑) + 𝜓g(∇𝜑) + 𝜓𝜃(𝜃). (A.4)

Thus, the Clausius-Duhem inequality takes the following form

𝜌𝛿 =
(︂
𝜎 − 𝜌

𝜕𝜓e

𝜕𝜀

)︂
· 𝜀̇− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝜑
𝜑̇− 𝜌

(︂
𝜂 + 𝜕𝜓𝜃

𝜕𝜃

)︂
𝜃 − 𝑞 · 𝑔/𝜃

+
(︂
𝑎𝑙 − 𝜌

𝜕𝜓h

𝜕𝜑

)︂
𝜑̇+

(︂
𝑏𝑙 − 𝜌

𝜕𝜓g

𝜕∇𝜑

)︂
· ∇𝜑̇ ≥ 0. (A.5)

This yields the potential relations, similar to Eq. (3.30), reading

𝜎 = 𝜌
𝜕𝜓e

𝜕𝜀
, 𝜂 = −𝜕𝜓𝜃

𝜕𝜃
, 𝑏𝑙 = 𝜌

𝜕𝜓g

𝜕∇𝜑
. (A.6)

Consequently, the reduced dissipation inequality is given by(︂
𝑎𝑙 − 𝜌

𝜕𝜓h

𝜕𝜑
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝜑

)︂
𝜑̇− 𝑞 · 𝑔/𝜃 ≥ 0. (A.7)

The mechanical dissipation is represented by the first term, the thermal
dissipation by the second expression.

Flow rule Accounting for Fourier’s law, the positivity of the thermal
dissipation is fulfilled. Finally, the mechanical dissipation must not be neg-
ative, i.e., a proper choice for 𝜑̇ is necessary. Regarding linear irreversible
thermodynamics, for brevity, 𝜑̇ reads

𝜑̇ = 𝜑̇0

(︂
𝑎𝑙 − 𝜌

𝜕𝜓h

𝜕𝜑
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝜑

)︂
, 𝜑̇0 ≥ 0, (A.8)

with a constant, referential rate 𝜑̇0. The flow rule according to Eq. (A.8)
does not contain a divergence term. This ODE is referred to as local flow
rule.
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Comparison to the presented theory Taking into account Eq. (A.1), the
local flow rule according to Eq. (A.8) reads

𝜑̇ = 𝜑̇0

(︂
div

(︁
𝑏𝑙

)︁
− 𝜌

𝜕𝜓h

𝜕𝜑
− 𝜌

𝜕𝜓e

𝜕𝜀p · 𝜕𝜀
p

𝜕𝜑

)︂
, 𝜑̇0 ≥ 0. (A.9)

Thus, the combination of the so-called micro-force balance and the flow
rule according to Eq. (A.8) is equivalent to the nonlocal flow rule according
to Eq. (3.32). Moreover, combining Eq. (A.7) and Eq. (A.1) is equivalent
to Eq. (3.31). This result is independent of the considered flow rule.
Consequently, the extended principle of virtual power and the extended
energy balance yield the same set of equations and, thus, are equivalent.

A.2 Application to a Slip Gradient
Crystal Plasticity

A.2.1 Two-phase laminate material

Integration constant Integration of Eq. (5.7) twice with respect to 𝑥1

yields

𝑢̃(𝑥1) =
∫︁
𝛾(𝑥1) d𝑥1 + 𝑐𝑥1 + 𝑑. (A.10)
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The integration constant 𝑐 is determined by evaluating Eq. (5.9)2, reading

𝑐 = 𝑍1 + 𝑍2

𝑁1 +𝑁2 +𝑁3
,

𝑍1 = −2
(︁(︀

−1/2 + (ℎ+ 𝑠/2)
√
𝑎
)︀

e
√

𝑎(2 ℎ+𝑠) − 1/2 e2 (ℎ+𝑠)
√

𝑎
)︁
𝐺𝛾,

𝑍2 = −2
(︁

1/2 +
(︀
1/2 + (ℎ+ 𝑠/2)

√
𝑎
)︀

e
√

𝑎𝑠
)︁
𝐺𝛾,

𝑁1 =
(︁

2𝐾𝑔 (ℎ+ 𝑠/2) 𝑎3/2 + 2
(︀
−1/2 + (ℎ+ 𝑠/2)

√
𝑎
)︀
𝐺

)︁
e

√
𝑎(2 ℎ+𝑠),

𝑁2 =
(︁

2𝐾𝑔 (ℎ+ 𝑠/2) 𝑎3/2 + 2𝐺
(︀
1/2 + (ℎ+ 𝑠/2)

√
𝑎
)︀)︁

e
√

𝑎𝑠,

𝑁3 = −𝐺e2 (ℎ+𝑠)
√

𝑎 +𝐺. (A.11)

In this context, the abbreviation 𝑎 = Θ0/𝐾𝑔 is introduced. Moreover,
evaluation of Eq. (5.9)1 yields the integration constant 𝑑 as

𝑑 = 𝑍3 + 𝑍4

𝑁4 +𝑁5 +𝑁6
,

𝑍3 = −
(︁

−e(2 ℎ+𝑠)
√

𝑎𝑠
√
𝑎− e(2 𝑠+2 ℎ)

√
𝑎
√
𝑎𝑠+ e

√
𝑎𝑠𝑠

√
𝑎
)︁
𝐺𝛾,

𝑍4 = −
(︁√

𝑎𝑠− 2 e(2 ℎ+𝑠)
√

𝑎 + 2 e(2 𝑠+2 ℎ)
√

𝑎 − 2 e
√

𝑎𝑠 + 2
)︁
𝐺𝛾,

𝑁4 = 2
√
𝑎𝐺e(2 𝑠+2 ℎ)

√
𝑎 − 2𝐺

√
𝑎,

𝑁5 =
(︀
2𝐺

√
𝑎+ (−4ℎ− 2 𝑠) 𝑎𝐺+ (−4ℎ− 2 𝑠)𝐾𝑔 𝑎

2)︀
e(2 ℎ+𝑠)

√
𝑎,

𝑁6 =
(︀
−2𝐺

√
𝑎+ (−4ℎ− 2 𝑠) 𝑎𝐺+ (−4ℎ− 2 𝑠)𝐾𝑔 𝑎

2)︀
e

√
𝑎𝑠. (A.12)

A.2.2 Three-phase laminate material

Fulfillment of the Hadamard-condition Regarding the quasi-static case,
the Hadamard condition is given by

[𝐹 ]𝑃 = 0, 𝑃 = 𝐼 − 𝑛𝒮 ⊗ 𝑛𝒮 , (A.13)
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cf. Gurtin et al. (2010, pp. 209, 210). Accounting for Eq. (5.21), 𝐹 reads

𝐹 = −1 (𝑒1 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒2 + 𝑒3 ⊗ 𝑒3) + 𝛾𝑒1 ⊗ 𝑒2 + 𝑢̃′𝑒2 ⊗ 𝑒1. (A.14)

With respect to the three-phase laminate material, 𝑛𝒮 = 𝑒1 holds true.
Thus, [𝐹 ] and 𝑃 from Eq. (A.13) read

[𝐹 ] =
(︀
𝑢̃′

+ − 𝑢̃′
−

)︀
(𝑒2 ⊗ 𝑒1) , 𝑃 = 𝑒2 ⊗ 𝑒2 + 𝑒3 ⊗ 𝑒3. (A.15)

Consequently, Eq. (A.13)1 is fulfilled according to

[𝐹 ]𝑃 =
(︀
𝑢̃′

+ − 𝑢̃′
−

)︀
((𝑒1 · 𝑒2) 𝑒2 ⊗ 𝑒2 + (𝑒1 · 𝑒3) 𝑒2 ⊗ 𝑒3) ≡ 0. (A.16)
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