
Very Important Paper

Palladium-Based Bimetallic Nanocrystal Catalysts for the
Direct Synthesis of Hydrogen Peroxide
Sheng Wang,[a, b] Dmitry E. Doronkin,[a, c] Martin H-hsler,[a, b] Xiaohui Huang,[d] Di Wang,[d, e]

Jan-Dierk Grunwaldt,[a, c] and Silke Behrens*[a, b]

Introduction

Hydrogen peroxide is used industrially as bleaching agent in
the pulp and paper industry, in chemical manufacture (e.g. , to

replace Cl-containing oxidants), and as a disinfectant.[1] As a
green and selective oxidant, H2O2 has been applied in various

oxidation reactions (e.g. , olefin epoxidation).[1, 2] The global
H2O2 market demand was 3850 kt in 2015 and is expected to

reach approximately 6000 kt in 2024.[3] On an industrial scale,

H2O2 is manufactured mainly by the Riedl–Pfleiderer process,
which involves the cyclic auto-oxidation of anthraquinones.[1]

This process requires large-scale infrastructure and produces
highly concentrated H2O2 (up to 70 wt % H2O2), however, for

many applications only dilute H2O2 solutions (<9 wt %) are
needed.[4] The Riedl–Pfleiderer process is considered to be non-
green for a number of reasons and has significant capital ex-

penditures and operating costs. Its deficiencies have motivated
academia and industry to develop alternative processes for
H2O2 synthesis, in particular its direct synthesis from O2 and H2

and electrochemical methods, which share similar attributes in

terms of catalysis.[4]

Electrochemical H2O2 production proceeds by the cathodic

two-electron reduction of O2 with noble metals and their

alloys (e.g. , Pd-Au,[5] Pd-Hg,[6] Pt-Hg)[7] or metal-free, carbon-
based materials[3, 8] as electrocatalysts. Recently, the direct elec-

trosynthesis of pure aqueous H2O2 solution (up to 20 wt %)
was achieved in combination with a solid electrolyte.[9] The

photocatalytic production of H2O2 from O2 and H2O using solar
energy is highly interesting, for example, for use as a sustain-

able solar fuel in personal-based electrical items (e.g. , in one-

compartment H2O2 fuel cells).[8c, 10] However, the low photoca-
talytic efficiency is still a big challenge.[11]

The direct synthesis of H2O2 from molecular H2 and O2 is an-
other green and economically viable alternative for H2O2 pro-

duction with clear benefits over the Riedl–Pfleiderer process as
the infrastructure is simplified, less energy is consumed, green

The direct synthesis of H2O2 from H2 and O2 is a strongly de-
sired reaction for green processes and a promising alternative

to the commercialized anthraquinone process. The design of
efficient catalysts with high activity and H2O2 selectivity is
highly desirable and yet challenging. Metal dopants enhance
the performance of the active phase by increasing reaction
rates, stability, and/or selectivity. The identification of efficient
dopants relies mostly on catalysts prepared with a random and
non-uniform deposition of active and promoter phases. To

study the promotional effects of metal doping on Pd catalysts,

we employ colloidal, bimetallic nanocrystals (NCs) to produce

catalysts in which the active and doping metals are colocalized

to a fine extent. In the absence of any acid and halide promo-
tors, PdSn and PdGa NCs supported on acid-pretreated TiO2

(PdSn/s-TiO2, PdGa/s-TiO2) were highly efficient and outper-
formed the monometallic Pd catalyst (Pd/s-TiO2), whereas in
the presence of an acid promotor, the overall H2O2 productivity
was also further enhanced for the Ni-, Ga-, In-, and Sn-doped

catalysts with respect to Pd/s-TiO2.
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solvents (water or alcohols) are used, and organic substrates
are absent.[2] Direct H2O2 synthesis can be implemented in de-

centralized plants of any size to enable the on-site production
of H2O2 also on a small scale.[12] It has attracted great interest

in academia and industry as such or in tandem with selective
oxidation reactions (e.g. , in the H2O2 to propylene oxide pro-

cess[2] or in chemoenzymatic oxidation cascades).[13] Although
the first patent for direct H2O2 synthesis was filed in 1914, its
full industrial implementation has been hampered, primarily

because of poor H2O2 selectivity.[14]

To date, most studies have been based on Pd nanoparticles,
which remains the most active catalyst.[15] However, no Pd cat-
alyst could meet the criteria for industrial H2O2 production as

they also favor side reactions to H2O, which reduces H2O2 se-
lectivity. Acid (e.g. , H2SO4) and/or halide (e.g. , Cl@ , Br@) promo-

tors improve H2O2 selectivity by preventing the base-catalyzed

decomposition of H2O2 and by blocking sites for further H2O2

conversion.[16] However, these liquid-phase promoters may lead

to plant corrosion and leaching of the active metal particles
and their effect on reactions that utilize H2O2 downstream is

not well understood. Hence, the design of new catalysts with
improved H2O2 selectivity and productivity in the absence of

these promotors is very attractive but highly challenging. Vari-

ous material properties have been identified experimentally
that affect the overall performance of Pd catalysts in this reac-

tion, which include particle size[17] and morphology,[18] surface
adsorbates,[19] metal promotors, and the nature of the sup-

port.[20] To enhance H2O2 selectivity, recent studies have fo-
cused on the alloying of Pd and Pt with several transition

metals (e.g. , Au,[21] Ag[22]) and main group elements (e.g. , Sn,[12]

Sb,[23] Te[24]). In general, the enhanced catalytic properties of bi-
metallic catalysts have been attributed to synergistic effects

and modified electronic and/or geometric surface structures of
the active surface sites.[25] Heterogeneous catalysts produced

by conventional impregnation and (co)precipitation proce-
dures, however, are generally poorly defined because of the
non-uniform particle size and random distribution of promotor

and active phases, which make it difficult to attribute the cata-
lytic properties to compositional changes. In this context, the
“precursor concept” in which colloidal nanocrystals (NCs) are
used as well-defined building blocks is a promising strategy to

address the parameters that influence the catalyst per-
formance. By this procedure, the NC composition is tuned in-

dependently, and active and doping phases are colocalized to

a fine extent and preserved during the successive NC immobili-
zation.

Herein, we report on a generalized procedure in which cata-
lysts derived from bimetallic NCs were used to study the pro-

motional effects of metal doping on Pd catalysts in direct H2O2

synthesis. This method relies on a single synthetic protocol,

which provides us with a library of bimetallic PdM-based NCs

with a tunable composition (M: Ni, Zn, Ga, In, Sn, Pb). The NCs
were immobilized successively on an acid-pretreated TiO2 sup-

port (s-TiO2). Acid pretreatment was demonstrated previously
to further enhance catalytic selectivity in direct H2O2 synthe-

sis.[20b] We address the influence of metal doping and acid pro-
motors in this reaction accordingly. The defined NC size and

composition enables us to investigate structure–property rela-
tionships with the goal to identify true promotors in a system-
atic fashion. The catalytic performance of the NC-derived cata-
lysts in direct H2O2 synthesis was investigated under environ-

mentally benign and energy-economical reaction conditions
(H2, O2 and N2, 30 8C, ethanol) without the presence of any acid

and halide promotors.

Results and Discussion

A library of different bimetallic PdM (M: Ni, Zn, Ga, In, Sn, Pb)
NCs was prepared using a solution of the metal acetylaceto-
nate (acac) or acetate (ac) precursor in oleyl amine (OLAM) and

trioctyl phosphine (TOP). Typically, NCs are synthesized and sta-
bilized in solution by the use of ligands, surfactants, or poly-
mers. These organic molecules bind to the particle surface and
further enhance the catalytic properties in direct H2O2 synthe-
sis.[26] Therefore, to elucidate the specific effect of the metal

dopants, organic ligands must be either removed by thermal
or chemical treatment or the same type of ligand must be

used for all of the NC-derived catalysts. Notably, thermal or

chemical treatment may further affect the NC composition and
lead to segregation, oxidation, or leaching selectively for one

of the constituent elements. Our method relies on a single syn-
thetic protocol with the same ligand composition to provide

bimetallic PdM-based NCs with a tunable composition (M: Ni,
Zn, Ga, In, Sn, Pb).

The same reaction conditions and a molar precursor ratio

(Pd2++/Mn++) of 2:1 were employed to synthesize all of the bi-
metallic NCs. In the case of Pd NCs, the reaction conditions

were similar, but the reaction temperature did not exceed
200 8C. The stepwise increase of the reaction temperature from

60 to 200 and 300 8C led to the formation of well-defined bi-
metallic NCs. In the presence of TOP, pure Pd NCs nucleate at

temperatures between 200 and 250 8C.[27] Previously, TOP was

shown to displace acac from Pd(acac)2 to form a stable
PdII(TOP)4 complex that may be further reduced by OLAM or

excess phosphine.[27, 28] OLAM was suggested to replace TOP in
the PdII complex and to stabilize the final Pd0 NCs.[27] Typically,
bimetallic NCs are obtained at higher reaction temperatures
(300 8C). Recently, it was suggested that Pd NCs form initially

and control the decomposition of the second metal precursor
that is then alloyed successively to yield the bimetallic PdM

NCs.[29] The particle size and size distribution of the PdM NCs

were determined by statistical measurement from a large
number of NCs by using TEM (Figure 1 and Table 1). The mean

particle size for Pd and PdM NCs was 3.5–6.7 nm (Figure S1
and Table S2). We used inductively coupled plasma optical

emission spectroscopy (ICP-OES) to confirm the presence of
both metals in the NCs (Table 1).

We analyzed the monometallic Pd and bimetallic PdM NCs

by using XRD (Figure 2). The XRD patterns revealed very broad
reflections of low intensity, which is characteristic for small

NCs. For the majority of the NCs (i.e. , PdNi, PdZn, PdGa, and
PdIn), a single, broad reflection was observed at approximately

2 q= 408, which is consistent with the (111) reflection of the
monometallic NCs of the face-centered cubic (fcc) Pd phase.
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The XRD patterns did not show any reflections characteristic of
an ordered intermetallic phase, which suggests the random
distribution of Pd and M (Ni, Zn, Ga, In) at fcc sites in these bi-

metallic NCs. For PdSn-based NCs the reflections were also
broad and of low intensity but the diffraction pattern differed
from that of the monometallic Pd reference particles (Figur-
es S2 and S3).

Reflections could be assigned to the intermetallic Pd2Sn

phase (JCPDS 01-089-2057). The formation of Pd2Sn NCs has
been described previously by Luo et al.[30] For PdPb-based NCs,

the diffraction pattern also differed from that of the fcc Pd

phase of the monometallic Pd NCs; the reflections could be as-
signed mainly to intermetallic Pd3Pb NCs (JCPDS00-050-1631)

in the presence of some Pd NCs (Figure S3). As the overall
molar Pd/Pb ratio was 2:1, this could point towards some sur-

face segregation of Pb on the surface of the bimetallic parti-
cles.

Reflections characteristic of the corresponding metal oxides
were not observed by using XRD. However, we cannot exclude

that a thin layer of metal oxide was formed after the NCs were
exposed to air. Crystallite sizes of 2.2 (Pd NCs), 2.2 (PdNi NCs),
2.3 (PdZn NCs), 2.4 (PdGa NCs), and 3.7 nm (PdIn NCs) were

calculated according to the Scherer equation, and the NC sizes
were slightly larger for the PdSn NCs (6.5 nm) and PdPb NCs
(6.0 nm) (Table S2).

A series of PdM/s-TiO2 catalysts was prepared by the adsorp-
tion of the NCs from a colloidal solution in CHCl3 onto the
H2SO4-pretreated TiO2 support. Previously, various materials

have been employed to support the active metal phase in
direct H2O2 synthesis (e.g. , TiO2,[20b, 31] Al2O3,[32] SiO2,[22, 33] ZrO2,[34]

Fe2O3, zeolites,[35] heteropolyacids,[36] and carbon-based materi-

als),[20b, 21, 37] and it is well known that the nature of the support
has a significant effect on the catalyst activity and selectivity. A

number of explanations have been proposed to account for
the effect of the support, such as its acidity and isoelectric

point, as a key factor for H2O2 stabilization or its influence on

the electronic structure of the metal nanoparticles.[38] However,
the support also controls the manner in which the active

metal component is dispersed (in particular if prepared by con-
ventional wet impregnation techniques) and a comparison be-

tween different types of support materials may be misleading.
TiO2 [P25, Evonik; anatase (80 %)/rutile (20 %), Brunauer–

Figure 1. Representative TEM images of A) Pd NCs, B) PdNi NCs, C) PdZn
NCs, D) PdGa NCs, E) PdIn NCs, F) PdSn NCs, and G) PdPb NCs.

Table 1. Metal loadings, NC sizes, and atomic compositions of the sup-
ported catalysts.

Supported
catalyst

NC size[a]

[nm]
Pd
[wt %]

M
[wt %]

Atomic NC
comp.[a]

Pd/s-TiO2 4.1:1.6 5.6 – Pd
PdNi/s-TiO2 4.8:1.6 2.5 0.5 Pd0.74Ni0.26

PdZn/s-TiO2 5.7:2.6 2.6 1.0 Pd0.73Zn0.27

PdGa/s-TiO2 3.6:1.9 2.6 0.6 Pd0.76Ga0.24

PdIn/s-TiO2 3.6:1.7 3.8 1.2 Pd0.78In0.22

PdSn/s-TiO2 4.4:2.0 4.1 2.8 Pd0.62Sn0.38

PdPb/s-TiO2 4.8:1.1 6.7 6.2 Pd0.68Pb0.32

[a] Mean diameters (and standard deviations) of the supported NCs were
calculated from TEM images. [b] Total metal loadings of the supported
catalysts and atomic compositions of the NCs were determined by using
ICP-OES.

Figure 2. XRD patterns of Pd, PdNi, PdZn, PdGa, PdIn, PdSn, and PdPb NCs.
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Emmett–Teller (BET) surface area = 54 m2 g@1] is commercially
available and was chosen in the present study as a benchmark

support material for all NCs to compare the effect of metal
doping on the catalytic properties of the Pd NCs. TiO2 was

shown to neither catalyze H2O2 hydrogenation nor its decom-
position.[20b] TiO2 was treated with H2SO4 before use, which was

demonstrated previously to further enhance catalytic selectivi-
ty in direct H2O2 synthesis.[20a,b] From TEM images of the NCs
immobilized on s-TiO2, we can see that the NCs were well dis-

tributed over the s-TiO2 support (Figure 3). After immobiliza-
tion on the s-TiO2 support, a relatively minor decrease in mean
diameter was observed for most NCs (Figure S4 and Table S2).
Although this decrease is not considered statistically relevant

for the Pd, PdZn, and PdSn NCs, it is possible that the decrease
in the size of PdIn, PdNi and PdPb NCs is caused by a restruc-

turing of the NCs after immobilization. As such, the influence

of NC restructuring on the catalytic performance cannot be
completely excluded.

High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) images of the supported catalysts

with energy-dispersive X-ray (EDX) spectroscopy mapping of
the NCs are shown in Figures S5 and S6.

The structure and composition of the s-TiO2-supported NCs
after pretreatment in H2, similar to that employed during cata-
lytic testing, were further investigated by using X-ray absorp-

tion spectroscopy (XAS). X-ray absorption near edge structure
(XANES) spectra (Figure 4 A) show only features attributed to
metallic Pd (a double feature at &24 360 and 24 390 eV).[39] No-
tably, the spectral features are shifted in all XANES spectra of

the bimetallic NCs compared to that the monometallic Pd NCs
(to be able to see the difference, this spectrum is shown in

gray and overlaid on each spectrum of the bimetallic NCs).

Such shifts and differences in the near edge structure can be
attributed to small differences in the electronic and/or geomet-

ric structure around the Pd atoms in the bimetallic NCs and, as
in all cases the Pd surface was cleaned of adsorbed species by

H2, can only be attributed to the influence of the second
metal. Hence, we used XANES to confirm the modification of

the Pd lattice for all bimetallic NCs. Extended X-ray absorption

fine structure (EXAFS) spectra (Figure 4 B and Figure S8 for the
raw data) are dominated by backscattering on Pd neighbors.[39]

Hence, EXAFS spectra indicate the formation of metallic NCs

Figure 3. TEM images of NCs supported on s-TiO2 : A) Pd/s-TiO2, B) PdNi/s-
TiO2, C) PdZn/s-TiO2, D) PdGa/s-TiO2, E) PdIn/s-TiO2, F) PdSn/s-TiO2, and
G) PdPb/s-TiO2.

Figure 4. A) XANES and B) Fourier-transformed, k2-weighted EXAFS spectra
(uncorrected for the phase shift) of the bimetallic PdM/s-TiO2 catalysts mea-
sured at the Pd K edge.
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with a structure similar to monometallic Pd NCs, which is in
good agreement with the results obtained by using XRD. Anal-

ysis of the EXAFS spectra (Table S3; EXAFS fits are reported in
Figure S8) confirms the presence of Pd neighbors and, in some

cases, second metal neighbors. Average Pd@Pd distances can
be used to evaluate structure distortion in the metal NCs. As

all NCs were of a similar size and measured under identical
conditions, changes of the Pd@Pd distance relative to that in

Pd metal and in pure Pd NCs could be attributed only to the

doping of Pd NCs with a second metal or alloy formation.
PdNi, PdZn, and PdPb NCs show statistically significant shifts

of the average Pd@Pd distance to lower values. In the case of
PdGa, PdNi, PdZn, and PdPb NC spectra, the EXAFS fits are

considerably improved by also taking into account the second
metal neighbors. Hence, the doping of Pd NCs by the second
smaller metal possibly occurs in the PdGa, PdNi, and PdZn

samples. The alloying of Pd with Pb resulted in the formation
of a new structure, the EXAFS spectrum of which was best

fitted by using the Pd3Pb reference (space group Pm@3m ;
ICSD collection code 648357). The XANES spectrum of the

PdPb sample at the Pb L3 edge (Figure S7; H2 treatment was
not performed before this measurement) also revealed metallic

features together with a strong shift of the absorption edge to

higher energies, which indicates lower electronic density on Pb
atoms because of alloy formation with Pd. For both PdSn and

PdIn NCs, the Pd@Pd distances are similar to that in pure Pd
and the second metal cannot be distinguished by using EXAFS

analysis because the backscattering of Sn and In is very similar
to that of Pd. Hence, in these two cases, only modification of

the Pd electronic structure as seen by using XANES (Figure 4 A)

can confirm the doping of Pd by Sn and In. The alloying of Pd
with Sn and In is further shown by using XRD and STEM-

HAADF EDX, respectively.
There has been a great interest to enhance the catalytic per-

formance and/or decrease the cost of noble-metal-based cata-
lysts (Pd, Pt, Au) by introducing cost-effective, non-noble metal

dopants (Table 2).[12, 22, 40] To understand the promotional effect

of the different metal dopants, the catalytic performance of
the supported NCs (PdM/s-TiO2) was investigated by using a

semicontinuous batch reactor with ethanol as a solvent in the
presence and absence of H2SO4 as a promotor. The
total metal content (Pd and M) was kept constant
(i.e. , 1.3 mg) for all catalytic experiments. Before cata-

lytic testing, the suspended catalysts were activated
in situ in H2/N2 atmosphere. PdO is already reduced
under ambient conditions in H2 atmosphere, whereas

thin metal oxide surface layers formed by any of the
dopant elements may not be reduced under these

conditions.[39b] The catalytic performance of the NC-
based catalysts is illustrated in Figure 5, which pres-

ents the concentration of H2O2 as function of the re-

action time and productivity/selectivity/H2 conver-
sion, respectively. By doping the Pd NCs with Ga or

Sn in PdGa/s-TiO2 and PdSn/s-TiO2, respectively, the
concentration of H2O2 increased significantly with re-

action time in the absence of an acid promotor, even
though the Pd loading in the reactor was reduced

(Figure 5 B). Bimetallic PdIn/s-TiO2, PdNi/s-TiO2, and PdZn/s-TiO2

yielded a similar H2O2 concentration, and PdPb/s-TiO2 pro-
duced less H2O2 over time than the Pd/s-TiO2 reference, but

the amount of Pd employed in these experiments was also
lower. The doping of Pd NCs with either Ni or Ga in bimetallic

PdNi/s-TiO2 and PdGa/s-TiO2 had a promotional effect on the
H2 conversion [X(H2)] with an increase from 35 to 38 and 42 %,

respectively, whereas all other PdM NCs (In, Sn, Pb, and Zn) re-

vealed lower H2 conversions (Figure 6 A). The segregation of
some Pb on the surface of the bimetallic PdPb NCs may be the

reason for the low H2 conversion (12 %) observed for these
NCs. Ni is a well-known catalyst for hydrogenation reactions.[41]

Although the presence of Ni enhanced the H2 conversion over
PdNi/s-TiO2, a slightly decreased selectivity was observed (19 %;

Table S4).

The addition of Sn, Ga, or In promotors to Pd NCs yielded
both significantly higher H2O2 selectivity (S) and productivity

(P ; PdSn/s-TiO2 : S(H2O2) = 51 %, P(H2O2) = 4460 mol kgPd
@1 h@1;

Table 2. Comparison of H2O2 selectivity and productivity for various bi-
metallic catalysts (for further details of catalyst testing see Table S7).

Reference Catalyst[a] Promotor S(H2O2)
[%]

P(H2O2)
[mol kgPd

@1 h@1]

This work Pd/s-TiO2 – 21 1530
PdGa/s-TiO2 – 36 3610
PdSn/s-TiO2 – 51 4560
Pd/s-TiO2 H2SO4

[b] 65 5420
PdGa/s-TiO2 H2SO4

[b] 67 7480
PdSn/s-TiO2 H2SO4

[b] 77 9240
Edwards[49] Au(2.5)/Pd(2.5)/TiO2 CO2 70 2560
Solsona[32] Au(2.5)/Pd(2.5)/Al2O3 CO2 30 680
Freakley[12] Pd(3)/Sn(2)/TiO2 CO2 96 2033
Tian[24] Pd(3)Te(0.03)/TiO2 H2SO4

[b] 100 977
Han[33a] Pd(3.3)Au(11.2)/SiO2 HCl[b] 62 870
Bernardotto[34] Pd(1.3)/Pt(0.2)/ZrO2

[f] H2SO4
[c] 56 1236

Pd(1.3)Au(1.2)/ZrO2
[f] H2SO4

[c] 62 1190
Maity[43] Pd0.6Ni0.4 HCl[d] , Br[e] 82 1648

Pd0.6Ni0.4 – 0 0
Wang[50] Pd(1)Zn(5)/Al2O3 H2SO4

[c] 79 25 431

[a] The loading in wt % is given in brackets. Concentration of acid or
halide promotors: [b] 0.12 m ; [c] 0.03 m ; [d] 0.1 m ; [e] 0.01 m. [f] ZrO2 was
sulfated before use.

Figure 5. Concentration of H2O2 produced over bimetallic PdM/s-TiO2 catalysts as a func-
tion of time: A) in the presence of H2SO4 promotor (0.12 m) and B) without H2SO4. The
monometallic Pd/s-TiO2 catalyst was used as a reference. Ethanol was employed as a sol-
vent for catalytic testing.
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PdGa/s-TiO2 : S(H2O2) = 36 %, P(H2O2) = 3610 mol kgPd
@1 h@1; PdIn/

s-TiO2 : S(H2O2) = 28 %, P(H2O2) = 2330 mol kgPd
@1 h@1), whereas

the H2O2 productivity was reduced after the alloying of Pd
with Pb (Table S4). Previously, we showed that the introduction

of small quantities of In and Ga, in particular, inhibit H2O2 deg-
radation and enhance catalytic selectivity with respect to the

analogous Pd catalyst.[42] Notably, In was leached during the

catalytic reaction even in the absence of acid promotors and
could not be recovered in the spent catalyst (Table S6). Overall,

PdSn NCs were most efficient with a H2O2 productivity of
4460 mol kgPd

@1 h@1 and 51 % H2O2 selectivity and clearly out-

performed the monometallic Pd/s-TiO2 reference catalyst in the
absence of any halide or acid promotor (Figure 6 C).

As expected, the addition of an acid promotor (H2SO4) led to
an overall increase in H2O2 selectivity and production rate for

all of the catalysts investigated in this study. Previously, it was
reported that acid promotors prevent base-catalyzed H2O2 de-

composition and stabilize the formed H2O2.[16a, 21] Moreover,
protons were suggested to be essential for H2O2 formation by

a proton–electron transfer mechanism, whereas the nature and
adsorption of the counter ions (SO4

2@) on the active metal
phase seemed to be less important.[15b] As expected, an in-

crease in X(H2) and S(H2O2) were observed for the monometal-
lic Pd/s-TiO2 catalyst (Table S5) in the presence of H2SO4 pro-
motor. The H2O2 productivity of the Ni-, Ga-, In-, and Sn-doped
catalysts was also further enhanced in the presence of H2SO4

promotor and superior to that of the monometallic Pd refer-
ence catalyst (Table S5). The enhancement of the productivity

of Pd in the presence of Ni, for example, has been reported

previously for direct H2O2 synthesis in the presence of promo-
tors (HCl, Br@), whereas no H2O2 formation occurred in the ab-

sence of promotors.[43] In other studies, the addition of Zn to
Pd led to a 20- and 130-fold decrease in both H2O2 and H2O

formation rates, respectively, to result in an enhanced selectivi-
ty to H2O2 (69 %).[33b]

The addition of Zn was suggested to induce electronic

changes of the active sites for O2 reduction that favored H2O2

formation significantly, but the overall product turnover rate,

mol(H2O2)/mol(metal surface atoms), was not further improved
compared to that of the monometallic Pd catalyst. In the pres-

ence of an acid promotor, our Zn-doped NC catalyst revealed
also an enhanced H2O2 selectivity (79 %), whereas both

the H2 conversion (23 %) and overall production rates

(4860 mol kgPd
@1 h@1) remained low. Generally, however, the

presence of an acid promotor led to severe catalyst leaching in

our studies. Under these conditions, most of the dopants M
could not be recovered in the spent catalysts, and soluble spe-

cies may have contributed to these catalytic findings
(Table S6). Some leaching may have also been caused by the

detachment of whole NCs from the support (as also indicated

by a loss of Pd metal) and attributed to the fact that our NC-
based catalysts were not calcined before catalyst testing to

preserve the size, shape, and composition of the original NCs
in the supported catalysts. Only the intermetallic NCs PdSn
and PdPb were relatively stable under acidic reaction condi-
tions. Intermetallic NC compositions have not only been

shown to have a tunable catalytic performance but also an en-
hanced catalyst stability.[44] Indeed, in the presence of an acid
promotor, PdSn/s-TiO2 was not only relatively stable but also

showed the highest productivity (9200 mol kgPd
@1 h@1) of the

NC-derived catalyst library (Tables S5 and S6).

In general, the enhanced H2O2 selectivity and productivity of
multimetallic catalysts is attributed to various effects. Metal

dopants (e.g. , Au) were suggested to change the geometric

surface structure to reduce the prevalence of multiple, contig-
uous Pd atoms on the catalyst surface,[5a] which in turn

changes the distribution of active sites (i.e. , ensemble effect)
among those that preferentially form H2O2 (e.g. , single Pd

sites) and those that largely produce H2O (e.g. , groupings of
multiple Pd atoms).[45] In other work, the increase in the Au/Pd

Figure 6. A) H2 conversion, B) H2O2 selectivity, and C) H2O2 productivity
[mol kgPd

@1 h@1] of the Pd/s-TiO2 and PdM/s-TiO2 catalysts in the direct syn-
thesis of H2O2. Reaction medium: ethanol with H2SO4 promotor (black) and
without any acid or halide promotor (blue).
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ratio in similarly sized Pd and AuxPd1 catalysts led to simultane-
ous but unequal increases in activation enthalpies for both

H2O2 and H2O formation, which were attributed to significant
electronic changes of Pd by Au.[46] From DFT calculations and

Sabatier analysis, the alloying of Pd with dopants of suitable
electronegativity was suggested to adjust the valence elec-

trons of Pd-shell atoms to an optimal range, which enhanced
both the activity and selectivity in direct H2O2 synthesis.[47]

From the catalytic results in this study, a simple correlation of

the catalytic performance with the electronegativity of the em-
ployed metal dopants could not be derived. Previously, the
high selectivity of Pd/Sn-based catalysts was suggested to
originate from the encapsulation of small Pd-rich particles (size
,2 nm) by a layer of SnOx species after catalyst calcination,
which suppressed H2O2 degradation on these surface sites

rather than the formation of alloyed PdSn particles.[12] As we

employed monodisperse PdSn NCs [mean size 4.8(:0.8) nm]
as precursors for catalyst preparation, a covering of ultra-small,

nonselective Pd NCs did not seem to account for the increased
H2O2 productivity here. In another study, the formation of SnOx

species was also observed on TiO2-supported PdSn NCs under
conditions of H2O2 synthesis.[31b] SnOx was suggested to adsorb

O2 without O@O bond scission, and Pd(PdO) in close proximity

to SnOx was proposed to activate H2, as H2O2 was generated
rapidly at the Pd–SnOx and PdO–SnOx interface. An enhanced

activity and selectivity and the role of Sn doping have also
been reported for other types of hydrogenation reactions in

which electronic effects (electron-donating effects from Sn to
the noble metal) as well as the formation of SnO2 close to the

noble metal seemed to be responsible for the increased selec-

tivity and activity.[48] Interface and electronic effects are often
entangled and it is difficult to distinguish from each other.

Thus, interface and electronic effects may also contribute to
the enhanced H2O2 selectivity observed for other types of non-

precious metal dopants (e.g. , Ga, In, Zn). This will be further
addressed in future investigations.

An evaluation of the catalytic H2O2 selectivity and productivi-

ty is given in Table 2 (see Table S7 for full details of the reac-
tion parameters). Previously, the modification of Pd by the ad-
dition of a range of precious or nonprecious metals has been
demonstrated to enhance catalytic H2O2 selectivity and pro-
ductivity. In accordance with these studies, we now report that
the addition of Sn to our s-TiO2-supported Pd NCs improves

H2O2 selectivity and, importantly, leads to a significantly en-
hanced H2O2 productivity even in the absence of acid or halide
promotors. The addition of acid promotors to the reaction

medium may not only cause the leaching of the active phase
but also reactor corrosion and necessitates additional purifica-

tion steps, which make the above acid- and halide-free H2O2

synthesis in ethanol in the presence of Ga- and Sn-doped Pd

catalysts highly attractive.[43] The alloying of precious-metal-

based catalysts with low-cost and nontoxic metals is also an in-
teresting approach towards economical and sustainable cata-

lytic systems. The doping of Pd with nonprecious metals such
as Ga or Sn lowers the metal cost of the catalyst by 7 and

33 %, respectively, whereas the addition of Au increases them
(e.g. , by 19 and 62 %, calculated for Pd/Au-based bimetallic

catalysts reported in Refs. [20b and 33], respectively). Notably,
the assessment of new catalyst compositions remains challeng-

ing, as catalytic selectivity and productivity are influenced not
only by the catalyst material but also by the different parame-

ters of catalyst testing (such as reactor type and details of reac-
tion conditions; Table S7).[51] This further underlines the impor-

tance of well-defined model catalysts that enable the evalua-
tion of metal dopant–performance relationships under compa-
rable testing conditions.

Conclusions

We developed a library of monometallic Pd and bimetallic

PdM (M = Ni, Zn, Ga, Sn, In, Pb) nanocrystals (NCs) using one
synthetic protocol. A series of bimetallic NCs (i.e. , PdNi, PdZn,

PdGa, PdIn, PdSn, and PdPb) was obtained with sizes in the
range of 3.5–6.7 nm and controlled compositions. The NCs

were adsorbed successively from colloidal solution onto an

acid-pretreated TiO2 support. The catalytic performance was
enhanced clearly in the presence of an acid promotor, and the
doping of Pd NCs with Ni, Ga, In, and Sn further enhanced the
H2O2 productivity. However, the presence of an acid promotor
led to severe leaching and Ni, Ga, and In were not recovered
from the spent catalyst. Only PdSn NCs were relatively stable

under these reaction conditions. In pure ethanol and in the ab-
sence of additional halide or acid promotors, the PdGa and
PdSn NC-derived catalysts were particularly promising and re-
vealed an approximately 2.5–3-fold increase in H2O2 productivi-
ty compared to the Pd reference catalyst, respectively. In addi-

tion, Sn and Ga doping also significantly increased the selectiv-
ity from 21 % (Pd-based reference) to 51 and 36 %, respectively.

The doping of Pd NCs with Ni, Zn, Ga, In, or Sn may not only

influence the electronic and/or geometric surface structure of
the NCs but also the formation of metal hydrides and oxides

under the reaction conditions. In addition to the alloyed parti-
cle core, surface segregation of these dopants needs to be

considered to lead to the formation of thin metal oxide surface
layers under reaction conditions and probably contributes to

the overall catalytic behavior. In general, the interplay of the

different materials parameters is rather complex and, so far,
there seems to be no simple materials descriptor. Therefore, in-

sights into the structural evolution of these different and de-
fined catalysts under the working conditions will be particular-

ly attractive in future investigations and may contribute to the
further understanding of the influence of the individual materi-

al parameters on the overall catalytic behavior.

Experimental Section

Nanocrystal synthesis : All procedures for NC synthesis were per-
formed using standard Schlenk techniques. In a typical NC synthe-
sis, Pd(acac)2 (0.60 mmol) and M(acac)x (0.3 mmol) (M = Ni, Zn, Sn,
Ga, In, Pb) were dissolved in OLAM (40 mL). The mixture was flush-
ed with Ar, heated quickly to 60 8C, and stirred for 30 min. After
the addition of TOP (2 mL, 4.5 mmol), the mixture was heated to
200 8C (heating rate: 8 8C min@1) and held for another 30 min with
stirring. Afterwards, the temperature was further increased to
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300 8C (heating rate: 8 8C min@1) and held at 300 8C for an addition-
al 30 min. After cooling to RT, the bimetallic PdM NCs were precipi-
tated by the addition of ethanol and purified thoroughly by redis-
persion (CHCl3), precipitation (ethanol), and centrifugation. Similar-
ly, Pd NCs were prepared from Pd(acac)2 (0.90 mmol) dissolved in
OLAM (40 mL). After the addition of TOP (2 mL) at 60 8C (30 min),
the mixture was heated to 200 8C (heating rate: 9 8C min@1) and
held for 30 min. After cooling to RT, the Pd NCs were purified (see
above).

Preparation of catalysts : TiO2 (P25, Evonik; 10 g) was pretreated
with H2SO4 (2 wt %, 100 mL) for 3 h at RT with stirring. It was fil-
tered, washed with H2SO4 (2 wt %), dried overnight in vacuum, and
collected after grinding to powder. Metal NCs were adsorbed on
the pretreated support (s-TiO2) from the colloidal dispersion by
adding s-TiO2 (400 mg) to the appropriate amount of metal NCs in
chloroform and stirring for 3 h. For most catalysts, a colorless su-
pernatant indicated complete NC adsorption. In some cases, if
some of the NCs remained dispersed in the colloidal solution (indi-
cated by a black supernatant), ethanol (3 mL) was added, and the
mixture was stirred for another 3 h. The catalysts were recovered
by centrifugation, and washed with chloroform and ethanol. The
final catalysts were dried (30 8C, 3 h) and ground to a fine powder.

Characterization : The NCs were analyzed by using TEM (FEI Tecnai
F20 ST TEM, operated at an accelerating voltage of 200 kV, and FEI
Titan 80–300, operated at an accelerating voltage 300 kV) both
equipped with an EDAX EDS X-ray spectrometer (Si (Li) detecting
unit, super ultra-thin window, active area 30 mm2, resolution
135 eV at 5.9 keV). For TEM analysis, a small droplet of the colloidal
NC dispersion in chloroform or the catalyst powder, accordingly,
was deposited on amorphous carbon-coated 400 mesh Cu grids
and dried in air. The mean particle diameter was calculated from
the TEM images by measuring the size of at least 100 particles. Ele-
mental mapping was performed by using STEM-EDX spectroscopy,
and the maps were composed by integrating the corresponding el-
emental characteristic signal for each scanned pixel. Powder XRD
patterns were recorded by using a PANalytical X’Pert Pro X-ray dif-
fractometer employing Bragg–Brentano geometry with CuKa radia-
tion and a Ni filter. The Pd and M content of the dried NC powder
and the supported catalysts were determined by using ICP-OES
(Agilent 725 ICP-OES Spectrometer). Aqua regia and HF/aqua regia
(2:1) were used to dissolve the NC powder and the catalysts for
ICP-OES analysis, respectively. XAS measurements at the Pd K ab-
sorption edge were performed at the P64 beamline of the PETRA
III synchrotron (DESY, Hamburg, Germany) using a QEXAFS mono-
chromator with a channel-cut Si(111) crystal and gridded ionization
chambers developed by BU Wuppertal (for details of XAS analysis,
see SI).[52] Prior to XAS measurements samples were pretreated
with H2 and flushed with He to mimic the activation procedure
before catalytic tests and to clean the NC surface.

Catalytic tests : All catalytic tests were performed at 30 8C and
40 bar by using a semicontinuous batch reactor (300 mL, Teflon-
inlay, mechanical blowing stirrer (Teflon), and Teflon baffles) using
supported NC catalysts [1.3 mg of total metal content (Pd and M)
per experiment]. Ethanol (200 mL) that contained H2SO4 (0.12 m) or
pure ethanol (200 mL) was employed as a reaction medium. Before
the reaction, the slurry catalysts were activated with 4 vol % H2 in
N2 (250 mLNTP min@1, NTP: normal temperature and pressure), 30 8C,
40 bar, 1 h). The reaction gas mixture (total flow 250 mLNTP min@1,
gas composition H2/O2/N2 4:20:76) was introduced, and stirring
was started (1000 rpm). The H2, O2, and N2 concentrations that left
the reactor were analyzed online by using GC (Inficon micro GC
3000). N2 was used as an internal standard to calculate the H2 and

O2 concentrations. The H2O2 concentration [c(H2O2)] was deter-
mined with TiOSO4/H2SO4 by using UV/Vis spectrometry (Specord
S600, Analytik Jena). X(H2) and S(H2O2) were determined after
63 min of reaction from Equations (1) and (2), respectively. Typical-
ly, all catalytic tests were performed twice and mean S(H2O2), X(H2),
and P(H2O2) values were calculated. The mean error over all experi-
ments was 0.7 mmol L@1 [c(H2O2)] , 1.7 % [X(H2)] , 3.2 % [S(H2O2)] , and
277 mol kgPd

@1 h@1 [P(H2O2)] .

XðH2Þ ¼
Consumed H2 ½molA

Inlet H2 ½molA > 100% ð1Þ

SðH2O2Þ ¼
nðH2O2Þ ½molA

H2 consumed ½molA > 100% ð2Þ
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