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M A T E R I A L S  S C I E N C E

The emergence of small-scale self-affine surface 
roughness from deformation
Adam R. Hinkle1,2*, Wolfram G. Nöhring3*, Richard Leute3, Till Junge4, Lars Pastewka2,3,5,6†

Most natural and man-made surfaces appear to be rough on many length scales. There is presently no unifying 
theory of the origin of roughness or the self-affine nature of surface topography. One likely contributor to the 
formation of roughness is deformation, which underlies many processes that shape surfaces such as machining, 
fracture, and wear. Using molecular dynamics, we simulate the biaxial compression of single-crystal Au, the 
high-entropy alloy Ni36.67Co30Fe16.67Ti16.67, and amorphous Cu50Zr50 and show that even surfaces of homogeneous 
materials develop a self-affine structure. By characterizing subsurface deformation, we connect the self-affinity of 
the surface to the spatial correlation of deformation events occurring within the bulk and present scaling rela-
tions for the evolution of roughness with strain. These results open routes toward interpreting and engineering 
roughness profiles.

INTRODUCTION
Surface roughness (1) appears across many length scales and in 
almost all physical systems, including the rocky terrain of mountain 
ranges (2), metals (3–5), glasses (6), and silicon wafers (7). Rough-
ness critically controls friction (8), adhesion (9), and transport 
(10, 11) and plays a decisive role in both industrial and scientific 
fields, from operating machinery to predicting earthquakes. Rough 
surfaces are often fractals with statistical self-affine scaling (12, 13) 
observed from the atomic to the tectonic scale (2, 14, 15). There is 
currently no unifying explanation for the origins of this self-affinity, 
but the influence of microstructural heterogeneity on material 
deformation is widely cited as a possible mechanism (5, 16–20).

The fact that scale-invariant roughness is observed from micro-
scopic to geological scales hints that a common mechanism is active 
across vastly different length scales. This is unexpected because the 
processes that form mountain ranges or the surface of a ball bearing 
are excruciatingly complicated. Geological faults crack, slide, and 
wear and man-made surfaces typically undergo many steps of shaping 
and finishing, such as polishing, lapping, and grinding. However, 
all of these surface changes, whether natural or engineered, involve 
mechanical deformation at the smallest scales: Even the crack tips of most 
brittle materials such as glasses exhibit a finite process zone where the 
material is plastically deformed (21). This smallest scale of roughness is 
important because it controls the contact area (1) and thereby adhe-
sion (9), conductance (11), and other functional properties.

In this article, we report the formation of small-scale roughness 
in molecular dynamics (MD) calculations of simple biaxial com-
pression for three benchmark material systems: single-crystal Au, 
the model high-entropy alloy Ni36.67Co30Fe16.67Ti16.67, and amor-
phous Cu50Zr50. Each material represents a unique limit of structural 
order: a homogeneous crystal, a crystal with stoichiometric disor-

der, and a glass with no long-range order. They are known to exhibit 
a different micromechanical or molecular mechanism of deforma-
tion, and we study the ensuing atomic-scale changes both within 
the bulk of the system and the emerging rough surfaces during biaxial 
compression. Despite their differences in structure and material 
properties, all three systems develop rough surfaces with a self-
affine surface topography when compressed. We additionally carry 
out continuum mechanical calculations of heterogeneous systems 
that show surface roughening but no self-affine topography. Our 
results suggest that the emergence of self-affinity is inextricably 
linked to a discrete deformation mechanism, e.g., the nucleation 
and slip of dislocations in crystals or the flipping of shear transfor-
mation zones in glasses.

RESULTS
Our molecular models consist of cubic volume elements with lateral 
length L ≈ 100 nm, as shown in Fig. 1. The systems are periodic in 
the x-y plane and have a free surface in the z direction. We subject 
these samples to simple biaxial compression at a constant strain rate 
(see Fig. 1A and Materials and Methods), and analyze the deformation 
process as shown in Fig. 2. The stress-strain response of our systems 
during this process is typical (Fig. 2A): Stress increases linearly in 
the elastic regime until yielding begins. Because our crystalline systems 
are homogeneous on scales beyond a few atomic distances and contain 
no preexisting defects, the yield stress is much larger than the stress at 
which they flow (22). The amorphous system shear-softens as is typical 
for metallic glasses (23).

Roughness is traditionally described by scalar quantities such as 
the root mean square height. Given a height profile h(x, y) on a 
square of lateral length L or its height distribution function (h′) = 
L−2 ∫ ∫ (h′ − h(x, y)) dxdy, the root mean square height is given by

	​​ h​ rms=​​ ​[​L​​ –2​∫ ∫ ​h​​ 2​(x, y ) dxdy]​​ 
1/2

​  = ​ [∫ ​h​​ 2​ (h ) dh]​​ 
1/2

​​	 (1)

In the engineering literature, this quantity is typically called Sq, 
and many other scalar descriptors of roughness are conventionally 
used. We here focus on hrms but report it as a function of a dimen-
sionless magnification factor . This enables a characterization of 
surface roughness in terms of statistical scale invariance (12).
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Following a classical procedure (24), we subdivide our surfaces 
into checkerboard patterns of squares with length L/ and compute 
the height distribution functions (h; ) for different magnifica-
tions  (and at each strain ) as the mean over all squares (see Materials 
and Methods). Figure 3 shows the detailed analysis as applied to Au 
surfaces. The surface is statistically self-affine if the height distribution 
at magnification  corresponds to the one at  = 1 but with all heights 
rescaled by −H, where H is the Hurst exponent (1). Figure 3A shows 
the root mean square height hrms at particular magnifications for Au. 
It scales as hrms, ∝ −H and grows approximately with strain as hrms, ∝ 
1/2. The same observations also hold for NiCoFeTi and CuZr (figs. 
S1 and S2). We believe that the scaling hrms,() ∝ 1/2 is the signature 
of an emerging surface roughness that is uncorrelated in strain. A 
detailed discussion on the underlying atomic-scale mechanisms and 
arguments for this scaling behavior can be found in section S1.

Applying this analysis to individual snapshots during the defor-
mation allows us to follow the evolution of H with  (Fig. 2B). In the 

elastic regime, the surfaces are not self-affine. This is manifested by 
an hrms,  that is independent of magnification , leading to a Hurst 
exponent H = 0 (Fig. 3A). The Hurst exponent jumps to a value 
around H ∼ 0.5 for Au and NiCoFeTi at yield. A value of H = 0.5 
indicates a random walk, i.e., uncorrelated slip lines from disloca-
tions that annihilate at the surface. Upon further deformation of 
NiCoFeTi, H evolves to values 0.5 < H < 0.8, indicating that the 
nucleation and motion of dislocations become increasingly cor-
related for this material. For the amorphous system, H smoothly 
evolves from a value at yield H = 0.4 to 0.5 at 30% strain. The Hurst 
exponent of the amorphous system is strongly temperature depen-
dent (fig. S3), while the results for the crystalline systems are robust 
over a range of temperatures. We note that similar values for the 
Hurst exponent have been reported for stochastic crystal plasticity 
models (25) and observed in compression experiments carried out 
on polycrystalline Cu (4), cleaved optical-grade KCl, (26), and LiF 
(27). No similar experimental data presently exist for high-entropy 
alloys or amorphous systems.

These results show that H varies only weakly as the material flows. 
This encourages us to attempt a collapse of the height distribution

	​​ ​ ​ ​​(h;  ) = ​  ​​​ H​ ─ 
​a​ h​​ ​​​ 1/2​

 ​ f​(​​ ​  ​​​ H​ ─ 
​a​ h​​ ​​​ 1/2​

 ​ h​)​​​​	 (2)

for different  and  onto a universal scaling function f(x) with a 
constant Hurst exponent H and length scale ah. We determine H 

A

B

C

Fig. 1. MD simulations of the formation of surface roughness in single-crystal 
Au and the high-entropy alloy Ni36.67Co30Fe16.67Ti16.67, both with a (111) surface 
orientation, and amorphous Cu50Zr50. (A) Evolution of the full simulation cell 
during compression of amorphous CuZr, illustrating the simulation protocol. During 
compression, the surface of initial area of 100 nm × 100 nm roughens. The color 
encodes the atomic position normal to the surface measured relative to the surface’s mean 
height. (B) A 0.5-nm-thick slice showing the height profile of the top surface in the middle 
of the sample along the y direction. (C) Topography maps of Au, NiCoFeTi, and 
CuZr. (B) and (C) are at an applied strain of  = 0.2. (B) and (C) share the same color 
map. The black line indicates the position of the slice in (B).
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Fig. 2. Analysis of the deformation process as a function of applied strain . 
(A) Stress during deformation. (B) Hurst exponent H at the surface and within the 
bulk computed from a fit to the scaling analysis.
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and ah by fitting hrms,() (see Materials and Methods). We do not 
assume a particular form of f(x) but require that, under a suitable 
normalization, all distributions will have the same width. For Au, this 
fit yields H = 0.58 and ah = 4 nm. Figure 3B shows the corresponding 
collapse of the distributions. The underlying scaling function f(x) can 
be well approximated by the standard normal distribution in the range 
of magnifications shown here. At higher magnifications, there is 
a transition toward a distribution that is instead more Laplacian, as 
discussed in detail below. We attribute this transition to the fact 
that, at large , the side length of the squares is on the order of the 
characteristic length scale ah, which, in turn, is close to the side 
length of the triangles formed by the intersection of slip lines 
(see inset to Fig. 4A). The distributions of NiCoFeTi and (fig. S1) 
and CuZr (fig. S2) can be collapsed as well, albeit with different 
values of H and ah. The NiCoFeTi distributions exhibit a more 
Laplacian shape, while those of CuZr look more Gaussian at all 
magnifications, which we attribute to the larger and smaller length 
scale ah, respectively, than that observed for Au. These surface 
features do not depend on the specific deformation mode. We carried 

out uniaxial compression simulations for Au that also show surface 
roughness and no discernible anisotropy (inset of Fig. 4B). The root 
mean square height scales with magnification and strain as in the 
biaxial compression cases discussed above (Fig. 4B).

We further recognize that the surface topography h(x, y) is the 
normal component of the displacement field ​u(x, y, z)​ evaluated at 
the surface, h(x, y) ≡ uz(x, y, z = 0). This raises the question as to 
whether the self-affine structure is a signature of the deformation 
within the bulk itself. To address this question, we carry out identi-
cal scaling analyses on the bulk displacement field in the center of the 
simulation box, away from the surface (see Materials and Methods). 
In this now three-dimensional “topography,” the magnification  
refers to a cubic discretization of space (inset to Fig. 3C). For Au 
(Fig. 3C), NiCoFeTi (fig. S1C), and CuZr (fig. S2C), we find a 
self-affine displacement field. Moreover, the scale-dependent distri-
butions of the z component of the displacement can be collapsed by 
fitting H and a characteristic length az, with distribution shapes 
similar to those found in the topography analyses above (Fig. 3F 
and figs. S2D and S3D). Unlike the topography, the root mean 

A B

C D

Fig. 3. Detailed analysis of the surface topography of Au. (A) Root mean square height hrms as a function of magnification , showing self-affine scaling over more 
than one decade in length. The data collapse in the plastic regime when normalized by 1/2, where  is the strain during compression. (B) Underlying distribution function 
(h; ) at different , which collapses upon rescaling heights h by H/(ah1/2), with ah = 4 nm and H = 0.58. (C) Root mean square amplitude urms of the z component of the 
subsurface displacement field uz as a function of  within the bulk. The displacement data collapse when normalized by . The bulk displacement field shows self-affine 
scaling over more than two decades in magnification. (D) Underlying distribution function of the displacements uz, which collapses upon rescaling displacements uz by 
H/(az), with az = 8 nm and H = 0.37. Solid and dashed black lines in (A) and (C) show perfect self-affine scaling for reference with H = 0.5 and H = 1.0, respectively. The 
solid lines in (B) and (D) show the standard normal distribution.
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square fluctuation of uz scales as  (see section S1 for a discussion). 
The Hurst exponents extracted from the subsurface and the surface 
are close for NiCoFeTi and Au (Fig. 2C). For CuZr, we find a smaller 
Hurst exponent in the subsurface region, which we attribute to 
self-diffusion within the glass that is driven by the applied strain 
(28), a feature absent in crystals. Bulk and surface diffusion is also 
likely the reason for the strong temperature dependence of H in the 
amorphous system. Further work is necessary to quantitatively describe 
the influence of diffusion on the fractal nature of the topography 
and displacement field.

Last, we also carry out continuum calculations using a heteroge-
neous material to understand whether the emergence of self-affine 
roughness is a generic effect arising from heterogeneity at small 
scales, induced either by thermal fluctuations (Au) or through stoi-
chiometric (NiCoFeTi) or glassy (CuZr) disorder. As with our MD 
simulations, the continuum system is initially cubic and periodic in 
two directions, with a free surface in the third. The cube is discretized 
with 359 × 359 × 359 uniform grid points. We use the canonical 
model of continuum plasticity with isotropic linear hardening 

(see Materials and Methods). The calculations shown here are carried 
out using a Poisson’s ratio of 0.3 and a hardening modulus of 0.01, 
where  is the shear modulus of the material. The yield strength for 
each grid point is chosen from a uniform distribution between 
0.025 and 0.035 without any spatial correlation, but the general 
conclusions from these calculations are not affected by these parame-
ters. During biaxial compression, the surface roughens as in the MD 
simulations (inset to Fig. 4C). An analysis of hrms as a function of the 
magnification  (Fig. 4C) reveals a linearly dropping hrms,, but no 
power law in . While the surfaces roughen in this model, they do not 
exhibit self-affine scaling. We note that starting from a yield strength 
with spatial power law correlations does lead to a surface that is 
self-affine. However, the continuum theory has no mechanism from 
which such power-law correlations emerge during deformation.

DISCUSSION
The occurrence of a self-affine geometry in the displacement field is 
compatible with previous observations regarding the spatial correlations 

A

B C

Fig. 4. Small-scale features, uniaxial compression, and continuum calculations. (A) Distribution function (h; ) for Au, as shown in Fig. 3B, but now including L/ < ah. 
The black solid lines are unit Gaussian and Laplacian distributions and are intended as a guide to the eye. For L/ > ah, the distribution is close to Gaussian, while for L/ < ah, 
it appears more Laplacian. The inset shows a magnified region of the Au surface overlayed with checkerboard patterns that show the subdivision at  = 8 (Gaussian 
distribution) and  = 64 (Laplacian distribution). The black bar shows the length ah, which is on the order of the triangular features seen in this surface. (B) Root mean 
square height hrms as a function of magnification  for Au under uniaxial compression in x direction. The scaling is self-affine over more than one decade in length. 
(C) Results of a continuum simulation using J2 plasticity with linear isotropic hardening and a random yield strength. The inset shows the topography of the surface, and 
the main panel shows the scaling analysis. This surface does not exhibit self-affine scaling.
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of noise sources during the creep deformation of ice (29). Deforma-
tion does not manifest as smooth laminar flow, and the statistical 
nature of plasticity (30) appears to be the principal reason that 
surfaces develop self-affine roughness during deformation. In support 
of this observation, our continuum calculation that solves a laminar 
model for plasticity does not show the emergence of self-affinity. It 
is remarkable that deformation in crystalline solids shows statistical 
scaling identical to amorphous solids, despite the fact that plasticity 
is carried by shear transformation zones (31–33) in amorphous solids 
and by dislocations (25, 30) in crystals, two topologically distinct 
defects. This suggests that the emergence of self-affine roughness at 
small scales is independent of the deformation mechanism.

The MD simulations presented here are among the largest that 
can be carried out on present-day supercomputers, but they are 
limited in system size. Our results show that self-affine roughness 
emerges at small scales, and we speculate that similar results may 
hold for deformation processes occurring at much larger scales, if 
the individual carrier of deformation is a discrete event with threshold 
dynamics such as the propagation of dislocations or the activation 
of a shear transformation zone. Examples of such larger-scale events 
include macroscopic shear bands, shear cracks, or slip along geological 
faults (34). This hypothesis is corroborated by the fact that values in 
the range of 0.5 < H < 0.8 are found on fracture surfaces (3, 6), 
mountain ranges (2), geological faults (14), and deformed crystals 
(4, 5, 26, 27) and the fact that we find values in this range for MD 
simulations of deformed crystals and bulk metallic glasses at low 
temperature. Because all our calculations are carried out on homo-
geneous systems without internal regions over which homogeneity 
is broken, such as grains or precipitates, our calculations demon-
strate that material heterogeneity is not a necessary prerequisite for 
the emergence of self-affine roughness. While heterogeneity, such 
as crystalline grains, does affect how materials accommodate defor-
mation (16–19), our results explain why self-affine roughness is 
found to extend to subgrain scales (5).

Simulations of metal forming are often carried out to study 
the ensuing roughness, but using laminar continuum models [e.g., 
(35)]. We note that Eq. 2 could be immediately incorporated into 
traditional continuum calculations of metal forming for the evolu-
tion of roughness at subgrain scales. Because in models of plasticity 
the plastic strain is a state variable that is evolved with the externally 
imposed deformation (36), the intrinsic evolution of surface rough-
ness can be immediately predicted using Eq. 2. This would be useful 
to estimate or even optimize roughness in processes such as rolling 
or forging.

Surface roughening also has direct implications for fatigue or 
fretting wear, where surfaces roughen during cyclic deformation 
until cracks are initiated from the surface. This makes it possible to 
detect fatigue damage from optical reflectivity (37) that implicitly 
measures surface roughness. Our research provides routes to quan-
tify damage (as expressed through the plastic strain) experienced by 
the material from such measurements. Similar roughness-driven 
estimates of damage could be useful for quality control after a forming 
process or to understand the deformation a rock has experienced in 
geophysics.

The results of this work shed light on the origin of self-affine 
surface roughness and its connection to deformation by systemati-
cally studying atomistic calculations of homogeneous solids with 
varying degrees of disorder. Our approach, using MD to probe the 
evolving material surfaces, allows examination of the evolution of 

the Hurst exponent throughout the entire process of deformation, 
not only at free surfaces but also anywhere within the material. In 
particular, we present quantitative evidence that self-affine surface 
roughening is linked to the statistical mechanics of deformation 
and derive scaling expressions that describe the evolution of self-
affine roughness with strain in terms of just two parameters: the 
Hurst exponent and an internal length scale. Our results pave the 
way for a thorough understanding and control of surface roughness 
created in a variety of processes, such as machining or wear.

MATERIALS AND METHODS
The initial configuration of crystalline Au was an ideal face-centered 
cube (fcc) slab. The high-entropy alloy consisted of random elements 
distributed on an fcc lattice. Both crystalline systems had a (111) 
surface orientation. The Au system was oriented along the x and y 
axes in ​[​1 ̄ ​10]​ and ​[​1 ̄ ​​1 ̄ ​2]​ directions, respectively. Preliminary calcula-
tions on the high-entropy alloy using the same lattice orientation 
showed the formation of a shear band parallel to the periodic simu-
lation cell faces. To suppress this shear band, we rotated the lattice 
to ​[​3 ̄ ​4​1 ̄ ​]​ and ​[​5 ̄ ​​2 ̄ ​7]​ directions in the x and y axes. The CuZr glass 
was formed by taking a 50-50 composition of the binary alloy and 
quenching the liquid, which was equilibrated for 100 ps at a tempera-
ture of 1800 K, at a rate of 1011 K s−1. The systems have a linear dimen-
sion L ≈ 100 nm. The CuZr system contains 58 million atoms, the 
Au system 60 contains million atoms, and the NiCoFeTi system con-
tains 83 million atoms. Atoms interact via embedded atom method 
potentials in all three cases: Grochola et al. (38) for Au, Zhou et al. (39) 
for NiCoFeTi, and Cheng and Ma (40) for CuZr. The potential by 
Zhou et al. (39) was recently used by Rao et al. (41) to study glide of 
single edge and screw dislocations in Ni36.67Co30Fe16.67Ti16.67 and 
should be regarded as a model of a complex solid solution alloy with 
a high concentration of the individual components and a stable fcc 
phase. Both the amorphous and crystalline systems were subjected 
to the same biaxial compression protocol: We applied a constant 
strain rate ​​​ ̇ ​​ xx​​  = ​ ​ ̇ ​​ yy​​  =  − 1 ​0​​ 8​​s−1 by uniformly shrinking dimensions 
of the simulation box along the x and y directions. To eliminate arti-
facts during compression that can occur for large systems in MD, we 
ramped the strain rate smoothly to the final rate over a time interval 
of 100 ps and used a momentum conserving thermostat [dissipative 
particle dynamics; e.g., (42)] with a relaxation time constant of 
roughly 1 ps. Unless otherwise noted, simulations were carried out 
at a temperature of 100 K.

Continuum calculations were carried out on a regular grid using 
a modified version of the inherently periodic Fast-Fourier-Transform–
based Galerkin method described in (43). We replaced the analytical 
projection operator by a discrete variant (44). The discrete operator 
makes it possible to model free surfaces because it reduces Gibbs 
ringing in the stress and strain fields across the free surfaces into the 
next periodic image of the computational domain. We used a finite 
strain formulation with J2 plasticity and linear isotropic hardening 
(36). The yield strength was randomly chosen from a uniform distri-
bution; Young’s modulus, Poisson’s ratio, and the hardening modulus 
were constant throughout the domain. As in the MD calculations, 
surface profiles were obtained from the normal component of the 
displacement field and analyzed using the same procedure as for the 
MD calculations.

To extract the profile of the rough surface h(x, y), we subdivided 
the surface into quadratic bins of linear size d. The height h within 
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each bin is the z position of the topmost atom. We systematically 
checked the influence of d, which must be larger than the nearest-
neighbor spacing between atoms. All calculations were analyzed 
with d = 3 Å. For the subsequent scaling analysis, we subdivided 
h(x, y) into regular square cells of size L/ (inset to Fig. 3A) and 
tilt-corrected through affine deformation the rough profile within 
each cell individually before computing the full height distribution 
function and the root mean square height within each cell. The final 
distribution function (h) and root mean square height hrms(L/) 
was computed as the mean over all cells.

The nonaffine part of the displacement in the bulk for each atom 
i at strain  was obtained as ​​u​ i​​(ε ) = ​r​ i​​(ε ) − ​F​ _​ ​(ε ) ​r​ i​​(0)​, where ​​r​ i​​(ε)​ is 
the position of atom i at applied strain . The tensor ​​F​ _​ ​()​ is the 
deformation gradient that transforms the initial system at applied 
strain  = 0 to the current state. Analysis of uz,i, the z component 
of ​​u​ i​​​, was carried out using the same procedure and methodology 
for the roughness analysis. We subdivided a cube centered in the 
middle of the deformed system into cubes of size L/ (inset to 
Fig. 3C) and computed the distribution (uz) and root mean square 
fluctuation after removing the affine part of the deformation within 
each cube individually (the tilt correction of the displacement field). 
Removal of the affine part of the deformation field was carried out 
as in (33) but within cubes and not augmentation spheres around 
atoms. The final (uz) and urms(L/) is the mean of the individual 
quantities for each of the cubes.

Our calculations yield one value of hrms and urms for every mag-
nification  and strain . If the fields are self-affine, then hrms ∝ Hh 
and urms ∝ Hz, where Hh and Hz are Hurst exponents. To plot Hh 
over  in Fig. 2B, we fitted log (hrms) = C + Hh log () (where C is a 
constant) in the range  = 2 to 16, using a least squares method. For 
Fig. 3, we assumed that the root mean square quantities grow 
approximately as hrms ∝ 1/2 and urms ∝  after yield and fitted func-
tions hrms = ah1/2Hh and urms = azHz to a subset of the data. hrms 
and urms were fitted over the range  = 2 to 64 in NiCoFeTi and 
CuZr and over  = 2 − 32 in Au. The range of  included in the fit 
was 0.1 to 0.3 for NiCoFeTi and Au, and 0.2 to 0.3 for CuZr. The 
uncertainty in hrms and urms due to finite sample size is included in 
the fit. In the case of urms, it is estimated as ​σ(​u​ rms​​ ) / ​√ 

_
 2N ​​, where 

(urms) is the standard error of urms and N is the sample size. In the 
case of hrms, the uncertainty was estimated using bootstrap resampling 
(1000 trials). We also used bootstrap resampling to estimate the un-
certainty of the fitting parameters. Each dataset was resampled and 
fitted 1000 times. The sample standard deviation of the set of fitting 
parameters obtained in this way is negligible (a maximum 1% of the 
parameter in the case of Au).
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