KIT | KIT-Bibliothek | Impressum | Datenschutz

Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices

Gaulke, Marco 1; Janissek, Alexander 1; Peyyety, Naga Anirudh 1; Alamgir, Imtiaz 1; Riaz, Adnan 1; Dehm, Simone 1; Li, Han 1; Lemmer, Uli 2,3; Flavel, Benjamin S. 1; Kappes, Manfred M. 1,4; Hennrich, Frank 1; Wei, Li; Chen, Yuan; Pyatkov, Felix 1; Krupke, Ralph 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
3 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
4 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)

Abstract:

Single-walled carbon nanotubes as emerging quantum-light sources may fill a technological gap in silicon photonics due to their potential use as near-infrared, electrically driven, classical or nonclassical emitters. Unlike in photoluminescence, where nanotubes are excited with light, electrical excitation of single tubes is challenging and heavily influenced by device fabrication, architecture, and biasing conditions. Here we present electroluminescence spectroscopy data of ultra-short-channel devices made from (9,8) carbon nanotubes emitting in the telecom band. Emissions are stable under current biasing, and no enhanced suppression is observed down to 10 nm gap size. Low-temperature electroluminescence spectroscopy data also reported exhibit cold emission and line widths down to 2 meV at 4 K. Electroluminescence excitation maps give evidence that carrier recombination is the mechanism for light generation in short channels. Excitonic and trionic emissions can be switched on and off by gate voltage, and corresponding emission efficiency maps were compiled. Insights are gained into the influence of acoustic phonons on the line width, absence of intensity saturation and exciton–exciton annihilation, environmental effects such as dielectric screening and strain on the emission wavelength, and conditions to suppress hysteresis and establish optimum operation conditions.


Postprint §
DOI: 10.5445/IR/1000117970
Veröffentlicht am 15.02.2022
Originalveröffentlichung
DOI: 10.1021/acsnano.9b07207
Scopus
Zitationen: 19
Web of Science
Zitationen: 19
Dimensions
Zitationen: 20
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2020
Sprache Englisch
Identifikator ISSN: 1936-0851, 1936-086X
KITopen-ID: 1000117970
HGF-Programm 43.21.03 (POF III, LK 01) Carbon Nanosystems
Erschienen in ACS nano
Verlag American Chemical Society (ACS)
Band 14
Heft 3
Seiten 2709–2717
Vorab online veröffentlicht am 10.01.2020
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page