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1 Introduction

Unitals of order n are incidence structures consisting of n3 + 1 points such that each
block is incident with n+ 1 points and such that there are unique joining blocks. In the
language of designs, a unital of order n is a 2-(n3 + 1, n+ 1, 1) design.
Unitals were first constructed by Bose [4] as a series of balanced Kirkman arrangements
(i. e. resolvable Steiner systems) with certain parameters. Bose constructed the geometry
given by the points of the curve with equation Xq+1 + Y q+1 + Zq+1 = 0 in the projective
plane PG(2, q2) and the lines of PG(2, q2) containing more than one point of the curve.
In the resulting geometry (today known as classical or Hermitian unital), he found a
resolution, i. e. a partition of the set of q2(q2 − q + 1) lines into q2 subsets of q2 − q + 1
lines each.
Since then, unitals were considered as subgeometries of projective planes – in particular,
occurring as geometries on sets of absolute points of suitable polarities –, but they were
also studied in their own right as abstract designs, irrespective of an ambient plane.

In this thesis, we consider a special construction of unitals which is due to Grundhöfer,
Stroppel and Van Maldeghem [9]. Inspired by the action of the special unitary group
of degree 2 on the classical unital, they give a general construction for unitals of prime
power order q, where the points outside one block are given by the elements of the special
linear group of degree 2 over the finite field Fq, which we denote by SL(2, q). Their
construction is justified by the fact that they found by it a unital of order 4 which is
not isomorphic to the classical unital. We will call the unitals given by this construction
SL(2, q)-unitals.

In Chapter 2 we will be concerned with the special linear group SL(2, q) and its sub-
groups of orders q and q + 1, since they play a crucial role in the construction of
SL(2, q)-unitals.
In Chapter 3 we consider unitals as incidence structures and introduce the construction
of SL(2, q)-unitals. We will deal a lot with affine unitals, which arise from unitals by
removing one block (and all the points on it) and can be completed to unitals via a
parallelism on the short blocks. In any affine SL(2, q)-unital there are at least two
parallelisms – called “flat” [ and “natural” \ –, leading to non-isomorphic completions
if q ≥ 3.
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1 Introduction

We are interested in automorphism groups of (affine) SL(2, q)-unitals, considered in
Chapter 4. We use the isomorphism between the geometry of the short blocks of affine
SL(2, q)-unitals and a hyperplane complement of the classical generalized quadrangle
Q(4, q) to determine all possible automorphisms of affine SL(2, q)-unitals. Chapter 4 also
includes a proof that in any SL(2, q)-unital with parallelism [, there is one block fixed by
the full automorphism group. In Section 4.3, we collect some known classes of unitals
where no block is fixed by the full automorphism group.
In Chapter 5 we introduce a new class of parallelisms, which occurs in every affine
SL(2, q)-unital of odd order. Further, we consider translations, i. e. automorphisms of
unitals fixing every block through one point (the so-called center). We determine all
possible translations with center on the block at infinity of SL(2, q)-unitals with the new
parallelism and with the parallelism [.
Chapter 6 contains results where we use our knowledge on automorphism groups and
GAP [7] – a system for computational discrete algebra – to search for new affine
SL(2, q)-unitals and for further parallelisms. In addition to the non-existence of affine
SL(2, q)-unitals under certain conditions, we find three new affine SL(2, q)-unitals of
order 8 and several parallelisms for order 4, leading to twelve new SL(2, q)-unitals of
order 4. To compute the full automorphism groups and to check isomorphisms between
the new unitals, we use the GAP package UnitalSZ by Nagy and Mezőfi [20].
For the computer searches, we explain all considerations made before using GAP and
subsequently present the results. If you are interested in the specific implementation,
you may find the code in the GitHub repository

https://github.com/moehve/SL2q-Unitals_GAP.git

We conclude this thesis with some open questions about SL(2, q)-unitals.
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2 About SL(2, q)

Throughout this thesis, p will be a prime and q := pe a p-power. The finite field of order q
will be denoted by Fq.

2.1 Linear and Unitary Groups of Degree 2 over Finite
Fields

We will deal a lot with the special linear group of degree 2 over the field Fq, which we
denote by SL(2, q). Sometimes it will be convenient to consider a special unitary group
of degree 2 rather than the special linear group, which is why we will show certain
isomorphisms between linear and unitary groups of degree 2.

Consider the quadratic field extension Fq2/Fq and the unique involutory field automor-
phism

· : Fq2 → Fq2 , x 7→ x := xq,

with fixed field Fq. Let h : F2
q2 × F2

q2 → Fq2 be a Hermitian form, i. e. a sesquilinear
form with h(x, y) = h(y, x) for all x, y ∈ F2

q2 . Let M be the Gram matrix of h, i. e.

h(x, y) = xMy>.

We call h nondegenerate if detM 6= 0. Then we define the unitary group with
respect to h by

U(h) := {A ∈ GL(2, q2) | ∀x, y ∈ F2
q2 : h(xA, yA) = h(x, y)}

= {A ∈ GL(2, q2) | AMA
> = M},

the special unitary group with respect to h as

SU(h) := U(h) ∩ SL(2, q2)

3



2 About SL(2, q) 2.1 Linear and Unitary Groups of Degree 2 over Finite Fields

and the group of similitudes of h as

GU(h) := {A ∈ GL(2, q2) | ∃µA ∈ Fq2 ∀x, y ∈ F2
q2 : h(xA, yA) = µA · h(x, y)}

= {A ∈ GL(2, q2) | ∃µA ∈ Fq2 : AMA
> = µAM}.

The factor µA is called factor of similitude for A ∈ GU(h).

If h′ is another nondegenerate Hermitian form on F2
q2 and M ′ its Gram matrix, we call h

and h′ equivalent if there exists T ∈ GL(2, q2) with M ′ = TMT
>. Then,

U(h) = T−1U(h′)T , SU(h) = T−1 SU(h′)T and GU(h) = T−1GU(h′)T .

Since Fq2 is a finite field, all nondegenerate Hermitian forms on F2
q2 are equivalent (see e. g.

[8, Corollary 10.4]) and thus all resulting (special) unitary groups (groups of similitudes)
are conjugate.

Consider the (nondegenerate) Hermitian form

f : F2
q2 × F2

q2 → Fq2 ,
((x1, x2), (y1, y2)) 7→ sx1y2 − sx2y1,

where s ∈ F×q2 with trace TrFq2/Fq(s) = s + s = 0. Note that the Gram matrix of f is
Mf := ( 0 s

−s 0 ) and that Mf = Mf
>. We show certain isomorphisms between (projective)

unitary and linear groups, where the proof of the following theorem is adapted from
Stroppel (unpublished).

Theorem 2.1. Let Z := F×q2 · ( 1 0
0 1 ) denote the center of GL(2, q2) and let f be the

Hermitian form defined above. Then

(a) GU(f) = Z ·GL(2, q),

(b) PGU(f) ∼= PGL(2, q),

(c) SU(f) = SL(2, q).

Proof. Compute first that for any A ∈ GL(2, q2), we have

AMfA
> = detA ·Mf . (?)

Now let A ∈ GL(2, q) and c ∈ F×q2 and compute

(cA)Mf (cA)> = cc · AMfA
> (?)= cc · detA ·Mf .
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2 About SL(2, q) 2.1 Linear and Unitary Groups of Degree 2 over Finite Fields

Hence, cA ∈ GU(f). Conversely, let A ∈ GU(f) with factor of similitude µA. Then

µAMf = (µAMf )> = (AMfA
>)> = AMfA

> = µAMf

and hence µA = µA, i. e. µA ∈ Fq. Comparing determinants, we get µ2
A = detA · detA

and hence the norm NFq2/Fq(detA · µ−1
A ) = 1. Hilbert’s Satz 90 (see e. g. [14, Theorem

4.31]) gives the existence of u ∈ Fq2 such that detA · µ−1
A = u · u−1. We compute

MfA
> = µAA

−1Mf
(?)= µA(detA)−1MfA

> = uu−1MfA
>

and get uA = (uM−1
f MfA

>)> = uA. Hence, uA ∈ GL(2, q) and (a) follows. The
statement (b) follows directly from (a) with the second isomorphism theorem.

Considering (c), we see that if A ∈ SL(2, q) then A ∈ GU(f) with µA = detA = 1 and
hence A ∈ SU(f). If A ∈ SU(f), then we compute as above

MfA
> = µA(detA)−1MfA

> = MfA
>

and hence A = A and A ∈ SL(2, q).

The Hermitian form f appeared to be convenient to show isomorphisms between those
unitary and linear groups. But since the isomorphism type of the considered unitary
groups does not depend on the choice of the nondegenerate Hermitian form in our setting,
we get the following

Corollary 2.2. Let h : F2
q2 × F2

q2 → Fq2 be a nondegenerate Hermitian form. Then
PGU(h) ∼= PGL(2, q), SU(h) ∼= SL(2, q) and PSU(h) ∼= PSL(2, q).

For further considerations, we will usually choose our Hermitian form h to be

h : F2
q2 × F2

q2 → Fq2 ,
((x1, x2), (y1, y2)) 7→ x1y1 − x2y2,

with Gram matrix M := ( 1 0
0 −1 ). The special unitary group with respect to h is

SU(h) = {A ∈ GL(2, q2) | AMA
> = M and detA = 1}

= {
(
x y
y x

)
| x, y ∈ Fq2 and xx− yy = 1}.
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2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

2.2 Subgroups of SL(2, q) of Orders q and q + 1
While considering SL(2, q)-unitals, we will be interested in certain subgroups of
SL(2, q), namely in the Sylow p-subgroups of SL(2, q) and in subgroups of order q + 1.
The Sylow p-subgroups of SL(2, q) are well known to be characterized by their unique
fixed point in the action of SL(2, q) on the projective line PG(1, q) (see e. g. [13, Satz
II.8.2]). They have order q and there are q+ 1 Sylow p-subgroups, any two of which have
trivial intersection.

We will put some more effort into investigating subgroups of order q + 1. If q is even,
then SL(2, q) = PSL(2, q). If q is odd, then q + 1 is even and hence each subgroup of
SL(2, q) of order q+ 1 contains the unique involution −1. Thus, the quotient of any such
subgroup in PSL(2, q) is of order 1

2(q + 1). We state the possible isomorphism types of
subgroups of PSL(2, q) with order q + 1 if q is even and with order 1

2(q + 1) if q is odd.

Lemma 2.3. Let S̃ ≤ PSL(2, q) be a subgroup of order 1
k
(q + 1) where k = (2, q + 1).

Then:

(a) For q 6≡ 3 mod 4, the group S̃ is cyclic.

(b) For q ≡ 3 mod 4, there are the following possibilities:

(i) S̃ is cyclic.

(ii) S̃ is a dihedral group (and q ≥ 7).
(iii) S̃ ∼= A4 for q = 23 or S̃ ∼= S4 for q = 47.

For each q, there exists exactly one conjugacy class of cyclic subgroups of order 1
k
(q + 1).

For q ≡ 3 mod 4, q ≥ 7, there are two conjugacy classes of groups of type (b)(ii), which
are fused under PGL(2, q). For q = 23 and q = 47, respectively, there are two conjugacy
classes of groups of type (b)(iii), which are also fused under PGL(2, q).

Proof. Using Dickson’s list of subgroups of PSL(2, q) (see e. g. [13, Hauptsatz II.8.27]),
we see that there are no other possibilities for S̃. From [13, Satz II.8.5] we know that
there is exactly one conjugacy class of cyclic subgroups of PSL(2, q) of order 1

k
(q + 1).

Now let q ≡ 3 mod 4 and q ≥ 7 (note that a dihedral group of order 2 is cyclic). The
statement for the exceptional cases of type (b)(iii) can easily be computed using GAP.
For type (b)(ii), we use the isomorphisms PGL(2, q) ∼= PGU(h) and PSL(2, q) ∼= PSU(h),
where h is our Hermitian form with Gram matrix M = ( 1 0

0 −1 ).
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2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Let x be a generator of SFq2 := {y ∈ Fq2 | yy = 1} (note that SFq2 is cyclic of order q+ 1),
let b ∈ Fq2 with bb = −1 and consider

A := ( 1 0
0 x ) , B :=

(
0 b
b 0

)
and the subgroup D2 := 〈[A], [B]〉 ≤ PGU(h).

In PGU(h), we have ord([A]) = q + 1, ord([B]) = 2 and [B−1AB] = [A−1], i. e. D2 is a
dihedral subgroup of PGU(h) of order 2(q + 1). Consider the subgroup

D1 := 〈[A2], [B]〉 ≤ D2.

Then, ord([A2]) = 1
2(q+ 1) (recall that q is odd) and D1 is a dihedral group of order q+ 1.

In fact, D1 is a subgroup of PSU(h) since detB = 1 and [A2] = [
(

1 0
0 x2

)
] = [( x 0

0 x )] and
det ( x 0

0 x ) = 1. Since 1
2(q + 1) is even and q ≥ 7, the dihedral group D1 has two dihedral

subgroups of order 1
2(q + 1), which are not conjugate in D1, namely

D := 〈[A4], [B]〉 and D′ := 〈[A4], [BA2]〉.

But D and D′ are conjugate in D2 since [A−1BA] = [BB−1A−1BA] = [BA2].

Every dihedral subgroup of PSL(2, q) of order 1
2(q+1) is contained in a dihedral subgroup

of order q + 1, namely the normalizer of its cyclic subgroup of order 1
4(q + 1) (see [13,

Satz II.8.4/5]). But the partition of PSL(2, q) into conjugacy classes of subgroups in [13,
Satz II.8.5] also implies that there is only one conjugacy class of dihedral subgroups of
PSL(2, q) of order q + 1, and hence every such subgroup is a conjugate of (the image
of) D1. We have already seen that the two dihedral subgroups of D1 of order 1

2(q + 1)
are conjugate in PGU(h) ∼= PGL(2, q).

We use Lemma 2.3 to determine all subgroups of SL(2, q) of order q + 1.

Definition 2.4. Let k ∈ N. The generalized quaternion group of order 4k is given
by the presentation

〈A,B | A2k = 1, Ak = B2, B−1AB = A−1〉.

The generalized quaternion group of order 4 is cyclic and the generalized quaternion
group of order 8 is the quaternion group.

Proposition 2.5. Let S ≤ SL(2, q) be a subgroup of order q + 1. Then:

(a) For q 6≡ 3 mod 4, the group S is cyclic.

7



2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

(b) For q ≡ 3 mod 4, there are the following possibilities:
(i) S is cyclic.
(ii) S is a generalized quaternion group and the quotient S/{±1} in PSL(2, q) is a

dihedral group of order 1
2(q + 1).

(iii) The quotient S/{±1} in PSL(2, q) is isomorphic to A4 for q = 23 or isomorphic
to S4 for q = 47.

For each q, there exists exactly one conjugacy class of cyclic subgroups of order q + 1.
For q ≡ 3 mod 4, q ≥ 7, there are two conjugacy classes of groups of type (b)(ii),
which are fused under PGL(2, q) ≤ Aut(SL(2, q)). For q = 23 and q = 47, respectively,
there are two conjugacy classes of groups of type (b)(iii), which are also fused under
PGL(2, q) ≤ Aut(SL(2, q)).

Proof. Since S contains the central involution −1 if q is odd, S is completely determined
by its quotient in PSL(2, q). Again, we use the isomorphisms PSL(2, q) ∼= PSU(h) and
SL(2, q) ∼= SU(h).

Let first S̃ := {[( x 0
0 x )] | xx = 1} ≤ PSU(h) be a cyclic subgroup of order 1

k
(q + 1), where

k = (2, q + 1). Then, S := {( x 0
0 x ) | xx = 1} ≤ SU(h) is a cyclic subgroup of order q + 1

with S/{±1} = S̃.

Now let q ≡ 3 mod 4, let x be a generator of SFq2 and let b ∈ Fq2 with bb = −1. Let
further A :=

(
x2 0
0 x2

)
, B :=

(
0 b
b 0

)
and let S̃ := 〈[A], [B]〉 ≤ PSU(h) as in the proof of

Lemma 2.3 be a dihedral subgroup of order 1
2(q+ 1). Then the order of A equals 1

2(q+ 1),
A

1
4 (q+1) = B2 = −1 and B−1AB = A−1. Hence, S := 〈A,B〉 ≤ SU(h) is a generalized

quaternion group of order q + 1 with S/{±1} = S̃.

The statement concerning the conjugacy classes follows from the corresponding statement
for the subgroups of PSL(2, q).

Remark 2.6. The proposition shows that, up to the exceptional cases in (b)(iii), each
subgroup of SU(h) ∼= SL(2, q) of order q + 1 is conjugate (in PGU(h) ∼= PGL(2, q)) to
one of the following subgroups.

(a) A cyclic subgroup of SU(h) of order q + 1 is given by {( x 0
0 x ) | xx = 1}.

(b) For q ≡ 3 mod 4, a generalized quaternion subgroup of SU(h) of order q + 1 is
given by

〈A,B〉 with A :=
(
x2 0
0 x2

)
and B :=

(
0 b
b 0

)
,

where x generates SFq2 and bb = −1.
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2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Using GAP, we find that in SL(2, 23), any subgroup of type (b)(iii) is isomorphic to
SL(2, 3). In SL(2, 47), any subgroup S of type (b)(iii) is isomorphic to a non-split
extension

1→ C2 ↪→ S � S4 → 1

or equally to a non-split extension

1→ SL(2, 3) ↪→ S � C2 → 1.

A cyclic or generalized quaternion subgroup S ≤ SL(2, q) of order q + 1 may be chosen
as described in the following

Remark 2.7.

(a) Let d ∈ F×q such that X2 − tX + d has no root in Fq, where t = 1 for q even and
t = 0 for q odd. Then

C := {
(

a b
−db a+tb

)
| a2 + tab+ db2 = 1}

is a cyclic subgroup of SL(2, q) of order q + 1.

(b) For q ≡ 3 mod 4, let M :=
(
a b
−b a

)
∈ SL(2, q) be of order q + 1 and let A := M2.

Let x, y ∈ Fq with x2 + y2 = −1 and let B := ( x y
y −x ). Then S := 〈A,B〉 is a

generalized quaternion group of order q + 1.

Proof. Consider the extension field Fq2 ⊇ Fq as Fq2 = Fq(u) with u2 − tu + d = 0.
Consider further the isomorphism

Fq2 → {
(

a b
−db a+tb

)
| a, b ∈ Fq}, a+ ub 7→

(
a b
−db a+tb

)
,

where det
(

a b
−db a+tb

)
equals the norm NFq2/Fq(a+ ub). Then, C corresponds to SFq2 – the

group of elements with norm equal to 1 in Fq2 – and is hence cyclic of order q + 1.

For q ≡ 3 mod 4, note first that M is a generator of C and hence ordA = 1
2(q + 1)

and A 1
4 (q+1) = −1. Since in a finite field, each element can be written as sum of two

squares, there exist x, y ∈ Fq with x2 + y2 = −1. Compute detB = 1, B2 = −1 and
B−1MB = M−1 (and thus also B−1AB = A−1). Hence, S = 〈A,B〉 is a subgroup of
SL(2, q) and a generalized quaternion group of order q + 1.

We want to compute the (isomorphism type of the) stabilizer in the full automorphism
group of SL(2, q) for each of the possible subgroups S of order q + 1. We will do this in
Theorem 2.11, after some preliminary work.
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2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Lemma 2.8. Let m > 2 and let

S := 〈A,B | A2m = 1, Am = B2, B−1AB = A−1〉

be the generalized quaternion group of order 4m. Then every automorphism of S stabilizes
the cyclic subgroup 〈A〉.

Proof. Let α be an automorphism of S and assume that A · α = AkB for some k ∈
{0, . . . , 2m− 1}. Then A4 · α = (AkB)4 = (AkBAk)B(AkBAk)B = B4 = 1 and hence
A4 = 1, a contradiction for m > 2.

Lemma 2.9. For ±1 6= A ∈ SL(2, q):

(a) A has eigenvalue 1⇐⇒ tr(A) = 2⇐⇒ ord(A) = p.

(b) For p odd: A has eigenvalue −1⇐⇒ tr(A) = −2⇐⇒ ord(A) = 2p.

Proof. (a) If 1 is an eigenvalue of 1 6= A ∈ SL(2, q), then det(A) = 1 implies that the
second eigenvalue also equals 1. Thus, A is a conjugate of ( 1 0

x 1 ) with x ∈ F×q and
hence tr(A) = 2 and ord(A) = p. If tr(A) = 2, then the characteristic polynomial
χA(X) = X2−2X+1 has root 1. If ord(A) = p, then A solves 0 = Xp−1 = (X−1)p
and hence det(A− 1) = 0.

(b) If −1 is an eigenvalue of −1 6= A ∈ SL(2, q), then A is a conjugate of
(
−1 0
x −1

)
with

x ∈ F×q and hence tr(A) = −2 and ord(A) = 2p (since p odd). If tr(A) = −2, then
χA(X) = X2 + 2X + 1 has root −1. If ord(A) = 2p, then A solves 0 = X2p − 1 =
(X2 − 1)p = ((X − 1)(X + 1))p and hence A has eigenvalue 1 or −1. Eigenvalue 1 is
not possible because of (a) and thus A has eigenvalue −1.

In the following lemma, we exclude the case q = 3 and k = 2, since then S = 〈−1〉 and

# Aut(SL(2, 3))〈−1〉 = # PGL(2, 3) = 24 > 2 · 1 · 4.

Lemma 2.10. Let S := 〈s〉 ≤ SL(2, q) be cyclic of order 1
k
(q + 1) where either k = 1 or

q ≡ 3 mod 4, q ≥ 7 and k = 2. Then

# Aut(SL(2, q))S ≤ 2e(q + 1).

10



2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Proof. Consider the additive span 〈S〉+ ⊆ F2×2
q and the centralizer CF2×2

q
(S). The linear

representation
S → GL(F2

q)

is irreducible, for assume there is an 1-dimensional S-invariant subspace U ≤ F2
q. Then

every vector in U \ {0} is an eigenvector of s with eigenvalue λ ∈ F×q . But ord(s) = q+1
k
,

i. e. ord(λ) | ( q+1
k
, q − 1) and hence λ = ±1, contrary to Lemma 2.9. We thus know by

Schur’s lemma (see e. g. [25, Theorem 1.2]) that CF2×2
q

(S) is a skew field and, since it is
finite, a field (see e. g. [29, p. 1]).

We show that 〈S〉+ is a subfield of CF2×2
q

(S): Since S is cyclic and hence commutative,
〈S〉+ ⊆ CF2×2

q
(S). Further, 〈S〉+ is closed under addition and (since S is a group) under

multiplication. Since −1 ∈ S, we have −A ∈ 〈S〉+ for each A ∈ 〈S〉+. Let 0 6= A ∈ 〈S〉+.
We know 〈S〉+ to be an Fp-vector space of dimension ≤ d := dimFp(F2×2

q ) and hence
there exist ci ∈ Fp (not all zero) such that 0 = ∑d

i=0 ciA
i. Assume c0 6= 0, for otherwise

we may multiply by A−1 (recall that CF2×2
q

(S) is a field). Thus

1 = A ·
d∑
i=1

(− ci
c0

)Ai−1

with ∑d
i=1(− ci

c0
)Ai−1 ∈ 〈S〉+.

Now we know that 〈S〉+ and CF2×2
q

(S) are fields of characteristic p with

#〈S〉+ ≤ #CF2×2
q

(S).

For k = 1, we have #〈S〉+ ≥ #S > q. For k = 2 (and q ≡ 3 mod 4, q ≥ 7), assume
#〈S〉+ to be a p-power strictly less than q. Then

q + 1
2 ≤ #〈S〉+ ≤

q

p
<
q

2,

a contradiction. Hence #〈S〉+ ≥ q. Assume 〈S〉+ ∼= Fq (and still k = 2). Then
q+1

2 = ord(s) | q − 1, but ( q+1
2 , q − 1) = 2 and q+1

2 6= 2, since q ≥ 7. Thus, for both k = 1
and k = 2, we have

q < #〈S〉+ ≤ #CF2×2
q

(S).

Further, we have #CF2×2
q

(S) ≤ q2, for consider the action

CF2×2
q

(S) y F2
q.
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2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Let 0 6= v ∈ F2
q and A ∈ CF2×2

q
(S) with vA = v. Then A− 1 has eigenvalue 0 and thus,

since CF2×2
q

(S) is a field, A = 1. Hence, the stabilizers of the action are trivial and we get

#CF2×2
q

(S) ≤ #F2
q = q2.

Further, CF2×2
q

(S) contains Fq · 1 as a subfield, which forces #CF2×2
q

(S) to be a q-power
and hence #CF2×2

q
(S) = q2. Likewise, #CF2×2

q
(S) is a #〈S〉+-power and since #〈S〉+ > q,

we have #〈S〉+ = q2 and
〈S〉+ = CF2×2

q
(S) ∼= Fq2 .

Now we may compute # Aut(SL(2, q))S. See e. g. [21, Theorem 5.6.6] for the fact that
the automorphisms of SL(2, q) are exactly the semilinear projective transformations, i. e.

Aut(SL(2, q)) = PΓL(2, q) = PGL(2, q) o Aut(Fq),

where PGL(2, q) acts via conjugation and field automorphisms act entrywise on a matrix.
This action obviously induces ring automorphisms if applied to F2×2

q . Hence, there is a
homomorphism

ϕ : P(NΓL(2,q)(S))→ Aut(〈S〉+) = Aut(Fq2).

We compute
kerϕ = P(CΓL(2,q)(〈S〉+)) = P(CΓL(2,q)(S)).

Since Fq · 1 ≤ CF2×2
q

(S) = 〈S〉+, we have CΓL(2,q)(〈S〉+) ≤ CΓL(2,q)(Fq · 1). But no non-
linear semilinear map centralizes Fq ·1 (while all linear ones do) and hence CΓL(2,q)(Fq ·1) =
GL(2, q). Thus we get

kerϕ = P(CGL(2,q)(〈S〉+)) = P(CGL(2,q)(S)).

Since CF2×2
q

(S) is a field, CGL(2,q)(S) = CF2×2
q

(S)× ≥ F×q · 1 and hence

# kerϕ = #P(CGL(2,q)(S)) = q2 − 1
q − 1 = q + 1.

Finally,

# Aut(SL(2, q))S = #P(NΓL(2,q)(S)) = # kerϕ ·# imϕ

≤ (q + 1) ·# Aut(Fq2) = 2e(q + 1).

12



2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Theorem 2.11.

(a) For C ≤ SL(2, q) cyclic of order q + 1, we have

Aut(SL(2, q))C ∼= Cq+1 o C2e.

(b) For q ≡ 3 mod 4, q > 7 and S ≤ SL(2, q) generalized quaternion of order q + 1,
we have

# Aut(SL(2, q))S = e(q + 1)

and Aut(SL(2, q))S is conjugate to a subgroup of Aut(SL(2, q))C.

(c) For q ∈ {23, 47} and S ≤ SL(2, q) of type (b)(iii) in Proposition 2.5 or q = 7 and
S ≤ SL(2, q) a quaternion group, we have

Aut(SL(2, q))S ∼= S4.

Proof. Let C ≤ SL(2, q) be cyclic of order q + 1. In SU(h) ∼= SL(2, q), we can choose

C := {( x 0
0 x ) | xx = 1},

according to Remark 2.6. Let ϕ : Fq2 → Fq2 , x 7→ xp, be the Frobenius automorphism of
order 2e. Then ϕ induces an automorphism of SU(h) of order 2e by

(
x y
y x

)
· ϕ :=

(
xp yp

yp xp

)
.

Obviously, this automorphism stabilizes C. Now consider the subgroup

U := {[( 1 0
0 a )] | aa = 1} ≤ PU(h).

The group C is fixed pointwise under conjugation by U . Further, U is cyclic of order
q + 1, is normalized by 〈ϕ〉 and has trivial intersection with 〈ϕ〉 as automorphism groups
of SU(h). Hence,

Aut(SL(2, q))C ≥ Cq+1 o C2e

and the statement follows with Lemma 2.10.

Now let q ≡ 3 mod 4, q > 7, and let S := 〈A,B〉 ≤ SL(2, q) be a generalized quaternion
subgroup of order q+1 > 8. According to Remark 2.6 and again by using the isomorphism
SU(h) ∼= SL(2, q) we may choose

A :=
(
x2 0
0 x2

)
and B :=

(
0 b
b 0

)
,

13



2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

where x generates SFq2 and bb = −1. From Lemma 2.10 and the above, we know

Aut(SL(2, q))〈A〉 ∼= Aut(SL(2, q))C ∼= U o 〈ϕ〉.

Since all automorphisms of a generalized quaternion group of order greater than 8 stabilize
the subgroup 〈A〉 (see Lemma 2.8), we have

Aut(SL(2, q))S ≤ Aut(SL(2, q))〈A〉.

Let [( 1 0
0 a )] ∈ U and compute

( 1 0
0 a )−1B ( 1 0

0 a ) = ( 1 0
0 a )B ( 1 0

0 a ) =
(

0 ab
ab 0

)
= ( a 0

0 a )B.

This is in S exactly if a is an even power of x. Now let 1 ≤ l ≤ 2e − 1. Since q ≡ 3
mod 4, we have p ≡ 3 mod 4 and hence pl − 1 is even for every l ∈ {1, . . . , 2e− 1} and
1
2(pl − 1) is even exactly if l is even. Thus,

N(bpl−1) := NFq2/Fq(bp
l−1) = (bb)pl−1 = (−1)pl−1 = 1

for every l ∈ {1, . . . , 2e − 1} and N(b 1
2 (pl−1)) = 1 exactly if l is even. Hence, bpl−1 is a

power of x, say bpl−1 = xm, where m ≡ l mod 2. Compute

(
(

1 0
0 xk

)−1
B
(

1 0
0 xk

)
) · ϕl = (

(
xk 0
0 xk

)
B) · ϕl

=
(
xkp

l 0
0 xkp

l

)(
0 bp

l

b
pl 0

)
=
(
xkp

l 0
0 xkp

l

)(
bp
l−1 0
0 b

pl−1

)
B

=
(
xkp

l+m 0
0 xkp

l+m

)
B.

This is in S exactly if kpl +m is even, i. e. exactly if

0 ≡ kpl +m ≡ k +m ≡ k + l mod 2.

Hence, for each ϕl ∈ 〈ϕ〉 (0 ≤ l ≤ 2e − 1), there are exactly 1
2(q + 1) elements u :=

[
(

1 0
0 xk

)
] ∈ U such that (u−1Bu) · ϕl ∈ S, and we get

# Aut(SL(2, q))S = 2e · 1
2(q + 1) = e(q + 1).

The cases in (c) are obtained by direct computation, e. g. using GAP.

14



2 About SL(2, q) 2.2 Subgroups of SL(2, q) of Orders q and q + 1

Remark 2.12. Since

( 1 0
0 a ) · ϕe = ( 1 0

0 aq ) = ( 1 0
0 a ) = ( 1 0

0 a )−1

for aa = 1, we see that U o 〈ϕe〉 is a dihedral group of order 2(q + 1). In particular, if
e = 1, then Aut(SL(2, q))C is a dihedral group of order 2(q + 1).

Corollary 2.13. Let S ≤ SL(2, q) be a subgroup of order q + 1. Then the stabilizer
Aut(SL(2, q))S is solvable.
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3 Unitals

We will first consider (affine) unitals as abstract incidence structures, before we introduce
the construction of (affine) SL(2, q)-unitals.

3.1 Unitals as Incidence Structures
Definition 3.1. An incidence structure is a triple I = (P ,B, I), where P and B are
disjoint sets and I ⊆ P × B. The elements of P are called points, the elements of B are
called blocks and I is called the incidence relation. We call a point x incident with
a block B if (x,B) ∈ I.

We will often use geometric language and say that a point lies on a block or a block goes
through a point if they are incident. We will also say that two points (blocks) are joined
(meet / intersect) if there is a block (point) incident with both of them.
The set of points incident with a block B will be denoted by PB and the set of blocks
incident with a point x will be denoted by Bx.

Definition 3.2. Let I = (P ,B, I) and I ′ = (P ′,B′, I ′) be incidence structures. An
isomorphism α between I and I ′ is a bijective map α : P ∪ B → P ′ ∪ B′, where

(i) P · α = P ′ and B · α = B′,
(ii) for every (x,B) ∈ P × B : (x,B) ∈ I ⇐⇒ (x · α,B · α) ∈ I ′.

An isomorphism between I and I is called an automorphism and we denote by Aut(I)
the full automorphism group of I.

Definition 3.3. Let n ∈ N. An incidence structure U = (P ,B, I) is called a unital of
order n if:

(U1) There are n3 + 1 points.

(U2) Each block is incident with n+ 1 points.

(U3) For any two points there is exactly one block incident with both of them.

16



3 Unitals 3.1 Unitals as Incidence Structures

Simple counting yields that in a unital of order n there are n2 blocks through each point
and n2(n2 − n+ 1) blocks in total.

Remark 3.4. We will often consider an automorphism α of a unital as bijection on the
point set such that for each block B there is a block B′ with PB · α = PB′.

Example 3.5. (a) The unital of order 1 consists of two points on one block.

(b) There is only one isomorphism type of unitals of order 2. These are isomorphic to
the affine plane over the field F3.

In the construction of SL(2, q)-unitals (see Section 3.2.1), there is one block playing a
special role as “block at infinity”. For this reason, we will deal a lot with affine unitals,
meaning there is “one block missing”. Note that there are many constructions of unitals
(embedded in projective planes), where there is considered only one point at infinity and
hence a unital of order n has n3 affine points. However, in this thesis, an affine unital
will always be a block-affine unital.

Definition 3.6. Let U = (P ,B, I) be a unital of order n and let B ∈ B be a block of U.
The affine part BU = (BP , BB, BI) of U is the incidence structure obtained from U by
removing B and all the points incident with B, i. e.

BP := P \ PB, BB := B \ {B}, BI := I|BP×BB.

Definition 3.7. Let n ∈ N, n ≥ 2. An incidence structure U = (P ,B, I) is called an
affine unital of order n if:

(AU1) There are n3 − n = (n− 1)n(n+ 1) points.

17



3 Unitals 3.1 Unitals as Incidence Structures

(AU2) Each block is incident with either n or n + 1 points. The blocks incident with
n points will be called short blocks and the blocks incident with n+ 1 points will
be called long blocks.

(AU3) Each point is incident with n2 blocks.

(AU4) For any two points there is exactly one block incident with both of them.

(AU5) There exists a parallelism on the short blocks, meaning a partition of the set
of all short blocks into n+ 1 parallel classes of size n2 − 1 such that the blocks of
each parallel class are pairwise non-intersecting.

The number of short blocks indicated in Axiom (AU5) follows indeed from Axioms
(AU1)–(AU4), as shown in the following

Proposition 3.8. Axioms (AU1)–(AU4) yield: In any affine unital of order n, there
are n2(n2 − n + 1) − 1 blocks. Through each point go n + 1 short blocks and there are
(n2 − 1)(n+ 1) short blocks in total.

Proof. Let x be a point of an affine unital, k the number of short blocks through x and
l the number of long blocks through x. Then, by (AU3), k + l = n2. With (AU1) and
(AU4), we get

n3 − n− 1 = k(n− 1) + ln = (k + l)n− k = n3 − k

and hence k = n+ 1.
The total number of short blocks is given by

(n3 − n)k
n

= (n3 − n)(n+ 1)
n

= (n2 − 1)(n+ 1)

and the total number of blocks by

(n2 − 1)(n+ 1) + (n3 − n)(n2 − n− 1)
n+ 1 = n2(n2 − n+ 1)− 1.

It is obvious from the definitions that the affine part BU of a unital U satisfies the axioms
of an affine unital. A parallelism as required in (AU5) is given by

πB := {Bx \ {B} | x ∈ B}.

18
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The completion of an affine unital to a unital is also possible.

Proposition 3.9. Let U = (P ,B, I) be an affine unital of order n and let π :=
{B1, . . . ,Bn+1} be a parallelism as required in (AU5). Set

Pπ := P ∪ π, Bπ := B ∪ {[∞]π} and
Iπ := I ∪ {(Bi, B) | 1 ≤ i ≤ n+ 1, B ∈ Bi} ∪ {(Bi, [∞]π) | 1 ≤ i ≤ n+ 1}.

Then Uπ = (Pπ,Bπ, Iπ) is a unital of order n, the π-closure of U. We call the block
[∞]π the block at infinity and the points Bi, 1 ≤ i ≤ n+ 1, the points at infinity.

Proof. The axioms (U1) and (U2) are obviously satisfied by Uπ. Any two affine points
are still joined by a unique block. Any two points at infinity are joined exactly by the
block at infinity. Consider an affine point x ∈ P and a point at infinity Bi ∈ π. Since
there are n + 1 short blocks through x and the blocks of each parallel class in π are
pairwise non-intersecting, there is exactly one (short) block B ∈ Bi incident with x.

It is clear from the construction that [∞]π(Uπ) = U holds for each affine unital U with
parallelism π. If U is a unital and B a block of U, then (BU)πB is isomorphic to U via
[∞]πB 7→ B.

For the completion of an affine unital to a unital, we used the parallelism required in
(AU5). The existence of such a parallelism must explicitly be required, as is shown by
the following

Example 3.10 ((AU5) is independent of (AU1)–(AU4)). Consider the incidence struc-
ture I with 24 points, 62 blocks and incidences as indicated in Figure 3.1, where each
column represents one block. For example, if we label the points with 1, 2, . . . , 24, the
first block is incident with the points 1, 2, 3 and 4, the second block with the points 1, 5,
6 and 7 and so on. Then, I satisfies axioms (AU1)–(AU4) with n = 3, but there is no
parallelism on the short blocks as required in (AU5). Indeed, there is no set of 8 pairwise
non-intersecting short blocks in I, which can easily be computed using GAP, or with
some patience also manually.
The incidence structure I can be obtained from an affine unital by slight changes of
incidences. Consider the unital BBTAbstractUnital(1) in the GAP-package UnitalSZ
[20]. This is the first unital in a library of unitals constructed by Betten, Betten and
Tonchev [3]. By removing a suitable block and all the points on it, we obtain the affine
unital pictured in Figure 3.2. The only changes compared to I are the ones marked with
white circles.
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3 Unitals 3.1 Unitals as Incidence Structures

Figure 3.1: An incidence structure satisfying axioms (AU1)–(AU4), but not (AU5)

Figure 3.2: An affine part of a unital constructed by Betten, Betten and Tonchev
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Note that though we must require the existence of a parallelism in the definition of an
affine unital, this parallelism does not have to be unique. It is therefore not convenient
to require that isomorphisms of affine unitals fix certain parallelisms and we will only
ask them to be isomorphisms of the incidence structures.

It might still be useful to have a notion of two parallelisms being equivalent.

Definition 3.11. Let U be an affine unital and let π and π′ be two parallelisms of U.
We call π and π′ equivalent if there is an automorphism of U which maps π to π′.

There is a strong connection of two parallelisms being equivalent and the corresponding
closures being isomorphic:

Proposition 3.12. Let U = (P ,B, I) be an affine unital of order n and let π and π′ be
equivalent parallelisms of U. Every automorphism α ∈ Aut(U) with π · α = π′ extends to
a unique isomorphism α̃ : Uπ → Uπ′ with α̃|U = α.

Proof. Let π := {B1, . . . ,Bn+1} and π′ := {B′1, . . . ,B′n+1} with Bi ·α = B′i (1 ≤ i ≤ n+ 1)
as subsets of the block set B. We set

α̃ :


x 7→ x · α, x ∈ P ,
Bi 7→ B′i, 1 ≤ i ≤ n+ 1,
B 7→ B · α, B ∈ B,

[∞]π 7→ [∞]π′ .

Then α̃ is obviously an isomorphism of unitals Uπ → Uπ′ with α̃|U = α. It is the only way
to extend α, since there is only one non-affine block and the points Bi and B′i, respectively,
are the only non-affine points incident with the short blocks.

Since each automorphism of the π-closure of any affine unital U that stabilizes the
block [∞]π obviously induces an automorphism of U that fixes π, we get the following

Corollary 3.13. Let U be an affine unital with parallelism π. The automorphisms of the
π-closure Uπ fixing the block [∞]π correspond exactly to the automorphisms of U fixing
the parallelism π.

Example 3.14. An affine unital of order 2 has six points. Through each point go four
blocks, three of which are short blocks, i. e. incident with two points. Hence, the two long
blocks of the affine unital are non-intersecting and there is only one possible isomorphism
type of affine unitals of order 2:
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1 2 3

654

We still have to find a parallelism. First we notice that there are two possible parallel
classes containing the block 14:

1 2 3

654

1 2 3

654

It is easily seen from the pictures that each of these parallel classes is contained in a
unique parallelism:

1 2 3

654

1 2 3

654

It is also obvious that interchanging the points 2 and 3 yields an automorphism of the
affine unital that interchanges the two parallelisms, which are thus equivalent.
Now we may complete the affine unital to a unital of order 2 by adding a block at
infinity and three points at infinity – labeled with the parallel classes , and .
Incidences are as in Proposition 3.9. Since the two parallelisms are equivalent, this is
one way to see that there is only one isomorphism type of unitals of order 2.

3.2 SL(2, q)-Unitals
We are now ready to consider the construction of those unitals which we are mainly
interested in, namely SL(2, q)-unitals. As mentioned in the introduction, the construction
of those unitals is due to Grundhöfer, Stroppel and Van Maldeghem [9] and motivated
by the action of the special unitary group of degree 2 on the classical unital. We choose
a slightly different approach by using the notion of affine unitals.
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3.2.1 Construction of SL(2, q)-Unitals
Let S ≤ SL(2, q) be a subgroup of order q+1 and let T ≤ SL(2, q) be a Sylow p-subgroup.
Recall that T has order q (and thus trivial intersection with S), that any two conjugates
T h := h−1Th, h ∈ SL(2, q), have trivial intersection unless they coincide and that there
are q + 1 conjugates of T .
Consider a collection D of subsets of SL(2, q) such that each set D ∈ D contains 1, that
#D = q + 1 for each D ∈ D, and the following properties hold:

(Q) For each D ∈ D, the set

D∗ := {xy−1 | x, y ∈ D, x 6= y}

contains q(q + 1) elements, i. e. the map

(D ×D) \ {(x, x) | x ∈ D} → SL(2, q), (x, y) 7→ xy−1,

is injective.

(P) The system consisting of S \ {1}, all conjugates of T \ {1} and all sets D∗ with
D ∈ D forms a partition of SL(2, q) \ {1}.

We will see in the example in Section 3.2.2 that for each prime power q there exists at
least one such collection D.

Set

P := SL(2, q),
B := {Sg | g ∈ SL(2, q)} ∪ {T hg | h, g ∈ SL(2, q)} ∪ {Dg | D ∈ D, g ∈ SL(2, q)}

and let the incidence relation I ⊆ P × B be containment.

Then we call the incidence structure US,D := (P ,B, I) an affine SL(2, q)-unital.

Although the D ∈ D are not subgroups, we will call the sets Dg (right) cosets of D.
We collect some properties of affine SL(2, q)-unitals and show that they are indeed affine
unitals of order q.

Proposition 3.15. Let US,D be an affine SL(2, q)-unital. Then:

(a) #D = q − 2.
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(b) We denote D̂ := {Dd−1 | d ∈ D}. For each E ∈ D̂, the set

D̃ := (D \ {D}) ∪ {E}

satisfies all the properties required for an affine SL(2, q)-unital and US,D = US,D̃.

(c) The blocks through 1 are exactly S, all conjugates of T and all elements of the D̂,
D ∈ D.

(d) SL(2, q) acts as a group of automorphisms on US,D via multiplication from the right.
The action is regular on the point set and we may identify each element x ∈ SL(2, q)
with the point 1 · x.

(e) US,D is an affine unital of order q.

Proof. (a) The size of D can easily be computed using properties (P) and (Q) and the
fact that the order of SL(2, q) equals (q − 1)q(q + 1).

(b) Let E ∈ D̂. Then 1 ∈ E, the set E contains q + 1 elements and E∗ = D∗. Since the
sets of right cosets of D and E obviously coincide, the statement follows.

(c) It is clear that in the set of all right cosets of S and all right cosets of the Sylow p-
subgroups exactly the groups themselves contain 1. Now let D ∈ D and g ∈ SL(2, q).
Then 1 ∈ Dg exactly if g−1 ∈ D and hence Dg ∈ D̂.

(d) Clear from the definition of points and blocks.

(e) The number of points of US,D equals # SL(2, q) = (q− 1)q(q+ 1). Each block of type
Sg or Dg, respectively, is incident with q + 1 points and each block T hg is incident
with q points. For the number of blocks incident with a given point, we consider first
the blocks through 1. Incident with 1 are

1 + (q + 1) + (q − 2)(q + 1) = q2

blocks. Because of the transitive action of SL(2, q) on the points, there is the same
number of blocks through each point. For the same reason, we must only show
that each point different from 1 is joined uniquely to 1. But this is clear from the
partition property (P). It remains to find a parallelism on the short blocks T hg with
q + 1 parallel classes of size q2 − 1. One possibility is obviously given by partitioning
the short blocks into the q + 1 sets of right cosets (each of size (q−1)q(q+1)

q
= q2 − 1)

of the Sylow p-subgroups.
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Definition 3.16. Let US,D be an affine SL(2, q)-unital.

(a) We call the sets D̂ := {Dd−1 | d ∈ D}, D ∈ D, the hats of US,D.

(b) We call the blocks Dg, D ∈ D and g ∈ SL(2, q), the arcuate blocks of US,D.

The following considerations justify the name “arcuate blocks”: Consider SL(2, q) as
subset of the 4-dimensional affine space AG(4, q) ∼= F2×2

q . The elements of the Sylow
p-subgroup T := {( 1 x

0 1 ) | x ∈ Fq} are exactly the points of the affine line

{1 + λ ( 0 1
0 0 ) | λ ∈ Fq}

and the elements of each conjugate T h, h ∈ SL(2, q), are exactly the points of the affine
line {1 + λ ( 0 1

0 0 )h | λ ∈ Fq}. Further, any block B of an affine SL(2, q)-unital is given by
the point set of a line in AG(4, q) exactly if this holds for each coset Bg, g ∈ SL(2, q).
Indeed, in any affine SL(2, q)-unital, the short blocks are the only blocks such that three
points lie on the same line in AG(4, q), as shown in Proposition 3.18.

Lemma 3.17. Let g, h ∈ SL(2, q) \ {1} with g 6= h and assume there exists λ ∈ Fq such
that

g − 1 = λ(h− 1).

Then, ord(g) = ord(h) = p.

Proof. Let g := ( a bc d ), h := ( w x
y z ) ∈ SL(2, q) and let λ ∈ Fq such that g − 1 = λ(h− 1).

Since det g = deth = 1, we get

0 = ad− bc− 1
= (λ(w − 1) + 1) · (λ(z − 1) + 1)− λ2xy − 1
= λ2(wz − xy − w − z + 1) + λ(w − 1 + z − 1) + 1− 1
= λ2(2− w − z) + λ(w + z − 2)
= (tr(h)− 2)λ(1− λ).

If λ = 0, then g = 1 and if λ = 1, then g = h. Hence, tr(h) = 2 and thus ord(h) = p, see
Lemma 2.9. Further, we get

tr(g) = tr(λ(h− 1)) + tr(1) = λ(tr(h)− 2) + 2 = 2

and hence ord(g) = p.
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Proposition 3.18. Let U := US,D be an affine SL(2, q)-unital and let B be a long block
through 1 in U. Let further g, h and k be three different points on B. Then there exists
no λ ∈ Fq such that g − k = λ(h− k).

Proof. Let λ ∈ Fq and assume g− k = λ(h− k). Then gk−1 − 1 = λ(hk−1− 1). Since g,
h and k are three different points, we obtain with Lemma 3.17 that

ord(gk−1) = ord(hk−1) = p.

Assume B = S. Then ord(gk−1) divides #S = q + 1 and is hence different from p. Thus,
B = D ∈ D. But then gk−1 is contained in Dk−1 ∈ D̂ and ord(gk−1) 6= p because of the
partition property (P).

Considered in the affine space AG(4, q), the long blocks are hence not lines, but partial
ovoids, in the sense that no three points are collinear. This justifies the name “arcuate”.
Note that the block S (and its cosets) will not be called arcuate because of the special
role of S as the long block through 1 which is a subgroup of SL(2, q).

We are now ready to define SL(2, q)-unitals as closures of affine SL(2, q)-unitals.

Definition 3.19. Let US,D be an affine SL(2, q)-unital and let π be a parallelism of US,D.
We call the π-closure of US,D an SL(2, q)-(π-)unital and denote it by Uπ

S,D.

Let P be the set of Sylow p-subgroups of SL(2, q). The short blocks through the point 1
in any affine SL(2, q)-unital US,D are exactly the elements of P. Since they intersect in
one point, any two of them are contained in different parallel classes, irrespective of the
considered parallelism π. We may thus label the parallel classes in π – and hence also
the points at infinity in any SL(2, q)-unital Uπ

S,D – by the Sylow p-subgroups of SL(2, q).

There are two parallelisms of affine SL(2, q)-unitals to which we will pay more attention,
since they exist for every order q and since they are preserved under right multiplication
by SL(2, q).
One possible such parallelism – the one mentioned in the proof of Proposition 3.15
– is the partition of the short blocks into the q + 1 sets of right cosets of the Sylow
p-subgroups. Multiplication from the right by SL(2, q) fixes each parallel class. We will
call this parallelism “flat” and denote it by the musical sign [:

[ := {T · SL(2, q) | T ∈ P}.

The notion “flat” indicates that this parallelism is, though the most obvious, not the one
having the “nicest” properties. The parallelism which will turn out to be more “natural”
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3 Unitals 3.2 SL(2, q)-Unitals

– and is hence denoted by the musical sign \ – is given by the partition of the short blocks
into the q + 1 sets of left cosets of the Sylow p-subgroups:

\ := {SL(2, q) · T | T ∈ P}.

Each left coset gT of a Sylow p-subgroup T equals the right coset T g−1
g and is hence a

(short) block in any affine SL(2, q)-unital. Right multiplication with h ∈ SL(2, q) maps a
left coset gT to the left coset ghT h. The action of SL(2, q) is thus conjugation on the
(labels of the) parallel classes of \.

The two parallelisms [ and \ are in fact the only two parallelisms in any affine SL(2, q)-
unital that are preserved under right multiplication by SL(2, q), as shown in Propo-
sition 3.22. Recall first the following well-known lemma about normalizers of Sylow
p-subgroups (see e. g. [14, p. 81]).

Lemma 3.20. Let G be a finite group, P a Sylow p-subgroup of G and H a subgroup of
order pj contained in the normalizer N(P ). Then H ≤ P .

Lemma 3.21. Any two different Sylow p-subgroups of SL(2, q) generate SL(2, q).

Proof. Let first T1 := {( 1 x
0 1 ) | x ∈ Fq} and T2 := {

(
1 0
y 1

)
| y ∈ Fq}. We show 〈T1 ∪ T2〉 =

SL(2, q). Let ( a bc d ) ∈ SL(2, q) and assume without restriction c 6= 0, for else we have
d 6= 0 and consider

(
a+b b
d d

)
= ( a b0 d ) ( 1 0

1 1 ). Compute
(

1 1
c
(a−1)

0 1

)
( 1 0
c 1 )

(
1 1
c
(d−1)

0 1

)
=
(
a 1
c
(a−1)

c 1

) (
1 1
c
(d−1)

0 1

)
=
(
a 1
c
(ad−a+a−1)

c d−1+1

)
= ( a bc d ) ,

since ad− bc = 1. Thus, 〈T1 ∪ T2〉 = SL(2, q).
Now let P,Q ∈ P, P 6= Q, and consider the set A := {P x | x ∈ Q}. Assume P x = P y

with x, y ∈ Q. Then xy−1 ∈ Q ∩ N(P ) and hence x = y, according to Lemma 3.20.
Obviously, Q /∈ A and we get A∪{Q} = P. Thus, for any two different Sylow p-subgroups
P and Q of SL(2, q), we have

SL(2, q) ≥ 〈P ∪Q〉 ≥ 〈
⋃

(A ∪ {Q})〉 = 〈
⋃

P〉 ≥ 〈T1 ∪ T2〉 = SL(2, q).

Proposition 3.22. Let US,D be an affine SL(2, q)-unital with parallelism π such that
right multiplication by SL(2, q) preserves π. Then π ∈ {[, \}.

Proof. Let T ∈ P and let [T ] denote the parallel class of π containing the short block T .
Since right multiplication with t ∈ T fixes the block T , it fixes also the parallel class [T ].
We distinguish two cases.
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Assume first that [T ] contains exactly the q2 − 1 left cosets of T . Then, for each
h ∈ SL(2, q),

[T ] · h = {gT | g ∈ SL(2, q)} · h = {gTh | g ∈ SL(2, q)} = {ghT h | g ∈ SL(2, q)},

which equals the set of left cosets of T h and must be a parallel class of π. Hence, each
parallel class of π is the complete set of left cosets of some Sylow p-subgroup, meaning
π = \.
Assume now that [T ] contains at least one short block T hg = gT hg which is not a left
coset of T , i. e. T hg 6= T . Then, right multiplication with T as well as right multiplication
with T hg fixes a block in [T ] and hence also the parallel class [T ]. Since 〈T∪T hg〉 = SL(2, q),
according to Lemma 3.21, right multiplication with SL(2, q) stabilizes [T ] and [T ] equals
the set of right cosets of T . The same reasoning works for each parallel class and hence
π = [.

3.2.2 Example: The Classical Unital
We will now see that for each prime power q = pe, the classical (Hermitian) unital of
order q is an SL(2, q)-unital. Since the construction of SL(2, q)-unitals was inspired by
the action of the special unitary group of degree 2 (isomorphic to SL(2, q)) on the classical
unital of order q (see [9]), this should not come as a big surprise.

Consider the Hermitian form

H : F3
q2 × F3

q2 → Fq2 ,
((x1, x2, x3), (y1, y2, y3)) 7→ x1y1 − x2y2 − x3y3,

where ·̄ : Fq2 → Fq2 , x 7→ x := xq, denotes the involutory field automorphism with fixed
field Fq.
Then the classical unital of order q is defined1 as U = (P ,B, I) with

P := {[v] := Fq2 · v | v ∈ F3
q2 \ {0} and H(v, v) = 0},

1 In terms of projective geometry, the points of the unital are those points of the classical projective
plane PG(2, q2) that satisfy the equation

Xq+1 − Y q+1 − Zq+1 = 0.

The blocks of the unital are the projective lines in PG(2, q2) which contain more than one point
of the unital. For a survey of unitals embedded in finite projective planes, see the monograph of
Barwick and Ebert [2].
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B := {W ≤ F3
q2 | dimW = 2 and #{P ∈ P | P ≤ W} > 1} and

I := {(P,B) ∈ P × B | P ≤ B}.

This incidence structure is indeed a unital, as was already shown by Bose in [4, Sections
4 and 5] or can also be looked up in [2, Chapter 2].

We fix the block B := 〈(1, 0, 0), (0, 1, 0)〉 and consider the affine part BU. (Note that
#{P ∈ P | P ≤ B} = q + 1 and hence B ∈ B.) The point set of BU is

BP = {[x, y, 1] | x, y ∈ Fq2 , xx− yy − 1 = 0}
∼= {(x, y) ∈ F2

q2 | xx− yy = 1}.

Let h as in Chapter 2 denote the Hermitian form

h : F2
q2 × F2

q2 → Fq2 ,
((x1, x2), (y1, y2)) 7→ x1y1 − x2y2,

and M := ( 1 0
0 −1 ) its Gram matrix. The special unitary group with respect to h is

SU(h) = {
(
x y
y x

)
| x, y ∈ Fq2 and xx− yy = 1}

∼= BP ,

where multiplication on BP is given by (x, y) · (w, z) := (xw+ yz, xz+ yw). In particular,
BP is closed under right multiplication by SU(h).

We fix 1 := (1, 0) ∈ BP and describe the blocks through 1, i. e. the affine lines of F2
q2

through (1, 0) which contain more than one point P ∈ BP :

1. The line (1, 0) + Fq2(0, 1) meets BP only in 1, it is no block of, but a tangent to the
unital.

2. The intersection of (1, 0) + Fq2(1, 0) with BP is

C ′ := {(x, 0) | xx = 1}.

Note that C ′ ≤ SU(h) equals the cyclic subgroup of order q + 1 which is given in
Remark 2.6 (a).

3. Let s ∈ Fq2 , ss = 1. The intersection of (1, 0) + Fq2(1, s) with BP is

T ′s := {(1 + x, xs) | x+ x = 0}.
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3 Unitals 3.2 SL(2, q)-Unitals

The sets T ′s, ss = 1, are exactly the q + 1 Sylow p-subgroups of SU(h).

4. Let t ∈ Fq2 , tt /∈ {0, 1}. The intersection of (1, 0) + Fq2(1, t) with BP is

H ′t := {(1 + x, xt) | x+ x = (tt− 1)xx}.

Lemma 3.23. The sets H ′t, tt /∈ {0, 1}, satisfy property (Q) and

Ĥ ′t := {H ′t · d−1 | d ∈ H ′t} = {H ′c | cc = tt}.

Proof. Let d := (1 + y, yt) ∈ H ′t \ {(1, 0)} and (1 + x, xt) ∈ H ′t. Compute

(1 + x, xt) · d−1 = (1 + y

y
(y − x), t(x− y)),

using d−1 = (1 + y,−yt) and (1− tt) = −(y + y)(yy)−1. Let c := −yy−1t. Then cc = tt

and (1 + x, xt) · d−1 ∈ H ′c.
Now let (1 + x, xt), (1 +w,wt) ∈ H ′t and (1 + y, yt), (1 + z, zt) ∈ H ′t \ {(1, 0)} and assume
(1 +x, xt) · (1 + y, yt)−1 = (1 +w,wt) · (1 + z, zt)−1. Then x− y = w− z and yy−1 = zz−1.
With y = (tt− 1)yy− y and z = (tt− 1)zz− z, we get y = z and hence x = w. A similar
computation holds for y = 0.
Since #{H ′c | cc = tt} = q + 1 and #H ′c = q + 1 for all c with cc /∈ {0, 1}, the lemma
follows.

Choose an arbitrary set H′ = {H ′1, . . . , H ′q−2} of representatives of the Ĥ ′t. Then C ′, the
groups T ′s and the sets (H ′i)∗, i ∈ {1, . . . , q− 2}, satisfy property (P), since they intersect
only in 1 and have appropriate cardinalities. Right multiplication by SU(h) induces
affine maps on F2

q2 and fixes thus the block set of the affine classical unital BU.

In the classical unital U, each block T ′s, ss = 1, meets the block B in the point [1, s, 0] ∈ P .
Since

(a, b) · (1, s) = (a+ bs, as+ b) = (a+ bs)(1, s)

for each (a, b) ∈ SU(h), each left coset of T ′s meets the block B in [1, s, 0] as well.

Let ψ : SU(h)→ SL(2, q) be an isomorphism and set

C := C ′ · ψ and H := {H1, . . . , Hq−2} with Hi := H ′i · ψ.

Then it follows from the above that UC,H is an affine SL(2, q)-unital such that the
corresponding affine unital in SU(h) coincides with the affine classical unital BU and
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such that the corresponding unital to the \-closure U\
C,H coincides with the classical

unital U. Independent of the specific choice of ψ, we will call UC,H the classical affine
SL(2, q)-unital and U\

C,H the classical SL(2, q)-unital. Note that since there is only
one conjugacy class of cyclic subgroups of order q + 1 in SL(2, q), we may choose ψ such
that C equals the cyclic subgroup given in Remark 2.7.

In [9, Example 5.5], Grundhöfer, Stroppel and Van Maldeghem state that the unital
U[
C,H coincides with a unital described by Grüning, that can be embedded in a Hall plane

and in its dual, see [11].

There are hence at least two non-isomorphic SL(2, q)-unitals Uπ
S,D for each prime power

q ≥ 3, namely the classical and the Grüning unital, which differ only in the parallelism π,
i. e. in the incidences of the points at infinity with affine short blocks. Further variations
could be obtained by changing the group S for q ≡ 3 mod 4 or the set D. Changing S
or D does indeed not affect the parallelism π, so the choice of a pair (S,D) such that
US,D is an affine SL(2, q)-unital is independent of the choice of a parallelism on the short
blocks to obtain an SL(2, q)-unital Uπ

S,D.

In [9], Grundhöfer, Stroppel and Van Maldeghem present an affine SL(2, 4)-unital UC,E

which is not isomorphic to the classical affine SL(2, 4)-unital.
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4 Automorphism Groups
We are interested in automorphisms of (affine) SL(2, q)-unitals. Since any automorphism
of affine SL(2, q)-unitals maps short blocks to short blocks, we will first consider the
incidence structure S given by the points and short blocks of an affine SL(2, q)-unital.
Note that the short blocks are the same in every affine SL(2, q)-unital, independent of
the choice of S and the set of arcuate blocks D.

4.1 Automorphisms of the Geometry of Short Blocks
There is a strong connection between S and a hyperplane complement of the classi-
cal generalized quadrangle Q(4, q). We will first give the definition of a generalized
quadrangle.

Definition 4.1. Let s, t ∈ N. A generalized quadrangle Q := (P ,B, I) of order
(s, t) is an incidence structure satisfying the following axioms:

(Q1) Each block is incident with s+ 1 points.

(Q2) Each point is incident with t+ 1 blocks.

(Q3) For any two points there is at most one block incident with both of them.

(Q4) For each non-incident pair of a point p and a block B, there is exactly one block
through p that intersects B.

Following Payne and Thas [24, p. 1] and unlike Van Maldeghem [27, pp. 5 sqq.], we do
not require a generalized quadrangle to be thick (meaning s, t ≥ 2).

Let Q be a quadric of Witt index 2 in the projective space PG(d, q), i. e. Q contains lines,
but no planes of PG(d, q). The points and lines (with the natural incidence relation)
of Q form a generalized quadrangle (see e. g. [27, Section 2.3]), which is usually called a
classical (orthogonal) quadrangle. Over the finite field of order q, there are up to
similitudes and change of basis only three non-degenerate quadratic forms

Fd+1
q → Fq
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of Witt index 2, one for each d ∈ {3, 4, 5} (see e. g. [1, Section III.6]). There are hence for
each q only three isomorphism types of projective quadrics of Witt index 2 in PG(d, q)
and we may denote the classical orthogonal quadrangle in PG(d, q) (with d ∈ {3, 4, 5})
by Q(d, q).

We are mainly interested in the classical generalized quadrangle Q(4, q). This quadrangle
is given by the projective quadric with equation

x1x3 + x2x4 + x2
5 = 0

in the projective space PG(4, q) and has order (q, q). The intersection of Q(4, q) with the
hyperplane x5 = 0 of PG(4, q) is a geometric hyperplane of the generalized quadrangle,
i. e. each block of the quadrangle either lies completely in the hyperplane or intersects
it in exactly one point. This geometric hyperplane is also a subquadrangle, isomorphic
to the classical generalized quadrangle Q(3, q), which is given by the projective quadric
with equation

x1x3 + x2x4 = 0

in the projective space PG(3, q). The generalized quadrangle Q(3, q) is a grid; it consists
of (q + 1)2 points, each on 2 blocks, and each block is incident with q + 1 points.

Note that every hyperplane in Q(4, q) with the structure of a (q + 1)× (q + 1)-grid is
given by a hyperbolic quadric in PG(3, q), since it is spanned by two non-intersecting
blocks. Since any two hyperbolic quadratic forms in PG(3, q) are equivalent, any two
such hyperplanes are isometric. Using Witt’s Extension Theorem (see e. g. [28, Theorems
6.4 and 7.6]), we conclude that the full automorphism group of Q(4, q) acts transitively
on the set of all hyperplanes isomorphic to Q(3, q).

Let P = {T1, . . . , Tq+1} be the set of Sylow p-subgroups of G := SL(2, q). Following Payne
and Thas in [24, Section 10.7], we consider the incidence structure QP := (PP,BP, IP),
constructed as follows.
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PP consists of two different kinds of points:

(a) Elements of G.

(b) Right cosets of the normalizers NG(Ti), 1 ≤ i ≤ q + 1.

Note that there are (q − 1)q(q + 1) points of type (a) and (q + 1)2 of type (b), since the
number of right cosets of each NG(Ti) equals q + 1.

BP consists of three kinds of blocks:

(i) Right cosets of the groups Ti, 1 ≤ i ≤ q + 1.

(ii) Sets Mi := {NG(Ti)g | g ∈ G}, 1 ≤ i ≤ q + 1.

(iii) Sets Li := {gNG(Ti) | g ∈ G}, 1 ≤ i ≤ q + 1.

Each block of type (i) is incident with the points of type (a) contained in it and with the
point of type (b) containing it. The blocks of type (ii) and (iii) are incident with the
points of type (b) contained in it. Note that each left coset gNG(Ti) equals the right
coset (NG(Ti))g

−1
g = NG(T g

−1

i )g.

The incidence structure QP is a span-symmetric generalized quadrangle of order (q, q)
(see [24, 10.7.8]) and hence isomorphic to Q(4, q), see [26, Theorem 1.1]. The restriction
to the points of type (b) and the blocks of type (ii) and (iii) is a geometric hyperplane
HP of QP and a (q + 1) × (q + 1)-grid with two block spreads {Mi | 1 ≤ i ≤ q + 1}
and {Li | 1 ≤ i ≤ q + 1}.
Two different blocks Tig and Tih meet exactly (in a point of type (b)) if gh−1 ∈ NG(Ti).
The blocks of type (i) incident to a point NG(Ti) of type (b) are thus exactly the right
cosets of Ti which are left cosets of the same Tj. Hence, the blocks of type (i) meeting
the block Mi are exactly the right cosets of Ti and the blocks of type (i) meeting the
block Li are exactly the left cosets of Ti.

Obviously, the hyperplane complement QP \HP coincides with the incidence structure S
given by the points and short blocks of an affine SL(2, q)-unital. The parallel classes of
the parallelism \ coincide with the sets of blocks in QP meeting the same block Li and
the parallel classes of the parallelism [ coincide with the sets of blocks in QP meeting
the same block Mi.

We are interested in the full automorphism group of the hyperplane complement QP \HP.
Consider the quadratic form

f : F5
q → Fq, x = (x1, . . . , x5) 7→ x1x3 + x2x4 + x2

5,
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and the quadratic space V := (F5
q, f). The automorphisms of Q(4, q) are exactly the

semilinear projective similitudes of V , see e. g. [12, Theorem 8.1.5]. Hence,

Aut(QP) ∼= Aut(Q(4, q)) = PΓO(f) = PGO(f) o Aut(Fq).

In any thick classical generalized quadrangle, the automorphisms of a hyperplane com-
plement are exactly the automorphisms of the quadrangle stabilizing the hyperplane (see
[23, Lemma 2.3]).
Let H be the hyperplane of Q(4, q) induced by the projective hyperplane x5 = 0 of
PG(4, q). Clearly H is stabilized by the automorphisms of Q(4, q) induced by field
automorphisms. Let

Mf :=


0 1 0

0

0 0 0
0

0 0 0 0 1


be a matrix describing f . The polar form of f is defined by

F5
q × F5

q → Fq, (x, y) 7→ f(x+ y)− f(x)− f(y),

and has Gram matrix M := Mf + M>
f . Let [A] ∈ PGO(f), i. e. AMA> = µAM with

µA ∈ Fq, and assume [A] stabilizes H. Then [A] stabilizes also the orthogonal complement
of H with respect to the polar form of f and hence A is of the form

A =
(
X 0

0 a

)

with X ∈ F4×4
q and a ∈ Fq. The factor of similitude for A is µA = a2. Choose the

representative Ã := a−1A ∈ [A]. Then

Ã =
 X̃ 0

0 1


with X̃=a−1X and hence X̃ ∈ O(f̃), where f̃ is the quadratic form

f̃ : F4
q → Fq, x = (x1, . . . , x4) 7→ x1x3 + x2x4,
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and O(f̃) = {M ∈ GO(f̃) | µM = 1} is the orthogonal group. We thus have

Aut(Q(4, q))H ∼= O(f̃) o Aut(Fq).

Since Aut(Q(4, q)) acts transitively on the set of hyperplanes isomorphic to Q(3, q),
we have

Aut(S) = Aut(QP \HP) ∼= Aut(Q(4, q))H ∼= O(f̃) o Aut(Fq).

We use this knowledge of the isomorphism type of Aut(S) to specify the action of Aut(S)
on the incidence structure S. We already know that SL(2, q) acts via right multiplication
as a group of automorphisms on S. Applying automorphisms of SL(2, q) to the point
set of S also induces automorphisms of S and so does inversion, since the set of short
blocks of any affine SL(2, q)-unital is given by the set of all right cosets of the Sylow
p-subgroups of SL(2, q), and every left coset of a Sylow p-subgroup T is a right coset of a
conjugate of T .

Let R = {ρh | h ∈ SL(2, q)} ≤ Aut(S) denote the subgroup given by right multiplication
of SL(2, q), where ρh ∈ R acts on S by right multiplication with h ∈ SL(2, q). Let further
A ≤ Aut(S) denote the subgroup given by automorphisms of SL(2, q) and I ≤ Aut(S)
the cyclic subgroup of order 2 given by inversion. For those automorphisms α ∈ A which
are given by conjugation with a ∈ GL(2, q), we write α = γa.

Lemma 4.2. Aut(S) = (A× I) ·R.

Proof. From the above, the product A · I ·R is a subset of Aut(S). The product A · I
is direct (and in particular a subgroup of Aut(S)), since A and I commute and have
trivial intersection. The group R has trivial intersection with A× I, since A and I fix
the point 1, while all non-trivial automorphisms in R have no fixed point. Hence we may
compute

#((A× I) ·R) = #A ·#I ·#R
= # PΓL(2, q) · 2 ·# SL(2, q)
= e(q − 1)q(q + 1) · 2 · (q − 1)q(q + 1)
= 2e(q − 1)2q2(q + 1)2.

From the above as well, we know Aut(S) to be isomorphic to O(f̃) n Aut(Fq). But
#O(f̃) = 2(q − 1)2q2(q + 1)2, see [28, Theorems 6.21 and 7.23 with ν = 2 and δ = 0],
and the lemma follows.
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Lemma 4.3. A normalizes R in the full automorphism group of S.

Proof. Let α ∈ A, ρh ∈ R and let x ∈ SL(2, q) be a point of S. Then

x · (α−1ρhα) = ((x · α−1)h) · α = x(h · α) = x · ρh·α.

Since A and R have trivial intersection, we thus know the product of A and R to be
semidirect.

4.2 Automorphisms of (Affine) SL(2, q)-Unitals
We use the knowledge of the full automorphism group of the incidence structure S of
the short blocks to compute automorphism groups of (affine) SL(2, q)-unitals. At first,
we show that inversion can never be involved in an isomorphism between affine SL(2, q)-
unitals.

Theorem 4.4. Let ψ : US,D → US′,D′ be an isomorphism of affine SL(2, q)-unitals. Then
ψ = αρh with ρh ∈ R and α ∈ A such that S · α = S ′.

Proof. An isomorphism of affine SL(2, q)-unitals maps short blocks to short blocks and is
hence an automorphism of S, since the incidence structure of the short blocks is the same
in every affine SL(2, q)-unital. We thus know ψ ∈ Aut(S) = (A× I) ·R. Let ψ = αiρh
with i ∈ I inversion or identity. Then

S · ψ = S · (αiρh) = (S · α)h,

since S is a group and α an automorphism of SL(2, q). Since right multiplication by
SL(2, q) induces automorphisms in every affine SL(2, q)-unital, S · α is a block in US′,D′

that contains 1 and is a subgroup of SL(2, q) of order q + 1. The only block with these
properties is S ′ and hence S · α = S ′. Assume i to be inversion and choose g ∈ SL(2, q)
with g · α 6∈ N(S ′). Then

(Sg) · ψ = (Sg) · (αiρh) = ((S · α)(g · α))−1h = (S ′)g·α(g · α)−1h.

Sg is a block of US,D and hence (S ′)g·α is a block of US′,D′ with 1 in (S ′)g·α and
(S ′)g·α ≤ SL(2, q) is a subgroup of order q + 1. But (S ′)g·α 6= S ′ because of the choice
of g, a contradiction.

Lemma 4.3 and Theorem 4.4 yield:
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Corollary 4.5. Let US,D be an affine SL(2, q)-unital. Then

Aut(US,D) ≤ AS nR.

Proposition 4.6. Aut(UC,H) = AC nR.

Proof. We use the description of the classical affine SL(2, q)-unital in SU(h) ∼= SL(2, q),
as given in Section 3.2.2. According to the proof of Theorem 2.11, Aut(SU(h))C′ = 〈U,ϕ〉
with

U := {γu | u = ( 1 0
0 a ) with a ∈ Fq2 , aa = 1}

and ϕ : Fq2 → Fq2 the Frobenius automorphism of order 2e. It remains to show that
〈U,ϕ〉 fixes the set H′. But an easy computation shows that

H ′t · ϕ = H ′tp and ( 1 0
0 a )−1H ′t ( 1 0

0 a ) = H ′at

with Ĥ ′at = Ĥ ′t.

We have already seen that right multiplication by SL(2, q) preserves each of the two
parallelisms [ and \. Since those two parallelisms consist of the sets of right resp. left
cosets of the Sylow p-subgroups, they are obviously also preserved under automorphisms
of SL(2, q). With Corollary 3.13, we get the following

Corollary 4.7. Let π ∈ {[, \} and let US,D be an affine SL(2, q)-unital. Then

Aut(Uπ
S,D)[∞] = Aut(US,D)

and in particular Aut(Uπ
C,H)[∞] = AC nR.

We will now have a closer look at SL(2, q)-unitals with parallelism [ or \.

Definition 4.8. A translation with center c of a unital U is an automorphism of U
that fixes the point c and each block through c.
We call c a translation center if the group of all translations with center c acts
transitively on the set of points different from c on any block through c.

Lemma 4.9. Let US,D be an affine SL(2, q)-unital. The Sylow p-subgroups of SL(2, q)
act via right multiplication as translation groups on U\

S,D with translation centers on [∞].
For each T ∈ P, the group RT := {ρt | t ∈ T} is the full group of translations with
center T .

38



4 Automorphism Groups 4.2 Automorphisms of (Affine) SL(2, q)-Unitals

Proof. Each group RT , T ∈ P, acts as a group of translations with center T ∈ [∞]
on U\

S,D, since RT fixes each block T g
−1
g = gT through the point T . The point T

is a translation center, since RT acts transitively on the points different from T on
each block gT . Now the group G[c] of all translations with center c of a unital U acts
semiregularly on U \ {c}, see [10, Theorem 1.3]. Thus, if c is a translation center, then
G[c] acts regularly on the set of points different from c on any block through c and the
order of G[c] equals the order of U.

We use this statement on translations and a theorem of Grundhöfer, Stroppel and
Van Maldeghem to show that the block [∞] is fixed by every automorphism in any
non-classical SL(2, q)-\-unital.

Proposition 4.10. Let U\
S,D be a non-classical SL(2, q)-\-unital. Then

Aut(U\
S,D) = Aut(U\

S,D)[∞].

Proof. Assume that there is an automorphism of U\
S,D not fixing [∞]. Since all points

on [∞] are translation centers (see Lemma 4.9), there are thus three non-collinear
translation centers of US,D. Then US,D is the classical unital, as is shown in [10].

Grüning showed that in each Grüning unital U[
C,H, the block [∞] is fixed by every

automorphism (see [11, Lemma 5.5]). We will show this for every SL(2, q)-[-unital U[
S,D

of order q ≥ 3, independent of the group S and the set D. Note that there is only one
isomorphism type of unitals of order 2 (see e. g. Example 3.14). These are represented by
the classical unital and admit hence a 2-transitive automorphism group, which implies
that no block is fixed by the full automorphism group.

Definition 4.11. Let G be a group. The commutator series (G(n))n∈N0 of G is defined
by

G(0) := G, G(k) := [G(k−1), G(k−1)] for k ≥ 1.

The stable commutator ⋂n∈N0 G
(n) will be denoted by G(ω).

Theorem 4.12. Let U[
S,D be an SL(2, q)-[-unital of order q ≥ 3. Then every automor-

phism of U[
S,D fixes the block [∞].

Proof. We exclude the small cases q = 3 and q = 4 first: For q = 3, there is only one
isomorphism type of affine SL(2, q)-unitals (see [9, Theorem 3.3]), namely the classical
affine SL(2, q)-unital. Hence, its [-closure is the Grüning unital and the theorem holds.
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For q = 4, an exhaustive computer search using GAP showed that there are only two
isomorphism types of affine SL(2, q)-unitals (see Chapter 6) and none of their [-closures
admits automorphisms which move the block [∞].

Recall that right multiplication by SL(2, q) fixes each parallel class of the parallelism [

and that hence the group R ≤ Aut(U[
S,D)[∞] fixes each point on [∞].

Assume existence of an automorphism α ∈ Aut(U[
S,D) with [∞] · α 6= [∞]. Since R

acts transitively on the affine part of U[
S,D, assume without restriction 1 ∈ [∞] · α.

We distinguish two cases.

Case 1: The block [∞] · α intersects [∞], i. e. [∞] · α = T for T ≤ SL(2, q) a Sylow
p-subgroup.

Assume first that α does not fix T as a point. Then [∞] · α−1 meets [∞] in the point
T · α−1 6= T . Choose h ∈ SL(2, q) such that ([∞] · α−1)h 6= [∞] · α−1. Then the
automorphism α−1ρhα moves [∞] and we know T · (α−1ρhα) = T as a point, since
T · α−1 ∈ [∞].

T · α−1 T

1

[∞]

[∞] · α[∞] · α−1 · ρh [∞] · α−1

ρh

We may thus assume without restriction that α fixes T as a point. The group

RT := {ρt ∈ R | t ∈ T} ≤ R

acts regularly on PT \ {T} and trivially on [∞]. Hence, the group of automorphisms
αRTα

−1 acts regularly on [∞] \ {T} and trivially on [∞] · α−1. In particular, an affine
point is fixed and we have

q = #αRTα
−1 | # Aut(U[

S,D)[∞],1 | # Aut(SL(2, q))S.

According to Theorem 2.11, this implies q | 2e(q + 1) or q | e(q + 1), since 24 = #S4 is
not divided by 7, 23 or 47, respectively. Now (q, q + 1) = 1 and q = pe > e, as can easily
be shown by induction on e. Hence, q = pe | 2e. Since pe > e, this implies p = 2 and
2e−1 | e. Again, induction shows that 2e−1 > e if e ≥ 3. It remains q ∈ {2, 4}, but we are
only interested in q ≥ 3 and have already excluded the case q = 4.
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Case 2: The block [∞] · β does not meet [∞] for any automorphism β ∈ Aut(U[
S,D) with

[∞] · β 6= [∞].

Recall the assumption 1 ∈ [∞] · α. Since [∞] · α does not intersect [∞], we know
[∞] · α 6= T for any Sylow p-subgroup T ≤ SL(2, q).
We show that no two blocks in the orbit [∞] · Aut(U[

S,D) may intersect in one point:
Let ϑ ∈ Aut(U[

S,D) such that [∞] · α 6= [∞] · αϑ and assume without restriction that the
two blocks [∞] · α and [∞] · αϑ intersect in the point 1. Then the automorphism αϑα−1

moves the block [∞]. Let x := 1 · ϑ−1 ∈ [∞] · α. Note that, other than indicated in the
picture, x does not have to be different from 1. Then (x · α−1) ∈ [∞] and

(x · α−1) · (αϑα−1) = 1 · α−1 ∈ [∞].

Hence, the automorphism αϑα−1 moves the block [∞] to a block intersecting [∞],
a contradiction to the requirement.

1
x

1 · α−1 x · α−1
[∞]

[∞] · α

[∞] · αϑ

ϑ

For any arcuate block D through 1 and 1 6= d ∈ D, it holds that Dd−1 is a block different
from D such that D and Dd−1 intersect in the point 1. Since right multiplication by d−1

is an automorphism of U[
S,D, the block [∞] · α may thus be none of the arcuate blocks.

Hence, [∞] · α = S. Since R ≤ Aut(U[
S,D) and every affine point is contained in a right

coset of S, we have

O[∞] := [∞] · Aut(U[
S,D) = {Sg | g ∈ SL(2, q)} ∪ {[∞]}.

...

[∞]

S

q2 − q blocksα

1
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Table 4.1: Degrees of affine 2-transitive groups
Degree G0 Condition
fd SL(d, f) ≤ G0 ≤ ΓL(d, f)
f 2d

f 6

f f = 52, 72, 112, 232, 34, 112, 192,
292, 592, 24, 26, 36

Table 4.2: Degrees of almost simple 2-transitive groups
Degree N Condition
n An n ≥ 5
(fd − 1)/(f − 1) PSL(d, f) d ≥ 2, (d, f) 6= (2, 2), (2, 3)
22d−1 ± 2d−1 d ≥ 3
f 3 + 1
f 2 + 1
f f = 11, 12, 15, 22, 23, 24, 28, 176, 276

The group of automorphisms R fixes [∞] and acts transitively on the q2 − q right cosets
of S and hence Aut(U[

S,D) acts 2-transitively on O[∞]. Since

#O[∞] = q2 − q + 1,

the group Aut(U[
S,D) must be a 2-transitive group on q2 − q + 1 elements and con-

tain R ∼= SL(2, q). We use the classification of finite 2-transitive groups to reach a
contradiction.
There are several sources for the classification of finite 2-transitive groups, of which
the most convenient one seems to be two lists by Cameron, see [5, Tables 7.3 and 7.4].
In the majority of cases, the degree of the action already yields a contradiction, why we
only copied the information needed in Tables 4.1 and 4.2. In both tables, f is a prime
power. In the list of affine 2-transitive groups, G0 denotes the stabilizer of one point
in the 2-transitive action. In the list of almost simple 2-transitive groups, N denotes
the minimal normal subgroup of the 2-transitive group G. Indeed, there is one action
of degree 92 = 34 missing in Cameron’s list of affine 2-transitive groups, where SL(2, 5)
is a normal subgroup of G0, see e. g. Liebeck’s proof of Hering’s classification of affine
2-transitive groups [18, Appendix 1]. But since we are only interested in the degree in
this case, the missing action will not bother us.
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Let Γ[∞] = Aut(U[
S,D)[∞] denote the stabilizer of the point [∞] in our required 2-transitive

action. Then

SL(2, q) ∼= R ≤ Γ[∞] ≤ AS nR ∼= Aut(SL(2, q))S n SL(2, q).

In particular, we know that the stable commutator Γ(ω)
[∞] equals SL(2, q) for q ≥ 4, since

Aut(SL(2, q))S is solvable for each choice of S, see Corollary 2.13. In the first affine
2-transitive action in Table 4.1, the stable commutator G(ω)

0 equals the stable commutator
of SL(d, f), which is trivial or SL(d, f). Since all isomorphisms between finite (projective)
special linear groups are known (see e. g. [13, Satz 6.14]), we conclude d = 2 and f = q.
But this is not possible because of our required degree q2 − q + 1 6= q2 and we may thus
exclude the first affine 2-transitive action.
Every other affine 2-transitive action is indeed quite easy to exclude, because the degree
is always a square and our degree q2 − q + 1 is never a square, since

(q − 1)2 < q2 − q + 1 < q2.

Now we look at the list of almost simple 2-transitive groups. The point stabilizer of the
action of An is An−1, which is far bigger than Γ[∞] for n = q2 − q + 1.
The second entry in Table 4.2 is the action on the points or hyperplanes of a projective
space. For d ≥ 3 and (d − 1, f) 6∈ {(2, 2), (2, 3)}, the stable commutator of the point
stabilizer of this action is the special affine group

ASL(d− 1, f) = SL(d− 1, f) n Fd−1
f .

Hence, ASL(d−1, f) ∼= SL(2, q) (q ≥ 4). But ASL(d−1, f) contains the normal subgroup
Fd−1
f of order fd−1 > 4, while the highest possible order of a normal subgroup of SL(2, q)

is 2 for q ≥ 4. For (d− 1, f) ∈ {(2, 2), (2, 3)} the degree of the action would be 7 resp. 13
and hence q = 3 or q = 4, which we already excluded in the beginning. It remains the
case d = 2. Then the degree is f + 1 and hence f = q2 − q = q(q − 1). But since q and
q − 1 have gcd 1, the product q(q − 1) cannot be a prime power. Hence we may exclude
the second entry in the list of almost simple 2-transitive actions.

For the remaining cases, considering the degree will suffice. At first we notice that q2−q+1
is always odd, which excludes the degrees 22d−1± 2d−1 (d ≥ 3) and 12, 22, 24, 28, 176, 276.
Then we just showed that q2 − q cannot be a prime power fd. Finally, it is easy to see
that q2 − q = q(q − 1) 6∈ {10, 14, 22} for any prime power q.

We thus showed that Aut(U[
S,D) cannot act 2-transitively on O[∞], which completes our

proof.
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4.3 Non-Existence of Isomorphisms
We use the results about automorphisms of SL(2, q)-unitals to show that SL(2, q)-unitals
with parallelism [ or \ are not isomorphic to unitals of certain known types.

At first, we show the “uniqueness” of the classical SL(2, q)-unital U\
C,H, in the sense

that S = C, D = H and π = \ is essentially (up to conjugation and choice of the
representatives in the sets Ĥ, H ∈ H) the only possibility such that Uπ

S,D is isomorphic
to UC,H if q ≥ 3.

Theorem 4.13. Let q ≥ 3 and let Uπ
S,D be an SL(2, q)-unital of order q. If Uπ

S,D is
isomorphic to the classical unital U\

C,H, then π = \, the group S is cyclic and D is
conjugate to a set of arcuate blocks through 1 in UC,H.

Proof. Since the full automorphism group of the classical unital acts transitively on the
set of blocks, we know the affine SL(2, q)-unitals US,D and UC,H to be isomorphic. Since
in each affine SL(2, q)-unital the group of automorphisms R acts transitively on the set
of points, we know the point stabilizers Aut(US,D)1 and Aut(UC,H)1 to be isomorphic.
Hence, according to Corollary 4.5 and Proposition 4.6,

AC = Aut(UC,H)1 ∼= Aut(US,D)1 ≤ AS.

Theorem 2.11 shows that this is only possible for AS
∼= AC and S cyclic. Since there

is only one conjugacy class of cyclic subgroups of order q + 1 of SL(2, q), the group S
must be a conjugate of C and we may assume S = C. According to Theorem 4.4, any
isomorphism UC,H → UC,D must be contained in AC nR and is thus an automorphism
of UC,H. Hence, UC,D = UC,H and D is a set of arcuate blocks through 1 in UC,H. In
particular, the sets of arcuate blocks through 1, namely the sets of hats {D̂ | D ∈ D}
and {Ĥ | H ∈ H} coincide and we may choose D = H.
Assume Uπ

C,H
∼= U\

C,H. As above,

AC nR = Aut(U\
C,H)[∞] ∼= Aut(Uπ

C,H)[∞] ≤ AC nR.

In particular, R stabilizes π and thus π ∈ {[, \} (see Proposition 3.22). But as shown in
Theorem 4.12, the block at infinity is fixed by every automorphism in any SL(2, q)-[-unital
of order q ≥ 3, while it can be moved in U\

C,H.

In their monograph on unitals in projective planes [2], Barwick and Ebert introduce
several kinds of unitals that can be embedded in projective planes. Particular attention is
paid to (non-classical) unitals arising from Buekenhout’s construction in the desarguesian
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plane PG(2, q2). Barwick and Ebert distinguish orthogonal-Buekenhout-Metz unitals
and Buekenhout-Tits unitals, where an orthogonal-Buekenhout-Metz unital arises from
an elliptic cone in PG(4, q) and a Buekenhout-Tits unital from an ovoidal cone with base
a Tits ovoid (see [2, chapter 4] for details).

Lemma 4.14. In any orthogonal-Buekenhout-Metz unital and any Buekenhout-Tits
unital of order q, no block is fixed by the full automorphism group.

Proof. According to [2, Theorems 4.12 and 4.23], any orthogonal-Buekenhout-Metz unital
of order q admits a group of automorphisms (induced by automorphisms of PG(2, q2))
which fixes one point and acts transitively on the remaining points. Hence, there is no
block fixed by the full automorphism group.
According to [2, Theorem 4.31], any Buekenhout-Tits unital of order q admits a group
of automorphisms (also induced by automorphisms of PG(2, q2)) that fixes one point
and acts in q orbits of size q2 on the remaining points. Since each block is incident with
q + 1 points (and q + 1 < q2 for q ≥ 2), there is no block fixed by the full automorphism
group.

In [15], Knarr and Stroppel investigate unitals arising from a unitary polarity in (not
necessary desarguesian) shift planes introduced by Coulter and Matthews. From their
theorem on automorphisms of those unitals, we get the following

Lemma 4.15. In any unital of order q arising from a unitary polarity in a Coulter-
Matthews plane, no block is fixed by the full automorphism group.

Proof. According to [15, Theorems 5.2 and 5.6], such a unital admits a group of automor-
phisms with three point orbits of length 1, q2 and q2(q − 1), respectively. Again, since
each block is incident with q + 1 points, the statement follows.

Another class of unitals, where no block is fixed by the full automorphism group, are
the Ree unitals. These unitals of order q = 3e, e ≥ 3 odd, are described by Lüneburg
(see [19]), where the points are given by the Sylow 3-subgroups and the blocks by the
involutions of the Ree group R(q) of order (q3 + 1)q3(q − 1). Lüneburg shows that the
action of the Ree group on the Ree unital is transitive on the blocks (see [19, 1.]).

In [6], Ganley determines automorphisms of unitals which are given by the absolute
points and non-absolute lines of a unitary polarity in a Dickson semifield plane of odd
order q2. He shows that those unitals admit a group of automorphisms which fixes one
point and acts transitively on the remaining points, see [6, Lemma 3].
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In [16], Knarr and Stroppel introduce unitals given by a polarity in planes over (not
necessarily commutative) semifields. They show that those unitals also admit a group of
automorphisms which fixes one point and acts transitively on the remaining points, see
[16, Lemma 3.3].

We summarize these considerations and the Results 4.10 and 4.12 in the following

Theorem 4.16. Let U be a non-classical unital, where Aut(U) fixes one block. Then U
does not belong to one of the following classes of unitals:

1. Orthogonal-Buekenhout-Metz and Buekenhout-Tits unitals in the desarguesian plane
PG(2, q2),

2. unitals arising from a unitary polarity in a Coulter-Matthews plane,
3. Ree unitals,
4. unitals arising from a unitary polarity in a Dickson semifield plane of odd order as

described in [6],
5. unitals arising from a polarity in a semifield plane as described in [16].

In particular, this holds for every non-classical SL(2, q)-unital Uπ
S,D with π ∈ {[, \}.
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We will now regard parallelisms on the short blocks of affine SL(2, q)-unitals, independent
of the choice of S and D. Recall that the short blocks of any affine SL(2, q)-unital are
given by all right cosets of the q + 1 Sylow p-subgroups of SL(2, q). Recall also the
definitions of the two obvious parallelisms

[ := {T · SL(2, q) | T ∈ P} and \ := {SL(2, q) · T | T ∈ P},

where P denotes the set of all Sylow p-subgroups of SL(2, q).

Although we consider parallelisms on the short blocks independently, we are of course
interested in their stabilizers in AS nR, the greatest possible automorphism group of any
affine SL(2, q)-unital US,D. For any subgroup S ≤ SL(2, q) of order q+ 1, the parallelisms
[ and \ are both stabilized by AS nR. This implies that in any affine SL(2, q)-unital, no
other parallelism is equivalent to [ or \, respectively (recall Definition 3.11).

5.1 A Class of Parallelisms for Odd Order
For each odd q, there is at least one class of parallelisms apart from [ and \. Let q be
odd throughout this section.

Let T be a fixed Sylow p-subgroup of SL(2, q), namely

T := {( 1 x
0 1 ) | x ∈ Fq}.

The normalizer of T in GL(2, q) is the set of upper triangular matrices. Let F×,�q

denote the set of all squares in F×q and F×,6�q the set of all non-squares in F×q . Note that
#F×,�q = #F×, 6�q = 1

2(q − 1), since q is odd. Let

�SL := {( a bc d ) ∈ SL(2, q) | c ∈ F×,�q } and 6�SL := {( a bc d ) ∈ SL(2, q) | c ∈ F×, 6�q }.

Let further

A := {Tg | g ∈ NSL(2,q)(T )} ∪ {Tg | g ∈ �SL} ∪ {gT | g ∈ 6�SL},
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A′ := {Tg | g ∈ NSL(2,q)(T )} ∪ {Tg | g ∈ 6�SL} ∪ {gT | g ∈ �SL}

and
π� := {Ah | h ∈ SL(2, q)}, �π := {A′h | h ∈ SL(2, q)}.

Note that in A, the representatives of right cosets of T are contained in �SL (hence the
name π�), while in A′, the representatives of left cosets of T are contained in �SL (hence
the name �π). We show the following

Proposition 5.1. For odd q, the sets π� and �π are parallelisms on the short blocks of
any affine SL(2, q)-unital. With v ∈ F×,6�q , conjugation by ( 1 0

0 v ) maps π� to �π.

Proof. Since
( 1 x

0 1 ) · ( a bc d ) = ( ∗ ∗c d ) and ( a bc d ) · ( 1 x
0 1 ) = ( a ∗c ∗ ) ,

the cosets in A have no common points. Further,

#A = #{Tg | g ∈ NSL(2,q)(T )}+ #{Tg | g ∈ �SL}+ #{gT | g ∈ 6�SL}

= q − 1 + q − 1
2 · q + q − 1

2 · q

= q2 − 1

and hence A is a set of q2 − 1 short blocks of which no two meet.

Let h ∈ N(T ) := NSL(2,q)(T ). Then h is of the form ( s t
0 s−1 ) with s 6= 0 and we have

h−1 ( ∗ ∗c ∗ )h =
(
s−1 −t

0 s

)
( ∗ ∗c ∗ ) ( s t

0 s−1 ) = ( ∗ ∗cs2 ∗ )

with cs2 ∈ F×,�q exactly if c ∈ F×,�q and cs2 = 0 exactly if c = 0. Hence, conjugation by h
stabilizes A.

Now let h /∈ N(T ) and Tg ∈ A. Then (Tg)h = T hgh is no right coset of T . Compute
T hgh = gh(T h)gh = ghT gh and assume gh ∈ N(T ). Then h = g−1n for an n ∈ N(T ) and
we have gh = gg

−1n = gn. But since gn ∈ �SL exactly if g ∈ �SL (as shown above), the
coset (Tg)h is not contained in A. A similar consideration shows that (gT )h is never
contained in A when gT ∈ A and h /∈ N(T ).

Finally, let g, h ∈ SL(2, q) and assume Ah ∩ Ag 6= ∅. Then Ahg−1 ∩ A 6= ∅ and we get
hg−1 ∈ N(T ), Ahg−1 = A and hence Ah = Ag. Thus, π� = {Ah | h ∈ SL(2, q)} is indeed
a parallelism on the short blocks of any affine SL(2, q)-unital with q + 1 parallel classes
with q2 − 1 short blocks each.
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Now let v ∈ F×, 6�q and f := ( 1 0
0 v ). Then f ∈ NGL(2,q)(T ) and gf ∈ N(T ) exactly if

g ∈ N(T ). Further,

f−1 ( ∗ ∗c ∗ ) f =
(

1 0
0 v−1

)
( ∗ ∗c ∗ ) ( 1 0

0 v ) = ( ∗ ∗
cv−1 ∗ )

and hence gf ∈ �SL exactly if g ∈ 6�SL. Thus, Af = A′. For each Ah ∈ π�, we get

(Ah)f = Ahf = (Af )(hf ) = A′(h
f ) ∈ �π.

Hence, we obtain �π from π� via conjugation by f and �π is a parallelism, since π� is a
parallelism.

Since we are interested in determining automorphisms of our SL(2, q)-unitals, we are
interested in the stabilizer of the parallelism π� in the group of possible automorphisms
of affine SL(2, q)-unitals.

Theorem 5.2. Let c := ( 1 0
0 −1 ). The stabilizer of π� in the group AnR equals

(a) PΣL(2, q)× 〈ρ−1〉 if q ≡ 1 mod 4 and

(b) PΣL(2, q) o 〈γc · ρ−1〉 if q ≡ 3 mod 4,

where PΣL(2, q) := PSL(2, q) o Aut(Fq).

Proof. Note first that the Frobenius automorphism ϕ stabilizes F×,�q , the group T and
its normalizer and hence A and A′. Thus, for each Ah ∈ π�, we have

Ah · ϕ = (A · ϕ)h·ϕ = Ah·ϕ ∈ π�

and ϕ stabilizes π� and equally �π.

The action of PSL(2, q) obviously stabilizes π� and �π by construction. Since the index
of PSL(2, q) in PGL(2, q) equals 2, the orbit of π� under the action of PGL(2, q) has
length 1 or 2. From Proposition 5.1, we know that conjugation by ( 1 0

0 v ) (v ∈ F×,6�q ) maps
π� to �π, and hence the stabilizer of π� in the action of PGL(2, q) equals PSL(2, q) and
conjugation by any element in PGL(2, q) \ PSL(2, q) interchanges π� and �π.

Since we know now that PΓL(2, q) stabilizes {π�, �π}, we need to find those elements
in R which also stabilize the set of these two parallelisms. Let ρg ∈ R and assume
π� · ρg ∈ {π�, �π}. Since for each Ah ∈ π�, it holds that ρg maps the set of right cosets
of T h in Ah onto a set of right cosets of T h, it must then also map the set of left cosets
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of T h in Ah onto a set of left cosets of T h. Hence, g is contained in the normalizer of
every Sylow p-subgroup of SL(2, q) and thus g ∈ {±1}. We see immediately that

π� · ρ−1 =

π
� if − 1 ∈ F×,�q ,

�π if − 1 ∈ F×,6�q .

If q ≡ 1 mod 4, then −1 ∈ F×,�q and ρ−1 stabilizes π�. Since ρ−1 does not fix 1 – while
every automorphism in A does – and since ρ−1 commutes with every automorphism in A,
statement (a) follows.
If q ≡ 3 mod 4, then both ρ−1 and conjugation by c interchange π� and �π and hence
the product stabilizes π�. Again, γc · ρ−1 does not fix 1 – while every automorphism in
A does – and hence the product PΣL(2, q) · 〈γc · ρ−1〉 is semidirect, since ρ−1 commutes
with every automorphism in A and since γc normalizes PΣL(2, q) ≤ A.

Corollary 5.3. Let q be odd. The stabilizer of [∞] in the full automorphism group of
the SL(2, q)-unital Uπ�

C,H has order 2e(q + 1).

Proof. According to Corollary 3.13, the stabilizer of [∞] in Aut(Uπ�

C,H) equals the subgroup
of Aut(UC,H) = AC nR leaving π� invariant.
Since q is odd, the index [P(NGL(2,q)(C)) : P(NSL(2,q)(C))] equals 2. For q ≡ 1 mod 4,
ρ−1 is as element of R an automorphism of UC,H. For q ≡ 3 mod 4, we may choose C as
in Remark 2.7 to be {

(
a b
−b a

)
| a2 + b2 = 1}, since π� is invariant under conjugation with

SL(2, q). Then, c normalizes C and γc · ρ−1 is hence an automorphism of UC,H. Thus,
for every odd prime power q,

# Aut(Uπ�

C,H) = #AC

2 · 2 = 2e(q + 1).

5.2 Translations
Recall that a translation with center c of a unital is an automorphism that fixes the point c
and each block through c. We have already seen in Lemma 4.9 that the Sylow p-subgroups
of SL(2, q) act via right multiplication as translation groups on any SL(2, q)-\-unital.
The possible translations with center on [∞] in any SL(2, q)-π-unital depend on the
parallelism π. We will determine all translations with center on [∞] of SL(2, q)-π-unitals
with π ∈ {[, π�}.
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Recall that we may label the points at infinity of any SL(2, q)-π-unital with the Sylow
p-subgroups, such that each (affine short) block T ∈ P through 1 is incident with the
point T ∈ [∞].

Lemma 5.4. Let U be a unital and let B be a block of U such that B is fixed by Aut(U).
Then the center of any translation of U lies on B.

Proof. In [10, Theorem 1.3], Grundhöfer, Stroppel and Van Maldeghem show that each
translation of a unital does not fix any block apart from the ones through its center.

Lemma 5.5. Let Uπ
S,D be an SL(2, q)-unital and let τ be a translation of Uπ

S,D with center
T ∈ [∞]. Then, τ = αρt with α ∈ AT ∩ AS and t ∈ T .

Proof. We know τ ∈ Aut(Uπ
S,D)[∞] ≤ AS n R. Hence, τ = α · ρh with α ∈ AS. Since τ

fixes the short block T , we have

T = T · τ = (T · α)h

and thus α stabilizes T and we have h ∈ T .

Lemma 5.6. Let T ∈ P and let Uπ
S,D be an SL(2, q)-unital such that every block in

{Tg | g ∈ N(T )} is incident with the point T ∈ [∞]. Let further τ = αρt as in Lemma
5.5 be a translation of Uπ

S,D with center T . Then one of the following cases occurs:

(i) α = id,

(ii) p = 2 and α is given by conjugation with some a ∈ T .

Proof. Note first that right multiplication by any element t ∈ T stabilizes each block
Tg = gT with g ∈ N(T ).
Assume without restriction T = {( 1 x

0 1 ) | x ∈ Fq} and let g ∈ N(T ). Then, g =
(
b−1 c
0 b

)
and the coset Tg is given by

Tg = {
(
b−1 x
0 b

)
| x ∈ Fq}.

Let [a] ∈ P(NGL(2,q)(T )). Then we may choose a =
(

1 y
0 d

)
and for each Tg with g ∈ N(T ),

we have (Tg)a = Tg. Applying a power ϕd of the Frobenius automorphism ϕ stabilizes the
block Tg = {

(
b−1 x
0 b

)
| x ∈ Fq} exactly if b(pd) = b. According to Lemma 5.5, α = γa · ϕd

with a ∈ NGL(2,q)(T ). Thus, if τ = αρt stabilizes each block Tg, g ∈ N(T ), then α = γa
with a ∈ NGL(2,q)(T ).
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Let G[T ] denote the group of translations of Uπ
S,D with center T . According to [10,

Theorem 1.3], G[T ] acts semiregularly on the points different from T on each block
through T and hence G[T ] is a p-group. Let RT := {ρt | t ∈ T} and let Aut(US,D)T
be the stabilizer of the short block T in the full automorphism group of the affine
SL(2, q)-unital US,D. Since RT is normal in Aut(US,D)T , we have the projection

pr : Aut(US,D)T → Aut(US,D)T/RT .

Let τ = γaρt ∈ G[T ] ≤ Aut(US,D)T and consider τRT = γaRT in the group A :=
im(pr|G[T ]). Since the intersection of 〈γa〉 and RT is trivial, the order of γaRT in A equals
the order of γa. As homomorphic image of a p-group, A is a p-group and hence the order
of γa is a p-power.
Since α = γa also has to stabilize S, the order of γa divides #P(NGL(2,q)(S)). According
to Theorem 2.11, this implies ord(γa) ∈ {1, 2}. Thus, α = id or ord(γa) = 2 = p. If
ord(γa) = 2 = p, then PGL(2, q) ∼= SL(2, q) and we may hence choose a ∈ SL(2, q) with
ord(a) = 2. Since a normalizes T , it follows a ∈ T (see Lemma 3.20).

Theorem 5.7. Let U := Uπ
S,D be an SL(2, q)-π-unital.

(a) If π = π�, then U admits no non-trivial translation with center on [∞].

(b) If π = [ and q ≥ 3, then:
(i) For p = 2, every non-trivial translation is given by left multiplication with an

involution contained in N(S). For each Sylow 2-subgroup T ∈ P, the normalizer
N(S) contains exactly one non-trivial element of T .

(ii) For q odd, U does not admit any non-trivial translation.

Proof. If π = π�, then q is odd and any non-trivial translation with center T ∈ [∞]
must be given by right multiplication with 1 6= t ∈ T , according to Lemmas 5.5 and 5.6.
But no right coset Tg is fixed under right multiplication with t ∈ T , unless g ∈ N(T ) or
t = 1.

If π = [ and q ≥ 3, then Aut(U) fixes the block [∞] (see Theorem 4.12) and hence the
center of any translation of U lies on [∞] (see Lemma 5.4). Let τ = αρt be a non-trivial
translation of U with center T ∈ [∞]. As for π = π�, right multiplication with 1 6= t ∈ T
does not fix any block Tg with g /∈ N(T ). Hence, α is not the identity and we get p = 2
and α is given by conjugation with a ∈ T . We need to show a = t. Let g /∈ N(T ) and
assume (Tg)at = Tg. Since a ∈ T , this is the case exactly if gatg−1 ∈ T . Since g /∈ N(T ),
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this implies at = 1 and hence a = t (recall p = 2). Since a must normalize S and t = t−1,
the translation τ is indeed given by left multiplication with t ∈ N(S) ∩ T .

For p = 2, the normalizer N(S) is a dihedral group of order 2(q + 1) containing S as
normal subgroup of order q + 1. Hence, there are q + 1 involutions in N(S), contained in
one coset of S. For any T ∈ P, the intersection of S and T is trivial and hence no two
non-trivial elements of T are contained in N(S).

Corollary 5.8. For q even, the Grüning unital U[
C,H admits exactly q + 1 non-trivial

translations, each of order 2.
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We will search for SL(2, q)-unitals using GAP [7]. As mentioned in the introduction, you
may find the code files in the GitHub repository

https://github.com/moehve/SL2q-Unitals_GAP.git

The particular files for the different searches will be named (and in the non-print version
also linked) in the text.

For the construction of an SL(2, q)-unital, we need to

1. choose a group S ≤ SL(2, q) of order q + 1,

2. find a set of arcuate blocks D satisfying properties (P) and (Q) and

3. choose a parallelism on the short blocks.

Finding the set D depends on the choice of the group S, while the parallelism on the
short blocks is independent of S and D. We may thus treat those subjects independently.

6.1 Search for Arcuate Blocks
We are first interested in finding a set of arcuate blocks D for a given group S. Since
applying automorphisms of SL(2, q) preserves the isomorphism type of any affine SL(2, q)-
unital, we may fix S up to conjugation by GL(2, q). For each prime power q, we may
choose S = C to be cyclic (unique up to conjugation) and D := H the classical set of
arcuate blocks. Then we obtain the classical affine unital UC,H.
For q = 2, there is only one isomorphism type of affine unitals (cf. Example 3.14) and for
q = 3, there is only one isomorphism type of affine SL(2, q)-unitals (see [9, Theorem 3.3]),
while there exist many other affine unitals of order 3. As already mentioned, Grundhöfer,
Stroppel and Van Maldeghem have found a non-classical affine SL(2, 4)-unital, see [9].
Our aim is to find more non-classical affine SL(2, q)-unitals or to show that they do not
exist under certain conditions.
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6.1.1 Orders 4 and 5
We first consider the small cases q = 4 and q = 5. Since q 6≡ 3 mod 4 in both cases,
we may choose S = C as an arbitrary cyclic subgroup of SL(2, q) of order q + 1. We
consider the set

M := SL(2, q) \ (C ∪ (
⋃

P)),

where P denotes the set of all Sylow p-subgroups of SL(2, q), and use GAP1 to search M
for all sets D of q − 2 subsets of size q (note that 1 /∈M) such that

M =
⋃
D∈D

(D ∪ {1})∗.

Up to choosing representatives of the D̂, there is only one such set for q = 5 and this
set yields the classical affine unital. For q = 4, we obtain six sets of two arcuate blocks
each. Since five of those six sets form one orbit under conjugation by C, while the other
one is invariant (up to choosing representatives of the D̂) under AC , those six sets yield
two isomorphism types of affine unitals. The one invariant under AC yields the classical
affine unital while the other ones yield the affine unital presented in [9]. The result of the
computer search matches the fact that the full automorphism group of the non-classical
affine SL(2, 4)-unital has index 5 in AC nR, see [9, Theorem 4.1].

We summarize the results for orders 4 and 5 in the following

Theorem 6.1 (by exhaustive computer search).

(a) For q = 4, the only two isomorphism types of affine SL(2, q)-unitals are represented
by the classical affine unital and the one described in [9].

(b) For q = 5, the classical affine unital represents the only isomorphism type of affine
SL(2, q)-unitals.

For higher orders, the cost of an exhaustive search increases immensely, whence it is
reasonable to search under certain restrictions.

For the following considerations, it will be useful to write the arcuate blocks in a certain
way. Let D = {1, d2, . . . , dq+1} be an arcuate block through 1. Consider a table T = TD
with q + 1 rows and q + 1 columns, where the entries in the first column are the elements
of D with T11 = 1 and the entry in the i-th row and j-th column is Tij = Ti1 · T −1

j1 . Then
the columns of T correspond to the blocks in D̂, each diagonal entry Tii equals 1 and
Tij = T −1

ji for all i, j ∈ {1, . . . , q + 1}.
1 The corresponding files are order4_exhaustive and order5_exhaustive.

55

https://github.com/moehve/SL2q-Unitals_GAP/blob/master/order4_exhaustive.txt
https://github.com/moehve/SL2q-Unitals_GAP/blob/master/order5_exhaustive.txt


6 Computer Results 6.1 Search for Arcuate Blocks

TD :

1 d−1
2 d−1

3 · · · d−1
q+1

d2 1 d2d
−1
3 · · · d2d

−1
q+1

d3 d3d
−1
2 1 · · · d3d

−1
q+1

... ... ... . . . ...
dq+1 dq+1d

−1
2 dq+1d

−1
3 . . . 1

For any arcuate block E = {e1, . . . , eq+1}, we write E−1 := {e−1
1 , . . . , e−1

q+1}. Then the
rows of TD correspond to the sets E−1 with E ∈ D̂.

6.1.2 Order 7
We consider the case q = 7. Now the group S can by cyclic or quaternion and we first
choose S = C to be cyclic. Since 7 ≡ 3 mod 4, we know that −1 is not a square in F7.
According to Remark 2.7, we can hence choose C to be

{
(
a b
−b a

)
| a, b ∈ F7, a

2 + b2 = 1}.

A generator of C is given by g :=
(
−2 −2
2 −2

)
. Let c := ( 3 2

−2 3 ) and f := ( 0 1
1 0 ) and note that

c2 = g. Then

AC = Aut(SL(2, 7))C = 〈γc〉o 〈γf〉 ∼= C8 o C2 ∼= D8,

whereD8 is the dihedral group of order 16. (Recall that we denote by γa the automorphism
given by conjugation with a.) Our aim is to search for a set D such that the affine SL(2, 7)-
unital UC,D admits certain subgroups of AC as groups of automorphisms. Consider the
subgroups

U := 〈γc4〉 ∼= 〈[( 0 1
−1 0 )]〉 ∼= C2,

F := 〈γf〉 ∼= 〈[( 0 1
1 0 )]〉 ∼= C2 and

V := 〈γcf〉 ∼= 〈[( 2 3
3 −2 )]〉 ∼= C2.

These are – spoken in terms of dihedral groups – the subgroups given by the involutory
rotation and by representatives of the two conjugacy classes of reflections, respectively.
Hence, every other representative of a conjugacy class of non-trivial subgroups of AC

contains (an AC-conjugate of) one of these as a subgroup.
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We start our observations with the subgroup U ≤ AC . Assume UC,D to be an affine
SL(2, 7)-unital on which u := c4 acts (via conjugation) as an automorphism. Let

M := SL(2, 7) \ (C ∪ (
⋃

P)),

where P denotes the set of all Sylow 7-subgroups of SL(2, 7). Recall #D = q − 2 = 5,
where each of the five hats D̂, D ∈ D, contains q + 1 = 8 blocks. Let

A := {x ∈M | xu = x} and B := {x ∈M | xu = x−1}

and compute #A = 0 and #B = 40. If x with xu = x−1 is contained in an arcuate
block D ∈ D, then Du = D · x−1 ∈ D̂, since γu is an automorphism and D · x−1 is the
unique block of UC,D containing x−1 and 1. Each arcuate block through 1 contains at
most one x with xu = x−1, since: Assume x, y ∈ D with xu = x−1 and yu = y−1. Then
D · x−1 = Du = D · y−1 and property (Q) yields x = y. Since there are 5 · 8 = 40 arcuate
blocks through 1, each of them contains exactly one point x with xu = x−1, and γu acts
on each hat D̂ in four orbits of length two.

Let D ∈ D and let a, a−1, b, b−1, c, c−1, d, d−1 be the eight elements of B in the blocks
in D̂. Consider the table T = TD and assume without restriction

a = T21, b = T43, c = T65 and d = T87, i. e.

TD :

1 a−1 ∗ ∗ ∗ ∗ ∗ ∗
a 1 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 b−1 ∗ ∗ ∗ ∗
∗ ∗ b 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 c−1 ∗ ∗
∗ ∗ ∗ ∗ c 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 1 d−1

∗ ∗ ∗ ∗ ∗ ∗ d 1

Then we know
D = {1, a, w, bw, x, cx, y, dy}

with w, x and y not in B and wu = bwa−1, xu = cxa−1 and yu = dya−1, since γu acts on
the rows of TD as it does on the columns.

We are now ready to check with GAP2 for each 4-element subset {a, b, c, d} of B and
2 The corresponding file is order7_cyc_automU.
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every 3-element subset {w, x, y} of M \B whether D := {1, a, w, bw, x, cx, y, dy} satisfies
the above conditions and property (Q) and if D∗ = (⋃ D̂) \ {1} is contained in M .

In the resulting list of possible arcuate blocks through 1, we search for sets D of five
blocks such that the D∗ with D ∈ D have pairwise empty intersection3. The result are
all possible sets of arcuate blocks D such that UC,D is an affine SL(2, 7)-unital with
automorphism γu.

The computer search showed that the classical affine unital of order 7 is the only possible
affine SL(2, 7)-unital with automorphism γu.

Next, we consider the subgroup F ≤ AC and assume UC,D to be an affine SL(2, 7)-unital
with automorphism γf . Let M be as above and let

A := {x ∈M | xf = x} and B := {x ∈M | xf = x−1}.

We compute #A = 4 and #B = 36. Again, each arcuate block through 1 contains
at most one point x ∈ B. Assume that D ∈ D contains two elements a, b ∈ A. Then
D∗ contains six distinct elements a, a−1, b, b−1, ba−1 and ab−1 all contained in M and
invariant under conjugation by f . This is a contradiction to #A = 4. Each arcuate block
containing an element of A is fixed under conjugation by f while each arcuate block
containing an element of B is not. Hence, each arcuate block through 1 contains either
exactly one element of B or exactly one element of A.

Let D ∈ D. If D∗ contains no element of A, then the list of possible such arcuate blocks
can be computed as above. If D∗ contains an element a ∈ A, assume without restriction
a ∈ D. Then Df = D and

D = {1, a, w, wf , x, xf , y, yf}

with w, x, y ∈M \ (A∪B). All such blocks can be computed with GAP4 and we conclude
the search as above.

We obtain a similar result: The classical affine unital of order 7 is the only possible affine
SL(2, 7)-unital with automorphism γf .

3 The corresponding file is order7_conclusion. This file is also used to conclude the searches with
groups of automorphisms F and V and with the group of automorphisms U where S is a quaternion
group.

4 The corresponding file is order7_cyc_automF.
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Finally, we consider the subgroup V ≤ AC and assume UC,D to be an affine SL(2, 7)-unital
on which v := c · f acts as an automorphism. Let M be as above and let

A := {x ∈M | xv = x} and B := {x ∈M | xv = x−1}.

We compute #A = 6 and #B = 34. Since the order of γv as automorphism of
US,D is 2, the orbits of the action of γv on the arcuate blocks have length 1 or 2,
respectively. If γv fixes an arcuate block D ∈ D, there is at least one element d ∈ D with
dv = d, since D contains an odd number of elements different from 1. Let D ∈ D with
Dv 6= D. If Dv 6∈ D̂, then D∗ must not contain any element of B – a contradiction, since
#B = 34 > 32 = 4 · 8 and each arcuate block through 1 contains at most one element
of B. Hence, Dv = D · d−1 for some d ∈ D. But then we also know ((D · d−1)−1)v = D−1

and since d ∈ (D∩ (D ·d−1)−1)\{1}, we have dv ∈ (D ·d−1∩D−1)\{1} = {d−1}. Hence,
each arcuate block through 1 not fixed by γv contains at least one element of B and we
obtain again that each arcuate block through 1 contains either exactly one element of B
or exactly one element of A.

We conclude the search as above5 and obtain again: The classical affine unital of order 7
is the only possible affine SL(2, 7)-unital with automorphism γv.

Having considered all three conjugacy classes of minimal subgroups of AC , we are able
to state the following

Theorem 6.2 (by exhaustive computer search). Let C be a cyclic subgroup of SL(2, 7) and
let UC,D be an affine SL(2, 7)-unital with non-trivial stabilizer of 1 in its full automorphism
group. Then UC,D is isomorphic to the classical affine unital UC,H.

Next, we choose S ≤ SL(2, 7) to be a quaternion group. Since g2 = ( 0 1
−1 0 ) and

22 + 32 = −1, we can choose S as in Remark 2.7 as

S := 〈( 0 1
−1 0 ) , ( 2 3

3 −2 )〉.

Let u := g2, f := ( 3 3
−1 −3 ) and v := ( 0 2

3 1 ). Then

AS = Aut(SL(2, 7))S = 〈γu, γf , γv〉 ∼= S4.

Consider the subgroups
5 The corresponding files are order7_cyc_automV and order7_conclusion.
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U := 〈γu〉 ∼= 〈[( 0 1
−1 0 )]〉 ∼= C2,

F := 〈γf〉 ∼= 〈[( 3 3
−1 −3 )]〉 ∼= C2 and

V := 〈γv〉 ∼= 〈[( 0 2
3 1 )]〉 ∼= C3

of AS. Every other representative of a conjugacy class of non-trivial subgroups of AS

contains (an AS-conjugate of) one of these as a subgroup.

Let again
M := SL(2, 7) \ (S ∪ (

⋃
P)),

where P denotes the set of all Sylow 7-subgroups of SL(2, 7). Let

A := {x ∈M | xu = x} and B := {x ∈M | xu = x−1}

and compute #A = 4 and #B = 36. With the same considerations as above and
computation by GAP6, we obtain that there is no affine SL(2, 7)-unital US,D with
automorphism γu.

We continue with the group F and let

A := {x ∈M | xf = x} and B := {x ∈M | xf = x−1}.

Then #A = 6 and #B = 38. Since #B = 38 and each arcuate block through 1 with orbit
length 2 under conjugation by f contains exactly one element of B, there are exactly two
arcuate blocks stabilized by γf . But then we may only have two fixed elements under
conjugation by f , a contradiction. There can thus be no affine SL(2, 7)-unital US,D with
automorphism γf .

Last, we consider the group V ∼= C3 and assume US,D to be an affine SL(2, 7)-unital with
automorphism γv. Let

A := {x ∈M | xv = x}

and compute #A = 4. The possible orbit lengths of the action of γv on the arcuate
blocks of US,D are 1 and 3. If γv stabilizes D̂ for D ∈ D, then there are at least two fixed
blocks in D̂, since #D̂ = 8. But since the number of fixed elements under conjugation
by v is 4 < 6, the number of fixed blocks in D̂ is at most 2. Thus, γv acts on the set of
hats {D̂ | D ∈ D} with two fixed hats and one orbit of length 3.

6 The corresponding files are order7_quat_automU and order7_conclusion.
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We search via GAP7 for all pairs of two arcuate blocks D1 and D2 through 1 with one
fixed element each and such that D∗1∩D∗2 = ∅. For each such pair of blocks, we search for
an arcuate block D through 1 such that D∗ ∪ (Dv)∗ ∪ (Dv2)∗ = M \ (D∗1 ∪D∗2). We find
that there is no affine unital US,D with automorphism γv.

Again, having considered all three conjugacy classes of minimal subgroups of AS, we
state the following

Theorem 6.3 (by exhaustive computer search). Let S be a quaternion subgroup of
SL(2, 7). Then there is no affine SL(2, 7)-unital US,D with non-trivial stabilizer of 1 in
its full automorphism group.

For order 7, there were no new unitals appearing throughout the search. This will be
different for order 8.

6.1.3 Order 8
We consider the case q = 8. Let F×8 = 〈z〉, with z3 = z + 1. Then, X2 +X + 1 has no
root in F8. Let further ϕ be the Frobenius automorphism

ϕ : F8 → F8, x 7→ x2,

of order 3. Since q = 8 is even, any subgroup S ≤ SL(2, 8) of order 9 must be cyclic and
we may hence choose S = C as in Remark 2.7 to be

{
(
a b
b a+b

)
| a, b ∈ F8, a

2 + ab+ b2 = 1}.

A generator of C is given by g :=
(
z2 z4

z4 z

)
. Let f := ( 0 1

1 0 ). Then

AC = Aut(SL(2, 8))C = 〈γg〉o 〈γf · ϕ〉 ∼= C9 o C6.

Again, our aim is to search for SL(2, 8)-unitals which admit certain subgroups of AC as
groups of automorphisms. Consider the subgroups

F := 〈γf〉 ∼= 〈( 0 1
1 0 )〉 ∼= C2,

U := 〈γg3〉 ∼= 〈( 1 1
1 0 )〉 ∼= C3 and

L := 〈ϕ〉 ∼= C3.

Every other representative of a conjugacy class of non-trivial subgroups of AC contains
(an AC-conjugate of) one of these as a subgroup.

7 The corresponding file is order7_quat_automV.
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Example 6.4 (The classical affine unital of order 8). Let

H1 := {1,
(
z5 1
z5 z6

)
,
(
z4 z2

1 z2

)
,
(

0 z
z6 z5

)
,
(
z3 z6

z4 z5

)
,
(
z3 z
z6 0

)
,
(

1 z2

1 z6

)
,
(
z4 1
z5 1

)
,
(
z5 0
0 z2

)
},

H2 := H1 · ϕ, H3 := H1 · ϕ2,
H4 := {1,

(
z5 0
z6 z2

)
,
(
z z6

z4 1

)
,
(

1 z5

z6 z5

)
,
(
z z4

0 z6

)
,
(
z5 z2

z4 z4

)
,
(

0 z2

z5 z5

)
,
(

0 z4

z3 z4

)
,
(
z2 z5

z5 z6

)
},

H5 := H4 · ϕ, H6 := H4 · ϕ2

and H := {H1, . . . , H6}. Then UC,H is the classical affine unital of order 8. As indicated,
ϕ acts on the set of hats {Ĥ | H ∈ H} in two orbits of length 3. Conjugation by g
stabilizes each Ĥ and acts transitively on the blocks of each Ĥ. Conjugation by f also
stabilizes each Ĥ but fixes exactly one block per Ĥ.

We start our observations with the subgroup F ≤ AC . Assume UC,D to be an affine
SL(2, 8)-unital on which f acts (via conjugation) as an automorphism. Let

M := SL(2, 8) \ (C ∪ (
⋃

P)),

where P denotes the set of all Sylow 2-subgroups of SL(2, 8). Recall #D = q − 2 = 6,
where each of the six hats D̂, D ∈ D, contains q + 1 = 9 blocks. Let

A := {x ∈M | xf = x} and B := {x ∈M | xf = x−1}

and compute #A = 0 and #B = 48. As above, each arcuate block through 1 contains
at most one point x ∈ B. Since #B = 48 > 45 = 5 · 9, each D∗ contains at least one
x ∈ B and the action of γf fixes every D̂. But since every D̂ contains 9 blocks and γf
has order 2, there is at least one fixed block in each D̂. The number of elements in B
yields that there is exactly one fixed block in each D̂. Since there is no fixed element
under γf in M and γf has order 2, each fixed arcuate block through 1 is of the form

D = {1, a, b, c, d, af , bf , cf , df}

with a, b, c, d ∈M \B. Again, we compute all possible such blocks with GAP8 and search
in the resulting list for a set D of six blocks such that the sets D∗, D ∈ D, have pairwise
empty intersection9.

8 The corresponding file is order8_automF.
9 The corresponding file is order8_conclusion. This file is also used to conclude the search with
group of automorphisms U .
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We obtain as expected the classical affine unital, but there is indeed one more affine
SL(2, 8)-unital UC,D with automorphism γf , introduced in the following

Theorem 6.5 (Weihnachtsunital). Let C := 〈g〉 = 〈
(
z2 z4

z4 z

)
〉 as above and let

D1 := {1,
(
z5 1
z5 z6

)
,
(
z4 z2

1 z2

)
,
(

0 z
z6 z2

)
,
(

1 z4

z2 z2

)
,
(

1 z
z6 0

)
,
(

1 z2

1 z6

)
,
(
z4 1
z5 1

)
,
(
z5 0
0 z2

)
},

D2 := D1 · ϕ, D3 := D1 · ϕ2,

D4 := {1,
(
z5 0
z6 z2

)
,
(
z z6

z4 1

)
,
(

0 z
z6 z5

)
,
(
z4 0
z2 z3

)
,
(
z5 z2

z3 z6

)
,
(

0 z2

z5 z5

)
,
(

0 z4

z3 z4

)
,
(
z2 z5

z5 z6

)
},

D5 := D4 · ϕ, D6 := D4 · ϕ2

and D := {D1, . . . , D6}. Then WU := UC,D is an affine SL(2, 8)-unital and we call it
Weihnachtsunital10. The stabilizer of 1 in Aut(WU) is

Aut(WU)1 = U o (F × L) = 〈γg3〉o 〈γf · ϕ〉 ∼= C3 o C6

and the full automorphism group

Aut(WU) = Aut(WU)1 nR

has index 3 in Aut(UC,H) = AC nR.

Proof. The proof is basically computation. Note that the given description already
uses the automorphism ϕ ∈ Aut(WU)1. As implemented in the search, conjugation
by f stabilizes each hat with exactly one fixed block per hat. Conjugation by the
generator g of C does not induce an automorphism of WU, but conjugation by g3 yields
an automorphism of WU such that each hat is fixed.

Remark 6.6. As indicated in the proof of the theorem, the action of Aut(WU)1 ≤ AC

on the set of hats of WU is the same as in the classical affine SL(2, 8)-unital UC,H.

Having computed the full automorphism group of Aut(WU), we know in particular
that the Weihnachtsunital is not isomorphic to the classical affine SL(2, 8)-unital UC,H.
Another way to see that WU is not isomorphic to UC,H is via O’Nan configurations. An
O’Nan configuration consists of four distinct blocks meeting in six distinct points:

10 The Weihnachtsunital was discovered around Christmas 2017, so you might guess why it is called
like this.
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O’Nan observed that classical unitals do not contain such configurations (see [22, p. 507]).

Remark 6.7. In WU, there are lots of O’Nan configurations, e. g.

C = {1, g, g2, g3, g4, g5, g6, g7, g8},

T := {1, ( 1 1
0 1 ) , ( 1 z

0 1 ) ,
(

1 z2
0 1

)
,
(

1 z3
0 1

)
,
(

1 z4
0 1

)
,
(

1 z5
0 1

)
,
(

1 z6
0 1

)
},

D2 ·
(
z4 1
1 0

)
= {

(
z4 1
1 0

)
,
(

0 z3

z4 z3

)
, ( 1 z

0 1 ) ,
(
z2 0
z z5

)
,
(
z2 1
z2 z4

)
,
(
z 1
z2 z5

)
, ( 0 1

1 1 ) ,
(
z4 z
0 z3

)
,
(

1 z3

z4 0

)
},

D3 ·
(
z z3

0 z6

)
= {

(
z z3

0 z6

)
, ( 1 1

1 0 ) ,
(
z3 z4
z z

)
,
(

0 z3

z4 z2

)
,
(
z 1
z2 z5

)
,
(
z 0
z4 z6

)
, ( z z

z z5 ) ,
(
z3 z
1 1

)
,
(

1 z2
0 1

)
}.

C

T

D2 ·
(
z4 1
1 0

)
D3 ·

(
z z3

0 z6

)

1
g6

g3

( 1 z
0 1 )(

1 z2
0 1

)

(
z 1
z2 z5

)

We continue our search with the group U = 〈γu〉, u := g3, and assume UC,D to be an
affine SL(2, 8)-unital with automorphism γu. Again,

M := SL(2, 8) \ (C ∪ (
⋃

P)) and A := {x ∈M | xu = x}.

We compute #A = 0 and conclude that U does not fix any arcuate block, since there are
eight non-trivial elements in each arcuate block through 1 and γu has order 3. Assume
that γu fixes each hat D̂ with D ∈ D (as it does on UC,H and WU). Then γu acts on D̂
in three orbits of length 3. We look at the table TD and assume without restriction that
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γu permutes columns (and rows) 1–3, 4–6 and 7–9 of TD. Then

TD :

1 ∗ au
2 ∗ ∗ ∗ ∗ ∗ ∗

a 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ au 1 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 ∗ bu

2 ∗ ∗ ∗
∗ ∗ ∗ b 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ bu 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ cu

2

∗ ∗ ∗ ∗ ∗ ∗ c 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ cu 1

and we get au2 = (aua)−1, bu2 = (bub)−1 and cu2 = (cuc)−1. Computing with GAP, we find
exactly 18 = 6 · 3 three-element subsets of M of the form {x, xu, xu2} with xu2 = (xux)−1.
We may thus search for arcuate blocks of the form

D = {1, a, aua, x, bx, bubx, y, cy, cucy},

where a, b and c satisfy the described property while x and y do not11. In the resulting
list of arcuate blocks, we search as above for a set D of six blocks such that the sets D∗,
D ∈ D, have pairwise empty intersection.
Since γu acts on the classical affine unital as well as on the Weihnachtsunital in this way,
both of them appear in the results of the search. But we obtain indeed two more affine
SL(2, 8)-unitals with automorphism γu, described in the following

Theorem 6.8 (Osterunital and Pfingstunital12). Let C := 〈g〉 = 〈
(
z2 z4

z4 z

)
〉 as above.

(a) Let

D1 := {1,
(
z5 1
z5 z6

)
,
(
z4 z2

1 z2

)
,
(

1 z
z6 0

)
,
(

0 z
z6 z2

)
,
(

1 z4

z2 z2

)
,
(
z3 z5

z3 1

)
,
(
z5 z4

z2 z4

)
,
(
z2 0
0 z5

)
},

D2 := Dg
1, D3 := Dg2

1 ,

D4 := {1,
(
z5 0
z6 z2

)
,
(
z z6

z4 1

)
,
(
z5 z2

z5 0

)
,
(
z3 z4

z6 z5

)
,
(

1 1
z3 z

)
,
(

1 z
1 z3

)
,
(
z z2

1 z5

)
,
(
z 0
z z6

)
},

D5 := Dg
4, D6 := Dg2

4

and D := {D1, . . . , D6}. Then OU := UC,D is an affine SL(2, 8)-unital and we call it
Osterunital.

11 The corresponding file is order8_automU.
12 The Osterunital and the Pfingstunital were discovered in 2018, you might guess the approximate

dates.

65

https://github.com/moehve/SL2q-Unitals_GAP/blob/master/order8_automU.txt


6 Computer Results 6.1 Search for Arcuate Blocks

(b) Let f = ( 0 1
1 0 ) as above and let

D′1 := D1, D′2 := D2, D′3 := D3,
D′4 := Df

4 , D′5 := (D′4)g, D′6 := (D′4)g2

and D′ := {D′1, . . . , D′6}. Then PU := UC,D′ is an affine SL(2, 8)-unital and we call
it Pfingstunital.

The full stabilizers of 1 in Aut(OU) and Aut(PU), respectively, are

Aut(OU)1 = Aut(PU)1 = C o L = 〈γg〉o 〈ϕ〉 ∼= C9 o C3

and the full automorphism groups

Aut(OU) = Aut(PU) = (C o L) nR

have index 2 in Aut(UC,H).

Proof. Again this is basically computation. The given description already uses the
automorphism γg in both Aut(OU)1 and Aut(PU)1. The Frobenius automorphism ϕ

acts as automorphism on OU as well as on PU in the same way as it does on UC,H and
WU. The orbits of ϕ in D are {D1, D2, D3} and {D4, D5, D6} and its orbits in D′ are
{D′1, D′2, D′3} and {D′4, D′5, D′6}. Conjugation by f induces no automorphism on neither
OU nor PU.

Remark 6.9. Other than in the Weihnachtsunital, there is a difference between the
action of Aut(OU)1 = Aut(PU)1 ≤ AC on the set of hats of the Oster- and Pfingstunital,
respectively, and its action on the set of hats of the classical affine SL(2, 8)-unital UC,H.
In UC,H, conjugation by g fixes every hat, while on OU and PU it acts on the set of hats
in two orbits of length 3.

Remark 6.10. As in the Weihnachtsunital, there are also many O’Nan configurations
in OU and PU, e. g.

C = {1, g, g2, g3, g4, g5, g6, g7, g8},

D1 = {1,
(
z5 1
z5 z6

)
,
(
z4 z2

1 z2

)
,
(

1 z
z6 0

)
,
(

0 z
z6 z2

)
,
(

1 z4

z2 z2

)
,
(
z3 z5

z3 1

)
,
(
z5 z4

z2 z4

)
,
(
z2 0
0 z5

)
},

D2 · g = {g,
(
z4 z2

1 z2

)
,
(
z3 0
z3 z4

)
,
(
z5 z5

z3 z5

)
,
(
z6 0
1 z

)
,
(
z6 z
z3 z6

)
,
(
z5 z2

z6 z5

)
,
(

1 z3

z4 0

)
,
(
z2 z3

0 z5

)
},

D3 ·
(
z5 z2

z6 z5

)
= {

(
z5 z2

z6 z5

)
,
(
z2 0
0 z5

)
,
(
z z2

z3 z3

)
,
(
z2 1
z6 1

)
,
(
z6 z
z5 z3

)
,
(
z4 z3

z4 0

)
,
(
z z4

z4 z2

)
,
(
z3 z2

z5 0

)
,
(
z3 z
z4 z

)
}.
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C

D1

D2 · g
D3 ·

(
z5 z2

z6 z5

)

1
g

g8

(
z4 z2

1 z2

)(
z2 0
0 z5

)

(
z5 z2

z6 z5

)

Although they look quite similar, the Osterunital and the Pfingstunital are not isomorphic,
as shown in the following

Proposition 6.11. There is no isomorphism between OU and PU.

Proof. According to Theorem 4.4, any isomorphism between OU and PU must be
contained in ACnR. But since the index of Aut(OU) in ACnR equals 2 and computation
shows that Df

1 is no block of PU, the statement follows.

In particular, the Oster- and Pfingstunital are two non-isomorphic affine SL(2, q)-unitals
with the same full automorphism group.

We conclude the search with the group L = 〈ϕ〉 and assume UC,D to be an affine SL(2, 8)-
unital with group of automorphisms L. As for γu, we assume ϕ to act on the set of
hats of UC,D as it does in UC,H and in WU, namely with two orbits of length 3. We
search with GAP13 for every arcuate block D through 1 such that D∗, (D · ϕ)∗ and
(D · ϕ2)∗ have pairwise empty intersection and for each of those blocks we search in
M ′ := M \ (D∗ ∪ (D · ϕ)∗ ∪ (D · ϕ2)∗) for an arcuate block D2 with

D∗2 ∪ (D2 · ϕ)∗ ∪ (D2 · ϕ2)∗ = M ′.

Doing so, we find (as expected) all affine unitals UC,H, WU, OU and PU. Other affine
unitals are not found.

13 The corresponding file is order8_automL.
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We summarize the results in the following

Theorem 6.12 (by exhaustive computer search). Let C := 〈g〉 = 〈
(
z2 z4

z4 z

)
〉 and let UC,D

be an affine SL(2, 8)-unital.

(a) If conjugation by ( 0 1
1 0 ) induces an automorphism on UC,D, then UC,D is isomorphic

to either the classical affine SL(2, 8)-unital or the Weihnachtsunital.

(b) If conjugation by g3 = ( 1 1
1 0 ) induces an automorphism on UC,D such that each hat

is fixed, then UC,D is isomorphic to either the classical affine SL(2, 8)-unital, the
Weihnachtsunital, the Osterunital or the Pfingstunital.

(c) If the Frobenius automorphism ϕ acts as automorphism on UC,D such that it permutes
the hats in two orbits of length 3, then UC,D is isomorphic to either the classical
affine SL(2, 8)-unital, the Weihnachtsunital, the Osterunital or the Pfingstunital.

6.2 Search for Parallelisms
We will now search with GAP14 for parallelisms on the short blocks of affine SL(2, q)-
unitals, i. e. partitions of the set of all right cosets of the Sylow p-subgroups of SL(2, q)
into q + 1 sets of q2 − 1 pairwise disjoint cosets each. We already know for each q the
parallelisms [ and \ and for each odd q the parallelism π� (introduced in Section 5.1).

6.2.1 Orders 3 and 5
For q ∈ {3, 5}, we find by an exhaustive search (q − 1)q(q + 1) + 2 parallelisms on the
short blocks. As seen in Section 6.1, for both q = 3 and q = 5, the classical affine
SL(2, q)-unital UC,H is up to isomorphisms the only affine SL(2, q)-unital. The orbit
lengths of the action of Aut(UC,H) = AC nR on the sets of parallelisms are the following:

q = 3 q = 5

1 1
1 1
24 120

Hence, there are up to equivalence exactly three parallelisms for both q = 3 and q = 5;
namely [ and \ (which are both stabilized by AC n R) and π�. Note that the orbit
lengths 24 and 120 equal (q− 1)q(q+ 1), which matches the fact that the stabilizer of π�

in AC nR has order 2e(q + 1), see Corollary 5.3.
14 The corresponding file is parallelisms_search for q ∈ {3, 4, 5}.
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We summarize the results in the following

Theorem 6.13 (by exhaustive computer search). For q ∈ {3, 5}, there are exactly three
isomorphism types of SL(2, q)-unitals each, represented by U\

C,H, U[
C,H and Uπ�

C,H.

6.2.2 Order 4
Let F×4 = 〈z〉, with z2 = z + 1. Then, X2 + X + z has no root in F4. Let ϕ be the
Frobenius automorphism

ϕ : F4 → F4, x 7→ x2,

of order 2. We choose S = C as in Remark 2.7 to be

{
(
a b
zb a+b

)
| a, b ∈ F4, a

2 + ab+ zb2 = 1}.

A generator of C is given by g :=
(

0 z
z2 z

)
. Let f := ( 1 0

z 1 ). Then

AC = Aut(SL(2, 4))C = 〈γg〉o 〈γf · ϕ〉 ∼= C5 o C4.

Example 6.14 (Affine SL(2, 4)-unitals). Let H := {H1, H2} and E := {E1, E2} with

H1 := {1,
(
z2 0
0 z

)
, ( 0 1

1 z ) ,
(
z2 z2

z2 1

)
, ( 1 1

1 0 )},

H2 := Hf
1 · ϕ,

E1 := {1,
(
z2 z2
0 z

)
, ( 0 1

1 z ) ,
(
z2 0
z2 z

)
, ( 1 1

1 0 )},

E2 := Ef
1 · ϕ.

Then, UC,H equals the classical affine unital and UC,E equals the non-classical affine
SL(2, 4)-unital presented in [9]. The full automorphism group of UC,H equals AC n R

and the full automorphism group of UC,E equals 〈γf · ϕ〉nR, see [9, Theorem 4.1].

For order 4, an exhaustive computer search yields 182 parallelisms on the short blocks.
We consider the actions of the automorphism groups

Aut(S) = (A× I) ·R, Aut(UC,H) = AC nR and Aut(UC,E) = 〈γf · ϕ〉nR

on the set of 182 parallelisms found by GAP. The orbit lengths of these actions are listed
in Table 6.1.
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Table 6.1: Orbit lengths on the set of 182 parallelisms for order 4

Aut(S) Aut(UC,H) Aut(UC,E)
2 1 1

1 1
60 30 24

6
25 20

5
5 5

120 60 60
60 60

The orbit of length 2 under the action of Aut(S) contains the parallelisms [ and \, which
are mapped to each other by inversion but are stabilized under the action of AnR.
The orbit of length 60 under the action of Aut(S) contains parallelisms, where one
parallel class is given by the set of all right (resp. left) cosets of one Sylow 2-subgroup.
The remaining four parallel classes – consisting of q2 − 1 = 15 blocks each – contain
for a set of three Sylow 2-subgroups five right (resp. left) cosets each. This structure
is indicated in Figure 6.1, where each of the small lines represents one short block and
where blocks with the same dash pattern belong to the same parallel class. The five rows
correspond to the sets of left cosets and the five columns to the sets of right cosets of the
Sylow 2-subgroups.
The parallel classes of the parallelisms in the orbit of length 120 under the action of
Aut(S) contain eleven right (resp. left) cosets of one Sylow 2-subgroup each, while the
remaining four blocks are given by left (resp. right) cosets of one (possibly different)
Sylow 2-subgroup. This structure is indicated in Figure 6.2.

Let π1, . . . , π7 be representatives of the orbits of length greater than 1 under the action of
Aut(UC,E) such that the orbits of π1 and π2 and the orbits of π3 and π4 coincide under the
action of Aut(UC,H). Let the set of Sylow 2-subgroups of SL(2, 4) be P := {T1, . . . , T5}
with

T1 := {1, ( 1 1
0 1 ) , ( 1 z

0 1 ) ,
(

1 z2
0 1

)
},

T2 := {1, ( 1 0
1 1 ) , ( 1 0

z 1 ) ,
(

1 0
z2 1

)
},

T3 := {1, ( 0 1
1 0 ) ,

(
z2 z
z z2

)
,
(
z z2

z2 z

)
},

T4 := {1,
(

0 z
z2 0

)
,
(
z2 z2

1 z2

)
, ( z 1

z z )},
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Figure 6.1: Structure of parallelisms in the orbit of length 60 under Aut(S)

Figure 6.2: Structure of parallelisms in the orbit of length 120 under Aut(S)
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T5 := {1,
(

0 z2
z 0

)
,
(
z2 1
z2 z2

)
, ( z z1 z )},

and see Table 6.2 for the chosen parallelisms. Then there are twelve pairwise non-
isomorphic SL(2, 4)-unitals

Uπ2
C,H, Uπ4

C,H, Uπ5
C,H, Uπ6

C,H, Uπ7
C,H, Uπ1

C,E , Uπ2
C,E , Uπ3

C,E , Uπ4
C,E , Uπ5

C,E , Uπ6
C,E , Uπ7

C,E .

Since those parallelisms for order 4 were found during the Leonids meteor shower in
November 2018, we will call the twelve resulting unitals Leonids unitals.

Knowing all affine SL(2, 4)-unitals and all parallelisms on the short blocks for order 4,
we state the following

Theorem 6.15 (by exhaustive computer search). There are exactly 16 isomorphism
types of SL(2, 4)-unitals, represented by U\

C,H, U[
C,H, U

\
C,E , U[

C,E and the twelve Leonids
unitals.

Recall that the stabilizer of the block at infinity in any SL(2, q)-unital Uπ
S,D equals the

group of those automorphisms of the affine unital US,D, which stabilize the parallelism π.
We compute with GAP that in each Leonids unital there are indeed no automorphisms
moving the block at infinity, and we are thus able to compute their full automorphism
groups as subgroups of Aut(UC,H) or Aut(UC,E), respectively. Let

b := ( 1 0
1 1 ) and c :=

(
z 0
0 z2

)
and see Table 6.3 for the full automorphism groups of the Leonids unitals.
Since in each Leonids unital, there is always at least one block fixed by its full au-
tomorphism group, no Leonids unital is isomorphic to a unital of the classes treated
in Theorem 4.16. In [17], Krčadinac, Nakić and Pavčević introduce a method for the
construction of designs with prescribed automorphism groups. Applying this method with
some selected automorphism groups, they find 1777 non-isomorphic unitals of order 4.
These unitals are contained in a library shipped with the GAP package UnitalSZ [20].
Checking isomorphisms with GAP, we find that none of the Leonids unitals is isomorphic
to a unital in this list of 1777 unitals of order 4.

Remark 6.16. Regarding the orders of the full automorphism groups of the Leonids
unitals in Table 6.3, we see that the order of Aut(Uπ5

C,H) is notably greater than the other
orders. Indeed, although R is not contained in its full automorphism group, the unital
Uπ5
C,H admits a group of automorphisms which acts regularly on the affine points, namely

(〈ρb, ρc〉 × 〈γg−1 · ρg〉) ∼= A4 × C5.
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6 Computer Results 6.2 Search for Parallelisms

Table 6.3: Full automorphism groups of the Leonids unitals

U Aut(U) # Aut(U)
Uπ2
C,H 〈γf · ϕ〉n 〈ρg, ρb〉 ∼= C4 nD5 40

Uπ4
C,H 〈γf · ϕ〉n 〈ρb, ρc〉 ∼= C4 n A4 48

Uπ5
C,H 〈γf · ϕ〉n (〈ρb, ρc〉 × 〈γg−1 · ρg〉) ∼= C4 n (A4 × C5) 240

Uπ6
C,H 〈γg · ρg〉o 〈γf · ϕ〉 ∼= C5 o C4 20

Uπ7
C,H 〈γg · ρg〉o 〈γf · ϕ〉 ∼= C5 o C4 20

Uπ1
C,E 〈ρg, ρb〉 ∼= D5 10

Uπ2
C,E 〈γf · ϕ〉n 〈ρg, ρb〉 ∼= C4 nD5 40

Uπ3
C,E 〈ρb, ρc〉 ∼= A4 12

Uπ4
C,E 〈γf · ϕ〉n 〈ρb, ρc〉 ∼= C4 n A4 48

Uπ5
C,E 〈γf · ϕ〉n 〈ρb, ρc〉 ∼= C4 n A4 48

Uπ6
C,E 〈γf · ϕ〉 ∼= C4 4

Uπ7
C,E 〈γf · ϕ〉 ∼= C4 4

We conclude this chapter with a description of all translations of the Leonids unitals.
Let again f := ( 1 0

z 1 ), b := ( 1 0
1 1 ) and c :=

(
z 0
0 z2

)
and note that (γf · ϕ)2 = γf(f ·ϕ) = γb.

With T2 := {( 1 0
x 1 ) | x ∈ F4} as above, we have b ∈ T2 and γb · ρb equals left multiplication

with b.

Proposition 6.17. All translations of the Leonids unitals are the following:

(i) Uπ2
C,H and Uπ2

C,E admit one translation of order 2 each.

(ii) Uπ4
C,H, Uπ5

C,H, Uπ3
C,E , Uπ4

C,E and Uπ5
C,E , respectively, admit a translation group of order 4

with translation center.

Proof. One parallel class in π2 is given by the set of all right cosets of T2 (see Table 6.2).
Since both Aut(Uπ2

C,H) and Aut(Uπ2
C,E) contain γb · ρb (see Table 6.3), left multiplication

by b induces a translation of order 2 with center T2 on Uπ2
C,H and Uπ2

C,E , respectively.
In π3 as well as in π4 and π5, one parallel class is given by the set of all left cosets of
T2 (see Table 6.2). Since T2 = {1, b, bc, bc2}, the group RT2 := {ρt | t ∈ T2} is a group
of automorphisms of Uπ4

C,H, Uπ5
C,H, Uπ3

C,E , Uπ4
C,E and Uπ5

C,E , respectively (see Table 6.3). On
each of those unitals, RT2 acts as translation group of order 4 with translation center
T2 ∈ [∞].
Computation (e. g. with GAP) shows that there are no other translations in any of the
Leonids unitals.
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7 Open Problems

While working on SL(2, q)-unitals, there occurred still unsolved questions, some of which
we list here (in no particular order).

1. Is every affine SL(2, q)-unital with automorphism group AC nR isomorphic to the
classical affine SL(2, q)-unital?

2. Is the block at infinity fixed by the full automorphism group in every non-classical
SL(2, q)-unital?

3. Is there a non-classical affine SL(2, q)-unital with odd order?

4. If yes, is there an affine SL(2, q)-unital US,D, where S is non-cyclic?

5. In the non-classical affine SL(2, q)-unitals UC,E , WU, OU and PU, can the set of
arcuate blocks through 1 be described in a way that extends to higher orders?

6. Can the parallelisms on the short blocks for order 4 be described in a way that
extends to higher orders?
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