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Zusammenfassung

Die Entwicklung autonomer Systeme fiir den StrafSenverkehr ist in den letzten
Jahren stark voran geschritten. Aus einzelnen Fahrerassistenzsystemen sind Kom-
ponenten gereift, die zunehmend Fahrfunktionen iibernehmen kénnen. Kom-
binierte Systeme ermdglichen bereits autonomes Fahren auf Autobahnen unter
strukturierten Umgebungsbedingungen. Um sichere Verhalten und Trajektorien
planen zu kénnen, miissen Verkehrssituationen ausreichend verstanden werden,
wofiir nicht-beobachtbare Beziehungen aus sensoriell beobachtbaren Eigenschaf-
ten der Objekte abgeleitet werden miissen. Bisher wird hierfiir eine lineare, auf-
einander aufbauende Kette von Teilkomponenten verwendet. Zwar werden Sen-
sor- und Modellunsicherheiten in den Teilkomponenten weitgehend berticksich-
tigt - an Modulgrenzen werden aber starke Vereinfachungen getroffen. So wer-
den z.B. wihrend einer sensorbasierten Lokalisierung auftretende Multimodal-
itditen nur mithilfe der hierbei zur Verfiigung stehenden Informationen aus den
Sensordaten analysiert und anschlieffend nur eine der Moglichkeiten an die weiter
interpretierenden Module weitergegeben. Wiinschenswert ist hier, auch das Sit-
uationswissen verwenden zu konnen, um die Multimodalitaten besser auflosen
zu konnen. Um dies zu ermoglichen miissen die Komponenten Lokalisierung,
statische und dynamische Umgebungserfassung bis hin zur Schatzung des kom-
plexen Situationswissens einheitlich modelliert werden. Folgende Prinzipien soll-
en dadurch konsequent ermdoglicht werden:

e Fusion verschiedenster Umgebungsbeobachtungen
e Nutzung von hoherwertigem Wissen in Basisschdtzungen
e Bertiicksichtigung temporaler Zusammenhénge

Ziel der Arbeit ist eine einheitliche Modellierung von situationsschidtzenden Ver-
fahren um die prazise Pradiktion von Verkehrsteilnehmer-Verhalten unter ver-
schiedensten sensoriellen und technischen Voraussetzungen zu ermoglichen. Die
Herausforderungen der Modellierung von Unsicherheiten und bedingter Abhang-
igkeiten, der steigenden Modellkomplexitat, der Wahl der Inferenzmethodik und
des gezielten Einsatzes von Lernverfahren sollen ganzheitlich adressiert wer-
den.

In dieser Arbeit wird der Ansatz verfolgt, eine Modellierungssprache zu defi-
nieren, um darauf basierend ein einheitliches generisches Grundmodell fiir Ver-
kehrssituationen aufzustellen, das anschliefsend fiir verschiedene Anwendungen
unterschiedlich detailliert wird.
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Um in der einheitlichen Modellierung Unsicherheiten bertiicksichtigen und diese
tiber Beziehungen durch verschiedene Variablen und Zustandsrdume transpor-
tieren zu konnen, wird als Basis ein Faktorgraph gewdahlt, aus dem verschiedene
Modellierungsverfahren fiir bedingte Abhédngigkeiten (Bayes’sche Netze), Kor-
relationen (Markov Random Fields) oder Glaubwiirdigkeit (Evidence Theory)
abgeleitet werden konnen.

Die steigende Modell-Komplexitit, insbesondere durch die Betrachtung von Re-
lationen zwischen samtlicher Entitdten der Verkehrsszene, wird durch eine geeig-
nete objektorientierte Modellierung bewiltigt, die sowohl eine hierarchische Mod-
ellierung zulésst, als auch mehrfach instanziierbare Klassen, die untereinander in
Relation gesetzt werden konnen.

Je nach Anwendung und Zustandsrdumen sind unterschiedliche Inferenzver-
fahren notwendig. Diese sind teils aus etablierten Inferenzverfahren wie z.B.
Kalman Filter ableitbar und lokal anwendbar, wihrend fiir andere Teile speziell
angepasste Verfahren angewendet werden.

Wiéhrend durch Regeln begriindbare Beziehungen, wie z.B. geometrische Ab-
hédngigkeiten oder Verkehrsregeln, durch Expertenwissen modelliert und parame-
trisiert werden konnen, ist dies z.B. fiir komplexe Verhaltensmodelle der Verkehrs-
teilnehmer im Allgemeinen nicht moglich. Die einheitliche Modellierung lésst
zu, gezielt bestimmte Abhédngigkeiten durch Techniken des maschinellen Ler-
nens zu lernen.

Die generische Modellierungssprache vereint insgesamt viele gangige Prinzipien
und Modelleigenschaften in einem Modell: Sie ist modularisierbar, hierarchisch
aufgebaut mit Unterstiitzung fiir Klassen, Instanzen und Relationen zwischen
einzelnen Entitdten. Abhdngigkeiten konnen probabilistisch modelliert werden,
um Prinzipien wie beobachtbare und versteckte Variablen und temporale Fil-
terung umzusetzen. Hybride Zustandsrdume mit verschiedenen Zustandsraum-
approximationen (z.B. Gauss’sch, partikel- oder gitterbasiert) sowie angepasste
Inferenzverfahren konnen je nach Anwendung, abhédngig von der Struktur der
Teilgraphen und der Konstellation der anliegenden Beobachtungen aus Sensorik
und Hintergrundwissen und der zu schdtzenden Variablen, passend gewadhlt
und kombiniert werden. Die probabilistischen Abhidngigkeitsmodelle werden
entweder von Experten parametrisiert oder durch Maschinelles Lernen automa-
tisiert gelernt. Die einheitliche Modellierung bietet eine Basis, um bestehende
Prinzipien und Komponenten einzuordnen und kombinierbar zu machen und
stellt gleichzeitig eine Plattform fiir neue durchgiangige Schatzmoglichkeiten zur
Verfiigung. Beispielhaft wird dies an verschiedenen Anwendungen gezeigt.

Als Evaluierung wird die Anwendbarkeit der Sprache beispielhaft an verschiede-
nen Anwendungsszenarien gezeigt. Diese reichen von der Selbstlokalisierung
anhand von Objekt-Bewegungsbeobachtungen, iiber die hierarchische Strafsen-
layout-Schiatzung aus Kameradaten bis hin zur Vorhersage von Fahrzeugbewe-
gungen unter Bertiicksichtigung von Relationen, insbesondere Interaktionen zwis-
chen Verkehrsteilnehmern. Dabei werden die Moglichkeiten der Sprache konse-
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quent auf die Anforderungen der jeweiligen Anwendung angewandt und ein
Zusammenhang zu etablierten Prinzipien wie z.B. Bayes’sche Filter fiir die zeit-
liche Fortschreibung oder Markow Random Fields fiir geometrische Konstellatio-
nen hergestellt. Die Anwendungen wurden gewahlt, um einerseits moglichst das
gesamte Spektrum der zu bewiltigenden Teilaufgaben des autonomen Fahrens,
andererseits moglichst unterschiedliche Aspekte der Modellierungstechnik abzu-
decken.

Durch die Arbeit wird ein wichtiger wissenschaftlicher Beitrag sowohl auf Ebene
der Gesamtsystemmodellierung (einschlieflich Inferenz) als auch im Bereich der
gewidhlten Anwendungen geleistet:

Beitrage zur Gesamtsystemmodellierung

e Erweiterung objektorientierter probabilistischer relationaler Modelle zur An-
wendung als durchgangiges Modellierungsverfahren fiir modulare Schétz-
systeme (Kapitel 3).

e Vereinheitlichung verschiedenster Schatzverfahren der Perzeption und des
Szenenverstehens (Grundlagen in Kapitel 2, einheitliche Verwendung in
Kapitel 6 - Kapitel 9).

e Objektorientierte Faktorgraphen zur einheitlichen Schitzung rdaumlicher,
zeitlicher und semantischer Beziehungen in Verkehrsszenen (Kapitel 5 -
Kapitel 9).

Beitrage zu Anwendungen im Bereich Automatisiertes Fahren

e Neuartiges Verfahren zur Selbstlokalisierung auf Stralenkarten anhand von
interpretierten Umgebungsmessungen (Kapitel 7).

e Erweiterung eines bestehenden Ansatzes zur hierarchischen Straflenlayout-
schatzung um temporale Fusion und eine geschickt gewihlte lokale Zus-
tandsraumreprasentation (Kapitel 8).

e Schitzung von Interaktionen zwischen Verkehrsteilnehmern als konsequen-
te objektorientierte Erweiterung des Interacting Multiple Model Filter-Prin-
zips (Kapitel 9).






Abstract

For a profound understanding of traffic situations including a prediction of traf-
fic participants’ future motion, behaviors and routes it is crucial to incorporate all
available environmental observations. The presence of sensor noise and depen-
dency uncertainties, the variety of available sensor data, the complexity of large
traffic scenes and the large number of different estimation tasks with diverging
requirements require a general method that gives a robust foundation for the de-
velopment of estimation applications.

In this work, a general description language, called Object-Oriented Factor Graph
Modeling Language (OOFGML), is proposed, that unifies formulation of esti-
mation tasks from the application-oriented problem description via the choice
of variable and probability distribution representation through to the inference
method definition in implementation. The different language properties are dis-
cussed theoretically using abstract examples.

The derivation of explicit application examples is shown for the automated driv-
ing domain. A domain-specific ontology is defined which forms the basis for
four exemplary applications covering the broad spectrum of estimation tasks in
this domain: Basic temporal filtering, ego vehicle localization using advanced
interpretations of perceived objects, road layout perception utilizing inter-object
dependencies and finally highly integrated route, behavior and motion estima-
tion to predict traffic participant’s future actions. All applications are evaluated
as proof of concept and provide an example of how their class of estimation tasks
can be represented using the proposed language. The language serves as a com-
mon basis and opens a new field for further research towards holistic solutions
for automated driving.
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1 Introduction

Self driving cars have always been part of visions about the future. Traveling in
individual vehicles without the need to control them will allow relaxing, sleeping
or focusing on other tasks. Energy draining daily commutes will be transformed
into efficiently used time. Additionally, the automation of traffic (together with
intelligent infrastructure) has the potential to improve safety as well as the time
and energy efficiency on the road.

On the way to this goal, research in the field of automated driving has already
come a long way: Since the first vehicle was able to autonomously follow lanes
in the 1980s [43], many results have been integrated in production vehicles. To-
day’s vehicles are equipped with a variety of Advanced Driver Assistance Sys-
tems (ADAS) that can be combined to allow handsfree driving on highways
given good environmental conditions. But harsh environment conditions like
bad weather or noncompliant behavior of other traffic participants impair the
functionality and thus a human driver always has to supervise the system.

Past competitions such as the DARPA Urban Challenge or the Bertha Benz Chal-
lenge demonstrated autonomous driving in urban and rural environments. Nev-
ertheless, much effort has to be put into preparing map data and not every special
situation can be considered by developers. The capabilities of automated vehicles
are still lagging behind their human counterparts: Humans are very good in per-
ceiving and understanding the environment.

Three of the main tasks humans are outperforming machines are (1) creating a
coherent scene understanding from multiple environment measurements, (2) es-
timating basic knowledge from scene understanding and (3) deriving advanced
interpretations from temporal context (Fig. 1.1). To close the gap these principles
have to be integrated consequently into the development of future autonomous
driving systems. Instead of a sequential process consisting of independently de-
veloped modules an overall model including all estimation tasks equally has to
be implemented (Fig. 1.2).

Following this hypothesis further challenges arise: The model has to general-
ize over many different vehicle types. It has to handle uncertainties in map and
sensor data. It has to be scalable to traffic scenes including many vehicles inter-
acting with each other. Complex behaviors resulting from human drivers have to
be representable. Estimation has to be efficient and balanced between accuracy
and runtime requirements, which are highly task dependent, e.g. roughly pre-
dicting the future during a complex driving situation or precisely calculating a
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(a) Coherent scene understanding from multiple environment
measurements.

(b) Estimating basic knowledge from scene understanding,
e.g. the ego vehicle’s position relative to an intersection
where crossing vehicles are observed.

&
‘! rm—
- "
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(c) Advanced interpretations from temporal context, e.g. a red
traffic light from crossing vehicles.

Figure 1.1: Three of the main tasks, where human perform better than au-
tonomous driving systems.



1.1 Problem Statement

Ego
Motion

(a) Sequential tool chain (b) Overall coherent model

Figure 1.2: Existing approaches make use of a sequential tool chain consisting of
independently developed modules. This work proposes an overall
coherent model considering all estimation tasks equally.

longterm map offline. The model has to be independent of state space represen-
tations including discrete and continous environment attributes. Many attributes
only depend on a subset of other attributes and thus have to be handled in isola-
tion. Development of future autonomous driving systems will always face these
challenges.

The goal of this thesis is to contribute to the development process of future au-
tonomous driving systems by proposing an overall probabilistic modeling lan-
guage for estimation problems and a domain specific specialization to the traffic
domain. The approach is applied to selected autonomous driving applications to
show its feasibility and potential to advance towards human estimation capabil-
ities.

1.1 Problem Statement

All sub tasks, such as estimating a current state, predicting future states or learn-
ing longterm generalizations, can be formulated as an estimation problem: Given
a set of observable measurements the state of all scene objects have to be esti-
mated.

Measurements origin from sensors including ego vehicle properties like ego mo-
tion and pose estimates and environment sensors including cameras and radar
sensors that perceive environment objects like lanes, traffic signs and other traf-
fic participants. Additionally information from longterm map data and other
knowledge sources can be used as measurements. Unobservable properties of
the scene like plans and trajectories of dynamic objects have to be derived from
the observable measurements.
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Due to the noise of the measurements the true configuration of the unobservable
properties cannot be calculated in general. Instead a probability distribution over
the space of possible solutions can be derived considering the uncertainties of the
measurements. In general the precise distribution is not calculatable and has to
be approximated depending on the focus of the application and the capabilities
of the system and sensors. While the runtime is very important for realtime ap-
plications like state estimation and prediction, longterm learning and mapping
applications can focus more on quality. Thus also the inference implementation
depends on the application.

For a coherent modeling of all estimation tasks in the field of autonomous driving
a common modeling approach is needed that raises all applications to a common
level and enables application specific specialization at the same time. In particu-
lar, the following research questions are addressed:

e How can a generic modeling language for estimation problems be formu-
lated?

e How can domain specific languages be created using the generic modeling
language?

e What is a domain specific language for all estimation problems in the traffic
domain?

e How can application specific models be derived from the traffic domain
language?

e How can the model be used to realize a fusion of several environment mea-
surements?

e How can local dependency models of unobservable human behavior be
learned?

Therefore, this thesis introduces a generic language, applies it onto the traffic do-
main and derives models for different realistic applications. The applications use
varying assumptions about the sensor and processing hardware capabilities.

1.2 Thesis Statement

The thesis statement is:

“Several components and modules for advanced scene understanding and prediction can
be described in a unique, holistic and human-readable modeling language supporting the
development process from problem formulation to inference implementation.”

This thesis statement is substantiated by introducing a novel approach for holistic
dependency modeling based on extensions of established models for probabilistic
reasoning and evaluating this approach on exemplary applications spanning over
a wide spectre of estimation problems.
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The basic idea of the concept of this thesis is to create a modeling language that
supports the devolopment process of future autonomous driving systems.

The concept (Fig. 1.3) consists of the generic modeling language, a domain spe-
cific adaptation of the language and the actual applications. While the generic
modeling language integrates all properties necessary to describe estimation tasks
and implementations, the domain specific language uses these properties to de-
scribe the domain including entities and relations. This results in a probabilistic
ontology. The focus of the domain specific language lies on formalizing the real
world. Applications can use the domain specific language as basis, refine it and
derive an approximation and inference method for the given task.

The generic modeling language combines four key features:

A factor graph is chosen to consider uncertainties and transport them by relations
over several variables and state spaces. Several probabilistic graphical model-
ing approaches for conditional dependencies (Bayesian Networks), correlations
(Markov Random Fields) or credibility (Dempster Shafer Evidence Theory) can
be formulated by factor graphs.

A suitable implementation of object orientation overcomes the increasing model
complexity, especially originating from considering relations between all enti-
ties of the scene. It allows hierarchical modeling as well as multiply instantiated
classes with relations among them.

Different inference methods depending on the application and the state spaces
are necessary. These are derived from established inference methods like e.g.
Kalman filter and are locally applicable while for other parts specially adapted
methods can be applied.

Whereas some dependencies can be justified by rules, like for example geometric
relations or traffic rules, and therefore can be adjusted by expert knowledge, it
is not possible to do this for complex behavior models. The generic modeling
supports learning these dependencies from observations using machine learning
techniques.

The generic modeling language forms the foundation for all these model prop-
erties. Using the domain specific language as a common basis for entities and
relations every application can choose and define different property components
to solve the specific task.

1.4 Contributions

This work contributes to the understanding of estimation problems in the field
of robotic applications, especially in the traffic domain. New methods are intro-
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Figure 1.3: The concept consists of the generic modeling language, a domain spe-
cific adaptation of the language and the actual applications in the do-
main. The chapters in this work are correlated to these aspects of the
concept.

duced for specific autonomous driving related estimation problems by leveraging
the proposed generic modeling language.

Although generic probabilistic modeling languages exist, such as the Object Ori-
ented Probabilistic Relational Modelling Language [64], they are limited in sev-
eral aspects. These languages are extended by integrating various graphical mod-
eling techniques and defining the inference methods inside the object oriented
class structure for the first time. Such a language can be used throughout the
whole development process from design stage to implementation or even at run-
time.

Various estimation methods that have been developed over years and originate
from different applications are now handled in one common language. Algo-
rithms that had no connection before can thus be brought into one model, en-
abling analysis of the complete system in a coherent way. Perception and scene
understanding tasks can be modeled in a unified manner but also still separated
into specific modules. Applied to the traffic domain this helps to understand
how spatial, temporal and semantic relations can be modeled and estimated in a
unified way.

In the field of self localization on road maps a new estimation method is derived



1.4 Contributions

from the traffic domain language. So called map matching algorithms are a com-
mon way to roughly localize ego vehicles on road maps with simple sensors such
as a GPS sensor. Advanced interpreted object information that can be provided
by an integrated environment object detector, such as a stereo camera or radar,
that is already used in current ADAS improves the localization inside the road
boundaries and advances map matching to a lane-precise localization method.

Road layout perception is another task that has been studied in recent years to ad-
vance from single lane detection to estimating the whole road layout with varying
number of lanes and intersections. An approach for hierarchical road estimation
on single time frame basis [124] is extended by temporal fusion including the ego
vehicle motion and the stationary road layout. A well-chosen grid based state
representation overcomes the association problem in the fusion.

The estimation of interactions between traffic participants is one of the tasks in
autonomous driving that has not been solved yet but has the potential to bring
autonomous vehicles much closer to human performance. The object oriented
structure of the proposed modeling language is used to describe traffic partic-
ipants and interactions by entities and relations. Two different approaches are
shown that consider single time step condensed state analysis and multi time
step motion model estimation. The two methods show that considering interac-
tions improves the prediction of traffic participant behaviors, on discrete route
and behavior level as well as on continuous trajectory level.

The main contributions can be summarized in two groups:

Contributions to Holistic System Modeling

1. Extension of Object Oriented Probabilistic Relational Models to holistic mod-
eling approach for modular estimation systems (Chapter 3).

2. Unification of various estimation approaches for perception and scene un-
derstanding (basics in Chapter 2, unified usage in Chapter 6 - Chapter 9).

3. Object Oriented Factor Graphs for unified estimation of spatial, temporal
and semantic relations in traffic domain (Chapter 5 - Chapter 9).

Contributions to Autonomous Driving Applications

1. New approach for self localization on road maps using interpreted environ-
ment measurements (Chapter 7).

2. Extension of an existing approach for hierarchical road estimation by tem-
poral fusion and a wisely chosen local state representation (Chapter 8).
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3. Estimation of interactions between traffic participants as a consequent ob-
ject oriented extension of the Interacting Multiple Model Filter principle
(Chapter 9).

All in all the proposed approach opens a new field of research topics including
language driven estimation system modeling, adaptive system implementation
and learning on object-oriented factor graphs.

1.5 Document Outline

The rest of the document follows the following structure, also depicted in Fig. 1.3:

Chapter 2 introduces terms relevant to the traffic domain and autonomous driv-
ing and evaluates the related work considering estimation problems and proba-
bilistic graphical models. In Chapter 3 the proposed unified modeling language
is defined and its general capabilities are evaluated in Chapter 4. The model-
ing language is applied to the traffic domain in Chapter 5 introducing a domain
specific ontology that is the basis for all applications. A basic example is given in
detail in Chapter 6 to show how the adaptation to a specific application works be-
fore the language is used for typical more complex tasks in the autonomous driv-
ing domain such as ego vehicle localization (Chapter 7), road layout perception
(Chapter 8) and traffic participant prediction (Chapter 9). Each of these applica-
tions serves as evaluation of the generic language and is additionally evaluated
against existing approaches in the given application’s domain. A conclusion and
outlook is given in Chapter 10.



2 Estimation Problems in
Automated Driving

This chapter forms the basis for subsequent chapters considering the automated
driving domain on the one hand and probabilistic estimation problems on the
other hand.

The very basic knowledge about math and probability theory can be found in
cited references and is skipped in favor of a more detailed description of proba-
bilistic graphical models and their relation to automated driving.

Starting with an explanation of terms in the traffic domain (Sec. 2.1) and auto-
mated driving components (Sec. 2.2), a problem formulation of the estimation
problem using probability theory is given in refsecsec:estimation-problems which
leads to the description of local dependencies by probabilistic graphical models
(Sec. 2.4). After a detailed view on different aspects considering inference in prob-
abilistic graphical models (Sec. 2.5) the factor graph representations of many well-
known filter methods are discussed in detail in Sec. 2.6). A short introduction to
first-order probabilistic languages (Sec. 2.7) is given before the seen estimation
methods are correlated to their application in components for automated driving
(Sec. 2.8). A summary about the key points learned in this chapter is given in
Sec. 2.9.

2.1 Terms in Traffic Domain

This work handles a topic in the field of public road traffic. Elements that are cre-
ated to help human drivers maneuvering safely on public road without colliding
with other traffic participants have to be handled by machines. Although these
elements might be known, their definition will be clarified here.

Fig. 2.1 gives an overview about the most relevant elements. The environment
consists of static and dynamic elements, being the guiding infrastructure and the
moving traffic participants respectively. The traffic participants can be vehicles,
bicycles, pedestrians and other means of transportation. Vehicles can be divided in
various subgroups, some of the important ones are Cars and Trucks to differ their
different size and acceleration capabilities.

The most important infrastructure element is the road, the ground where vehicles
drive on. It can be an urban or suburban blacktop road, a multilane highway
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Figure 2.1: Exemplary terms that can be found in a traffic scene.

or a simple dirt road. Roads are usually separated from non-drivable area by a
change of material (e.g. for example asphalt to grass), low and high curbs, or lane
markings. Roads with intense traffic are divided into multiple lanes separating
the driving directions and also giving a guideline for multiple vehicles driving
in parallel in the same direction. The lanes are observable by different lane mark-
ings (dashed and solid), the road boundaries and sometimes only by the tracks
of other vehicles or their movement (e.g. on snow covered roads). Lanes are a
very convenient level of detail to guide vehicles and to create a topology map of
the drivable area. ~Also other traffic participants like bicycles and pedestrians
are moving on lane-similar elements like sidewalks, pedestrian crossings and bicycle
ways.

Traffic signs introduce commandments and prohibitions to regulate the traffic par-
ticipants’ behaviors. They are usually mounted on poles and can be accompanied
by symbols printed on the road surface. Variable signs (electronical and mechan-
ical) can be quickly adjusted to accomodate to a changing traffic situation, e.g.
lower speed limits on congested highways. Traffic lights are another way of dy-
namically regulating traffic flow. Especially at large, busy and occluded intersec-
tions with high crossing speeds, traffic lights are the only way to achieve a safe
operation. There are special traffic lights for vehicles, bicycles, pedestrians and
trams that have to be considered differently.

Since all these elements were created with a focus on human traffic participants, it
is challenging for automated vehicles to perceive all of them. Especially estimat-
ing the state of traffic lights is one of the challenging tasks that cannot be circum-
vented by using a predefined map. A recent approach is introducing Vehicle-To-X
communication devices into vehicles and infrastructure to directly communicate in
a machine understandable way between infrastructure and vehicles (e.g. traffic
light states) and between vehicles and vehicles (e.g. vehicle positions, plans).

In Germany, lane markings are white (yellow in construction sites) and there is a
right-driving-commandment on roads with spatially separated driving directions
(meaning drivers have to choose the right-most lane if there is no slower vehicle
on these lanes).
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2.2 Automated Driving Components

The goal when implementing automated vehicles is to master transportation tasks
in public road traffic. This means driving from a starting point to a target point ef-
ficiently (appropriate time/costs) and without exposing anything to danger, nei-
ther the passengers of the vehicle itself nor the other traffic participants. Similar
to a human the automated vehicle has to perceive the environment and has to
react with proper reactions.

Software Perception — Execution

v

Car

TR Actuators

v

Environment

Figure 2.2: Generic concept of an agent observing an environment and acting
on it.

In general this is described by the model of an intelligent agent [112] (Fig. 2.2).
The agent observes its environment using sensors, understands the data and
plans a decision that is then executed using its actuators. The action influences
the environment and the effect can again be observed by the sensors. The percep-
tion and execution is also often called cognition what highlights the intelligence
in the intelligent agent. It is quite common that somewhere in the internal pro-
cess an environment model representing the real environment is created. Due to
uncertainties in sensing principles and estimation models only an approximate
estimation of the environment model is possible. These uncertainties and also
the uncertainty in the effect of the executed actions make the whole estimation
problem a very challenging task. These problem properties are already known
for a long time. Different approaches try to handle them in different level of de-
tail and modularize them into manageable subtasks [14].

The typical subtasks in the automated driving domain are explained at an exem-
plary implementation (Fig. 2.3).
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Figure 2.3: An exemplary implementation of the generic concept including all
major estimation tasks.

2.2.1 Sensors

Various sensors can be used in modern automated vehicles. They are roughly
grouped in internal state estimation sensors, environment perception sensors and
knowledge sources!. The most important ones are listed here.

Internal State Estimation Sensors

Odometry sensors directly observe the position of actuators such as the steering
and the wheel rotation. Usable information is the steering angle and the longitu-
dinal velocity.

Inertial measurement units (IMU) measure the linear and rotary forces acting
on a body, sometimes also the magnetic field surrounding it. From this raw data
velocity and acceleration values in all dimensions can be derived.

Global Navigation Satellite System (GNSS) sensors use global navigation satel-
lites (such as NAVSTAR GPS, GLONASS, Galileo and Beidou) to estimate the

'Knowledge sources are actually no real sensors in the sense of perceiving the environment by a
physical measurement technique. But they deliver information to the system and are similarly
affected by uncertainties like other sensors.

12
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body’s position on the earth surface. The sensor is actually an environment per-
ception sensor that observes the distance to reachable satellites and derives the
body’s position from these distances. Because GNSS sensors are only usable to es-
timate the vehicle’s position, they are listed here. GNSS sensors can be improved
with differential GNSS comparing the measurements to a local static reference
sensor with known position to calculate the changing athmospherical error and
thus improve the position estimation.

There are many integrated solutions combining the above sensors, such as the
ones from GeneSys (ADMA) and Oxford Technical Solutions Ltd. (OXTS).

Environment Perception Sensors

Weather sensors such as temperature sensors or rain sensors measure values
about the current weather condition. They are helpful for automatic windshield
activation but also for adjusting a driving behavior to bad weather conditions.

Camera sensors are one of the closest sensors to human perception. Due to their
sensing principle and their usage in many other applications they are a very low-
priced solution for achieving a detailed image of the surrounding environment.
Their drawback is that depth information cannot be directly measured and ma-
chine learning techniques are usually needed to interpret the data.

Ultrasonic sensors are already widely distributed in current production vehicles.
They can estimate free space in the closer surrounding around the vehicle and are
already used for park assist systems.

Radio Detection and Ranging (Radar) sensors can measure distance and veloc-
ity of remote objects. They are robust against harsh weather conditions like snow
and fog and are used in production vehicles to implement adaptive cruise control
(ACC) and automated emergency braking (AEB) functions.

Light Detection and Ranging (Lidar) sensors can measure the distance and re-
flectance of objects using Laser beams. They have a wide opening angle and a
high angular precision.

Photonic Mixing Devices (PMD) are active range measurement sensors that de-
liver a quite detailed dense range image. Currently they are not widely spread
among applications in favor of Radar, Lidar and Stereo Camera sensors.

Stereo Camera sensors are delivering a dense depth image with a high angular
resolution but usually a lower depth resolution than radar and lidar sensors. Us-
ing two camera sensors and an extensive, meanwhile quite efficient processing, a
depth image is produced similarly to the human stereoscopic 3D vision capabil-

ity.

13
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Knowledge Sources

Map data can be seen as sensor data with a high precision according to the sensor
principle but with possible correctness uncertainties originating from the possi-
ble environment change between recording and using the data. It can be used to
simplify environment perception and interpretation especially for static environ-
ment elements.

Vehicle-to-X (V2X) communication sensors are communication devices that can
receive messages from other vehicles or infrastructure (e.g. traffic lights). This
way perception tasks like position estimation of vehicles or traffic light state es-
timation can be simplified but also human-like communication like informing
about driving plans (e.g. indicators, gestures) can be realized.

General Web Access can be seen as a sensor that can gather general informa-
tion from the internet. This can especially include data about weather and traffic
congestion.

2.2.2 Low Level Perception

In the here presented exemplary system architecture the low level perception is
handled in functional modules that build up on each other. Every functional
module focuses on one estimation task and can handle and fuse different sensor
data sources. The actual ordering is quite common but can be changed depending
on the application. One goal of this thesis is to overcome this ordering by an
overall probabilistic approach with equally represented estimation tasks.

To get an impression of the different estimation tasks, these functional modules
are described shortly:

The Environment Condition Assessment (ECA) estimates the general condition
of the environment outside and inside the vehicle. This can include weather es-
timations like rain or snow but also information about passenger activities and
personal condition. This is usually not dependent on other functional modules
but is a good basis for basic decisions in other modules.

Ego Motion Estimation is a very basic estimation of the ego vehicle’s motion. In
contrast to the later ego vehicle localization only a relative motion of the vehicle
is estimated over time. This enables basic fusion of environment perception over
time.

Grid Mapping produces a model-free representation of the vehicle’s surround-
ing, mainly including occupied and unoccupied areas but can be extended to any
advanced world property. This is usually one of the lower modules that is often
also used for safety related tasks like trajectory surveillance and emergency brak-
ing. A basic temporal fusion using the ego motion stabilizes the estimation.

14
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Localization (also known as Ego Vehicle Localization) fulfills the task of localiz-
ing the ego vehicle on a fixed world coordinate system. Basic approaches simply
accumulate the ego motion and ignore the increasing error. Others use raw sen-
sor data to match on a prerecorded sensor-dependent map or localize on a generic
geometric traffic map. A correct localization is a critical requirement for subse-
quent estimation tasks. Thus, a common approach is to fuse several localization
methods.

Road Layout Estimation estimates the static environment mainly including the
road with lanes and markings but also traffic signs, traffic lights and all static ob-
stacles can be included here. Usually they are separated in task-specific modules
like traffic light recognition and traffic sign recognition. This task can easily be
supported or even replaced by predefined map data.

Object Tracking is the most challenging basic estimation task. Moving objects
have to be detected and observed as good as possible. Due to their movement,
uncertainties per measurement have much more influence on the overall estima-
tion. Motion models have to be implemented to compensate these uncertainties.
Usually constant velocity or constant acceleration models are used here, whereas
advanced models considering interactions with static and dynamic obstacles can
improve the estimation in the high level perception.

2.2.3 High Level Perception

The high level perception modules try to understand the data and build up a
coherent environment model containing all knowledge that can be derived from
sensory input. The environment model can afterwards be used for all decision
and planning tasks. It can be represented as a model-free, usually grid based
model or as a model-based model with geometric objects. In general high level
perception modules include the following three tasks:

High-Level Fusion combines the results of all functional modules to one envi-
ronment model. Spatial inconsistencies can be solved here.

Scene Understanding is the task of bringing objects into relation: Vehicles drive
on roads, traffic signs belong to specific lanes and vehicles react to the road ge-
ometry or other vehicles. These relations build up an entity-relationship model
and describe the meaning of the traffic scene in a machine-readable, often also
human-readable, way. The module returns the most advanced interpretation to
the currently present time slice in the environment model.

Situation Prediction adds a temporal interpretation to the currently present traf-
fic scene. This enriches a traffic scene (with only little temporal interpretation)
to a traffic situation (with more temporal context). The result is a temporal ex-
tension of the vehicle movements including possible geometric trajectories and
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discrete behaviors. In contrast to the later trajectory planning, not a single opti-
mal trajectory but a probability distribution over all relevant possible trajectories
is desired.

2.2.4 High Level Execution

In the high level execution layer all tasks are gathered that deliver long-term de-
cisions.

A Mission Control decides about driving tasks. It is the most high-level decision
module choosing and scheduling tasks like driving to a target location or parking
for charging a battery. Also the usage of different task-specific components is
triggered and their success is checked here. It is usually implemented as a state
machine allowing deterministic behavior and manageable verification.

Behavior Planning handles the chain of needed behaviors to fulfill a driving task.
It mainly reduces the large field of possible basic actions to a few ones that have
been checked in a wider temporal context to bring the vehicle closer to the goal.
The output is one or more possible maneuver chains that act as a guidance for
trajectory planning.

Trajectory Planning plans a drivable geometric trajectory that is safe and com-
fortable for the next few seconds. In general this is an optimization problem
considering hard constraints (like physical boundaries) and weak optimization
criterias (like comfort parameters). The result is a geometric trajectory that con-
siders the evolvement of the traffic situation sufficiently. Since the trajectory plan
also influences the other traffic participants it has to be considered to couple this
module more directly with the Situation Prediction.

2.2.5 Low Level Execution

After deciding about long term driving plans in the high level execution layer
the task of the low level execution layer is to formalize these decisions into direct
actuator inputs.

Controllers are used to send high frequency updates to the actuators according
to the desired trajectory and the observed ego motion. The result is a vehicle
behavior that executes the desired trajectory as close as possible.

Other actuators like gears, lights and windshield wiper are controlled similarly.
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2.2.6 Actuators

Similarly to the sensors that observe the environment, the actuators influence the
environment.

Steering and Acceleration actuators like steering wheel and gas and brake are
the most relevant actuators for automated vehicles. These directly control the
vehicle’s lateral and longitudinal motion. They are implemented as direct input
to the motor and steering system or as additional motors acting on the steering
wheel and pedals what brings additional delays and actuator uncertainties.

Gears have to be chosen, at least for driving forward and backward in maneuver
situations.

Visual and acoustic communication to passengers and other traffic participants
can be undertaken via lights, displays and the horn.

V2X communication senders are necessary to explicitly communicate to other
intelligent vehicles and infrastructure.

2.3 Large Estimation Problems

As already mentioned in Sec. 2.2, the whole estimation process in an intelligent
agent underlies many uncertainties. Let X be the set of all attributes of the scene.
Typically the attributes of interest Y C X cannot be directly observed. This is
often expressed as Y being a hidden, unobservable, latent or intensional variable. 2

There are properties of the environment that can be observed by sensors, resulting
in measurements Z C X, often called observable or extensional variables. These
measurements underly sensor uncertainties that result from physical sensor prin-
ciples. Additionally the measured attributes are often not directly the attributes
of interest Y but are correlated to Y. If this correlation is a geometric, logical or
physical dependency (e.g. wheel is mounted on car) the dependency can be de-
scribed with relatively high certainty, while a rather psychological dependency
(traffic participant is reacting on movement of others) introduces further uncer-
tainties.

The general estimation problem can be described as estimating the state of the
hidden variable Y given the observable measurements Z:

Y ~ P(Y|2) (2.1)

2The letters X, Y and Z are differently used in different existing research. In filtering works X is
often used for hidden variables and Z for observable ones [112] [35] [40], but not always, e.g.
[28] [123]. Since in this work a more general perspective is desired, X is used as the set of all
variables, Y for hidden ones, Z for observable, and 6 for parameters, resulting in X = YUZU#.
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To solve this problem a proper model for P(Y'|Z) = P(Y|Z,0) with model pa-
rameters 6 has to be found. This is a challenging task: Considering the problem
of autonomous driving Z includes all attributes of all sensor measurements, e.g.
several cameras, lidars, radars, that can easily be a multiple when considering
several automated vehicles and V2X communication. Y includes all environment
objects, properties of them and hidden variables like driving plans of traffic par-
ticipants. There are different states of Y and Z at every different time. Thus, the
direct formulation of P(Y|Z, ) is unfeasible.

There are two approaches for handling this challenge (Fig. 2.4):

1. The overall problem can be factorized into smaller subproblems that can
then be parametrized using expert knowledge related to a specific subtopic.

2. Machine learning can be used to parametrize a very large generic model
using (labeled) observations from experienced situations.

Background Knowledge

0
@ @ Attributes of Interest

P(Y|2,9)

Measurements

(a) Problem formulation

Expert Knowledge

Measurements

(b) Approach by factorization

Learned Knowledge

P(2)

Neural )
Measurements ( Z Networi @ Attributes of Interest

(c) Approach by machine learning

Figure 2.4: The two approaches b), c) of handling a complex overall estimation
problem a). Adapted from [3].

As argued in [3] both approaches have advantages and disadvantages:

Factorizing into subproblems has the advantage of having intermediate repre-
sentations (sensor features, object lists ...) which help evaluating and analyzing
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system failures. The subproblems can be parametrized more easily by human
experts. The drawback is that a lot of effort has to be undertaken to define the
factorization and the model parametrizations. Special cases have to be consid-
ered during modeling and the system is less adaptive.

Extensive machine learning on the other side allows very automatic parametriza-
tion of the model. Little to no expert knowledge is required. Associations can be
incorporated that would not be possible using expert knowledge. A drawback is
that safety and stability cannot be guaranteed and it is hard to get insights into
the internals of large machine learned models such as deep neural networks.

The goal is to find a new modeling language that allows the combination of both
approaches in a defined, easily manageable environment. From another per-
spective the same language allows to describe the common modular approach
(Sec. 2.2) in a holistic way based on probability theory becoming a formalized
factorization of the automated driving problem. One of the elementary bases for
describing factorizations is the existing work on probabilistic grapical models.

2.4 Dependency Formalization by Probabilistic
Graphical Models

The goal of probabilistic graphical models is to formalize the dependencies and
independencies between aspects (variables) of estimation problems. In general
this is solved by using a graph structure consisting of nodes and edges (Fig. 2.5).

The nodes (usually) represent variables whereas the edges represent dependen-
cies. The less edges are available the less dependencies exist between variables.
This reduces model complexity and thus increases inference speed. The edges in
the graph do not have to completely represent the real world dependencies. In-
stead a trade-off has to be made between reducing the graph structure using in-
dependence assumptions and representing the real world possible dependencies
as close as possible. Also relevant dependencies can automatically be estimated
by machine learning, so called graph structure learning.

The graph describes a factorization of the global distribution over all variables X,
the so called joint probabilistic distribution P(X), e.g.

P(X) oc [] (X0 (2.2)

where X; is a subset of the variables in the graph and the local functions f(X;)
represent the dependencies modeled in the graph. There are different approaches
how the dependencies are exactly modeled which will be described in the follow-
ing sections. Some of them do not ensure that the product of the local functions is
normalized to a correct probability distribution. Since often the exact probability
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(a) Markov Random Field (b) Bayesian Network
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Figure 2.5: Four different graph representations. Adapted from [86].
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is not of interest, the normalization can be neglected what is expressed by usage
of the oc symbol.

More information about probabilistic graphical models in general can be found
in [95], [96], [75], [28] and [123]. A brief review of graph theory in general is given
in [123].

2.4.1 Correlations: Markov Random Fields

Markov Random Fields (also known as Markov Networks or simply Undirected Graph-
ical Models) base on an undirected graph G = (V, £) with nodes (vertices) V and
undirected edges £. Every node i € V represents a probabilistic variable X; and
every edge e € & represents a (undirected) correlation between two variables
(Fig. 2.5a). The dependencies are formulated by non-negative potential functions
1) defined on the cliques® of G. The joint potential function of the Markov Random
Field given a graph G and a set of cliques C can be factorized over the cliques:

Y(X) =[] ve(Xe) (2.3)

ceC

This joint potential function is not normalized in general, thus it has to be nor-
malized to be interpreted as a joint probability distribution:

P(X) = Z(X) (2.4)

with

z=) [v(x) (2.5)

The normalization function is hard to calculate and one of the drawbacks of
Markov Random Fields. However, for most evaluations the normalization can
be neglected and thus:

P(X) o [ [ e(Xe) (2.6)

ceC

The potential functions model correlations between the involved random vari-
ables. There is no conditional dependency describing that one variable is caused
by another variable. On the one hand, this allows very generic formalization of
correlations, on the other hand, causal dependencies (and independencies) can-
not be modeled.

3A clique is a fully connected subset of nodes for which all members are neighbours [121]
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2.4.2 Causalities: Bayesian Networks

A Bayesian Network (also known as belief network, generative model, causal
model or simply directed graphical model) is a directed acyclic graph (DAG) G =
(V, &) with nodes (vertices) V and directed edges £. Every node i € V represents
a probabilistic variable X; and every edge e € £ represents a (directed) causal-
ity between two variables (Fig. 2.5b). Because of these causalities no cycles are
allowed in the directed graph.

The dependencies are formulated as local conditional probability distributions
for each variable given its parents*:

P(X.| Xr@) (2.7)

The joint probability distribution of a Bayesian Network can be described by a
factorization using the local conditional probability distributions:

P(X) =[] P(XilXr@) (2.8)

iV

In contrast to Markov Random Fields this joint probability distribution is already
normalized since all the local functions are normalized conditional probability
distributions.

The local conditional probability distributions describe causalities among small
subsets of the variables. These causalities can easily be parametrized by a human
expert. Additionally, the usage of conditional probability distributions allows
detailed independence analysis using techniques like d-separation, see [28].

2.4.3 Credibility: Dempster Shafer Evidence Theory

Besides modeling correlations (Markow Random Fields) and causalities (Bayesian
Networks), the consideration of credibility can be seen as a third way of model-
ing dependencies. Although Dempster Shafer Evidence Theory (also known as belief
theory) is not directly connected to probabilistic graphical models, it is straight
forward to include it here as another way of describing dependencies.

Assume () representing the set of possible outcomes of a discrete random variable
Xwith a; € Q being discrete, disjoint elements. While classic Bayesian probability
theory assigns one probability measure to every event a; (P(a;) € [0, 1]), evidence
theory uses two measures, belief Bel(a;) and plausibility Pl(a;), with Bel(a;) <
P(a;) < Pl(a;). The region between Bel(a;) and Pl(a;) can be seen as additional

4The set of parents I'(j) of a node j € V is given by all nodes i € V that are connected to j with
an edge leading to j: I'(j) := {i € V|(4,75) € £}
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2.4 Dependency Formalization by Probabilistic Graphical Models
uncertainty measure. If there is none of this uncertainty, Bel(a;) = P(a;) = Pl(a;)
and evidence theory is reduced to classic probability theory.

Every information source is represented by a basic belief assignment (BBA), that
maps the power set 2 to the interval [0, 1]:

m: 2% — [0,1] (2.9)
It has to fulfill the conditions
m(0) =0 (2.10)
and > m(A) =1 (2.11)
Ae29

Belief and plausibility can then be derived by these equations:

Bel(A) := Y m(Ag) (2.12)
Ag€eA

PI(A) = Y m(Ag) (2.13)
ANAK#0D

Two BBAs can be combined using the Dempster Rule of combination, that is
equivalent to the Bayes Rule for binary BBAs. This allows handling of evidence
theory based probabilities similarly to Bayesian Networks.

Additionally, a so called pignistic probability transform allows the transformation
of evidence theory output to probability theory and works exist that formulate
an inverse pignistic probability transform to achieve the opposite direction [122]. Be-
cause evidence theory needs more computation efforts than classic probability;, it
is usually only applied to small estimation problems not comparable to the size
of Bayesian networks. But the ability to transform between both approaches al-
lows integrating evidence theory in larger Bayesian networks. Furthermore, it
was shown that evidence theory can be mapped to a Bayesian networks architec-
ture [120].

2.4.4 Factor Graphs

A Factor Graph is a bipartite graph # = (V,F,&) with two types of nodes
(vertices), so called variable nodws V and factor nodes F and edges £ connect-
ing variables to factors (Fig. 2.5c). Every node i € V represents a probabilistic
variable X; and every edge e € & connects a variable to a factor f; € F. Let
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Xy, = {Xi|(Xi, f;) € £} denote the corresponding set of random variables for
each f; € F.

Then a factor graph can be used to describe a joint distribution as a normalized
product of local potential functions corresponding to the factors in the graph:

P(X) o [ ] es(Xy) (2.14)

ferF

Markov Random Fields (Sec. 2.4.1) are a special case of factor graphs where the
factors vy (z ) correspond to potential functions over the cliques °. Bayesian Net-
works (Sec. 2.4.2) are a special case where the factors are local conditional proba-
bility distributions. Because of this and the ability of describing Dempster Shafer
Evidence Theory in Bayesian Networks (Sec. 2.4.3) factor graphs are a helpful
generalization of all three. All inference methods on the previous probabilistic
graphical models can be mapped to methods on factor graphs. In fact, generic
inference libraries (e.g. libDAI [93], GTSAM [39], iSAM [68] and g2o [80]) use
factor graphs as a network-independent implementation basis.

Additionally to the bipartite graph depiction, there exists also an advanced graph
modeling method, so-called Forney-style factor graphs (FFGs) [86] [110] [77] (also
called normal graphs [49]) (Fig. 2.5d). If probability distributions of the variables
are approximated by single values (and thus neglecting all uncertainties) these
graphs directly lead to signal processing diagrams [87]. Thus, the FFG represen-
tation emphasizes the connection between deterministic and probabilistic signal
processing. More details about different state space approximations will be given
in Sec. 2.5.1.

The FFG representation can be derived from the bipartite representation by
e using edges instead of nodes for variables (connecting max. 2 factors)

e and introducing equality-factors (and additional edges) where a variable
was connected to more than two factors.

A detailed description of FFGs is given in [110]. There it is also mentioned that
edges can be drawn with arrows. This allows expressing causalities like in Bayes-
ian networks or highlighting the forward direction like in signal processing.

Although FFGs emphasize the compatibility with standard block diagrams and
will also have some advantages for inference rules (Sec. 2.5.2), they have the
drawback of introducing additional equality factors. Also in probabilistic pro-
cessing the bipartite graph representation is more popular. In this work the bi-
partite graph representation is used for dependency modeling and the FFG repre-
sentation is used when it comes to representations close to system modeling block
diagrams (e.g. Sec. 2.6). It is important to keep in mind that both representations
can be transformed into each other.

SEven the normalizing constant 1/Z can be interpreted as a factor over the empty set
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2.5 Inference with Probabilistic Graphical Models

As seen in Sec. 2.4, all different dependencies can be modeled in a generic factor
graph. Such a factor graph can be used for different tasks including the main
inference and learning tasks introduced in Sec. 2.3. It is assumed that the random
variables X in the graph can be split into the three sets observable variables Z,
unobservable variables Y and parameters . Then the tasks can be formulated as
follows:

e Evaluation: The probability p, of a given configuration z of the joint prob-
ability distribution can be evaluated using the factorization [40]:

pe = P(X = 1) (2.15)

e Sampling: Samples (configurations) (¥ can be drawn from the joint prob-
ability distribution:
¥ ~ P(X) (2.16)

This can also be seen as using the graph for simulation [40].

e Inference of posterior distribution: The posterior marginal distribution of
unobserved variables Y can be estimated given the observations Z [123]:

P(Y|Z,0) (2.17)

e Inference of most likely configuration: Instead of the whole posterior dis-
tribution it can be enough to know the maximum a posterior (MAP) config-
uration Y [123] [40]:

Y = argmax P(Y|Z,0) (2.18)
Y

e Parameter Learning: The parameters of the model can be learned given a
(usually large) set of observations Z and hyperparameters A [123]:

0 = argmax P(0|Z, \) (2.19)
0

The calculation of the MAP estimates Y and 6 can be seen as solving an opti-
mization problem [40]. There are many algorithms for solving the inference and
learning tasks (such as Loopy Belief Propagation [79], Fractional Belief Propaga-
tion [131] and Generalized Belief Propagation [134]), that can be formulated on
the generic factor graph since all dependencies are already formulated without
defining the actual variable state spaces. For machine learning usually the tech-
nique of Expectation Maximization [36] is used. Although machine learning is
a qualified research area on its own the actual techniques are based on inference
methods and thus the focus in this thesis will be on inference in general. Evalu-
ation and sampling techniques are used within some algorithms to increase per-
formance on specific variable properties. Thus a short look is taken on state space
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representations (Sec. 2.5.1) before the message passing algorithm (Sec. 2.5.2) is in-
troduced that is a generalized basis for many independently developed inference
methods. Sec. 2.6 shows how well-known filter methods can be derived from this
algorithm.

2.5.1 State Space Representations

The state space of real world attributes can either be discrete or continuous. Dis-
crete state spaces can directly be handled by assigning a probability value to each
discrete element. Assuming a discrete variable X has S values denoted by inte-
gers 1,...,S, the probability distribution P(Xp) is a mapping from these values
to [0, 1]:

P(Xp):{1,...,58} = [0,1] (2.20)

The parameters of this mapping can be expressed as a vector p utilizing the value
integer as index:
P(Xp) = Dy)(Xp) =px, (2.21)

Dy, (Xp) is introduced as discrete probability distribution function with parame-
ters p similarly to the normal distribution function N, s;(X¢) later in this section.
The parameter vector p is a probability table with S elements. Local potential
functions can also be described by probability tables:

Qﬂf(XD,YD) : {1, - ,Sx} X {1, - ,Sy} — [0, 1] (222)

This results in Sx * Sy entries in the table or S} entries for general potential
functions with N variables. The table can be expressed in a matrix (or tensor) that
allows efficient calculations during inference (Sec. 2.5.4). As long as the variable
spaces consist of a reasonable number of discrete elements and the local potential
functions include only a small number of variables, this is easily computable.

Continuous state spaces are not easily computable in general. A continuous
function has to assign probability values to all the elements:

P(Xc) R —[0,1] (2.23)

General continuous distributions cannot be described by a closed form function.
They can be approximated using assumptions that either match the input data or
neglect properties that do not have to be considered. Typical approximations can
be classified in the following classes [86] [87]:

e Single values neglect all uncertainties and reduce the distribution to one
single value  with probability 1:

P(X¢) ~ §(Xe, 7) (2.24)

This reflects temporary or final "hard decisions" on the variable X¢.
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¢ Quantization (also called histogram) uses a fixed grid of M quantization
levels to collect probability values in bins:

P(Xo) ~ {29, .. 2™} 0,1 (2.25)

Often the grid is equidistant with a fixed step size h, e.g. 2 = &g+ i * h

e Function value and derivative at a single point is a linearized approxima-
tion around a single point Z with function value f; and derivative f.:

P(Xc) ~ fo+ fi - (Xo — 2) (2.26)

This is only valid in the vicinity of . It is a good approximation for gradient
methods where a walking direction from a current guess 7 is iteratively
needed.

e Gaussian distributions (or Normal distributions) describe the probability
distribution by n-dimensional mean vector y and covariance matrix >:

1 1y Tt _
P Nywm(Xe) = (2m)" det (E)e(_Q(XC W Xem) (2.27)

For many unimodal distributions the Gaussian distribution is a sufficient
approximation. As soon as the distributions become asymmetric or multi-
modal other approximations have to be used.

e Lists of samples (particles) approximate complex distributions by a weight-
ed sum over M simpler distributions, e.g. single values (")

M
P(Xe) ~ Y w5(Xe, &) (2.28)

i=1

This approximation is used in the known particle filter approach. The usage
of Gaussian distributions is known as Gaussian Mixtures:

M
P(Xc) ~ Zw(i) N[;ﬁ(i)),gu)}(Xc) (2.29)

i=1

The approximations can also be classified into parametric and nonparametric [121]:
Single values, Gaussian distributions and derivatives are parametric while quan-
tization and lists of samples are nonparametric, although Gaussian mixtures have
a parametric aspect.

Please note that the shown exemplary equations might be seen based on 1-dimen-
sional spaces and it might be assumed that the given continuous variable X is
1-dimensional. All equations are also valid for n-dimensional multivariate dis-
tributions necessary for multi-dimensional X¢. In potential functions no differ-
ence exists between 1;(X¢) with a multidimensional X¢ and (X5, ..., Xy) if
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dim X¢ = ) dim X;. Actually this is the key idea behind factorization (Sec. 2.4):
If subdimensions of a (large) random variable are independent, these can be split
to separate random variables and some of the dependencies between these sub
variables can be removed.

Additionally to the here shown representations, compound distributions have
to be used to describe potential functions that integrate very different variables,
especially discrete and continuous spaces.

2.5.2 Message Passing

While factor graphs are also useable for evaluation and sampling [40], their most
powerful application is inference and learning. For solving these problems the
structure of the underlying factor graph is of key importance and can be utilized
in different algorithms. While generic graph structures including loops and a
mixture of discrete and continuous variables are only solvable by approximate
methods, tree-structured graphs can be solved by the message passing algorithm
with linear complexity.

The message passing algorithm [90] (also known as sum-product algorithm [79]
[86] or belief propagation [101] in Bayesian Networks) is also the basis for ad-
vanced algorithms solving graphs with loops. Therefore a more detailed look at
the idea of the message passing algorithm follows.

Let N(v) C F be the set of neighbor factors connected to variable node v € V and
N(f) C V be the set of neighbor variables connected to factor f € F. Then the
message passing algorithm consists of two message calculation instructions: One
for edges from variable nodes to factor nodes:

(1 N(@w)\{f} =0
My p(X) = { M0 (X) N@)\{f} = {f} (2.30)

QR  mp(X) else
LS eNN{f}

And one for edges from factor nodes to variable nodes. The message from a factor
f=Av,w,...,w,} to the variable v is the function
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bp(X) deg(f) =1

@@ <'¢f (XU,...,X»LU“) mw_wc(w)> else

weN(f)\{v}
(2.31)

If all messages coming from all neighbor factors of a variable are given, the
marginal distribution of this variable can be calculated, via

Bel(v) = () msou(v) (2.32)

JEN(v)

It was shown that message calculation is an efficient intermediate calculation step
for marginal calculations [79]: If multiple variables” marginals have to be calcu-
lated, the messages are the calculations that would have been necessary multiple
times otherwise. This can also be seen as a consequent utilization of the distribu-
tive law [130] [19].

In the case of Forney-style factor graphs (FFGs) (Sec. 2.4.4) with variables con-
necting max. 2 factors, the message passing equations (eq. 2.30 and eq. 2.31) can
be simplified to a single rule: Neglecting the empty set case, eq. 2.30 simplifies
to

mv_>f(X) = me_w(X) (233)

and thus eq. 2.31 can directly be described as

Mi(X) =P P [ vr (Xor oo X)) Q) mypymul(w) (2.34)

weN(f)\{v}

where f, is the factor that provides the message along edge w (corresponding to
variable X,,) to f.

In both graph representations the implementation of the abstract operators )
and @ depend on the estimation task (Sec. 2.5) and the state space representa-
tions (Sec. 2.5.1).

The abstract product operator () usually corresponds to the product [[. The
abstract addition operator @@ corresponds to a sum over all discrete elements
for discrete variables X and to an integral for continuous variables X. Using
these operators, the result of equ. 2.32 equals to the marginal distribution. The
resulting algorithms are called sum-product algorithm for discrete variables and
integral-product algorithm for continuous variables.
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If instead of the whole marginal distribution only the joint maximum of the dis-
tribution is searched, this can be achieved by replacing the abstract addition op-
erator P by a max operator, leading to the max-product algorithm [28]. If the log-
arithmic domain is used, the abstract product operator ) switches to the sum-
operator » | and yields the so-called max-sum (or min-sum) algorithm [87].

2.5.3 Message Passing Schedules

The message passing algorithm is exact if all messages needed are welldefined.
This is possible with a generic message passing schedule if the factor graph is
tree structured: The algorithm can start by calculating the messages at the leaf
variables and factors using the first cases in equ. 2.30 and equ. 2.31. Subsequently
all other messages can be calculated until both messages are calculated per edge
that connects a variable to a factor. It was shown that equ. 2.32 delivers the exact
result then, and does this in linear complexity [79].

If a factor graph is not tree-structured there are several options. First of all, ad-
ditional independence assumptions can be made or nodes can be "clustered"
differently [79] [35] to achieve a tree structure and being able to apply the exact
message passing algorithm again. If this is not possible or wanted, the message
passing algorithm can be started on a factor graph with initial message values
and run iteratively until it converges. It was shown [97] [89] that it converges with
high probability and leads to an approximate solution of the searched marginal
distribution (or MAP). This is also known as loopy belief propagation.

If prior detailed knowledge about variables” functionalities and importance is
available, a middle course between loopy optimization and independence intro-
duction can be taken: The factor graph can be defined with all dependencies
but for inference a message passing schedule is defined that takes the application’s
specialties into account, for example by inferring only from past states to future
states, as largely utilized in [62].

Another simplification depends on the state space approximations. If the vari-
ables are approximated by a list of samples (particles), the messages consist of a
sum of all single particle messages (comp. eq. 2.28). The accuracy and inference
effort depend on the number of particles. A straight forward inference method is
to follow a central message passing schedule and calculate every message by iter-
ating over all particles, leading to a full distribution approximation per variable
(breadth-first message passing). Depending on the application it can be worth
selecting a node with high certainty (e.g a lane estimation close to the sensor in
lane detection application), selecting one sample of that distribution and passing
this single message through the whole graph to get one of the most probable solu-
tions without estimating all variables” distributions in detail (depth-first message
passing) [124] (Fig. 2.6).

®Clustering means combining variables in bigger variables which is the inverse of factorization
explained in Sec. 2.3.
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proposed lane
15 hypothesis
x!

"7

Figure 2.6: Depth-first message passing in a lane detection application reducing
much of the computation effort. [124]

2.5.4 Message Approximations

Having discussed about the generic message passing rule and the message pass-
ing schedules, a closer look into the actual calculations has to be taken.

While most implementations of @ including sum and min/max operators are
calculable, the integral version considering continuous variables is often not cal-
culable. This does not have to origin from a hardly modelable probability dis-
tribution of the input variables but can also origin from the factor function s
itself.

The state space representations of Sec. 2.5.1 can also be used to approximate the
messages, resulting in simplified message update rules of eq. 2.31. Although dis-
crete variables are not affected by the integral-product rule complexity they can
also be simplified to matrix/vector calculations. Available message representa-
tions for discrete and continuous variables are:

e Discrete values:
message: vector of element probabilities p
sum-product rule:
If a local potential function on a factor f is applied to the messages, the re-
sulting discrete probability distribution can again be expressed as a vector:

Myo(X,) o Dy (X,) (2.35)

7]

py can be calculated by update rules utilizing the matrix formulation of the
potential function in f (Table 2.1).

e Single values:
message: single value
integral-product rule approximation:

Mo (X0) X Vp(Xy, 1, ) (2.36)
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e Quantization:
message: set of values {p; },s corresponding to quantization levels {7},
integral-product rule approximation:

My e(X,) o Z o Z (%(Xv,ig“), o B s () gy ()
i1 IN
(2.37)

¢ Function value and derivative at a single point:
This message approximation is mainly used for parameter estimation us-
ing e.g. expectation maximization, depending largely on the properties
of the factor function vy with parameters ¢. This is discussed in detail
in [37] and [35].

¢ Gaussian distributions:
message: n-dimensional mean vector ; and covariance matrix ¥
integral-product rule approximation:
Gaussian distributions are beneficial with linear operations: If the factor
function 1)y is a linear operation and the input messages are Gaussian, the
resulting message is a Gaussian again:

mf%v<Xv) X M;Lf-,Ef] (Xv) (238)

pg and Xy can be calculated by update rules depending on the operation
in f. An overview of many update rules is given in [77] and Table 2.2 and
Table 2.3.

e Lists of samples:
message: set of weights and corresponding sample parameters, e.g. single
values {w®, 20},
integral-product rule approximation:

mpu(X)oc 33 (wf(Xv,:f:?l), B-CO) PG -w%m) (2.39)
i1 IN

Some exemplary update rules for sample-based messages are given in Ta-
ble 2.4.

The different message approximations can be used on the same underlying factor
graph. Once modeled dependencies can be approximated by different message
approximations leading to different inference algorithms with different runtime
and accuracy properties. Different message approximations can even be applied
locally on the same factor graph. Therefore messages have to be converted from
one representation to another. Additional variables and factors can be integrated
that represent different state space approximations of the same variable and con-
versions between these new variables. The conversion factors can be seen as
equality factors, that do not introduce additional uncertainties” but only convert
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messages to a different approximation type. Some exemplary conversion rules
for variable composition and decomposition are depicted in Table 2.5.

In combination with message passing schedules it is even possible to infer the
two messages over a single edge using two different approximations. This can
especially be helpful if factor functions are not easily invertable. It results in a
high flexibility for approximating dependencies on a per message basis.

It can be summarized that probabilistic graphical models can be used to describe
real world dependencies (and independencies) as well as possible approxima-
tions up to signal processing block diagrams. Generic factor graphs can be modi-
tied (stretched and clustered) to emphasize independence assumptions and mes-
sage passing schedules. Also established inference methods like Kalman or Parti-
cle Filters can be described using the probabilistic graphical methods as discussed
in Sec. 2.6.

"besides the uncertainties induced by state space approximations

Table 2.1: Message update rules for vector-based discrete messages.

Node Update rule
X/ Z
T;l, z=x XYy (2.40)
X Y
N
[A]
y=A"x (2.41)
X Y
N
[A]
y=Ax (2.42)
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Table 2.2: Message update rules for gaussian distribution based continuous mes-
sages. Simplified version of [85] and [77]. The rules that make use of
A" are only valid if A is invertible.

Node Update rule
X — Z
LFf pz = (B35 + 59T (Ex ux + 35 ) (2.43)
Yz =3x(Ex +Zy) Sy (2.44)
X Z
E
LF/* Mz = Ux + phy (2.45)
Sz =%x+3y (2.46)
X Y
N
[A]
py = Apx (2.47)
Sy = ASxAY (2.48)
X Y
N
1A
px = A py (2.49)
Yy =A1Ey AT (2.50)
X 7 Y
ji c Rnxm Ly = ANX (251)
Sy = ANy AY (2.52)
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Table 2.3: Second Part: Message update rules for gaussian distribution based con-
tinuous messages. Simplified version of [85] and [77]. The rules that
make use of A~ are only valid if A is invertible.

Node Update rule
X Z
Lﬁ pz = px + Sx AT G(py — Apx) (2.53)
A Y, =3%x —ExATGAY (2.54)
Y c R" with G = (AXx A7 + %y) 7! (2.55)
X Z
]
pz = px + Apy (2.56)
Sy =Ny — ASy AT (2.57)
‘Y eR”
z
NpwX) o
px = p (2.58)
Y¥x =X (2.59)
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Table 2.4: Message update rules for sample-based continuous messages. Adapted

from [77].
Node Update rule
X — Z
v 20 = 30 (2.60)
wy = wmy (20) (2.61)

where my (2(V) is the message from Y evaluated at 2(¥

X Z
(4]
hal o
‘ v 2@ — 93() + g (2.62)
w(Zl) = wg? (2.63)
with ¢ being a sampled value of the message from Y
X 7} Y
L] ' 4
g = f(@) (2.64)
wg) = wg? (2.65)
X r Y
L] '
resample g =i (2.66)
wi? =1 (2.67)

with 2 being a sampled value of the message my(X) =
S ws(x, 20)

1=
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Table 2.5: Some exemplary message update rules for converting between mes-
sage types. my is the message at the edge connecting the factor to vari-

able X.
Node Update rule
X1
X
X = (Xl,...,XN) (268)
XN
myx = (mxl,...,mXN) (269)
composition
— ‘X1
X
X =(Xy,...,Xn) (2.70)
XN
mx, = (mX)z (2.71)
decomposition
W —
Vi
X
my = {w®, 20, £O}y (2.72)
my, == (i;, ) (2.73)
Vi, my € [0, 1) (2.74)
gaussian mixture composition mx = {wi, U, Xv; }n, (2.75)
— W
Vi
X
my = {w(i),im, E(i)}NS (2.76)
my, == (0;, Zv;) (2.77)
L4 my € [0, 1) (2.78)
gaussian mixture decomposition "v; = (&9, 50) (2.79)
my = (wb, ... w?)) (2.80)

37




2 Estimation Problems in Automated Driving

2.6 Filter Methods as Graphical Models

Reconcile that as described in Sec. 2.3 the general estimation problem can be for-
mulated as estimating the state of the hidden variable Y given the observable
measurements Z (eq. 2.1). One of the reasons why this can hardly be modeled is
because of temporal dependencies. Y and Z include all observations and states
over all time. Everything could be dependent on everything. This is not man-
ageable in general, especially for real time applications. This section focuses on
known filtering methods that tackle the problem of temporal dependencies by a
suitable factorization of the joint probability distribution P(X).

Observations

[ Y |
[ N ]
0 t T

Figure 2.7: All attributes X consist of observations Z and hidden states Y. They
can be split into different parts in time.

Assuming a variable X contains values for all continuous time in [0, 7'] the vari-
able can be split into three parts around one point ¢ in time (Fig. 2.7):

X = X[07t) U XU X(t,T} (2.81)

Applying this separation to observations Z and hidden variables Y/, the inference
tasks that can be solved using general Probabilistic Graphical Models (Sec. 2.5,
eq. 2.17 and 2.18) can be detailed considering temporal problems (Fig. 2.8):

e Filtering: The current hidden state Y; given all observations to date Z
can be estimated:

P(Y| Zj,y) (2.82)

e Prediction: Future states Y}, (and observations) can be predicted given all
past observations Zj 4:

P(Yiir|Zjo4) k>0 (2.83)
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e Smoothing: Given observations over a long period Z, 1 a state within that
period Y}, can be estimated more precisely than when filtering from earlier
observations only:

P(YilZpm) 0<k<T (2.84)

e Most likely explanation: Given an interval of observations Zj, ;,; a se-
quence of states Y}, ;,) can be estimated that is most likely to have generated
these observations:

argmax P (Y}, 11|21, 12)) (2.85)
Yty to]
I .
f ] z
0 t
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t+k
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f ] z
0 t
(b) Prediction
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1 Y
i 1 z
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(c) Smoothing

t ty
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L ]
L 1 z

(d) Most likely explanation

Figure 2.8: The inference tasks Filtering, Prediction, Smoothing and Most Likely Ex-
planation. The arrows symbolize the information flow. Adapted from
[77].

The tasks parameter learning, sampling and evaluation, that can be applied to
general Probabilistic Graphical Models can of course also be applied to temporal
models and are a great help here as well.
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Now first the theory of state space models (Sec. 2.6.1) is introduced and then
different well-known filters are analyzed. Since research around filter modeling
methods is a wide field focus will be on a representative subset and especially
their relation to factor graphs. For detailed information on the filter principles see
the respective referenced works. An overview over many other filters is given in
[118].

2.6.1 State Space Models for Sequential Estimation Problems

Although there exist works on modeling continuous time [30] [66], usually dis-
crete time is assumed, meaning that observations Y; only arrive at discrete, often
equidistant time steps.

A state space model [28] [95] (also known as Bayesian Filter [113] and Dynamic
Bayesian Network® [95], [38], [112], [96], [56], [75]) assumes that the observed
data Z is sequential (e.g. Z = (Zy, ..., Zr)) and the hidden states Y describe a
stochastic process (e.g. Y = (Yp, ..., Yr)). From now on ¢ is an integer to realize
the discrete time handling. It describes one step in a sequence that can be a tem-
poral sequence like in a dynamic process or a logic sequence like in DNA strands
or characters in words. The group of variables X corresponding to the discrete
sequence steps 0 to ¢ is denoted by X.;.

It can be assumed that the problem is first-order Markov, meaning the current
state only depends on the preceding state: P(Y;|Y;.—1) = P(Y:|Y;—1). This sounds
like a strong limitation but larger sequential dependencies can be compressed
in the current state, for example by setting ; = (V;,Y;_;) [95] or by calculating
higher order values like a velocity or a meaningful behavior from two (or more)
position states. It is also assumed that all models are the same for all time (time-
invariant or homogeneous). This is also a minor limitation since the models can
have parameters to adjust their behavior. These parameters can be modeled as
part of the state variable Y;. This is used for example in the Interacting Multiple
Model filter (IMM filter) (Sec. 2.6.5).

All models that have to be defined for a state space model are
e the prior P(Y)),
e a state transition (or process) function P(Y;|Y;_1)

e and an observation (or measurement) function P(Z;|Y;).”

8The term Dynamic Bayesian Network is not used since the term dynamic is misleading. As already
stated in [95] the term dynamic is meant to highlight that a dynamic system is modeled not that
the network changes over time. Since in this work also dynamically changing probabilistic
graphical models are considered, the term dynamic is not used in such a central way.

9P(Z,]Y;) describes how observations are "generated" from state variables, making the state
space model a "generative model".
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0 1 t—1 t t+1

Figure 2.9: State Space Model as a Factor Graph. Adapted from [28]

The joint probability distribution of the whole model can be factorized using
these functions (Fig. 2.9):

T T
P(Zo, ..., Z1,Yo,...,Yr) = P(Yp) (H P(thn) [1Pziv) (2.86)
t=0

t=1

Note that the observations and states can consist of several (discrete and con-
tinuous) sub variables Y;!,...Y; and Z/, ... Z/ and thus the probability functions
can also be factorized to several sub models describing dependencies (and in-
dependencies) between these sub variables. This leads to a larger probabilistic
graphical model describing the dependencies inside one time slice and between
two time slices.

The estimation tasks introduced in Fig. 2.8 can be described using the factor graph
representation of the state space model as depicted in Fig. 2.10. Depending on the
given state spaces, the chosen approximations and the complexity of the proba-
bilistic graphical model, several popular traditional Bayesian Filters can be de-
rived (Sec. 2.6.2 - Sec. 2.6.6).

2.6.2 Hidden Markov Model

A Hidden Markov Model (HMM) [28] [112] [95] (also known as Discrete Bayes
Filter [118]) is a state space model using discrete probability distributions for the
hidden states Y. A typical situation is that the observations Z have a higher
dimensionality. They are often modeled as a discrete distribution as well but also
continuous distributions, e.g. approximated as Gaussian or Gaussian mixtures,
are possible.

Let Y and Z be discrete. Then all messages can be expressed using the vector-
based formulation (Sec. 2.5.4) and matrix-based potential functions. The tran-
sition model can be expressed by a probability table matrix 7', the observation
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Figure 2.10: The inference tasks Filtering, Prediction, Smoothing and Most Likely
Explanation depicted using the factor graph represenation of a state
space model. The arrows symbolize the information flow in the fac-
tor graph.
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model by O and the prior by a vector 7, meaning

P(yo) = my, (2.87)
P(yt|yt—1) - Tytfl,yt (288)
P(zt|yt> = Oymzt (289)

Following the update rules from Table 2.1 the forward message f and backward
message b can compactly be written as

for < (0z) x (T fou1) (2.90)
and b1 < T ((Oz11) X bryar) (2.91)

These messages can be used to perform filtering, smoothing and infering the most
likely explanation. For prediction, the observation terms (Oz,) have to be omit-
ted.

2.6.3 Kalman Filter

A Kalman Filter [69] [77] (also called Linear State Space Model [110] [135], Lin-
ear Dynamical System [28], Kalman Filter Model [95]) is a state space model
using Gaussian message approximations and linear transition and observation
functions. There are many extensions to the basic Kalman Filter, e.g. Extended
Kalman Filter or Unscented Kalman Filter. This section will focus on the basic
Kalman Filter to show the principle. For an overview about different advanced
filters see [118].

For Kalman Filters the prior, transition function and observation function can be
described using the Gaussian distributions

P(yo) = Niyg20) (0) (2.92)
P(yt‘yt—l) = ‘/\/-[Fyt—LZF](yt) (2.93)
P(2]y:) = Ny, s (21) (2.94)

where F' and H are transformation matrices describing the linear transition and
observation functions and X and Y describe the uncertainty (noise) in these
processes. This is equivalent to the traditional formulation of noisy linear equa-
tions given by

Yo = o +u (2.95)
Y = Fyr1 +wy (2.96)
Z = Hyt + vy (297)
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with Gaussian noise implemented in the noise terms

u ~ MO,EO] (u) (298)
w '/\/’[072}7] (UJ) (299)
v~ Nz, (v) (2.100)

Eq. 2.95-2.97 can be interpreted as detailed formulation of messages in the graph
of the general state space model (Fig. 2.9). Thus the general graph can be detailed
for linear state space modeling (Fig. 2.11).

ORI oy W gy B G e .

Figure 2.11: Kalman Filter as a probabilistic graphical model in FFG notation.
Adapted from [110]

For inference on the linear state space model graph the update rules from Sec. 2.5.4
can be used (Table 2.2). Since H is generally very large and not easily invertible,
the backward multiplication rule is not applicable. Instead, the composite rule
can be applied on the combination of the equality factor and H. This update rule
is actually the original idea of the Kalman Filter.

Y’ ] — Y
L
S
e

T ol

Figure 2.12: Detailed view on the composite update rule. This corresponds to
part b) in Fig. 2.11.

The composite update rule can be visualized as a graph (Fig. 2.12) introducing
some intermediate variables, well-known from traditional Kalman Filters [69]
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[112] [118]: The predicted state Y~ is projected into the measurement space, re-
sulting in a predicted observation Z~. The forward matrix multiplication rule can
be applied:

pz- = Hpy- (2.101)
Yy =HYy-HT (2.102)

The predicted observation is compared to the actual observation Z leading to the
prediction error AZ (also called innovation).

Haz = [z — Hz- (2.103)
Yaz =Xz +2Xz-. (2.104)
(2.105)

Finally, the predicted state Y~ is updated to the new state estimate Y using the
innovation and a weighting factor, called Kalman gain K.

py = py- + Kpaz (2.106)
Yy =%y- — KHYy- = (I — KH)Sy- (2.107)
with Kalman gain K =%y~ H' 'Y, (2.108)

Combing all forward messages to one big update rule leads to the compact Kalman
equations given in [112]:

1y = Fuyv, + Ko (pz,, ., — HE py;) (2.109)
Svip = ([ = Ky H)(FEy FT + Xp) (2.110)
with Ky = (FSy,FT +Sp)H (H(FSy,FT +Sp)H +35)71 (2.111)

This is the compact forward pass update rule, that can be implemented without
knowledge about any graphical representation. In fact, this is the common way
for restricted, easily manageable applications, such as the basic example appli-
cation in Chapter 6. The graphical representation (Fig. 2.11, Fig. 2.12) splits the
overall Kalman method into single simple update rules that represent different
aspects of the Kalman filter. With this knowledge the Kalman filter principles can
be combined in new ways leading to other well known filters (e.g. IMM filter
(Sec. 2.6.5)) or completely new filters as already described in [86]. The introduced
explicit depiction of the composite rule allows modeling the IMM filter (Sec. 2.6.5)
as a factor graph because it uses the prediction error AZ for estimating a likeli-
hood for each transition model.

2.6.4 Particle Filter

There are several sampling methods including Gibbs sampling, importance sam-
pling and markov-chain monte-carlo methods. [35] and [77] give a good overview
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about how they can be represented as message passing in factor graphs. This sec-
tion will focus on the well-known particle filter.

Particle Filtering (also known as sequential Monte-Carlo integration [35] [44]) is a
forward-only message passing method utilizing several sampling methods. The
basic idea is that the complex continuous states Y are approximated by samples
(particles) and the integral-product rule is approximated by eq. 2.39. The particle
representation allows multimodal non-gaussian distributions in Y and non-linear
transition models P(Y;|Y,_;). Transition models just have to define how a single
particle is predicted to the next time step. This can also include a sampled un-
certainty that can be based on any probability distribution. Additionally, because
the importance sampling method is used for observation model evaluation, the
observation model can be applied straight forward on each sample resulting in
the same freedom as for the transition model.

While these are many advantages over parametric methods using limited mod-
els like Kalman filtering, other problems occur like degeneracy and sample im-
poverishment [77]. One way to handle degeneracy is to include a resampling
step to reorder samples around probable regions in the distribution and reset the
weights. This leads to a famous particle filter implementation called sampling
importance resampling (SIR) filter. For an overview about several other particle
filter implementations, see [21] and [45].

The SIR filter can be described in FFG notation (Fig. 2.13). For particle filters the
prior, transition function and observation function can be described using non-
linear generic distributions Pjg (X):

P(yo) = Poy] () (2.112)
P(yelye—1) = Prri-r)001(92) (2.113)
P(z]yt) = Piuye),0m1(21) (2.114)

with f and h being non-linear deterministic, not necessarily invertible functions.
This can also be formulated as noisy non-linear equations given by

Y1 =u (2.115)
Ye = f(yr—1) +wy (2.116)
2 = h(ye) + vy (2.117)

with generic noise implemented in the noise terms

u ~ P[eo](u) (2118)
w ~ P, (w) (2.119)
v~ Plg,(v) (2.120)

Eq. 2.115-2.117 can be interpreted as detailed formulation of messages in the
graph of the general state space model (Fig. 2.9). Thus the general graph can
be detailed for sample-based state space modeling (Fig. 2.13).
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Figure 2.13: FFG representation and examplary samples of the SIR particle filter.
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For inference on the state space model graph representing the SIR filter the update
rules from Sec. 2.5.4 can be used (Table 2.4). After the initial sampling of particles
(gff), w&o)) from P(y,) the update cycle of each time step consists of [112]:
1. Forward propagation of every sample using the transition model P(y;|y;—1)
consisting of the deterministic transition function f() and subsequent noise
addition.

2. Weighting of each sample by the likelihood P(z|y:) that the observation
results from it. Therefore P(z|y:) has to be evaluated at g)t(z) which can be
seen as evaluating the particle by the subgraph including the deterministic

observation function h() and the generic observation noise.

3. Resampling of the resulting distribution to prevent degeneracy using the
resampling factor. Different resampling methods are possible.

A big advantage of the particle filter lies in the weighting step evaluating the
observation weight of the given state sample. The observation functions can con-
sist of large sub graphs, evaluating several sensor models. An extensive usage
of the particle evaluation is part of the depth-first message passing introduced
in [124].

2.6.5 Interacting Multiple Model Filter

The Interacting Multiple Model filter (IMM filter) [29] [118] is an efficient im-
plementation of switching model filters [25] (also known as switching state space
models [55], switching Kalman filter model [95]). There are two classes of switch-
ing model filters (Fig. 2.14): Switching transition models and switching observa-
tion models. The IMM filter belongs to the class of switching transition models.
With the switch, different behavior modes can be realized resulting in differently
implemented transition models.

The switch is realized by a discrete variable that holds a probability for each be-
havior mode and a transition model for these discrete behavior mode distribu-
tions. Therefore, the state space Y is split into the continuous actual state 1 and
the discrete mode distribution W:

Y = (V,W) (2.121)
P(ylye—1) = P(vg, weve—r, we1) (2.122)

The complete transition model factors to a mode-dependent transition model on
the continuous part and a discrete transition model for the mode distribution:

P(y|yi—1) = P(vgve_y, wy) P(wiwy_q) (2.123)
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@ fvl\ P(VelVe-1, Wz) ;
Y @ . . . P(WlWe—y) T /L?R

Discrete switch variable
P(Z|Ve, W)

t—1 t t+1

(a) Switching model filters

P(thWr,l) P(V |V )
(rer m thVe-1 /\
o @ - /Vt\ Veprf—----- - @
Transition model PVt W) ‘
additionally depends PV,
on the switch variable
t—1 t t+1 t—1 t t+1
(b) Switching transition models (c) Switching observation models

Figure 2.14: Switching model filters simultaneously estimate the actual state V'
and a discrete switching variable W as part of Y. Switching transition
models have a different meaning than switching observation models.
Adapted from [95].

The two models can be described as

P(v|ve1, wi) = Py (ve|ve-1) (2.124)
= Plor_1.0u,) (V1) (2.125)
P(wi|w—y) = th_l,wt (2.126)

where P, is a continuous transition model belonging to behavior mode w, and T
is a transition model for the mode distribution. With this description the switch-
ing transition model filters can be seen as a stack of continuous state filters (often
Kalman filters (Sec. 2.6.3)) with a discrete state filter (see Sec. 2.6.2) deciding about
the probabilities of the continuous state transitions.

Given a sequence of observations z.;, estimating the continuous state distribution
P(V;]z0.) and the mode distribution P(W;|z.) is desired. The mode distribution
describes how well the corresponding transition model matches the current ob-
servation sequence. This likelihood can be derived from the prediction error AZ
that was already needed for inference in Kalman filtering (Sec. 2.6.3).

The invention of the IMM filter origins from the problem that exact inference
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would result in a belief state V; at time ¢ with O(N};,) mixture components, where
Ny is the number of discrete behavior modes. The reason is that the true chain of
behavior modes can switch at every time step resulting in N}, different behavior
mode chains that all have to be estimated. Several approximating filters (GPB1,
GPB2, etc. [25] [55]) use different techniques to reduce the estimate size, where
the IMM filter has an outstanding balance between accuracy and computation
effort.

Now, the main idea of the IMM filter is to let the (possibly expensive) filtering step
of the continuous filters run only once per model but let the different behavior
mode chain interaction act as much as possible. Therefore, the Ny, different state
estimates from the previous time step are first predicted using the mode transi-
tions defined in 7" and then combined to one estimate per subsequent transition
model. This step is called interaction (between the different state estimates).

GM combination

w U !‘L Wi
llikelihood upd. ‘ !
lazeazy
Vi el V" | K 1 v
g ~IKE =] |
& 3
s ‘
E
VY v fii r;i A
,,,,,,,,,,,,,, .
Z,

Figure 2.15: The IMM filter as FFG. This factor graph corresponds to the process-
ing diagrams in [118] and [114]. The factors interaction, likelihood up-
date and GM combination are described in Table 2.6. The KF factors
correspond to the N Kalman Filters and match the central part in
Fig. 2.11 with the AZ bypass of Fig. 2.12.

Fig. 2.15 shows the processing steps in the IMM filter implementation using basic

Kalman filters (Sec. 2.6.3) as continuous models. It is recognizable that known
components are used like the transition and observation update of the discrete

50



2.6 Filter Methods as Graphical Models

part and one Kalman filter per mode. Additional update rules specific to the
IMM filter are given in Table 2.6.'

The IMM filter can also be interpreted as an intermediate state space approxima-
tion between Kalman filter (Sec. 2.6.3) and particle filter (Sec. 2.6.4): The gaus-
sian mode approximations V; together with the mode weights IV can be seen as
a Gaussian mixture representation of ¥, where each component has a meaning,
namely corresponding to one transition model behavior. This means, the IMM
filter has the advantage of being able to estimate multi-modal state distributions
(in contrast to the Kalman filter) while keeping the mode representation simple
and with a discrete meaning (in contrast to the particle filter).

2.6.6 Multi Target Tracking

P(V§) P(VEIVELD)

P(V3) P(VLIVE) P(VH VD)
P(Wo) P(Wy|Wo) / P(We|We-1),

P(Zo|Vo, Wo) P(Z|Ve, We)

Figure 2.16: Multi Target Tracking with switching observation models represent-
ing the data association problem. A track for a new object V? is cre-
ated att — 1.

Multi target tracking is the process of estimating the state of not only one but
multiple objects (so called targets). In contrast to the previous sections, mul-
tiple filters have to run in parallel, each estimating the state of one real object.
The challenge is that observations are usually not associated to the objects and
thus another uncertainty lies in the relationship about which observation was the
result of which object.

This can be seen as another class of switching model filters. While the switching
transition models correspond to different behaviors of a single target (Sec. 2.6.5)
the switching observation models change the relationship between states and

19The update rules correspond to the IMM filter algorithm presented in [24], neglecting the nor-
malization factors.
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Table 2.6: Message update rules specific to the IMM filter.

Node Update rule
N
"—i px, = Z Thwipy, (2.127)
w :
v x, Zx = ZT wi(Sy, + (v, — pix, ) (i, — px,)7) - (2128)
Vi X
inteation
X1
yi = Ny (kx,) (2.129)
Y
Xy
likelihoo—dupdate
1% —
Vi
X
px = wi, (2.130)
i=1
Vv N

mbi Mo = wilv + (v — —ux)") (2131
GM combination ;w( vi + (v = px) (v, = px)7) - (2.131)
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observations (Fig. 2.14). The later can be used for considering sensor failures
(used in fault diagnosis systems [95]) or for the association problem in multi tar-
get tracking. A multi target tracking system can be described using a discrete
switching variable influencing the observation models (Fig. 2.16).

Therefore, the state space Y is split into the continuous state V" holding the states
of all targets V() and the discrete observation switch W:

Y = (V,W) (2.132)
V=wo v (2.133)
P(yelye—1) = P(o . of™ ool o™ ) (2.134)

The complete transition model factors to single independent transition models
on the continuous part and a discrete transition model for the observation switch
distribution:

P(yelye) = P o) - P[0 - Pwi|w, 1) (2.135)

The continuous part transition models P(vy) |vt(’_)1) are not dependent on the ob-
servation switch but switching transition models can easily be integrated here by
implementing one IMM filter per target. Often P(w;|w,_;) is neglected if there is
no temporal dependency like in data association. If sensor failures are consid-
ered, it can be used to model the temporal permanence of failures.

In contrast to the switching transition model (Sec. 2.6.5) the observation model is
conditioned on WW:

P(zi|y:) = P(z|ve, wy) (2.136)
= Py, (20" (2.137)
= Py g,1(2) (2.138)

If associations are known P(z|v;, w;) acts as a multiplexer with switch w, decid-

ing which state v is "passed through" to the observations. If they are not known,

the most probable association has to be estimated additionally to the actual tar-
get states. The general problem considering all possible associations (called mul-
tiple hypothesis tracking (MHT) [23] [32]) explodes quickly, even in the single
target case [95]. Several approximating algorithms have been developed, like
global nearest neighbour, probabilistic data association [23], joint probabilistic
data association [50], auction algorithm, hungarian algorithm .... Their com-
mon idea is to assess the pairwise (mahalanobis) distance between the predicted
states P(v{""|z04_1) and the possible observations z; to estimate the likelihood
of possible (joint) assignments. A detailed consideration of efficient probabilis-
tic data association using message passing is given in recent work [90] including
multi-sensor setup and set-type methods.
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(a) Pairwise simple calculations.

AN

(b) Reduced space of relationships.

(c) Clusters for joint estimations.

Figure 2.17: Gating and clustering: pairwise simple calculations (a) help remov-
ing unlikely relationships resulting in a reduced amount of relations
to estimate (b). For joint estimations, clusters can be created (c) from
the reduced space of relationships.
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One simple key tool, that reduces complexity largely is gating and clustering (Fig.
2.17): Before estimating the precise likelihood of joint assignments, very unlikely
associations are discarded by a more efficient preliminary calculation, e.g. a dis-
tance measure. Afterwards groups of associations can be created that have to
be estimated jointly. Thus, the expensive calculations are focused on a sub group
of associations that are likely to have an impact. These methods are worth to
consider on a generic graphical model as depicted in Fig. 2.17 to transfer them to
other problem formulations.

Up to now, a known, fixed number of targets was assumed. In reality, the num-
ber of targets is often varying and not known and has to be estimated as well.
There are established methods for multi target tracking using heuristics to create
new filters and delete obsolete ones. Another approach is to use set-type filters
that will not be considered in this thesis but can be mapped to factor graphs as
well [90]. In general, an unknown number of targets means that the state space
has to grow and shrink dynamically. Attributes not being fixed is called "first
order" models as opposed to "propositional" models. Existing first order proba-
bilistic languages are discussed in Sec. 2.7.

2.7 First-Order Probabilistic Languages

First-order probabilistic languages (FOPLs) have been developed to reason about
uncertainties concerning the logic of scenes (derived from first-order logic). A
good overview about the core concepts is given in [104] [114] and a more recent
survey about different approaches can be found in [65]. The goal is to implement
a structure that allows handling of uncertainties considering existence, number
and relationships of real world objects. Several languages achieve this goal in
different detail.

While there are also rule based and procedural based FOPLs, this section fo-
cuses on entity-relation based ones [65]. These follow the principles of entity-
relationship models describing worlds by entities refering to real world object
types, attributes describing these object types and relationships between the en-
tities, e.g. spatial, temporal or semantic. The entities and relationships are for-
mulated on class level and then instantiated multiple times to describe a specific
world. The probabilistic extension of the entity-relation based FOPLs means that
additionally probabilistic dependencies are defined on class level and then uti-
lized to describe possible instantiations. The searched probability distribution is
the overall distribution over all possible worlds (configurations). Analogously to
the previous sections, observations help to reduce the uncertainty and find the
true world with correct relationships and attributes of objects.

The most advanced FOPLs are built up on Bayesian Networks (Sec. 2.4.2). First,
classes and instances have to be introduced via object-orientation. There are two
main approaches of so-called object-oriented Bayesian networks (OOBNSs) that
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extend Bayesian networks by classes and instances: one by Koller and Pfeffer [76]
and one by Bangse [22]. They have in common, that Bayesian network fragments
are defined on class level and instantiated and connected multiple times to form
a large Bayesian network. Thus, repeating network fragments have to be defined
only once. When learning, OOBNSs restrict reoccuring conditional probabilities
to be the same in all instances of a class and to be learned as one generic model
in the class definition. The main difference between the two approaches is that
Bangso has defined the class interface more clearly, such that every class knows
its probabilistic model completely and model analysis can be performed already
on class level. Also the class hierarchy allowing inheritence of properties from
parent classes profits from this.

Based on the two OOBN definitions, two different entity-relation based FOPLs
have been developed: probabilistic relational models (PRMs) [54] and the object-
oriented probabilistic relational modelling language (OPRML) [64]. The langua-
ges use reference attributes to reference other instances, similar to foreign keys in
relational databases. Relationships can be modeled by either referencing another
instance in an attribute with a meaningful name or by using a separate entity rep-
resenting the relationship and referencing two or more instances that belong to
this relationship. From an object-oriented perspective this means that any rela-
tionship between instances can be modeled instead of only part-of relationships
as in OOBNs. Since the OPRML is based on the OOBN definition of Bangse, it
inherits its advantages. The language can model existence, number and reference
uncertainties and in [64] it is also described how the language can be used to
model state space models based on discrete state spaces.

The OPRML is defined as a formal language [108] [109] using a syntax definition
and its visual representation is based on the concept of a frame based represen-
tation system [92] consisting of frames and slots. This system is comparable to
object-orientation in programming languages where frames correspond to classes
and slots to their members.

Although the OPRML includes already many features that are necessary for a
generic modeling language for estimation problems it lacks some key features:

e It is based on Bayesian Networks,
lacking the generality of factor graphs (Sec. 2.4.4).

e It is used with discrete variable representations only. An extension to con-
tinuous variables is needed.

e Inference methods are not integrated in the object-oriented formulation.

Chapter 3 defines a new language that is largely inspired by the OPRML but
overcomes these limitations.
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2.8 Automated Driving as an Estimation Problem

2.8 Automated Driving as an Estimation Problem

As described in Sec. 2.2, automated driving can be seen as implementing an in-
telligent agent that observes the environment, interprets the situation, makes a
decision and acts on the environment in a closed loop. The overall task has been
split into groups of components, where the software groups are:

e Low level perception
e High level perception
e High level execution
e Low level execution

The filters described in Sec. 2.6 have their origins in the perception groups: Ob-
ject Tracking needs temporal filtering using simple or multiple transition models
representing the motion of dynamic objects. High level fusion has to fuse different
sensor data respecting different observation models. And situation prediction can
be realized using the prediction capability of state space models.

Several approaches have been developed to accomplish scene understanding. First-
order probabilistic languages as described in Sec. 2.7 are promising to describe
relationships between entities, especially semantic ones that bring geometric re-
lations to a more abstract, human understandable level [115].

In general, advanced works in all perception tasks use factor graphs (Sec. 2.4.4)
and detailed discussions on inference methods (Sec. 2.5) to describe their ap-
proach in a generic way, such as (ego) localization approaches by static environ-
ment observations [40] [62] and road layout estimation by multiple (stereo) camera
features [52] [124].

To achieve an extensive perception a holistic approach is obvious. Factor graphs
seem to be a common denominator but will be a challenge to handle and keep
modular if graphs grow.

Following the observations about Forney-style factor graphs (Sec. 2.4.4) and sin-
gle value messages representations (Sec. 2.5.1), even basic signal processing can
be represented in factor graphs. Thus, they are also applicable to components of
the execution group like controllers. Without going too much into detail, planning
components can be seen as a (FFG)-factor having the probabilistic representation
of the perceived environment as input (including as much uncertainties as possi-
ble) and a (maximum a-posterior) decision as output.

It is a tendency of recent years, that hard decisions are delayed as much as possi-
ble to later modules in the tool chain: Where hard decisions were made already
in low level perception, now uncertainties including multi modalities are con-
sidered more and more and kept available up to the decision making planning
modules to make them aware of all uncertainties. Seeing the whole automated
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2 Estimation Problems in Automated Driving

driving application as one large estimation problem can serve the description and
progress of this process.

2.9 Summary

This chapter has formed the basis for the subsequent chapters. The key results of
this chapter are:

e The main terms in the traffic domain are defined.

e The main components needed for automated driving are introduced fol-
lowing a generic system architecture based on the concept of an intelligent
agent.

e Uncertainties have to be considered and handling large estimation prob-
lems is challenging. Possible solutions consist of factorizing the overall
problem into sub problems or learning hardly adjustable parameters from
observations.

e Probabilistic graphical models can describe correlations, causalities and cred-
ibility. Factor graphs are the most generic description.

e Inference on probabilistic graphical models is a wide field. Message ap-
proximation and message passing schedules are key aspects that have to be
considered.

e Well-known filter algorithms can be depicted using factor graphs. They vi-
sualize the different possibilities in action and confirm the potential of fac-
tor graphs as a generic description method. Several aspects, such as Kalman
gain, particle resampling, switching model filters and association gating are
incorporated.

e First-order probabilistic languages are promising extensions to handle object-
orientation and relational aspects but are still at an early stage and not yet
widely used in automated driving applications.

e Probabilistic graphical models are already used in current automated driv-
ing components and will receive more attention towards an improved over-
all scene understanding. A holistic modeling language including proba-
bilistic estimation aspects and object-orientation is needed.

2.9.1 Contributions

Although the main scientific contributions are focus of the subsequent chapters,
some minor contributions are already presented:
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2.9 Summary

Generic system architecture for automated driving (Sec. 2.2)
(previously published in [14] and more detailed in [13] [8] [18] [2])

Modeling large estimation problems
via probabilistic graphical models (Sec. 2.3)
(previously published in [3])

Message update rules for discrete messages, sample-based messages and
conversions (Sec. 2.5.4)
(inspired by the linear update rules of [85])

Detailed factor graph description
of the Kalman composite update rule (Sec. 2.6.3)

(the Kalman composite update rule itself is part of [85])

e Factor graph description of the IMM filter (Sec. 2.6.5)

e Basic generic factor graph description of gating and clustering (Sec. 2.6.6)

2.9.2 Conclusion
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Figure 2.18: Twelve properties can be derived as requirements for a generic mod-
eling language. Detailed analysis is given in Chapter 4.

It becomes clear that a generic description language for holistic system modeling
has a key role to achieve a profound scene understanding that is the basis for
traffic participant prediction. This work proposes such a language and applies it
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to various automated driving applications. Derived from the preceiding sections
a suitable language must fulfill the following properties (Fig. 2.18):"!

e Encapsulation: The overall system has to be separatable into single compo-
nents (Sec. 2.2). A suitable language supports this by a sufficient encapsu-
lation of class attributes.

e Hierarchy: Variables have to be defined by detailed sub sets of variables.
Factors by detailed sub graphs of the probabilistic graphical model (Sec. 2.6.5).

e Classes and Instances: Filters and other principles should be defined /parame-
trized on abstract level and instantiated multiple times according to a given
scenario (Sec. 2.6.6).

e Inheritance: Kalman and Particle filter are two sub classes of state space
models (Sec. 2.6). And a simplified method for gating can have the same
base class as the detailed multi hypothesis tracking (Sec. 2.6.6). Inheritance
from a common base class allows the definition of common properties and
principles on abstract level which results in different views on a specific
implementation according to the perspective of the instance that is using it.

e Probabilistic Dependencies: It is crucial to model dependencies proba-
bilistically to represent the uncertainties given in automated driving appli-
cations (Sec. 2.3). The dependencies can be modeled in the sense of cor-
relation, causality or credibility corresponding to Markov Random Fields,
Bayesian Networks and Dempster Shafer Evidence Theory (Sec. 2.4).

e Hybrid Probability Distribution Representations: Different representa-
tions of probability distributions have to be usable in the same graph since
they all have their advantages and disadvantages (Sec. 2.5.1, Sec. 2.5.4).

e Integrated Inference: Inference methods (update rules and schedules) have
to be definable and combinable in the overall modeling language (Sec. 2.5).

e Parameter Learning: Hardly definable parameters have to be able to be
learned from observations (Sec. 2.3). Learning of parameters has to be pos-
sible in local areas (sub sets of overall estimation variables) in larger prob-
abilistic graphical models that consist of many other dependencies that are
defined by expert knowledge.

e Relation Representation: Key feature of FOPLs (Sec. 2.7) is to model rela-
tive attributes by relations between objects. These relations have to be sup-
ported by a holistic language.

e Observable and Hidden Variables: Aspects of estimation problems can be
separated into observable and hidden variables (Sec. 2.3). These variables
have to be represented in a generic way to switch easily according to the
given estimation task (Sec. 2.5).

"ust a short overview is given here. A detailed formulation of the requirements of each property
follows in Chapter 4.
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2.9 Summary

e Representation of Time: Temporal dependencies are evident in most esti-
mation tasks (Sec. 2.2). A generic language has to support the representa-
tion of time and has to allow mapping of this property to filtering princi-
ples (Sec. 2.6).

e Varying Reference Systems: Measurements are usually relative to the sen-
sor and the variables of interest are often in a global coordinate system
(Sec. 2.3). Different views on the same situation and its attributes must be
possible.

The OPRML fulfills already some of these requirements. It will be used in the
following as a basis but needs extensions to include all properties.
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3 Object-Oriented Factor Graph
Modeling Language

This chapter defines the central unified modeling language, called Object-Orien-
ted Factor Graph Modeling Language (OOFGML). It is independent of the actual
estimation domain, thus all statements here will be given without reference to
the target domain, the traffic domain. The chapter focuses on the actual language
definition (Sec. 3.1) and the core usage idea including the method for deriving a
domain specialization (Sec. 3.2) and instantiating for given observations (Sec. 3.3).
Available implementation opportunities will be given showing the big applicabil-
ity of the language (Sec. 3.4). A definition of useful special terms (Sec. 3.5) is given
before the findings are summarized in Sec. 3.6. The language’s capabilities will
be explained and evaluated on examples in chapter 4.

3.1 Abstract OOFGML Syntax

The OOFGML is a modeling language that is comparable to an abstract object-
oriented programming language extended by probabilistic dependency handling.
Language definitions are based on formal language theory [108] [109] and while
there are different ways to define what words are valid according to the language’s
syntax a common way is to describe the syntax by a set of rules, called formal
grammar. A basic meta model is given in Fig. 3.1.1

Object-Oriented programming languages as well as FOPL (Sec. 2.7) are defined as
formal languages. The OOFGML can be seen as an extension of both of them: An
abstract object-oriented programming language extended by probabilistic depen-
dency handling or a knowledge representation language extended by inference
and processing methods. The structure of the following syntax definition is in-
spired by the OPRML syntax definition in [64].

IThe correctness of the definition according to formal language theory and the usage of con-
sistency checks and other formal language tools is not focus of this work. Instead this work
tries to show what components for such a language are required by the domain’s applications.
Correct definition of the language including completeness and utilization of existing language
definitions is focus of future research.
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3 Object-Oriented Factor Graph Modeling Language

The language consists of:

o A set of classes
C={C,Cy...,Ch.},
e.g. Vehicle, Car and Truck

e A partial ordering <1 over C, which defines the class hierarchy,
e.g. Car is a subclass of Vehicle

o A set of attributes
Ao ={ i, A, N}V C eC
These represent class properties with and without uncertainties, e.g. the
position of a vehicle.

e A set of factors

Fo={fi,fo, s fap}VC€C
These describe dependencies between attributes.

e A set of update rules
Ue = {uy,ug, ... ,u,, } VC €C
These describe how messages are updated during inference.

o A set of processing scripts
Fe={7,72, -y} VC €C
These describe instantiation rules and inference schedules for handling
the processing in applications.

3.1.1 Class Hierarchy

The class hierarchy defines an inheritence hierarchy on the classes. Class proper-
ties like attributes, factors, update rules and processing scripts are inherited from
parent classes. They can be defined partially in one class and refined in a sub-
class, for example a parent class can define the involved attributes and a subclass
can add a definition of the dependency formulation. Attributes and factors that
refer to other classes can be refined from refering to a super class to refering to a
subclass of this super class.
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Figure 3.1: Meta model depicting the abstract syntax of the proposed language.
The central definition of a class can be matched to existing generic lan-
guages such as the unified modeling language (UML).
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3 Object-Oriented Factor Graph Modeling Language

3.1.2 Attributes

Each attribute A consists of:

¢ A name identifying the attribute

o A type describing the range of values the attribute can take. The type is
— a base type, or
— areference to another class.

e An optional value of the attribute. This can be
— a base type value, or
— areference to another attribute.

Since the type can be defined as a reference to another class, the class hierarchy on
the referenced classes can be used to derive a hierarchy of subtypes, for example
special state representations. The base types represent a basic type like integer,
floats or sets for discrete distributions. If the value is set to a base type value,
the attribute becomes a constant. If the value references another attribute the
attribute can also be seen as an alias for the referenced attribute. Both cases set
a fixed value for the given attribute on class level. In general values will be set
during instantiation (Sec. 3.3) including references to one ore many instances of
the class referenced by the type.

3.1.3 Factors

Each factor f consists of:
¢ A name identifying the factor

e A set of involved attributes
Ap = {1, A0, A, Af} describing the attributes that are involved in the de-
pendency formulation.

e A dependency formulation (or potential function)
1y describing the actual dependency between the involved attributes. This
can be

— a function definition including all involved attributes, or
— a reference to another class

e An optional reference to another factor with the same dependency formu-
lation
describing that this factor is referencing the same instance that the other
factor references.
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3.1 Abstract OOFGML Syntax

Since the type can be defined as a reference to another class, the class hierarchy on
the referenced classes can be used to derive a hierarchy of subtypes, for example
special dependency factorizations. The factors with a direct function definition
are also called base factors since they do not refer to another class but directly
represent a dependency formulation, e.g same value or fixed distance to. 1f () is the
set of all possible configurations of the involved attributes Ay, every factor has a
function ¢; from 2 to V, where V' is a weighting space, e.g the set of positive real
numbers R*:

by Q= RT (3.1)

The factor functions are used to describe matching configurations by local func-
tions. The global function describes the fitness of all global configurations and an
optimization on that function can be used to find the globally best fitting config-
uration. This is the generalized basis for all estimation problems.

A factor with involved attributes A\; can be interpreted similarly to a factor in a
factor graph. It defines edges between the factor and all involved attributes. Each
edge defines two messages, one for each inference direction:

my = (f,\) (3.2)
my = (A, f) (3.3)

3.1.4 Update Rules

Each update rule u consists of:

e An output message
O, = m, describing the message that is calculated.

e A set of input messages
I, = {my,my,...,my, } describing the attributes that are used as input mes-
sages.

e A message update formulation
¢, describing the actual update rule. This can be

— a function definition including the input messages, or

— a vector referencing other update rules, describing what update rules
have to be calculated to achieve the given update rule.

Note that the vector of references can also be used with a single reference to define
an alias or reference to an alternative graph representation for the given update
rule.
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3 Object-Oriented Factor Graph Modeling Language

3.2 From Language to Application

An expert can define the language for a specific domain or application. While
the term Object-Oriented Factor Graph Modeling Language (OOFGML) refers
to the overall language description, the domain specific language (DSL) is the
application of the OOFGML to a specific domain or application including the
definition of classes with attributes and factors specific to this domain (Sec. 1.3).

The capability of the OOFGML to model classes and references to other classes
via attributes can be used to model entities and relations. Thus, every DSL can be
seen as a definition of potential entities and relations specific to the domain, also
known as a probabilistic ontology [64].

Ontologies are a high-level representation that describe domain specific proper-
ties. They are as precise as necessary and as generic as possible. Ontologies of
different domains can be compared to each other and can be merged to com-
pound domains. The same way, a generic domain language can be specialized
and refined into a very specific domain language that describes, for example, a
very specific application.

The ontology with the hierarchy on entities can not only be used to represent the
domain specific properties of real world entities but also to represent inference
methods specific to the application. These methods are directly incorporated in
the same class hierarchy (as processing scripts and dependency formulations)
and allow a very generic handling of inference methods throughout different ap-
plications.

The specialization and generalization is one of the key features of the OOFGML
allowing to fulfill the generality goal of this thesis.

3.3 Model Instantiation and Inference

A possible configuration of the domain described in the DSL is called world. Its
syntax consists of:

e A set of instances
I1={0,1..1,}
e.g. Car 1, Car 2 and Truck 1

e For each class C' € C, a subset I C I, where I~ represents the set of in-
stances of class C'

e One or many instances Iy € I as value for each attribute /.AV I € I, written
I.\= IV or [.\= (I\/,Iw,...)

o Avaluex VI.AV I €I, where C.\is abase type, written .\ =z

68



3.4 Implementation Opportunities

With the factors of the DSL a weight for every possible world can be calculated.
The world with the largest weight is the most probable world. The weighted set
of all worlds describes the probability distribution over all possible worlds.

In estimation problems (Sec. 2.3) the goal is often to find the most probable world
given some observations. But also the probability distribution over all possible
worlds can be of interest to get an estimate of how certain the system can estimate
the observed situation.

To infer these worlds from observations, steps have to be taken to get from the
DSL to the worlds:

1. Receive data from sensors

2. Create instances of the classes matching the probably observed environ-
ment and the inference methods to be used

Set instance references of attributes and factors

3.
4. Set evidences from sensor data
5. Run inference methods

6.

Extract possible worlds

An obvious inference approach is to run these steps from top to bottom but sev-
eral adaptations are reasonable, for example creating an initial large set of in-
stances with approximate inference methods resulting in a rough result that en-
ables precise inference on a smaller set of instances afterwards, so-called gating in
multi target tracking applications (Sec. 2.6.6). Such inference methods are used in
the rather complex interaction estimation application in Chapter 9.

To achieve maximal flexibility, these steps can be described in the processing
scripts, separated in and spread throughout the classes, allowing to share meth-
ods and principles with different applications. The ontology aspect of the DSL
gives this functionality additional support. More details are described in detail
in Sec. 4.2.3 and Chapter 6.

3.4 Implementation Opportunities

So far, the generic language is mainly a formalization of estimation problems
including inference methods to solve them. The actual (efficient) implementation
is not directly predetermined. Instead different opportunities are offered:

e Full OOFGML implementation
The full specification of the language could be implemented and provided
to application developers. This is a challenging approach and open for fu-
ture research. A possible approach can be an offline modeling tool during
algorithm design time with code generators that could then automatically
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derive proper implementations. Or the full language could be implemented
for online usage allowing dynamic algorithm switches and scheduling dur-
ing runtime. Both approaches are not focus of this thesis.

e FOPL implementation
An existing first-order probabilistic language (FOPL) (Sec. 2.7) can be seen
as a subgroup of the language and thus an (existing) implementation for
such a FOPL can be used. The OPRML can be seen as a subgroup using dis-
crete state spaces and Bayesian network methods. It will be used in Chap-
ter 9 for estimating interactions between traffic participants.

e Specialized implementation
If the requirements on the application are clear after modeling it using the
language a specialized implementation can be chosen that implements the
exact specified algorithm. Also dynamic parts can be incorporated without
implementing a full, generic class and instance system as in the previous
options. This method is chosen in Chapter 7 for localizing an ego vehicle
using the observed surrounding object constellation.

e Established filter implementation
Another possibility is that the actual inference method can be streamlined
to an existing established filter principle (Sec. 2.6). Then an implementation
of the filter can directly be used. This method is considered in Chapter 6
at a very basic example of estimating an ego vehicle pose using absolute
position measurements.

e Modular implementation
If independence assumptions are introduced separating large parts of the
modeled class structure the implementation can be accomplished in inde-
pendent modules that communicate over a manageable number of inter-
faces. The different modules can then be implemented in very different
ways including all of the previous methods. This is used at an exceptional
scale in Chapter 8 for estimating the road layout in front of an ego vehicle.

The possibility of using different matched implementations underlines the large
applicability of the proposed language.

3.5 Special Terms and Notations

After defining the language and its main usage methods some term definitions
are added that are not necessarily required for language definition but can be
introduced using the main definition and will help discussing the language in
the subsequent chapters.

The terms class, sub class, parent class and instance have already been used
and are defined just as in object-oriented programming languages. Factors de-
scribe dependencies between involved attributes A;. The attributes are also called
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ParentClass

attribute_name

ClassName

attribute_name AttributeType

ClassName?2

ProcessingScript

attribute_to_learn

vector_attribute

FactorType

Figure 3.2: The chosen depiction of language elements. Class hierarchy is de-
picted by unfilled gray arrows. Attributes are round nodes, factors
are black filled rectangular nodes. Type definitions are depicted by
black arrows. Members of foreign attributes can be depicted by lines
with a square-start. Multi-value array attributes are highlighted by
double borders. In this example also a variable is highlighted to be
learned by an orange color.

71



3 Object-Oriented Factor Graph Modeling Language

neighbors of f as in factor graphs. Similarly, all factors f, that include attribute =
are called neighbors of z.

Attributes and factors can reference other classes. They can be meant as single
reference A\, or multi-reference )\,,, meaning their instantiation can reference sin-
gle instances or multiple instances of a target class:

IN =1, (3.4)
IAm=(L,...,1Iy) (3.5)

The multi-reference can be seen as a vector attribute: .),, is a vector with N ele-
ments. Factors connected to such vector attributes have to be defined for arbitrary
dimension of the vector since their actual dependency size is only defined after
instantiation. Factors connecting a vector attribute to a single reference attribute
can be used to convert (or compress) multiple values from multiple referenced
instances into one attribute (similarly to aggregate slots in OPRML [64]). If a
factor connects multiple vector attributes of same dimension and each dimension
dependency is independent of the others the factor can also be defined as multi-
reference factor. This references a non-vector dependency definition and applies
it to all dimensions of the vector attributes.

For every reference attribute A an inverse reference Aj,yese can be defined that
references the original instance /; from the referenced instance /5:

L= (3.6)
]2-/\inverse - ]1 (37)

Using inverse references every connection introduced by a reference attribute can
also be used in the inverse direction to connect to attributes of the instance. This
opens various possibilities for modeling dependencies. The inverse reference of
a vector attribute is a single reference or a vector reference itself according to
whether it represents a one-to-many or many-to-many relationship.

Throughout this document OOFGML classes and instantiations are described as
class definitions in special pseudo code or graphically as special diagrams. An
example with exemplary elements is depicted in Fig. 3.2 and the corresponding
pseudo code is given here:
O ParentClass
O attribute_name
[0 ClassName : ParentClass
(O AttributeType attribute name

X
Yy
z

attribute_to_learn

O O O 0O

m
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B FactorType f_1(x,z,m)
B f 2(y,m,attribute_to_learn)
B f_3(attribute_name, x,vy)

— um(attribute_name,z,attribute_to_learn) =
f_3.uzy(attribute_name), £_2.um(z, 2), £_l.um(y,attribute_to_learn)

[0 ClassName2
(O ClassName vector_attribute

s ProcessingScript () :
new_object = newlInstance (ClassName)
vector_attribute.append (new_object)
vector_attribute. um(att ribute_name, 2z, attributeftoflearn)

Classes and members of classes are distinguished by special symbols:

0O class

O attribute

B factor

— update rule

s script

Inherited member properties from a parent class are depicted in gray. This allows
the visualization of additional definitions to the same member. Names of three
factors are declared. One is referencing another class called FactorType.

One exemplary update rule is given that references three factor-related update
rules. It implements a straight-forward strategy that would not have to be de-
fined explicitly but could also be derived from graph structure. Instead of mes-
sages each update rule just uses the involved attributes as identifiers. This way
the explicit definition of messages is circumvented in the depiction. If this identi-
tier is ambiguous an additional . from suffix can ensure clarity, e.g. attribute
.from(FactorName).

One exemplary processing script is given. It uses a basic function to create in-
stances (newInstance ()), appends the new instance to a vector attribute and
refers to an update rule. Special processing scripts can be used that are triggered
after specific events, such as onInstantiation ().

In the example a member of an attribute is depicted that references another class
(xin ClassName2). There (and also for factors) a shortcut can be taken by using
the dot-member style, e.g. vector_attribute.x.

Classes are here depicted as rectangles. They can also be other geometrical shapes
such as, e.g. diamonds to emphasize their semantic meaning as relationship in
entity-relationship models (Fig. 4.9).
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If attributes shall get a new meaningful name in a sub class, this can be achieved
by introducing new attributes with same properties and equality factors between
the old and the new attributes. For clarity this is abbreviated in the attribute
definition:

O new_attribute (=old_attribute)

The most detailed example of a whole class structure using all these pseudo code
class definitions is given in Chapter 6.

3.6 Conclusion

The key points of this chapter are:

e The unified modeling language is called Object-Oriented Factor Graph Mod-
eling Language (OOFGML).

e The language includes attributes, dependency and processing definitions in
an object-oriented structure.

e The main usage idea includes a hierarchy of language derivations over a
domain specific language (DSL) to a specific application.

e Instantiations can be created that represent a specific world configuration.
Factors describe a factorization of the joint function of all attributes.

e The language is mainly defined for problem and algorithm formalization.
There are various opportunities for implementations.

e The possibility to use multi-reference attributes further extends the lan-
guage applicability. Several special terms and notations have been intro-
duced.

The capabilities of the language will be discussed in the next chapter.
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4 Language Properties

This chapter explains and evaluates the defined language from Chapter 3 using
defined requirements and exemplary use cases. Several language properties will
be motivated and formalized. The examples are motivated from the traffic do-
main but are valid for other domains.

The focus in this chapter lies on the single properties and their realization while
an exemplary class structure and the integration in real applications is focus of
subsequent chapters.

An overview over all 12 properties is given in Fig. 4.1. They can be grouped into
three groups:

e Handling Complexity (Sec. 4.1)
e Handling Uncertain Information (Sec. 4.2)

e Handling Real World Relationships (Sec. 4.3)

Complexity Uncertain Information Real World Relationships

,,,,, t,"f,,,,, )] Eﬂ \./ P(X|Y,Z) Bema —/\ </..\'\> -
e D [ PERD it RS |otelNles o

J
L

Encapsulation Hierarchy Probabilistic Hybrid Relation Observable and

Dependencies Representations ~ Representation  Hidden Variables
—
x e
i %

Classes Inheritance Integrated Parameter Representation Varying
and Instances Inference Learning of Time Reference System

oL ;4 O
5\\'/ DA /\/J\ \i\/.\/-\\‘\/. \/i\ ,-\.
v o -

Figure 4.1: Twelve properties are required for a generic modeling language. They
can be grouped into handling complexity, uncertain information and
real world relationships.
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4.1 Handling Complexity

Estimation problems can be complex due to a multitude of attributes that con-
tribute to the understanding of the situation. This complexity has to be han-
dled by several principles that are also used in object-oriented programming lan-
guages [119] or object-oriented development in general [20]. The taxonomy of
object-orientation is often argued and differently defined [111] [63] [20]. D. J.
Armstrong [20] proposes a taxonomy of 8 concepts as a result of an extensive
survey over 239 sources. This section uses a similar taxonomy?, but also incorpo-
rates additional requirements for the unified modeling language. The principles
are grouped into Encapsulation, Hierarchy, Classes and Instances and Inheritance.

4.1.1 Encapsulation

Consider a system modeled as one big monolithic black box. If this system needs
to be implemented it is hard to test functionalities at an early stage. Or if it needs
to be debugged after detecting a failure it is very difficult to localize the error.
Therefore bigger systems are usually modeled as single modules that focus on
subtasks and interact with each other using defined interfaces. These interfaces
have to be well-defined and understandable for human experts to be able to in-
terpret the data and apply metrics on the values to determine the validity of the
modules.

If a modular system is developed without a holistic system model, it is likely
that interfaces restrict the estimation capabilities to an unwanted extent. While
the desired language shall be able to model a probabilistic estimation system as
a whole, a straight forward way to introduce and split the overall system into
modules is needed.

The following requirements are given for the encapsulation property:

e Grouping
It must be possible to group logical parts of the overall system into smaller
components. These modules shall include the attributes and dependency
descriptions necessary to describe the given part as an independent compo-
nent.

e Interfaces
Every module needs an interface to separate internals from the outside and
to communicate with other modules.

! Armstrong’s concepts abstraction, class and object are combined in Classes and Instances, the con-
cept polymorphism is contained in Inheritance and the concepts message passing and method are
handled in Sec. 4.2. In this work additional attention is given to the general Hierarchy of at-
tributes and factors.
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4.1 Handling Complexity

e Module Connection
Interfaces of one module have to be providable by other modules. There has
to be a direct way to describe a connection between two or more modules.

Modulelinterface

=

Modulel

Attribute4

Module2

¢ Modulel Attributel Attribute6

Figure 4.2: Example of the encapsulation property: The module interface of
Modulel is described by ModulelInterface and used in Module2.

The OOFGML has the capability to fulfill the encapsulation property. Classes and
thus also their instances can be used to group logical parts. Attributes describe
module interfaces and references to other classes and instances can be used to
implement module connections. An example is given in Fig. 4.2. It matches the
encapsulation capabilities of the OPRML (Sec. 2.7).

Detailed usage of this property in applications can be found in Chapter 8 and
Chapter 9.

4.1.2 Hierarchy

When developing an estimation system several aspects have to be considered in
varying detail. Different experts may contribute to different aspects.

High level relationships should be modelable without knowing the details of each
single component. On the other hand detailed algorithms have to be defined
without considering their usage in a larger architecture. They are defined once
and can be used as sub components in different larger components.

A hierarchical structure has to combine these components. Attributes have to be

detailed with sub attributes, dependencies have to be detailed with sub depen-
dency structures.
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The following requirements are given for the hierarchy property:

e Hierarchy for attributes
High level attributes have to be representable by more detailed low level
attributes.

e Hierarchy for factors
High level factors have to be representable by more detailed low level fac-
tors to describe detailed dependencies and independencies between subat-
tributes.

e Representation as relations
The relationship between classes describing that one class is part of another
class has to be describable in an ontology. The ontology gives an overview
of how classes are stacked into each other.

Factor

Attribute4
i || -
S

<2 2

Attribute

Attribute6

Figure 4.3: Example of the hierarchy property: Attributes and factors can be de-
fined in separate classes.

The OOFGML has the capability to fulfill the hierarchy property. The definitions
of attributes and factors directly allow referencing other classes. The resulting
hierarchy on factors matches the hierarchical methods using factor graphs, espe-
cially the FFG representation in Sec. 2.4.4 and Sec. 2.6.3.

To emphasize the relation between two classes additional has-relations can be in-
troduced in the entity-relationship view. An example is given in Fig. 4.3. The
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4.1 Handling Complexity

basic hierarchy implementation of the OOFGML matches the one of the elemen-
tary OOBN definitions (Sec. 2.7). The representation as relations is possible due
to the extension that were also made when defining the OPRML.

Detailed usage of this property can be found in all applications from Chapter 6 to
Chapter 9.

4.1.3 Classes and Instances

Real world traffic situations have a varying number of traffic participants and
constellations. An automated vehicle has to solve them in a generic, coherent
way. Principles have to be defined once and applied multiple times.

A classes and instances structure can help to define single generic classes and then
instantiate them according to the given situation. These classes have to include
the attributes and dependencies of the objects as well as processing scripts and
update rules. They should also describe under which conditions instances will
be created to represent a specific situation correctly.

The following requirements are given for the classes and instances property:

e Classes
Real world principles have to be organized in classes. Classes have to define
properties of the real world principles in a template that can be used to
instantiate multiple instances of real world entities.

e Instances
Instances of real world entities originating from the same class have to be
handled as single, separate objects but have to share the properties de-
scribed in their common class. The actual configurations of their attributes
differ. Even the existence of such instances can be differently certain.

¢ Instantiation rules
Rules have to be defined when and how instances are instantiated according
to available sensor data or preceding estimation results.

The classes and instances property is fulfilled by the OOFGML. Classes and in-
stances are directly available in the language definition. In contrast to existing
FOPL (Sec. 2.7) the instantiation rules can be described in the processing scripts.
A basic example is given in Fig. 4.4.

The property is used in all applications but most utilized in the object interaction
application in Chapter 9.
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Figure 4.4: Example of the classes and instances property: A little amount of
classes are defined on class level and are then instantiated multiple
times. Instantiation rules can be defined on class level.

4.1.4 Inheritance

From the point of view of an automated vehicle all traffic participants are dy-
namic objects in general. All dynamic objects can move and their movement is
important to consider.

But if detailed prediction is wanted also the characteristic of the actual dynamic
object is relevant. Besides the ability to move a motor cycle has different acceler-
ation capabilities than a truck. They both belong to the class of dynamic objects
but are different specializations that extend the properties of the base class.

This separation into abstract and detailed class definitions is applicable to many
real world entities. Therefore the unified modeling language needs a profound
understanding of inheritance.

The following requirements are given for the inheritance property:

e Inheritance hierarchy
An inheritance hierarchy on classes is needed that allows subclasses to share
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4.1 Handling Complexity

common properties in their common parent class. These properties shall
include attributes, dependencies between attributes and processing scripts.

e Interfaces
Parent classes have to be usable as interfaces for subclasses. They have to
be able to define only little information about the class structure e.g. just
naming the attributes without defining types or even acting as an identifier
only.

e Multiple inheritence
Classes have to be able to inherit from multiple parents. On the one hand
this allows defining multiple interfaces and thus preparing classes for usage
in different environments. On the other hand it allows combining different
features defined in parent classes, e.g. combine a state representation with
a dependency definition.

e Polymorphism
Different sub classes have to be able to be used via a common interface but

BaseClass

!

SubClass OtherSubClass

Attribute4
Attribute5 Attributel

Attribute6

Factor OtherFactor

Figure 4.5: Example of the inheritance property: Every single property of the class
definitions can be refined in sub classes, e.g. additional attributes and
factors can be added and attributes and factors that had only names
can be defined. The base class is a common interface for the sub
classes.
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respond with different specialized behavior given by their sub class defini-
tion.

The OOFGML is capable of the inheritance property. The class hierarchy directly
induces the inheritance hierarchy. The inheritance is defined in a way that al-
lows interfaces and multiple inheritance known from generic object-oriented lan-
guages. A basic example is given in Fig. 4.5.

The property is used in all applications especially for the state space model spe-
cialization in Chapter 6 and behavior formulation in Chapter 9.

4.2 Handling Uncertain Information

A fundamental challenge is how to handle uncertainties. Uncertainties lie in
noisy sensor information and unknown dependencies. They have to be described
in manageable representations and reduced by combining several information
using dependencies. The principles are Probabilistic Dependencies, Hybrid Probabil-
ity Distribution Representations, Integrated Inference and Parameter Learning.

4.2.1 Probabilistic Dependencies

The action of a traffic participant depends on its constellation to other objects.
For example, dependent on the relative distance to a leading vehicle it can keep
the velocity or has to brake to not collide with it. Thus the position attribute has
to be brought in correlation with the action attribute. Dependencies have to be
formulated between the attributes.

Usually the position of objects can only be observed with noise. There is no cer-
tain estimation of the object’s position but a probability distribution over possible
positions. The dependency formulation has to respect these uncertainties. It is ob-
vious that established graphical models shall be supported such as Markov Ran-
dom Fields, Bayesian Networks and Dempster Shafer Evidence Theory (Sec. 2.4).

The following requirements are given for the probabilistic dependencies prop-
erty:

e Dependencies
Dependencies between variables have to be modelable.

e Uncertainties
Uncertainties have to be representable in dependencies. This includes re-
specting uncertainties on input variables when deriving output variables as
well as modeling uncertainties of the dependency model itself.
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4.2 Handling Uncertain Information

e Existing graphical models
Existing graphical models for correlations, causalities and credibility have
to be representable (such as Markov Random Fields, Bayesian Networks
and Dempster Shafer Evidence Theory).

e Combination of existing graphical models in one language
Different existing graphical modeling methods shall be combinable in a sin-
gle model. Having a large model, different parts of the model shall be de-
scribed using different graphical models. Their connection shall be trans-
parent.

The OOFGML has the capability to fulfill the probabilistic dependencies property.
Dependencies can be modeled using the factors and their potential functions. The
factors form a factor graph representation (Sec. 2.4.4) of all dependencies includ-
ing the possibility to model deterministic as well as uncertain dependencies. Fac-
tor graphs can represent graphical models for correlations, causalities and credi-
bility (Sec. 2.4.1 - Sec. 2.4.3). A combination of them is also modelable.

Probabilistic dependencies are the necessary core principle for all applications
(Chapter 6 - Chapter 9).

4.2.2 Hybrid Probability Distribution Representations

Real world attributes include discrete and continuous values: There is a discrete
set of lanes or a discrete set of behaviors a traffic participant can have while for
example the position of objects is a continuous value. Since it is desired to model
probabilistic dependencies respecting the uncertainties these attributes have to
be described using probability distributions. There are several possibilities to
approximate continuous probability distributions (Sec. 2.5.4).

Different approximations should be usable in the same model. Conversions be-
tween these approximations should be integratable in a transparent way.

The following requirements are given for the hybrid probability distribution rep-
resentations property:

e Independence from dependency model
The representation of state spaces needs to be independent from the depen-
dency model.

e Hybrid graphs
Different state space representations need to be possible in the same model.
They can be locally differing.

This does not require that inference is independent from the state representations. Actually,
inference methods are in general dependent on the state representations (Sec. 2.5.4).
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e Transparent conversions
Transformations between representations have to be possible and need to be
integrated in class structure. On a semantic level, it shall be irrelevant how
a variable is exactly approximated and if there needs to be a conversion to
use it in a dependency with another variable.

e Combination of representations in single variable
Different dimensions of a multi-dimensional variable shall be modelable
using different representations.

ModeDistributionState

Array of Binary
Mode

weights

>

GaussianState GaussianMixtureState (3

@ E - K State X
@ Array of Gaussians

State

] |G

Array of Binary

weights

weig ﬁ
distribution

Array of Gaussians

Figure 4.6: Example of the hybrid probability distribution representations prop-
erty: Factors can convert between different probability distribution
representations. Using different interface base classes a single State
class can be used in other classes by referring to the corresponding
approximation base class there.

The OOFGML has the capability to fulfill the hybrid probability distribution rep-
resentations property. The definition of the representation of variables (Sec. 2.5.1)
is separated from their name and their usage in factors. Thus, dependencies can
be modeled on a base class of the variables and be specialized to a specific rep-
resentation without considering the dependency model they are used in. State
space representations can be defined locally. A large graph can consist of parts
with different representations. The conversion between representations can be
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4.2 Handling Uncertain Information

hidden in variable interfaces using multiple inheritance (Fig. 4.6): Different su-
perclasses can provide varying state space approximations. Conversions can be
hidden as internal dependency models that are needed if a corresponding in-
terface is requested. Since variables can be aggregated to larger variables, also
different representations inside one variable are possible. These can be helpful
when modeling conversions (Table 2.5) or complex dependencies (Table 2.6).

Transparent approximation conversions are also considered in Chapter 8 and
Chapter 9.

4.2.3 Integrated Inference

The main goal of estimation applications is to infer the most probable configura-
tion under uncertain conditions for example by only having noisy observations.
Depending on the inference task (Sec. 2.5) there are different requirements on
runtime and precision of the inference algorithm. Additionally depending on the
variables of interest only specific messages have to be passed. Message passing
schedules (Sec. 2.5.3) can be defined that focus on a specific application and use
specific approximation related update rules (Sec. 2.5.4).

These different inference algorithms and properties should be definable indepen-
dently of the dependency model in a hierarchical structure.

The following requirements are given for the integrated inference property:

e Independence from dependency model
The definition of the inference method needs to be independent of the de-
pendency model. Different inference methods shall be applicable to the
same dependency model depending on the requirements of the application,
e.g. if fast prediction or precise smoothing is needed.

e Hierarchical definition
Inference methods have to be described in a hierarchical structure to differ
from basic principles to detailed message update rules. As much as possible
has to be defined on domain-independent level.

e Local definition
Different inference methods need to be applicable on parts of a single model.

e Update Rules
Special update rules depending on the message representation have to be
definable. They have to be defined in generic classes and applicable straight-
forward to specific dependency formulations.

e Message passing schedules
The scheduling of inference steps (message passing) must be definable close
to attribute and dependency formulation. Local definitions have to be com-
binable to overall scheduling rules.
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Figure 4.7: Example of the integrated inference property: The message passing
schedules and update rule definitions can be left open in parent classes
and defined differently in sub classes.

The integrated inference property is fulfilled by the OOFGML. Inference methods
(Sec. 2.5) are defined in the processing scripts using the update rules which cor-
respond to the exemplary rules in Sec. 2.5.4. Both are independent of the factor
definitions and can be defined in sub classes of inference method independent
base classes Fig. 4.7. The separation into classes can also be used to apply dif-
ferent inference methods on different parts of the overall model locally. Thus,
message passing schedules (Sec. 2.5.3) and update rules are directly defined us-
ing the modeling language.

Generic inference methods are described in Chapter 6. A particle filter princi-
ple is applied in Chapter 7. A special modular inference method is depicted in
Chapter 8.
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4.2.4 Parameter Learning

In many estimation applications there are dependencies that are hardly mode-
lable by human expert knowledge, such as for example the behavior of human
traffic participants. A solution is to learn these dependencies from observations
meaning the parameters of the dependency models are optimized according to a
set of observed cases.

The proposed language should allow learning of dependencies from end to end
but also mixing learned dependency models with other expert defined models.
It should be possible to parametrize a large model and only learn a few local
models inside that model. The learning methods should also be described using
the language.

The following requirements are given for the parameter learning property:

e Representation of parameters
Parameters have to be modeled as an estimatable variable. Learning algo-
rithms must be able to infer the parameters from observations.

e Variable synchronization throughout instantiations
Learning generalized parameters on class level from instantiated scenes has
to be supported. Therefore, the variables have to be synchronized through-
out the instances of one class.

e Local and global learning
Machine learning has to be applicable on different levels of detail. Param-
eters of single dependency models have to be learnable while other depen-
dency models use fixed parametrization from expert knowledge. Neverthe-
less, also parameters of large dependency models shall be learnable from
end to end.

e Inference methods for learning
Inference methods for parameter learning have to be definable.

The OOFGML has the capability to fulfill the parameter learning property. Pa-
rameters can be modeled as attributes of classes like any other variable as already
described in Sec. 2.3. Instances have the knowledge from which class they were
generated. Thus, their connection can be utilized during learning (Fig. 4.8). There
is no restriction how many (parameter) variables are estimated at the same time.
It only depends on the learning method. These can be defined using the same
principles as for inference methods as described in Sec. 2.5 and Sec. 4.2.3. The
learning algorithm itself is not focus of this work.

The learning property is used in Chapter 9 to define the behavior models for
interaction estimation.
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Figure 4.8: Example of the parameter learning property: Classes are instantiated
to represent the real world constellation given in observations from
the learning database. Model parameters are inferred and stored on
class level.

4.3 Handling Real World Relationships

The language must be able to represent real world relationships. These comprise
the relationship between observable and non-observable attributes, temporal re-
lationships and relationships between different point of views. The principles are
Relation Representation, Observable and Hidden Variables, Representation of Time and
Varying Reference Systems.

4.3.1 Relation Representation

For understanding traffic scenes it is very important to consider the constellation
of objects. The relation between dynamic objects, other dynamic objects and in-
frastructure elements gives much information about what traffic participants are
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doing and will do next.

A key objective is to estimate the existence of relationships. Therefore they should
be represented in the modeling language and should be equipped with attributes
that help to infer their existence probability from observations like distances be-
tween the objects.

The following requirements are given for the relations property:

e Entities and relations
There needs to be a possibility to represent an entity-relationship model.
Therefore classes have to be able to be used as entities and relations.

e N-ary Relations
Relations must allow describing relationships between multiple entities.

e Relations with attributes and factors
Relations shall be able to hold attributes and factors themselves. Properties
shall not only be annotated on entities but also on relations.

¢ Relations of relations
Relations should not only connect entities but should also be possible be-
tween existing relations.

The relation representation property is fulfilled by the OOFGML. Classes can be
used to describe entities and relations. Parent classes for entites and relations can
be created accordingly. Considering relations as full classes similar to entities, it is
possible to allow n-ary relations, attributes in relations and relations of relations.
These capabilities are comparable to the ones of the existing OPRML (Sec. 2.7).

A basic example is given in Fig. 4.9. The base class for all binary relations can be
defined in a generic way:

O Entity

[0 Relation : Entity
O Entity subject
(O Entity object

Entities and relations are used as basis for the domain specific language (DSL) in
Chapter 5 and thus serve as basis for all applications in Chapter 6 to Chapter 9.

4.3.2 Observable and Hidden Variables

Not all properties of a traffic situation can be observed. Many of the properties
exist but are not observable by sensors. They can only be derived from observable
attributes.

Generative observation models can describe how an uncertain measurement ori-
gins from a hidden (unobservable) state. These models should be definable and
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Relation

Entity Entity

drivesOn

DynamicObject RoadSegment

Figure 4.9: Example of the relation representation property: Entities and relations
of an entity-relationship model (bottom) can be modeled using the
OOFGML and generic base classes that represent entities and relations

(top).

integratable in the overall dependency model such that whole existence proba-
bilities of entities and relations can be derived from observations.

The following requirements are given for the observable and hidden variables
property:

e Observation models
The relation between measured observations, hidden state variable, the sen-
sor itself and an observation model must be representable.

¢ Generative modeling
Generative models have to be modelable to infer the inverse direction after-
wards.

e Inference of existence
The existence of objects, especially of relations between objects has to be
able to be derived from observations.
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Figure 4.10: Example of the observable and hidden variables property: Factors
can be used to describe observation models that define how mea-
surements result from a given state. The arrows at the factor graph
edges symbolize the Bayesian dependency.

The OOFGML has the capability to fulfill the observable and hidden variables
property. Since the language is based on factor graphs (Sec. 2.4.4) all filter prin-
ciples (Sec. 2.6) can be applied: Observation models can be implemented as de-
pendencies between observable and unobservable variables. Object-orientation
can be used to model the sensor and the entity to estimate as separate objects in
the model with relations between them. Using causalities (Sec. 2.4.2) a generative
model can be implemented describing how the measurements emerge from the
hidden state. Bayesian inference allows then to estimate the hidden state from
noisy observations. By adding existence attributes to entities and relations their
existence probability can be integrated into the dependency model and thus ob-
servations can be used to infer the existence of entities and relations (details in
Chapter 9).

A basic example is given in Fig. 4.10. Basic observation models are handled in
detail in Chapter 6. Advanced models, combining several attributes are handled
in Chapter 7, Chapter 8 and Chapter 9.

4.3.3 Representation of Time

Time extends the geometric world to a fourth dimensions that increases complex-
ity enormously. All attributes in the model should also be related to a time where
they are valid. Dynamic objects are only in a given state at a given time. Before
and after that point in time their state can be different.

It should be possible to let attributes depend on time. This can be a dependency
model to a time variable but also discrete time models using time slices should be
possible. Together with the observable and hidden variables property (Sec. 4.3.2)
the modeling of state space models (Sec. 2.6) should be possible.

91



4 Language Properties

The following requirements are given for the representation of time property:

e Representation of time
Time and uncertainties in time have to be representable.

e Temporal dependencies
Dependencies of variables to temporal aspects have to be modelable. This
also includes transition models describing dynamics and logical sequences
and processes.

e Continuous and discrete state space models
Differing time models have to be easily derivable including continuous and
discrete time frames.

changes
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DynamicObject

DynamicObject

- . o=

e ~

’ . N,
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Figure 4.11: Example of the representation of time property: Temporal relations
between object instances can describe transitions from time slice to
time slice.

The OOFGML fulfills the representation of time property. Time can be modeled
as a separate variable including the possibility to use discrete and continuous
representations and arbitrary uncertainty model as described in Sec. 2.6. Other
variables can depend on the time variable using factors and potential functions.
Transition models can be implemented as factors deriving a future state from a
source state and a change in time. Continuous and discrete state space models
(Sec. 2.6.1) can be derived, e.g. discrete models by using a state representation
per discrete time step and a (fixed) transition model for the transition between
states (Fig. 4.11). This is the most established approach but also more advanced
and generic methods (Sec. 2.6) are implementable using the language.

A class hierarchy for state space models is defined in Chapter 6. Temporal de-
pendencies are also included in all applications (Chapter 7 - Chapter 9).
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4.3.4 Varying Reference Systems

Measurements from different sensors are not always comparable. They are usu-
ally related to different coordinate systems. For example a sensor measures dis-
tances to objects relative to the sensor itself. For comparing them in a global view
they have to be converted in a global reference coordinate system.

Conversions between these coordinate systems should be representable transpar-
ently in the proposed language.

The following requirements are given for the varying reference systems prop-
erty:

e Coordinate systems
The language has to support views from different perspectives. The same
physical entities have to be describable in different coordinate systems.

e Coordinate transformations

Transformations between different coordinate systems have to be integrat-
able.

DynamicObject

{ statchu)
N 7

relative
World observes Pose

DynamicState2D-
Transformation

DynamicObject

has
world_has_relation

Figure 4.12: Example of the varying reference systems property: Multiple
DynamicObjects have a global pose in the Wor1d but they observe
each other by a relative pose. This relationship can be described by a
dependency model implementing a coordinate transformation.
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The OOFGML has the capability to fulfill the varying reference systems property.
Different coordinate systems can be described by different relations to reference
points. Transformations between coordinate systems can be described using fac-
tors to formulate local dependencies. An example with two dynamic objects is
given in Fig. 4.12.

Coordinate transformations are also described in detail in Chapter 6. In the other
applications they are used implicitly (Chapter 7 - Chapter 9).

4.4 Conclusion

In this Chapter the language definition was evaluated considering capability re-
quirements originating from estimation problems. Motivated from the automated
driving domain a total of 12 language properties were chosen and detailed with
carefully defined requirements. These were analyzed using the definition and
properties of the proposed language.

As the main theoretical evaluation it was discussed and shown that all the identi-
fied requirements can be represented in the language. Although the specification
was carefully chosen it is possible that further requirements arise or the given
ones have to be evaluated in more detail. Nevertheless, the OOFGML has the po-
tential to solve the large variety of estimation tasks, especially in the automated
driving domain.

In the following chapters it is shown how the language is applicable to real es-
timation problems in the traffic domain and how different applications can be
described in a coherent way.
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This chapter introduces the Traffic Domain Language (TDL) as example of spe-
cializing the generic OOFGML (Chapter 3) to a domain specific language (DSL).
Besides defining the class hierarchy including entities and relations to build up
an ontology (Sec. 5.1), an outlook how this Traffic Domain Language (TDL) is
the basis for the actual applications (Sec. 5.2) is given which will be described in
detail in the subsequent chapters. A summary is given in Sec. 5.3.

5.1 Traffic Domain

An exemplary definition of a DSL for the traffic domain is proposed. It is a basic
language with focus on the applications handled in subsequent chapters. The
applications are chosen to cover different aspects needed for automated driving
applications and thus also the given TDL gives a good overview. Since the DSL
formulates an ontology (Sec. 3.2) it is prepared for integrating other details like
more sensors or different traffic participants straightforwardly.

For the ontology entities and relationships have to be defined on class level as
described in Sec. 4.3.1. The given TDL focuses on binary relations and utilizes the
option to build relations of relations.

5.1.1 Traffic Scenes as a Graphical Estimation Problem

Reconcile that this thesis focuses on the challenge of solving automated driving,
including perceiving the environment, understanding it and making a decision
how to act on the environment. Several components usually solve specific tasks
as described in Sec. 2.2. They are ordered in a processing chain with a strict es-
timation order and only task-related information is extracted at their output in-
terfaces. The goal is to use the OOFGML to describe these components in a more
coherent way and to allow various inference directions. All tasks shall be seen
as part of a holistic estimation problem as described in Sec. 2.3. This means a
joint probabilistic distribution over all possible road layouts, object constellations
and ego vehicle properties has to be estimated to find the most probable config-
uration (Fig. 5.1). The OOFGML will help to factorize and handle this large joint
function.
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Figure 5.1: Automated driving has to be seen as one holistic estimation problem.

The DSL for the traffic domain is not only applicable to single automated vehicles.
It mainly describes all entities and relationships occurring in traffic scenes. Thus,
it is also valid for a variety of other applications such as multiple automated ve-
hicles at once (communicating with each other) or traffic observing infrastructure
without any automated vehicle.

5.1.2 Entities Class Hierarchy

The goal of the TDL is to represent all elements and properties of traffic scenes
(that are introduced in Sec. 2.1). Thus, the entities shall include

e Real world scene objects

e Dynamics of different scene object kinds

Hierarchical (sub) parts of the road layout

Technical components and their specializations

Intelligence concepts like trajectories, behaviors and routes

Fig. 5.2 shows an extract of the entity class hierarchy including exemplary entities
for all these groups.

Of course, also many additional intermediate classes are possible. The chosen
granularity is sufficient to show many of the possible applications. For example

96



5.1 Traffic Domain

Entity
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Sensor ‘ Storage Motion ‘ Constant State Change Scene Object Trajectory Route
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Figure 5.2: Entity class hierarchy of the TDL.

scene objects are divided into three different generic classes that additionally in-
herit from different temporal concepts. These temporal concepts represent differ-
ent dynamic properties like moving, static or state-switching (semi-static) traffic
elements. Of course also other classes could inherit from the temporal concepts.
It is shown how the temporal property is brought to other classes by relations in
the next sections.

5.1.3 Relations

On the class hierarchy binary relationships are defined. These are defined at par-
ent classes as "high" as possible. Entity sub classes inherit these relations directly
or use a specialized sub class of the relation.

Figure 5.3: Entities and relations build up a traffic domain specific ontology.
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5 Traftic Domain Language

All relations necessary for the chosen applications are shown in Fig. 5.3. Also the
possibility to create relations of relations is used: Dynamic objects can reactTo
scene objects and their reaction can again be describedBy behaviors.

The entities with the relationships build up a domain specific ontology. It is a
class structure that can be used to describe traffic scenes including automated
vehicles. For example an automated vehicle has a technical component that can
be a camera environment sensor that can detect other scene objects, e.g. another
dynamic object like a bicycle or a static object like a lane marking. Lane markings
are part of lane segments which are again part of the road layout.

With minor modifications the ontology is compatible with the (non-probabilistic)
ontologies / class hierarchies in [73] and [51]. In addition to the applications
described in the subsequent chapters the ontology has been applied to the task of
deriving intensional semantic relations from extensional observable relations in
[10] and to reinforcement learning of driving behaviors in [15].

5.1.4 Compact View

Using the ontology within the OOFGML means that every class (entity and rela-
tion) can hold multiple attributes and dependencies (factors) between them. Thus
the ontology is a rough separation of the overall graphical estimation problem
(Sec. 5.1.1) into smaller classes. To make this connection visually more intuitive
the ontology can be depicted more compactly (Fig. 5.5a).

The steps taken to achieve this representation are (Fig. 5.4):
e Choose all relations.

e Select entities to be able to describe relations (e.g. EnvironmentSensor
has to be selected to describe the detects relation).

e Draw has relations as simple arrows or as stacked boxes where possible
(e.g. Road Layout has Lane Segment has Lane Feature).

e Draw relations that are defined on not represented entity parent classes onto
all available sub classes (e.g. changesto relation on RoadLayout and
DynamicObject)

e Draw parent classes as dashed boxes inside sub classes. Draw their relations
only once if they are visible multiple times. (e.g. DynamicObject inside
AutomatedVehicle)

The resulting compact view shows nicely how the overall estimation problem is
split into sub problems distributed over several entities and relationships (Fig. 5.5).
This is a rough factorization of the overall dependency and each class can hold
additional factorizations of their internal dependency model.
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Figure 5.4: Steps to achieve the compact view.
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Figure 5.5: The compact view (a) visualizes the factorization of the estimation

problem (b).
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The factorization induced by the ontology is only dependent on the traffic do-
main itself and represents the expert’s understanding of the domain. Additional
factorizations and adaptations will be introduced by application-specific require-
ments like the attributes of interest and algorithm performance. Sec. 5.2 shortly
introduces specializations of exemplary applications that are described in more
detail in the subsequent chapters.

5.2 Outlook to Applications

Four different exemplary applications are described in detail in the subsequent
chapters. Here an outlook on how the introduced TDL will be used in these
applications is given.

5.2.1 GNSS Tracking

The GNSS tracking is a simple example to show the basic usage of the OOFGML.
The idea is that the noise of absolute pose measurements (e.g. from a GNSS sen-
sor) is reduced by a temporal fusion considering the motion of the (ego) vehicle
where the sensor is attached.

The ontology of the DSL can be utilized to describe the necessary components
and their relationships as depicted in Fig. 5.6: The GNSS sensor is represented as
a subclass of the InertialSensor class attached to the Automatedvehicle
via a has relation. The temporal relationship is represented by the changes
To relation of the DynamicObject which is a parent class of the Automated
Vehicle.

In Chapter 6 this ontology will be used to derive a Kalman filter for the ego vehi-
cle pose estimation.

5.2.2 Ego Vehicle Localization

(Ego vehicle) localization is one of the basic tasks for automated vehicles. Using
the ontology the ego vehicle pose can be estimated by various relationships to
other elements of the traffic scene. The approach focuses on localization using
a static environment map and interpreted observed dynamic objects. Key idea
is that the movement of dynamic objects and their relative position to the ego
vehicle give hints on where the ego vehicle is located on a geometric street map.

The ontology of the DSL is used to describe the necessary entities and their re-
lationships as depicted in Fig. 5.7: The Automatedvehicle is equipped with
an OdometrySensor (modeled as Inertial Sensor), a Map and an Environment
Sensor. The Environment Sensor can detect other DynamicObjects. All

101



5 Tratfic Domain Language

RoadLayout

LaneSegment
> LaneFeature ChangesTo
[

N Y\V\
<DescribedB
DynamicObject

Route
Detects
ChangesTo
A Behavior
AutomatedVehicle @ —

Environment

<DescribedB

MED Sensor
ReactsTo
DynamicObject
Route
Behavior
Inertial
Sensor

Figure 5.6: Only a few entities and relations (green) are needed to model the
GNSS pose estimation application.
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Figure 5.7: Partial traffic domain ontology (green) for ego vehicle localization us-
ing the surrounding object constellation.
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5 Traftic Domain Language

DynamicObjects (including the ego vehicle) driveOn LaneSegments which
are part of the RoadLayout which is stored in the Map. A temporal fusion can be
described by the changesTo relation like in the GNSS pose estimation example
(Sec.5.2.1).

In Chapter 7 this ontology will be used to derive a particle-based filter for the ego
vehicle pose estimation.

5.2.3 Road Layout Estimation

The estimation of static environment elements is easier than estimating dynamic
objects (because of the simpler temporal relation) but is often used as additional
input to dynamic object estimation. Thus, a precise estimation of static objects is
beneficial. One approach is to utilize the relation between observable features to
derive an overall consistent road layout.

The ontology of the DSL is used to describe the necessary entities and their rela-
tionships as depicted in Fig. 5.8: The AutomatedvVehicle is equipped with an
OdometrySensor (modeled as Inertial Sensor) and an Environment Sensor
which detects observable LaneFeatures. LaneFeatures, LaneSegments and
RoadLayout are organized in a hierarchical structure built of has and connects
To relations. Two temporal relations are integrated: The changesTo relation on
the AutomatedVehicle represents its movement and the same relation on the
RoadLayout represents its constant position over time.

In Chapter 8 this ontology will be used to implement a grid-based filter on small
scale vehicles in the Audi Autonomous Driving Cup.

5.2.4 Route, Behavior and Trajectory Estimation

Estimating the route, behavior and (future) trajectory of dynamic objects is one of
the most challenging problems to solve for successful automated driving. While
basic trajectory prediction can already be accomplished by existing object track-
ing algorithms, the estimation of routes and different behaviors requires much
more knowledge on the relationships between the dynamic and static objects in
the scene. The idea is to use the observations at the current time to estimate inter-
actions between traffic participants, derive behaviors and routes and extrapolate
a more precise trajectory prediction.

The ontology of the DSL is used to describe the necessary entities and their rela-
tionships as depicted in Fig. 5.9: The Aut omatedVehicle uses an Environment
Sensor to detect DynamicObjects while the static RoadLayout is read from
a Map storage. The focus lies on the intelligent concepts of DynamicObjects:
They can reactTo the properties of LaneSegments (e.g. curves) and other
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Figure 5.8: Partial traffic domain ontology (green) for road layout estimation.
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Figure 5.9: Partial traffic domain ontology (green) for route, behavior and trajec-
tory estimation.
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5.3 Summary

DynamicObjects. Both interactions can be described by Behaviors. The be-
haviors influence the object state which is hidden in the has relation.

In Chapter 9 this ontology is the basis for two different approaches of estimat-
ing routes, behaviors and trajectories. Additional entities and relations will be
introduced there.

5.3 Summary

The key points of this chapter are:

e A domain specific language (DSL) can be created by introducing domain-
specific entities and relations to the generic OOFGML.

e The entities and relations build up a domain-specific probabilistic ontology.

e The DSL for the traffic domain can be depicted as a compact view highlight-
ing the components automated vehicle, dynamic objects and road layout.

e The DSL for the traffic domain is a basic factorization of the estimation prob-
lem.

e Application-specific ontologies can be derived from the DSL for the traffic
domain.

Details on the application-specific adaptations of the DSL are given in the subse-
quent chapters.
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6 Basic Example: GNSS Tracking

This chapter gives an easily understandable basic example how the OOFGML can
be used to model an application. After clarifying the application goal (Sec. 6.1),
general domain-independent classes and attributes are introduced (Sec. 6.2) and
then applied to the given application (Sec. 6.3). These steps are similar to the
ones in the subsequent applications but handled in more detail. Many detailed
class definitions use the notation introduced in Sec. 3.5. Subsequently, the differ-
ent possible implementation opportunities are discussed (Sec. 6.4) before Sec. 6.5
gives a conclusion.

6.1 Application Goal

For the basic example a very elementary application is chosen. The ego vehi-
cle pose has to be estimated using absolute position measurements from a GNSS
sensor. Better algorithms consider GNSS raw data from single satellites to also
estimate clutter and scattered satellite signals but a very basic setup is intended
here. The goal is not to compete against the state of the art but to show how a
rather simple application is modeled using the OOFGML. This understanding is
the basis for all subsequent applications. It is assumed that the GNSS measure-
ment is already converted in a metric coordinate system, e.g. Universal Trans-
verse Mercator (UTM) [60].

In this application the goal is to reduce the uncertainty of the noisy measurements
by running a temporal filter respecting the possible vehicle movement. This is a
simple ego vehicle localization task that can be seen as single target tracking (in
contrast to multi target tracking in Sec. 2.6.6). The association of measurements
is fixed since it is clear that every measurement corresponds to the ego vehicle.
Thus, no association problem has to be solved.

The application can be solved with a simple state-space model and a discrete
time filter algorithm such as a Kalman or particle filter (Sec. 2.6). The application
is used to illustrate the steps that have to be taken to get from the DSL to the
actual Kalman filter implementation.
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6 Basic Example: GNSS Tracking

6.2 General Domain-Independent Classes and
Attributes

Based on the findings from Chapter 2, a class hierarchy can be constructed that
represents all knowledge about message representations and inference methods
including state space models like established filters as described in Sec. 2.6.

The here defined class hierarchy is not meant to be complete. It shows the usage
of the OOFGML at the example of the Kalman filter (Sec. 2.6.3). Other filters can
be integrated analogously. Hints to other message representations and models
are given at relevant places.

6.2.1 General Attribute Representation Classes

At first the different message representations Sec. 2.5.4 have to be represented in
the class structure. Fig. 6.1 shows the basic classification hierarchy. These classes
have (almost) no member definition. They are solely meant for classifying later
message definitions.

AttributeRepresentation

]

Continuous Set = Discrete
Integer Float SingleSetElement DiscreteDistribution
SingleValue Gaussian Samples Histogram
|
! Attribute Representations

Figure 6.1: Class hierarchy representing the different message types and approx-
imations. These classes are semantic identifiers and do not specify
dimensions. Hierarchies for scalar and vector based sub classes can be
depicted analogously.

Exemplary class definitions are given:

0O Float
[0 singlevalue : Float

O value
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6.2 General Domain-Independent Classes and Attributes

[0 Gaussian : Float

O mean

O wvariance

The message representations SingleValue and Gaussian for continuous mes-
sages include already a name definition for their usual members: Single value
float approximations approximate a float by a single value stored in the value at-
tribute while Gaussians use a mean and variance. An attribute A implemented as
Gaussian can be seen as a vector consisting of these (sub) attributes:

)\:< mean > (6.1)
variance

Note that the dimension of mean and variance are not defined. Only the names
of these attributes are set.

From these basic classifications and semantics, specific implementations can be
derived for scalar and vector based attributes. Based on a Float Scalar the ex-
emplary sub classes SingleValueFloatScalar and GaussianApproximated
FloatScalar can be derived:
[0 FloatScalar : Float, Scalar
[0 SingleValueFloatScalar : FloatScalar, SingleValue
(O FloatBasetype valuc
[0 GaussianApproximatedFloatScalar : FloatScalar, Gaussian
(O FloatBasetype p (=mean)

(O FloatBasetype 02 (=variance)

The GaussianApproximatedFloatScalar inherits the declaration of mean
and variance and defines them as using a single Float Basetype. Additionally
aliases (Sec. 3.5) p and o? are introduced that are typical for one-dimensional
Gaussians.

Analogously the representations for Float Vector can be defined:

[0 FloatVector : Float, Vector, FloatScalar([]

[0 SinglevValueFloatVector : FloatVector, SingleValue
(O FloatBasetypel[] value

[J GaussianApproximatedFloatVector : FloatVector, Gaussian
O FloatBasetypel[] p (=mean)

(O FloatBasetypel[][] ¥ (=variance)

Here, the brackets [ ] denote a vector (array) of the given type.!

'Dimensions of these vectors have to match. For convenience these conditions are not explicitly
depicted in the notation here.
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6 Basic Example: GNSS Tracking

Based on the FloatVector definition application-specific named vectors can be
derived, e.g. for 2D poses:

[0 Translation2D : FloatVector
O FloatScalar x (=FloatVector[0])
O FloatScalar y (=FloatVector[1])
0 vVelocity2D : FloatVector
O FloatScalar x (=FloatVector[0])
(O FloatScalar y (=FloatVector[1])
[J DynamicState2D : FloatVector
(O Translation2D position (=FloatVector[0:1])
(O Velocity2D velocity (=FloatVector[2:3])
[0 Rotation2D : FloatVector
(O FloatScalar yaw (=FloatVector[0])
[0 RotationMatrix2D : FloatMatrix
[0 Pose2D
(O RotationMatrix2D rotation

(O Translation2D translation

The notation FloatVector [1] corresponds to the i-th element in the vector and
FloatVector [1i: 7] toasub vector with elements from i to j.

Following this definition, the DynamicState2D class can be used as generic
FloatVector butalso as a specific class with named members position and veloc-
ity. The named members are useful for DynamicState2D-specific dependency
formulations that are easily readable. The generic FloatVector interface is ben-
eficial if the DynamicState2D type is used in a generic module such as a filter.
There, a transition or observation matrix can operate on the vector. Exemplary
matrix definitions are?:

[0 ConstantVelocityTransitionMatrix2D : TransitionMatrix
(O FloatScalar At

t

~+

A 0
0 A
1 0
0 1

Q

t

Il
coc o~
co~o

[0 PositionObservationMatrix2D : ObservationMatrix

. onMatr — 1 0 0 0
icionMatrix =— 0 1 0 0

2Assuming corresponding parent classes TransitionMatrix and ObservationMatrix are
given and defined analogously to the FloatVector class.

O «

112



6.2 General Domain-Independent Classes and Attributes

ConstantVelocityTransitionMatrix2D predicts a future DynamicState
2D from a given DynamicState2D assuming constant velocity over a time hori-
zon At. PositionObservationMatrix2D implements a mapping to an ob-
servation space where only the 2D position can be observed. These matrices will
later be used in the ConstantVelocityTransitionModel and the Position
ObservationModel.

6.2.2 Update Rules

After having defined basic message representation classes representation-specific
update rules can follow. Every elementary factor from the tables in Sec. 2.5.4 is
defined as a generic class interface including a factor with dependency model
formulation. Representation-specific sub classes can then define special update
rules. This is exemplarily illustrated using the Gaussian update rules from Ta-
ble 2.2 and Table 2.3.

The names for the rules are:
Equals2Node A factor mapping two attributes to be the same.

Equals3Node A factor mapping three attributes to be the same. (Comp. rule 1
in Table 2.2)

PlusNode A factor building the sum of two attributes. (Comp. rule 2 in Ta-
ble 2.2)

MatrixMultiplicationNode A factor multiplying a Matrix-Attribute to a
FloatVector-Attribute. (Comp. rule 5 in Table 2.2)

EqualsMatrixCompositeNode A composite factor combining an Equals3
Node witha MatrixMultiplicationNode. (Comp. rule 1in Table 2.3)

MatrixPlusCompositeNode A composite factor combiningaMatrixMulti-
plicationNode with a PlusNode. (Comp. rule 2 in Table 2.3)

Note that all update rules of Table 2.2 and Table 2.3 are defined here in classes.?
Analog base classes can be defined for the update rules in Table 2.4 - 2.5 if they
do not already match these base classes.

From the base classes representation specific sub classes are derived implement-
ing the update rules. Their class name has a prefix according to their message
approximation, e.g. Gaussianx* or Samplesx, for instance GaussianEquals
3Node or GaussianEqualsMatrixCompositeNode.

3The prior node (rule 3 in Table 2.3) can be implemented using evidences on a Gaussian at-
tribute.
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The Equals2Node update rules (—) can already be defined on the base class;
Approximation specific sub classes are not necessary:
O Equals2Node
O =
Ov
B equals(x,vy,2z) 5(33 = y)
— uy(z) ==

= uz(y) =y

The base class and Gaussian sub class for Equals3Node, PlusNode and Matrix
MultiplicationNode are given as follows:
0 Equals3Node
O x
O v
O =z
B cquals(x,y,z) S(z=y=2)
[0 GaussianEquals3Node : Equals3Node
(O GaussianApproximatedFloatVector x
GaussianApproximatedFloatVector vy

GaussianApproximatedFloatVector =z

m O O

equals (x,vy,z) 6z =y =2)

_(zp\_( @2 4y ST Y (@S 4y Sy
- ws(my) = ( 2.3 ) - ( 525 +y.2)Ty. S

[0 PlusNode
O =z
Oy
O =z
B plus(x,y,z) d(z+y=2)

[0 GaussianPlusNode : PlusNode
(O GaussianApproximatedFloatVector =
(O GaussianApproximatedFloatVector vy
(O GaussianApproximatedFloatVector =z
B plus(x,y,z) (5(,’1‘ +vy Z)
TN EIREY

[0 MatrixMultiplication
O FloatVector z
O Matrix a

O FloatVector y

B nultiply(z,a,y) dla*xx =1y)
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6.2 General Domain-Independent Classes and Attributes

[0 GaussianMatrixMultiplication : MatrixMultiplication
(O GaussianApproximatedFloatVector =
O Matrix a
(O GaussianApproximatedFloatVector vy
|

plus(xz,a,y) 6laxx=1y)
(v \_( oazp
= uy(z,0) = ( y.2 ) B ( az.Ya™ )
N ( ) = T _ a’ly.u
Ve, @) =1\ o ) = a ly.Xa=T

It is recognizable that the update rules for different inference directions can be
implemented in the same class (which defines the dependency model).

As an example for composite update rules a deeper look into the EqualsMatrix
CompositeNode is taken which is the basis for the elementary Kalman filter
method that can be modeled as a separate factor graph (Fig. 2.12).

The class definition consists of four classes:
[0 EqualsMatrixCompositeNode

(O GaussianApproximatedFloatVector x
(O GaussianApproximatedFloatVector y
(O GaussianApproximatedFloatVector z
(O GaussianApproximatedFloatVector intermediate
O Matrix a
B Equals3Node equals (z, intermediate, z)
B MatrixMultiplication multiply (intermediate,a,y)

[J GaussianEqualsMatrixCompositeNode : EqualsMatrixCompositeNode

si

anApproximatec

(O GaussianApproximatedFloatVector vy

O GaussianApproximatedFloatVector z

(O GaussianApproximatedFloatVector intermediate

O Matrix a

B GaussianEquals3Node equals (z, intermediate, z)

B GaussianMatrixMultiplication multiply (intermediate,a,y)

— uy(x,z,a) = equals.uy(z,z),multiply.uy(z, a)

— uz(z,y,a) = KalmanUpdateCompositeNode(x,y, 2, a) :: uz(z,y, a)
[0 KalmanUpdateCompositeNode

(O GaussianApproximatedFloatVector =z

(O GaussianApproximatedFloatVector y

(O GaussianApproximatedFloatVector z

O Matrix a

(O GaussianApproximatedFloatVector xj

(O GaussianApproximatedFloatVector xa
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(O GaussianApproximatedFloatVector vy

(O GaussianApproximatedFloatVector Ay

B GaussianEquals3Node equals_x (x,x1,T2)

B GaussianMatrixMultiplication multiply (x1,a,y1)

B GaussianDifference diff_y (y,y1,Ay)

B KalmanUpdateNode kalman (x2,a, Ay, z)

— uay(T,a,y) = equals_x.uy(x),multiply.uy(z,a),diff_y.u.(z,y)

— uz(x,0,y) = uay(T,a,y), equals_x.u(x), kalman.uz(z,a,y)

[J KalmanUpdateNode

(O GaussianApproximatedFloatVector x

(O GaussianApproximatedFloatVector y

(O GaussianApproximatedFloatVector z

O Matrix a

B kalman(x,a,y,z)

_(zp \_( xp+Kyp \_ [ zp+Kyp
= us(@a,9) = ( 23 ) - ( 2.5 — Kaz.S ) - ( (I - Ka)z.3 )
with K :=z.Xa y. X1

While EqualsMatrixCompositeNode is the Gaussian-independent base class,
GaussianEqualsMatrixCompositeNode corresponds to the specialization to
Gaussian message representations. Inference of y from z, z and « is straightfor-
wardly implemented in u,(x, z,a). The update rule for the opposite direction
u,(x,y,a) refers to a separate class KalmanUpdateCompositeNode that mod-
els the specialized inference graph. It uses other update rule implementation
classes and a special class KalmanUpdateNode that corresponds to the update

rule given in Equ. 2.106. The update rule is split into two parts allowing also the
explicit inference of Ay needed for IMM filter implementation (Sec. 2.6.5).

6.2.3 Basic Dependency Models

On the way to the definition of state space models basic dependency models are
needed. Fig. 6.2 shows a class hierarchy based on the base class MappingWith
Parameters.

MappingWithParameters can be seen as a very basic class interface describing
all estimation problems (Sec. 2.3):
0 MappingWithParameters
(O MultivValueAttribute in
(O MultivalueAttribute out

O MultivalueAttribute parameters
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Dependency Model Classes

MappingWithParameters

LinearModel

GaussianMapping CompositeModel

LinearGaussianModel DirectLinearModel ICompositeLinearModel|

Dependency Definition

DirectLinearGaussianModel

Update Rule Definition

Message
Approximation

Composite
Models

Figure 6.2: Generic dependency models, approximations and update rule defini-

tions.

Observed variables (in) are used to derive unobservable variables (out) with the
help of given model parameters (parameters). The same mapping can also be used
to learn parameters from annotated observations (in and out given).

As already described in Sec. 2.3, complex estimation problems can also be solved
by factorizing into smaller sub problems. This approach can be represented by
a generic CompositeModel derived from the MappingWithParameters class

and combining two MappingWithParameters internally:
[0 CompositeModel : MappingWithParameters

(O MultivalueAttribute in

(O MultiValueAttribute out
MultiValueAttribute parameters

MultiValueAttribute intermediate

O

O

(O MultivalueAttribute parametersl
(O MultivValueAttribute parameters2
H

MappingWithParameters modell (in, parametersl, intermediate)

B MappingWithParameters model2 (intermediate, parameters2, out)

B param_combination (parametersl, parameters2, parameters)

The generic MappingWithParameters canbe specialized in two different ways,

either by

e restricting the mapping description including the parameters, or

e restricting the in and out attributes.
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The first restriction is illustrated by the example of linear models and the second
restriction by Gaussian attribute representations.

Linear models are a special sub class of mappings that use a linear function as
mapping description. This linear function can be described using the basic factor
classes from Sec. 6.2.2. The definition of linear models uses 3 classes:

[0 LinearModelParameters
O Matrix a
(O MultivalueAttribute b
[0 LinearModel : MappingWithParameters
(O MultivalueAttribute in
(O MultivalueAttribute out
(O LinearModelParameters parameters
[0 DirectLinearModel : LinearModel
(O MultivValueAttribute in
(O MultiValueAttribute out
(O LinearModelParameters parameters
(O MultivalueAttribute intermediate
B MatrixMultiplication multiply(in, parameters.a, intermediate)

B PlusNode plus(intermediate, parameters.b, out)

The actual dependency description is given in DirectLinearModel. There the
MatrixMultiplicationNode and PlusNode are used to implement the linear
model. The interface is already given in the parent class LinearModel which
does not imply any factor to be able to implement the linear model also in a
different way. It restricts the parameters already to LinearModelParameters
which consist of the Matrix a and MultivalueAttribute b.

An alternative to the DirectLinearModel is the CompositeLinearModel
which refers to two LinearModels internally. It can easily be implemented by
inheriting from the generic CompositeModel:

[0 CompositeLinearModel : CompositeModel, LinearModel
(O MultivValueAttribute in
(O MultivalueAttribute out
(O LinearModelParameters parameters
(O MultivValueAttribute intermediate
(O LinearModelParameters parameters
(O LinearModelParameters parameters?
B LinearModel modell (in, parametersl, intermediate)
B LinearModel model2 (intermediate, parameters2, out)
B LinearModelParameterCombination param_combination

parameters)
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6.2 General Domain-Independent Classes and Attributes

Orthogonally to linear models, Gaussian mappings use a Gaussian attribute ap-
proximation for the in and out variables and do not restrict the dependency model
(and parameters):

[0 GaussianMapping : MappingWithParameters
(O GaussianApproximatedFloatVector in
(O GaussianApproximatedFloatVector out

(O MultivValueAttribute parameters

The specialization to GaussianMappings and LinearModels can be combined
in a LinearGaussianModel resulting in 3 subclasses:

[0 LinearGaussianModelParameters : LinearModelParameters

O Matrix a

(O GaussianApproximatedFloatVector b

[J LinearGaussianModel : LinearModel, GaussianMapping
O yussianApproximatedFloat tor in
(O GaussianApproximatedFloatVector out
(O LinearGaussianModelParameters parameters
[0 DirectLinearGaussianModel : DirectLinearModel, LinearGaussianModel
(O GaussianApproximatedFloatVector in
O GaussianApproximatedFloatVector out
(O GaussianApproximatedFloatVector intermediate
(O LinearGaussianModelParameters parameters
B GaussianMatrixMultiplication multiply (in, parameters.a, intermediate)
B GaussianPlusNode plus (intermediate, parameters.b, out)

The DirectLinearGaussianModel uses the GaussianMatrixMultipli-
cation and GaussianPlusNode sub classes that include the update rule defi-
nitions for Gaussian messages (Sec. 6.2.2).

These models are the basis for the later Kalman filter classes that will additionally
include the special update rule defined by KalmanUpdateCompositeNode.
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Dependency Model Classes Transition Models
MappingWithParameters TransitionModel
L |
LinearModel EnearTransitionModi 2DTransitionModel
LinearGaussianModel DirectLinearModel LinearGaussianTransitionM DirectLinearTransitionModel Linear2DTransitionModel
DirectLinearGaussianModel LinearGaussian2DTransitionModel ConstantVelocityTransitionModel

GaussianCVTransitionModel

Figure 6.3: Different transition models and their relation to generic mapping
classes.

6.2.4 Transition and Observation Models

The basis for state space models is the explicit definition of transition and obser-
vation models. These can be derived from the MappingWithParameters class
and its sub classes.

Fig. 6.3 shows the class hierarchy at the example of transition models. Observa-
tion models can be constructed analogously.

The base classes TransitionModel and ObservationModel can directly be
derived from MappingWithParameters. Aliases (previous/next, state/measure-
ment) are introduced for context based better readability:

[0 TransitionModel : MappingWithParameters
O MultivValueAttribute previous (=in)
(O MultiValueAttribute next (=out)
O parameters

[J ObservationModel : MappingWithParameters
(O MultivValueAttribute state (=in)
O MultivalueAttribute measurement (=out)
O parameters
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Sub classes can be derived using the already defined sub classes of Mapping
WithParameters,such as LinearModel, DirectLinearModel and Linear
GaussianModel:

[0 LinearTransitionModel : TransitionModel, LinearModel
(O MultivValueAttribute previous
(O MultivalueAttribute next
(O TransitionMatrix f (=parameters.a)
(O TransitionNoise w (=parameters.b)
[0 DirectLinearTransitionModel : LinearTransitionModel, DirectLinearModel
(O MultivValueAttribute previous
(O MultivValueAttribute next
(O TransitionMatrix f (=parameters.a)

O TransitionNoise w (=parameters.b)

(O MultivalueAttribute intermediate

B MatrixMultiplication multiply (in, parameters.a, intermediate)
B PlusNode plus (intermediate, parameters.b, out)
[0 LinearGaussianTransitionModel : LinearTransitionModel, LinearGaussianModel
(O GaussianApproximatedFloatVector previous
(O GaussianApproximatedFloatVector next
(O TransitionMatrix f (=parameters.a)

(O GaussianTransitionNoise w (=parameters.b)

Additionally, sub classes that use the DynamicState2D as state type are intro-
duced*:

[0 2DTransitionModel : TransitionModel
(O DynamicState2D previous
(O DynamicState2D next
(O parameters
[0 Linear2DTransitionModel : LinearTransitionModel, 2DTransitionModel
(O DynamicState2D previous
(O DynamicState2D next
(O TransitionMatrix f (=parameters.a)
C) TransitionNoise w (=parameters.b)

[0 LinearGaussian2DTransitionModel : LinearGaussianTransitionModel,
Linear2DTransitionModel

(O GaussianDynamicState2D previous
(O GaussianDynamicState2D next

(O TransitionMatrix f (=parameters.a)

C) TransitionNoise w (=parameters.b)

4These classes can also be backed up by corresponding generic parent classes.
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6 Basic Example: GNSS Tracking

Based on the Linear2DTransitionModel specific transition models can be
implemented, such as the ConstantVelocityTransitionModel using the
ConstantVelocityMatrix2D from Sec. 6.2.1:

[0 ConstantVelocityTransitionModel : DirectLinearTransitionModel,
Linear2DTransitionModel

C) DynamicState2D previous

dynamicState2D next
ConstantVelocityMatrix2D [ (=parameters.a)
TransitionNoise w (=parameters.b)
dynamicState2D intermediate

MatrixMultiplication multiply (in, parameters.a, intermediate)

Em O O O O

PlusNode plus (intermediate, parameters.b, out)

The derivation of a Gaussian approximated specialization can directly be defined
by inheriting from the corresponding classes without further definitions:

[0 GaussianCVTransitionModel : LinearGaussian2DTransitionModel,
ConstantVelocityTransitionModel

(O GaussianDynamicState2D previous
GaussianDynamicState2D next
ConstantVelocityMatrix2D f (=parameters.a)
GaussianTransitionNoise w (=parameters.b)

GaussianDynamicState2D intermediate

GaussianMatrixMultiplication multiply (in, parameters.a, intermediate)

mm O O OO

GaussianPlusNode plus (intermediate, parameters.b, out)

If analog classes are defined for the ObservationModel specialized models
can also be defined there, such as the PositionObservationModel using the
PositionObservationMatrix2D from Sec. 6.2.1:
O PositionObservationModel : DirectLinearObservationModel
(O DynamicState2D state
(O Translation2D measurement
(O PositionObservationMatrix2D h (=parameters.a)
(O ObservationNoise v (=parameters.b)
(O Translation2D intermediate
B MatrixMultiplication multiply(in, parameters.a, intermediate)

B PlusNode plus (intermediate, parameters.b, out)

Independently of the transition and observation models, also DynamicState
2DTransformation is introduced, that transforms a DynamicState2D into a
different coordinate system using a relative Pose 2D for transformation.

[0 DynamicState2DTransformation : DirectLinearModel
(O DynamicState2D from (=in)

(O DynamicState2D to (=out)
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6.2 General Domain-Independent Classes and Attributes

(O Pose2D relative (=parameters)
(O DynamicState2D intermediate
B MatrixMultiplication multiply(in, parameters.a, intermediate)

B PlusNode plus(intermediate, parameters.b, out)

6.2.5 General State Space Model Classes

State space models (Sec. 2.6.1) are the basis for all well-known filter methods
(Sec. 2.6.2 - Sec. 2.6.6). Fig. 6.4 shows how this can be represented in a class hier-
archy.

StateSpaceModel

HiddenMarkovModel KalmanFilter ParticleFilter HistogramFilter IMMFilter

State Space Models

Figure 6.4: State space models are the basis for all well-known filter methods. The
specific derivation will be shown at the example of the Kalman filter.

This section shows the specific derivation of filters from the generic state space
model at the example of the Kalman filter (Fig. 6.5).

Note that the generic Transition- and ObservationModel, the linear and
gaussian specializations and the LinearGaussianTransitionModel and Li-
nearGaussianObservationModel are already defined in Sec. 6.2.4. The switch
from generic mappings to linear Gaussian models corresponds exactly to the dif-
ference between the generic state space model and the Kalman filter.

The basis for the generic state space model is the definition of time slices consist-
ing of 3 classes (Fig. 6.6):

[J TimeSliceBase
O state
(O observation
B ObservationModel observation_model (state, observation)
s forwardpass (
s backwardpass ()
s forwardpredict ()
s backwardpredict ()

[0 FirstTimeSlice : TimeSliceBase
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DependencyModellmplementations
MappingWithParameters Update Rules
StateUpdate
Ly
GaussianMapping LinearModel T
I\ AN KalmanUpdate
Y
LinearGaussianModel
StateSpaceModel
N
TransitionModel ObservationModel TimeSliceBase
)@ KalmanfFilter
—_]
GaussianTransitionModel LinearTransitionModel Gausst rvationModel LinearObservationModel FirstTimeSlice TimeSlice KalmanTimeSliceBase

LinearGaussianTransitionModel LinearGaussianObservationModel FirstkalmanTimeSlice KalmanTimeSlice

\

Transition and Observation Model State Space Models

Figure 6.5: The Kalman filter is a state space model that uses special sub classes of the used transition and observation models.
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observation_model (state,

s forv
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TimeSliceBase previous

TransitionModel transition_model (previous.state, state)

~dpass () :
Ustate (previous.state, observation)
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s forwardpredict () :
Ustate (previous.state)
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StateSpaceModel
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Figure 6.6: Class structure and processing scripts of the state space model. Spe-
cific filter principles (Sec. 2.6.2 - Sec. 2.6.6) are modeled as sub classes
according to Fig. 6.5.
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6 Basic Example: GNSS Tracking

Having TimeSlice and FirstTimeSlice with a common base class Time
SliceBase allows building up a chain of time slices starting witha First Time
Slice that can include a state prior. All later time slices are of type TimeSlice
and reference the preceding time slice.” Several inference directions are already
defined on this level but have to be scheduled on higher level. Therefore a State
SpaceModel class is introduced:

[0 StateSpaceModel
(O TimeSliceBase[] time_slices

s onInstantiation():
time_slices.append(newInstance (FirstTimeSlice))

s addTimeSlice () :
new_time_slice = newlInstance (TimeSlice)
new_time_slice.previous = time_slices.last
time_slices.append(new_time_slice)

s addObservation (observation, k):
setPrior (time_slices[k].observation, observation)

s filter(t):
time_slices[0:t].forwardpass ()

s predict (t,k):
time_slices[0:t].forwardpass ()
time_slices[t:k].forwardpredict ()

s smooth (k) :
time_slices[0:k].forwardpass ()
time_slices[T:k+1] .backwardpass ()

The overall processing scripts for filtering, predicting and smoothing implement
the generic state space model inference methods (Sec. 2.6). They are defined using
the scripts of the TimeS11ice classes which themselves refer to update rules that
are not yet defined, such as ug.r (previous.state, observation).

The update rules can either be derived from the graph structure: Since it is tree-
structured the generic message passing schedule (Sec. 2.5.3) can be applied. Or
they can be defined explicitly in a sub class of TimeSlice:

[0 GenericTimeSlice : TimeSlice
O state
(O observation
B Obse ti el obse t _model (state, e t 1)
Or SliceB oreviou
B Transition 1 transition_model (pr iou , tat

— Ustate(previous.state,observation) =
transition_model.unext (previous, parameters),
observation_model.ustate(measurement, parameters)

5The time slice idea is also used in [64]. State space models are there called dynamic domain.
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6.2 General Domain-Independent Classes and Attributes

— uprevious.state(ObservatiOﬂ) =

observation_modeligtmﬁ(measurement,parametersL
transition_model.Uprevious(next, parameters)

Ustate (Previous.state) =
transition_model.unext (previous, parameters)

Uprevious. state(State) =
transition_model.Uprevious(next, parameters)

Of course, the straightforward update rule based on the tree-structure is not al-
ways desirable and can be replaced by a more efficient update rule, such as in the
case of the Kalman filter: The Kalman filter consists of the following sub classes
of the given state space model classes:

[0 KalmanStateSpaceModel : StateSpaceModel

©)

s

s

S

KalmanTimeSliceBase[] time slices
addObservation (observation, k)
addTimeSlice ()

filter (t)
predict (t, k)

smooth (k)

[0 KalmanTimeSliceBase : TimeSliceBase

S

LinearGaussianObservationModel observation_model (state, observation)

~dpass ()
backwardpass ()
forwardpredict ()

backwardpredict ()

[0 FirstKalmanTimeSlice : KalmanTimeSliceBase, FirstTimeSlice

©)

state

ion_model (state, observation)

[0 KalmanTimeSlice : KalmanTimeSliceBase, TimeSlice

O

O
]

—

state

ok ration

LinearGaussianObservationModel observation_model (state, observation)
KalmanTimeSliceBase previous

LinearGaussianTransitionModel transition_model (previous.state, state)

Ustate (Previous.state, observation) =
transition_model.unext (previous,parameters),
Ustate(state.from(transition_model),observation)

127



6 Basic Example: GNSS Tracking

— Ustate(state.from(transition_model),observation) =
KalmanUpdateCompositeNode(state.from(transition_model),
observation, state, observation_model.parameters) :: uz(z,a,y)

Besides the specialization to the LinearGaussian sub classes of the models a spe-
cial implementation of the wugt (previous.state, observation) update rule is de-
fined using the KalmanUpdateCompositeNode from Sec. 6.2.2 for state up-
date.

This is a very generic definition of state space models and filter specializations,
independent of the actual application and domain. It will be further specialized
according to the GNSS tracking application in Sec. 6.3. Other applications (Chap-
ter 7-9) build up on a similar basis using the same state space model classes but
different filter sub classes.

6.3 Application Specific Definitions

After having built up the class hierarchy for the general attribute representations,
dependency models, state space models and Kalman filter, they can be applied
to the GNSS tracking application. The idea is that the traffic domain ontology
(Chapter 5) is brought together with the general models (Sec. 6.2).

6.3.1 Application Specific Ontology

From the DSL an application specific ontology has to be derived to represent the
conditions of the application. From the entity and relation class structure of the
DSL for the traffic domain (Fig. 5.3) appropriate entities and relations have to be
chosen to bring over to the application specific ontology (Fig. 6.7).

For this example it is enough to select the Automatedvehicle, the Inertial
Sensor and the changesTo relation to represent the temporal fusion. This basic
ontology is extended by sub classes and helper classes to fully define the estima-
tion problem, approach and inference method.

The first application specific extension is related to the attributes of interest: The
position of the ego vehicle has to be estimated via position measurements from
the GNSS sensor. Both positions are related to a reference coordinate system.
This coordinate system is called World and a Has relation from World to Scene
Object is added as well as a Detects relation from GNSSSensor to World
(Fig. 6.8). These describe that all scene objects are positioned in the world and the
GNSS sensor can observe its position in the world.
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RoadLayout

LaneSegment
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ReactsTo
DynamicObject
Route
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Inertial
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Figure 6.7: Only a few entities and relations (green) are needed to model the
GNSS pose estimation application.
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6 Basic Example: GNSS Tracking

DynamicObject ChangesTo

AutomatedVehicle

GNSSSensor

Figure 6.8: Traffic Domain Ontology for GNSS Pose Estimation with added
World class and relations. Some parent classes are neglected to keep
analogy to Fig. 6.7.

World

6.3.2 Classes, Attributes and Dependencies

After having defined the application ontology, which defines all entities and rela-
tions between them, the classes representing the entities and relations with their
attributes and dependencies (factors) can be introduced. These will model the
real world properties and build up the basis for applying an inference method.

Note that it is exemplarily shown how the attributes and factors of the classes can
look like. This is an exemplary solution and does not mean the maximum amount
of object-orientation is used. Attribute and factor definitions can be spread over
further sub classes making the utilization of object-orientation and re-usability
possibilities much larger.

The changesTo relation can be interpreted as a temporal dependency connect-
ing a current state of an automated vehicle to a future state. This is depicted in
Fig. 6.9.

Before the principle of a state space model is applied the attributes and depen-
dencies in the entities and relations are defined. Every entity and relation corre-
sponds to one OOFGML class each and is part of a larger class hierarchy (Fig. 6.10).
The focus lies on the attributes necessary for GNSS-based pose estimation. These
are the pose (state) of the automated vehicle in the real world and the position
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ChangesTo

(a) Schematic view on the changes
To relation.
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(b) The changesTo relation can be used as a connection point for a sequence of time
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Figure 6.9: Intepreting the changesTo relation as a temporal dependency leads
to a rolled out model.

131



6 Basic Example: GNSS Tracking

SceneObject TemporalConcept

N

DynamicObject

i

AutomatedVehicle

ChangesToRelation

DOChangesToRelation

WorldHasSceneObject
HasSensorRelation

WorldHasDynamicObject HasGNSSSensorRelation

Sensor

GNSSSensor

DetectsWorldRelation

World

Figure 6.10: Class hierarchy and references of the defined OOFGML classes. Note
that the green classes correspond to the ontology in Fig. 6.8. Arrows
of relation classes are now depicting the references of their subjec-
t/object attributes.

measurements detected by the GNSS sensor. Dependencies have to be mod-
eled between the position measurements and the vehicle state as well as tem-
porally between subsequent vehicle states. Fig. 6.11 shows these attributes and
factors. Additional attributes which implement the relations between classes are
depicted.

The class definitions are as follows:

0O world

[0 TemporalConcept
(O ChangesToRelation changes_from (inverse)
(O ChangesToRelation changes_to (inverse)

[0 SceneObject

[0 DynamicObject : SceneObject, TemporalConcept
(O WorldHasDynamicObject world_has_relation (inverse)
[J WorldHasSceneObject : Relation
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Figure 6.11: Attributes and dependencies motivated from application-specific
real world properties.
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6 Basic Example: GNSS Tracking

O World world (=subject)

(O SceneObject object

(O Pose2D pose
[J WorldHasDynamicObject : WorldHasSceneObject

O World world (=subject)

(O DynamicObject object

(O Pose2D pose

(O DynamicState2D state
[0 ChangesToRelation : Relation

(O TemporalConcept previous (=subject)

(O TemporalConcept next (=object)

B TransitionModel transition (previous, next)
[0 HasSensorRelation : Relation

(O AutomatedVehicle vehicle (=subject)

(O sensor sensor (=object)

(O Pose relative_pose
[0 Sensor

(O HasSensorRelation host (inverse)

O state

(O measurement

B ObservationModel observation_model (state, measurement)
[0 AutomatedVehicle : DynamicObject

(O wWorldHasDynamicObject world_has_relation (inverse)

(O HasGNSSSensorRelation gnss (inverse)

(O DOChangesToRelation changes_ from (inverse)

(O DOChangesToRelation changes_to (inverse)
00 DOChangesToRelation : ChangesToRelation

(O Automatedvehicle previous (=subject)

(O AutomatedvVehicle next (=object)

B ConstantVelocityTransitionModel transition (previous,next)
[0 HasGNSSSensorRelation : HasSensorRelation

(O AutomatedvVehicle vehicle (=subject)

(O GNSSSensor sensor (=object)
(O Pose relative_pose
B DynamicState2DTransformation transformation (vehicle.state, sensor.state,
relative_pose)
[0 GNSSSensor : Sensor

(O GNSssSensorHasRelation host (inverse)
(O DetectsWorldRelation detect_world_relation (inverse)

(O DynamicState2D state

134



6.3 Application Specific Definitions

(O Translation2D measurement (=detect_world_relation.position_measurement)
B PositionObservationModel observation model (state, measurement)
[0 DetectsWorldRelation
(O GNSSSensor subjec
O wWorld object

(O Translation2D position_measurement

These class definitions match the real world properties of the application sce-
nario. The Relation base class is defined in Sec. 4.3.1. Inheritence from the
Entity base class is neglected. The dependencies are formulated using the fac-
tor classes from Sec. 6.2.4: ConstantVelocityTransitionModel,Position
ObservationModel and DynamicState2DTransformation.

Note that classes only describe local dependencies and can be used similarly in
other applications. Relations that are defined on parent classes can be reused,
even when other sub classes are used that map attributes differently.

The defined model describes already the application sufficiently with attributes
and dependencies between them. A factor graph can directly be derived and sim-
ple message passing can be used to infer desired attributes from observations.
Depending on the actual attribute representations the inference can be very ex-
pensive and applying well-known inference methods and approximations is ben-
eficial. Additionally, several inference tasks and their message passing schedules
have to be managed with the help of processing scripts and update rules. There-
fore, the application is first mapped to a state space model (Sec. 6.3.3) and then
specialized to a specific attribute representation (Sec. 6.3.4).

6.3.3 Application of State Space Model

To benefit from generic state space model principles the state space model classes
from Sec. 6.2.5 are applied to the GNSS application classes from Sec. 6.3.2.

As the generic state space model consists of the 4 classes StateSpaceModel,
TimeSliceBase, FirstTimeSlice and TimeSlice, sub classes of these are
derived. The GNSS-specific sub classes derive all members and extend them by
references to the already defined application-specific classes representing the en-
tities and relations of the application:

[J GNSSStateSpaceModel : StateSpaceModel

(O GNSSTimeSliceBase[] time slices

[J GNSSTimeSliceBase : TimeSliceBase
O state
O obse +
B GNSSSensorObservationModel ervation_model (state e t )
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6 Basic Example: GNSS Tracking

AutomatedVehicle automated_vehicle
DOChangesToRelation changes_to
GNSSSensorHasRelation has

GNSSSensor gnss

m O O O O

state_definition(state, self)

# connects selected GNSS attributes to state

B observation_definition (observation, self)

# connects selected GNSS attributes to observation

s onInstantiation() :
automated_vehicle = newlInstance (AutomatedvVehicle)

observation_model = newInstance (GNSSSensorObservationModel)
observation_model.modell = has.transformation
observation_model.model2 = gnss.observation_model

[0 FirstGNSSTimeSlice : GNSSTimeSliceBase, FirstTimeSlice
O AutomatedVehicle automated_vehicle
OChangesToRelation changes_to

O
O GNSSSensorHasRelation has
O

r gnss

[0 GNSSTimeSlice : GNSSTimeSliceBase, TimeSlice

(O GNSSTimeSliceBase previous

O state

O observation

B GNSSSensorObservationModel observation_model ation)

B ConstantVelocityTransitionModel transition_mc tate, —e)

(=changes_to.transition)

8§ onInstantiation() :
automated_vehicle = newInstance (AutomatedVehicle)
changes_to = newInstance (DOChangesToRelation)

The processing scripts from the generic state space model definition are inher-
ited, such as the filter (t), predict (t, k) and smooth (k) functions. Thus,
state space model specific inference tasks are already defined. To make them
work with the application-specific ontology, the transition and observation model
factors map to the corresponding factors in the application specific classes. For
the observation model a special GNSSSensorObservationModel is used that
maps to the two involved factors:
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6.3 Application Specific Definitions

[0 GNSSSensorObservationModel : CompositeLinearObservationModel6
(O DynamicState2D state (=in)

(O Translation2D measurement (=out)

B DynamicState2DTransformation modell (in, parametersl, intermediate)

Note that the mapping of the two models modell and model2 to the models in
the application-specific classes is realized in the onInstantiation () script of
GNSSTimeSliceBase.

These classes build up a generic state space model on the GNSS application classes
(Fig. 6.12).

6.3.4 Kalman-Based Inference Method

For applying an efficient inference method the attribute representations have to
be chosen according to the application characteristics. Until now, the attribute
representations have been left open. This allowed a generic description of the
estimation problem and a generic mapping to state space models. Now a proper
sub class of the StateSpaceModel class (Fig. 6.4) has to be chosen. Therefore, a
deeper look into the properties of the float-based attributes and the transition
and observation models has to be taken.

Assume that the probability distribution of the state and measurement attributes
are unimodal and can be approximated sufficiently by a Gaussian. Sub classes of
the ones defined before can be derived that specialize to Gaussian attribute repre-
sentations. Additionally, all the relevant factors (ConstantVelocityTransi-
tionModel,PositionObservationModel and DynamicState2DTransfor—
mation) are derived from LinearModel. Linear models together with Gaussian
state and observation space fits to the KalmanFilter sub class of the State
SpaceModel class (Fig. 6.5). This deduction can easily be derived from class hi-
erarchy by expert knowledge. But even automatic tools are imaginable which are
not focus of this thesis and part of possible future research.

Sub classes of the given ones can be created that additionally inherit from Kalman
Filter. Using the KalmanFilter class automatically includes all Kalman-
specific methods, such as the special update rule via KalmanUpdateComposite
Node. This update rule is defined in the generic KalmanTimeSlice (Sec. 6.2.5)
and applied via GNSSSensorObservationModel (Sec. 6.3.3) onto the applica-
tion-specific dependency models (Sec. 6.3.2).

®The CompositeLinearObservationModel ist defined analogously to the classes in
Sec. 6.2.4, as a sub class of LinearObservationModel and CompositeLinearModel.
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Figure 6.12: The GNSSTimeSlice class and its connection to the ontology in-

duced GNSS application classes from Fig. 6.11. Only the relevant
parts are depicted.
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6.4 Implementation Opportunities

6.4 Implementation Opportunities

As described in Sec. 3.4 the generic language is mainly a formalization of esti-
mation problems and does not restrict to a specific implementation. The model
created in this GNSS example can be implemented by different opportunities of-
fered by the OOFGML.:

e Full OOFGML implementation

All classes (entities and relations) are represented in the implementation.
When new sensor measurements arrive the corresponding processing scripts
are triggered, instances are instantiated, evidences applied and inference is
triggered. This requires a full OOFGML implementation. The comfort of
full flexibility comes with organizational overhead which will have some
effect on the runtime performance. Especially in the case of this simple ex-
ample other implementation opportunities are more beneficial.

FOPL implementation

Instead of a full OOFGML implementation an (existing) implementation
for a first-order probabilistic language (FOPL) (Sec. 2.7) can be used. The
OPRML (as a subgroup using discrete state spaces and Bayesian network
methods) cannot be applied to the given example since, although Kalman
filters can be described as Bayesian networks, they are not discrete. A FOPL
with continuous state spaces would be needed. Also, the advantage of
FOPL having a dynamic domain is not needed by the application. The
FOPL approach is used in Chapter 9 for a more dynamic application (es-
timating interactions between traffic participants).

Specialized implementation

After fully modeling the application in the OOFGML in Sec. 6.3.4 it became
clear that for actual inference very few dependency models are combined
in one graph. The object-oriented model can be reduced to a small factor
graph (Fig. 6.13). This can be implemented in a static way. Even dynamic
parts like the arrival of new sensor measurements can be incorporated with-
out implementing a full, generic class and instance system as in the previous
options. This method is also chosen in Chapter 7 for a more advanced ap-
plication localizing an ego vehicle using the observed surrounding object
constellation.

Established filter implementation

In this example the actual inference method can be streamlined to an ex-
isting established filter principle (Sec. 2.6), the Kalman filter. It can di-
rectly be implemented in a traditional Kalman filter. The instructions for the
ConstantVelocityTransitionModel canbe represented in the Kalman
prediction step whereas the two components of the GNSSSensorObserva-
tionModel can be combined in the update step. This is the most efficient
implementation for the given application.
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6 Basic Example: GNSS Tracking

Modular implementation

Since the given example is very small a modular implementation is not
worth of consideration. A modular implementation is used in the appli-
cation in Chapter 8 for estimating the road layout in front of an ego vehicle.
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position_
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relative
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sensor_state

position_
measurement

Figure 6.13: A small factor graph can directly be derived from the object-oriented

model (Fig. 6.12).

6.5 Conclusion

The application of the OOFGML to a specific application has been shown in de-
tail on a very simple, easily understandable example. All steps from building
up a generic class hierarchy over understanding the application up to a specific
implementation have been discussed. The key points are:

Attribute representations, update rules and basic dependency models can
be represented in a detailed class hierarchy.

Transition and observation models are straightforwardly derived using the
generic classes.

Established filter methods are represented using a common state space model
base class.

The traffic domain ontology can be specialized to a specific application.

Application-specific dependencies can be implemented in the application-
specific classes using the generic classes.

The application of a state space model to the application’s model directly
induces the specialization to a specific inference method sub class.

Even for a small application, different implementation opportunities can be
applied.

In the subsequent chapters more advanced application examples in the fields of

ego vehicle localization, road layout estimation and traffic participant prediction
are handled.
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7 Ego Vehicle Localization

This chapter shows how an example application considering ego vehicle localiza-
tion can benefit from the introduced OOFGML. A special localization method is
created that infers the ego vehicle pose on a map from the observed dynamic
objects in the vehicle surrounding. This means higher level information (dy-
namic object movements) is used to infer lower level information (ego pose). The
OOFGML supports the whole development process from application description
to filter implementation.

The goal of this chapter is to outline how the features of the OOFGML can be
utilized to achieve the application: It is shown that all relevant aspects are de-
scribable in a consistent way. Nevertheless also the performance of the resulting
application is evaluated by comparing it to a high precision inertial measurement
unit as reference sensor and other common approaches such as map matching
used in current GNSS navigation system solutions.

This chapter is largely based on the previous publication [7]. More details con-
sidering the application can be found there.

7.1 Related Work

Ego vehicle localization is an extensively handled field in research considering
autonomous vehicles or robots.

If precision for a single vehicle is of highest priority, the most common approaches
for ego vehicle localization are using sensor-specific landmarks [81], [83], [84], [116].
These features are calculated using as much sensor-specific information as pos-
sible and are then compared to a map, recorded with the same sensor. Several
sensor types can be combined to increase robustness, e.g. monocular camera and
lidar [117] or stereo camera, lidar and GNSS sensor [129].

Detected objects can be used to filter out features that belong to dynamic objects
to avoid adding non-static features to the map during mapping and also to avoid
using them for localization [61].

To reduce sensor dependency, interpreted static environment objects can be used
as landmarks. These include lane markings on an intersection [99], lane center-
lines (LaneSLAM) [62] or lanes, obstacles and parking spaces in a parking garage
(Semantic Localization) [100]. Dynamic objects are only rarely used in these works.
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7 Ego Vehicle Localization

A different approach is so-called map matching, known from navigation systems,
where the ego vehicle is matched onto a map on road level using only GNSS
and the relative movement (odometry). Recent approaches achieved increased
precision using particle filters and zone maps [102], [5]. There, the movement of
the vehicle (speed, direction) is utilized to find matching road types.

The approach described in this chapter is close to Scene Understanding by Geiger
etal. [53], where tracklets are used as one of many features extracted from a stereo
camera system. In contrast to the approach in this chapter, Geiger et al. do not use
a map but estimate a parametric road layout model using machine learning tech-
niques. The result is not a localization relative to a predefined map but relative to
a local road model giving similar capabilities to the automated vehicle.

Many of the advanced current works [62], [53] use factor graphs for formalizing
their approach. Obviously, all of these approaches could be formalized using the
OOFGML. The chosen application can serve as an example.

7.2 Application Goal

Ego Vehicle
Localization

Observed Obstacle

3

@

=
\%

Obstacle Probability

Ego Probability ¥
on Map

on Map

Figure 7.1: The basic idea of the object constellation localization application. Ob-
served dynamic objects are assessed on a map to estimate the relative
pose of the ego vehicle. [7]

The goal of the application is to estimate the ego vehicle’s pose in a world coor-
dinate system (Fig. 7.1). A parametric road network map is given. It describes
where vehicles usually drive in which way (direction, speed) in the world coor-
dinate system. Dynamic objects are observed relative to the ego vehicle using an
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object detection sensor (e.g. a Lidar (Sec. 2.2.1) with a subsequent object tracking
(Sec. 2.2.2)). The observed objects can be evaluated on the map to estimate the
ego vehicle’s pose. The probability distribution for the ego vehicle’s pose is mul-
timodal and depends largely on the currently observed objects. Temporal fusion
(tracking over time) will enable lane-precise longitudinal and lateral localization
on multilane roads.

These application properties have to be formalized using the OOFGML.

7.3 Application Specific Ontology

From the DSL (Chapter 5) an application specific ontology has to be derived to
represent the conditions of the application (Sec. 7.2). From the entity and rela-
tion class structure of the DSL for the traffic domain (Fig. 5.3) appropriate entities
and relations have to be chosen to bring over to the application specific ontol-

ogy (Fig. 7.2).

For this application several entities and relations have to be included: The Auto-
matedVehicle, the DynamicObject and the RoadLayout correspond to the
real world entities. The detects and drivesOn relation realize the relative ob-
servation and the map association respectively. The changesTo relation rep-
resents the temporal fusion of the ego vehicle pose estimate. Analogously to
the GNSS example (Chapter 6) this basic ontology is extended by sub classes
and helper classes to fully define the estimation problem, approach and inference
method.

7.4 Classes and Attributes

The classes describing the entities and relations are equipped with attributes and
dependency models to describe the real world properties (Fig. 7.3 and Fig. 7.4).
For example the dynamic object includes a pose and motion variable and the
Detects relation incorporates the relative positioning of the object pose to the
sensor pose. Note that this specialization is realized by a hierarchy of sub classes.
The details are neglected here since they were already discussed analogously in
Chapter 6.

7.5 Dependency Model

The dependency model (Fig. 7.3 and Fig. 7.4) is largely inspired by the work of
[62]. While several factors refer to generic transformations similar to the de-
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Figure 7.2: The necessary entities and relations comprise the ego vehicle, dynamic
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DrivesOn
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ChangesTo 0
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OdometryTransformation
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Figure 7.3: Attributes and dependency models in the lower part of the application
specific ontology.
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Figure 7.4: Attributes and dependency models in the upper part of the applica-
tion specific ontology.
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scribed DynamicState2DTransformation in Sec. 6.2.4 some special factors
have to be mentioned in detail.

7.5.1 Odometry-based Motion Model

The odometry-based motion model in the changesTo relationisa Transition
Model with additional motion measurement. The motion measurement is im-
ported from the odometry sensor entity via some transformations.

The dependency in the factor can be described by a probability distribution over
the difference between the current ego pose P, and the previous pose P} ' trans-
formed by a motion model S, into the space of odometry measurements 4":

Vi(Pg P, 0") = Nigt.s, (Sm(Pp — P ) (7.1)

For S, a half-turn-straight-half-turn motion model is used.

7.5.2 Relative Object Measurements Model

The relative object measurement model in the detect s relation connects the ob-
ject poses Pp of observed vehicles to the sensor pose Pgs using the object measure-
ments yo.

7.5.3 Map Evaluation Model

The map evaluation model MapMatchingModel in the drivesOn relation con-
nects the dynamic object poses Py (used for ego and observed objects) to the map
data L. In general, this can be described as

%(PE/Oa L) = P[L,pL](Pﬁ:/o) (7.3)

Pppyi(x) can be any multi-dimensional continuous probability distribution with
distribution specific parameters py, evaluated on point x. The distribution on
the map P|;,,) is described by several uniform and gaussian distributions de-
pending on the area in the map. For example lanes are modeled with a gaussian
distribution around the lane’s center while free area is modeled with a uniform
distribution. Thus, the lane-detailed map data is used as a zone map similar
to [102].
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7 Ego Vehicle Localization

7.6 Inference Methods

Since evidences will be given from odometry sensor and environment perception
and the ego pose has to be estimated over time it is straightforward to imple-
ment a state space model similar to the simple GNSS example in Sec. 6.3.3. Since
the map evaluation is nonlinear a simple Kalman filter approach cannot be ap-
plied. The ParticleFilter sub class of the state space model implementation
(Sec. 6.2.5) is chosen.! The resulting inference-dependent classes are depicted
in Fig. 7.5.

Large computation effort lies in the map evaluation model (Sec. 7.5.3). If the
association between object poses and lane segments is unclear, every pose hy-
pothesis has to be evaluated against every map element. The gating approach
(see Sec. 2.6.6, Fig. 2.17) is applied here using different sub classes of the depen-
dency model: One class roughly estimates the existence of an object-lane relation
by comparing their positions. Subsequently, only a small subset of lane segments
of the map has to be evaluated in detail against the object pose using the gaussian
distribution around the lane’s center.

7.7 Implementation Opportunities

One of the five implementation opportunities described in Sec. 3.4 has to be cho-
sen. Similar to the GNSS example (Chapter 6) the localization application is man-
ageable and has no dynamic components (besides the varying number of ob-
jects). Thus the same considerations can be undertaken as in the GNSS example
(Sec. 6.4).

For the experiments in this chapter an established filter implementation cannot be
used directly: A simple particle filter implementation is not applicable since the
dynamic change in number of objects and the map model evaluation have to
be integrated. To avoid computational effort induced by an unnecessarily ad-
vanced implementation, a specialized implementation is proposed, integrating the
object-related map evaluation in a particle based temporal estimation of the ego
vehicle’s pose.

During implementation also some dependency models can be combined. Fig. 7.6
shows a reduced factor graph with inference schedule.

The necessary sub classes can be derived by applying the particle filter principles (Sec. 2.6.4)
analogously to the application of the Kalman filter principles (Sec. 2.6.3) in the example in
Sec. 6.2.5.
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Figure 7.5: The particle filter sub class of the state space model is chosen for in-
ference. The model classes on the left correspond to classes in Fig. 7.3
and Fig. 7.4.
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Road Layout
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Object Measurements

Ego Vehicle Pose

Odometry

~

Figure 7.6: The defined model can be reduced to a small factor graph. The infer-
ence schedule is depicted by numbered arrows. Adapted from [7].

7.8 Evaluation

To evaluate the performance of the application, the described model is imple-
mented as the proposed specialized implementation and integrated into a real auto-
mated vehicle. The localization results are compared to a baseline map matching
algorithm.

7.8.1 Experiment Configuration

The test vehicle CoCar (cognitive car) [74] of the FZI Research Center for Infor-
mation Technology is used to perform the experiments. Besides the car’s odom-
etry data, a set of three 4-layer Ibeo laser sensors including built-in object detec-
tion and classification is used as object sensor. The map data is described via
lanelets [27].

The system is evaluated as a proof of concept on a 10 minute drive in the city of
Karlsruhe. The route (about 5.56 km) includes different driving situations, such
as intersections, straight roads, multiple parallel lanes, curves and also light and
dense traffic. It gives a first impression of the performance but more extensive
data is necessary for a profound evaluation.

7.8.2 Metrics

One key metric for the quality of the localization method is the position error of
the calculated ego vehicle position compared to a ground truth reference value
calculated as euclidean distance. As ground truth a position estimate of a high
precision inertial measurement unit is used. Note that this ground truth estimate
does not completely match the application goal: The localization method shall
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give a precise-as-possible position estimate on a given map in a way that the static
environment objects described in the map match the real world in the vehicle’s
surrounding. Thus, for the real application the map just needs to be complete and
consistent. For the evaluation here (using the ground truth estimate) it has to be
ensured additionally that the map is accurate according to the reference sensor.

The position error is calculated as lateral, longitudinal and overall error. Lon-
gitudinal means only the component of the position error that is parallel to the
ground truth vehicle orientation? is considered. For Lateral only the orthogonal
component. Assuming the vehicle mainly driving in the roads direction, a small
longitudinal error corresponds to a small position error along the road and is
needed for example when estimating how far the ego vehicle is away from an
intersection. A small lateral error corresponds to a small position error perpen-
dicular to the lane orientation and is needed for estimating on which lane the ego
vehicle is driving.

The error of the localization method is compared to the error of a baseline method.
As baseline method a similar localization method but without considering the
objects in the vehicle’s surrounding is chosen. This method is known as map
matching and used in many current GNSS navigation system solutions. It is im-
plemented by removing the object evaluation part of the application. Thus, the
basic temporal fusion and ego vehicle map evaluation is exactly the same in both
methods and the impact of using the observed objects in the vehicle’s surround-
ing becomes measurable.

For visual impression the probability distribution of the ego vehicle’s pose given
the map sensor model on an area of 50 x 50 meters around the ego vehicle is
depicted as heatmaps (Fig. 7.7, 7.8, 7.9, 7.11). Note, that this is an additional
computation step run offline. Online, only a set of 250 particles is used to evaluate
the probability distribution just in the most probable regions.

7.8.3 Single-Frame Evaluation of Map Evaluation Model

Inspecting the heatmaps of the ego vehicle position estimate at different situa-
tions corresponds to the expectations:

When driving on straight roads with multiple lanes, without considering the ob-
ject constellation no precise estimation is possible (Fig. 7.7a). With observed vehi-
cles on parallel lanes the estimation can be narrowed to one specific lane (Fig. 7.7b).
This means the lateral error can be reduced when observed vehicles drive in the
same direction as the ego vehicle but with a lateral offset. There is no improve-
ment in longitudinal error.

21t could be argued that actually the lane’s orientation should be used. This would introduce
another requirement on the precision of the map data and a matching procedure. A solution
without map dependency was chosen.
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(b)

Figure 7.7: Evaluation of the map evaluation model. The heatmap includes an
area of 50 x 50 meters with a resolution of 1 x 1 meter. The colors rep-
resent the mapping score from 0 to 1.0 as depicted in the color bar. A
low score means a low matching probability. The ego vehicle’s ground
truth pose is always at the center (black dot). Observed objects are rep-
resented as pink triangles. A desired result is a high matching score
at the ego vehicle’s ground truth position although ambiguities can be
eliminated by temporal fusion. The higher lateral uncertainty with-
out considering the object constellation in (a) is reduced when the ob-
served object on the right lane (pink) is included in (b). [7]
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In contrast, if the observed vehicles drive perpendicularly to the ego vehicle’s
direction (90° or 270°), the longitudinal error can be reduced (Fig. 7.8). On curved
roads a mix of both effects is visible (Fig. 7.9).

7.8.4 Temporal Fusion

When the temporally local estimates are fused over time, the effects of longitu-
dinal and lateral position error reduction are retained and the overall error de-
creases.

Nevertheless, for example if no objects are in the vehicle’s surrounding for a long
time, the lateral error increases (Fig. 7.10). If then an object appears, the error is
quickly reduced.

Compared to the localization method without considering observed objects, the
new localization method can reduce the longitudinal error in front of intersec-
tions. This is visible in Fig. 7.14 at minute 1:10 and following. The method with-
out considering the object constellation can only reduce the longitudinal error
when the ego vehicle takes a turn with about 90° (resulting in a longitudinal er-
ror of the size of the previous lateral error).

Also during lane change (Fig. 7.11) the observed object constellation can help: Al-
though the lane change might be estimated correctly without considering objects,
there is a part during lane change, where the ego vehicle itself is between the two
lanes and thus is located on a less probable map position. Correct particles might
be evaluated incorrectly and discarded. Considering the objects in the surround-
ing can help to keep the correct position with a high probability (Fig. 7.11d).

7.8.5 Overall Performance

In Fig. 7.12 the overall position error of the two methods during the test drive
is compared. The method using the object constellation in the ego vehicle’s sur-
rounding clearly outperforms the reference method. Assuming a lane width of
3 meters, the position error has to be smaller than 1.5 meters to be called lane
precise. This is achieved for the proposed method excepting one higher peak at
9:43 corresponding to the situation in Fig. 7.10.

The diagrams for the separate longitudinal and lateral errors (Fig. 7.14, Fig. 7.13)
further support this observation. Although the localization without considering
the objects is slightly better in some situations the method considering the objects
is more robust and has a better overall result. Also the statistical values (Table 7.1)
underline this.
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7z

Figure 7.8: If perpendicular moving objects are present the map evaluation model
returns a precise longitudinal estimation of the ego vehicle’s pose with
lateral uncertainty (pink and blue values) around the ground truth
position (black dot). This corresponds to the principle depicted in
Fig. 7.1. [7]

(a) (b)

Figure 7.9: Also on slightly curved roads observing other objects improves es-
timating the ego vehicles pose. A mix of the individual effects
(Fig.7.7,7.8) can be seen in (b). [7]
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(a) (b)

Figure 7.10: Without objects present a high lateral position error can still occur in
the temporally fused output (a). After an object appears the error is
reduced again (b). This example corresponds to the high peak of the
overall and lateral position error in figures 7.12 and 7.13 at minute
9:43. [7]

Table 7.1: Statistical values for the position error. [7]

without objects with objects

overall 2.1154 0.5250
mean lateral 0.7093 0.4033
longitudinal 1.7302 0.2731
overall 1.7296 0.2789
std. dew. lateral 0.9262 0.2716
longitudinal 1.7641 0.2731
overall 4.3379 0.7062
upper quartile lateral 0.8718 0.6013
longitudinal 4.0365 0.3754
overall 5.1647 2.4806
maximum lateral 3.6502 2.4496
longitudinal 4.9896 0.9649
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(a)

\\

(b)

(f)

Figure 7.11: Localization results (a,c,e) and corresponding map evaluation model
(b,d,f) during a lane change. Although the ego vehicle is between the
lanes in (c), there is still a maximum in the current map evaluation
model due to the observed objects in the vehicle’s surrounding (d).
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Figure 7.12: Overall position error. Depicted is the euclidean distance between
the estimated position (with and without considering the objects in
the vehicle’s surrounding) and the reference position from the refer-
ence sensor. High position errors are decreased by considering the
object constellation. The position error is always below 1.5 meters,
meaning a lane-precise estimation is achieved. Except for a higher
peak at minute 9:43, where no recognized objects are in the vehicle’s
surrounding. This situation is depicted in Fig. 7.10. [7]
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Figure 7.13: Lateral component of the overall position error (Fig. 7.12). localiza-
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tion without objects is slightly better at some times, but localization
considering the objects in the vehicle’s surrounding is more robust
and always in the range of —1.5 to 1.5 meters, except a higher peak
at minute 9:43 due to no recognized objects (Fig. 7.10). [7]
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Figure 7.14: Longitudinal component of the overall position error (Fig. 7.12).

Considering objects in the vehicle’s surrounding results in an im-
proved ego vehicle localization that is always between —1.5 and 1.5
meters around the reference position for this exemplary scenario. [7]

7.9 Conclusion

This

chapter showed how an advanced method for ego vehicle localization can

be modeled using the proposed language.

7.9.

1 Summary

The key parts are:

Compared to the related work the proposed localization method is new.

From a real world oriented application description, the application ontol-
ogy can be derived, based on the generic DSL for the traffic domain.

Advanced dependency models can be integrated straightforwardly into the
class descriptions.

A particle filter implementation is realized as an alternative sub class of the
state space model base class and is a good choice for complex probability
distributions.

The implementation as a specialized implementation allows staying close
to generic filter implementation with added adaptations.
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e Comparing the resulting application to a baseline implementation shows
that considering objects in the ego vehicle’s surrounding improves the over-
all localization result.

7.9.2 Used Language Properties

The key goal of presenting this application within this thesis is to exemplarily
show the usage of properties (Chapter 4) of the proposed language.

Complexity Uncertain Information Real World Relationships

,,,,, t,"f,,,,, Eﬂ \./ P(X|Y,Z) Ben —/\ <:.-\'\\>
> R EE RE

Encapsulation Hierarchy Probabilistic Hybrid Relation Observable and
Dependencies Representations ~ Representation ~ Hidden Variables

° ()
N/ g Sipte o @
Y - ¢°® <00

Classes Inheritance Integrated Parameter Representation Varying
and Instances Inference Learning of Time Reference System

Figure 7.15: Some of the overall language properties are highlighted that are ben-
eficial to the presented localization application.

In this application the following properties (Fig. 7.15) are beneficial:

e Probabilistic Dependencies (Sec. 4.2.1):
By describing the dependencies probabilistically with uncertainties (Sec. 7.5),
the uncertain behavior of other road users and uncertainties in map data can
be incorporated.

o Integrated Inference (Sec. 4.2.3):
The language’s capability of describing inference methods in a class hierar-
chy allows picking of the most suitable inference method (Sec. 7.6) indepen-
dently from the dependency modeling (Sec. 7.5).

e Observable and Hidden Variables (Sec. 4.3.2):
The application has only a few observable variables: The odometry and
the relative object measurements. All other variables are hidden and help
estimating the ego vehicle’s pose (Sec. 7.4).
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e Representation of Time (Sec. 4.3.3):
A key functionality of this application is the temporal fusion of only in-
accurate position estimates. The modeling language highly supports the
temporal aspect and allows direct derivation of proper models (Sec. 7.4).

e Varying Reference Systems (Sec. 4.3.4):
While the object measurements are local, relative measurements, the ego
vehicle’s pose and the map are in a global coordinate system. These two
perspectives are brought together using the dependency models (Sec. 7.5).

Other properties will be used more intensively in one of the other applications
described in the subsequent chapters and thus will be highlighted there.
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This chapter shows how an example application considering road layout estima-
tion can benefit from the introduced OOFGML. A special road layout estimation
method is created that estimates the most probable road layout from several sen-
sor inputs. This means various observed environment features are brought into
relation to derive the position of road elements such as lanes and intersections.
The idea is based on a popular work of Daniel Topfer [124] but adapted to the
requirements for the small-scale vehicles in the Audi Autonomous Driving Cup
(AADC). The OOFGML supports the whole development process from applica-
tion description to algorithm implementation.

The goal of this chapter is to outline how the features of the OOFGML can be
utilized to achieve the application: It is shown that all relevant aspects are de-
scribable in a consistent way. Nevertheless also the performance of the result-
ing application is discussed by observing the results when participating in the
AADC.

This chapter is largely based on the previous publication [8]. Some more details
considering the application can be found there.

8.1 Related Work

Road layout perception has always been a central research topic for autonomous
vehicles. Before handling obstacles and deciding about future trajectories, the
static environment in the ego vehicle’s surrounding has to be localized precisely.
Maps [27], [72], [47], [11] can simplify this task, but they can be inaccurate or
outdated and require a very precise localization. Therefore, perceiving the static
environment, especially the lanes vehicles can drive on is a key skill since years.

In ADAS, especially in Lane Keep Assistance (LKA) systems, at least the ego ve-
hicle lane needs to be estimated. Therefore a lane model is used that describes the
ego vehicle’s lane or includes neighbour lanes and constellations. Common ap-
proaches [41], [46], [107] usually follow the first ideas of [42]: A geometric model
is estimated using observed sensor cues, such as lane markings, curbs, etc.. The
model can be fitted in the camera frame or the sensor cues are transformed into
a bird eye view [88]. The later approach has the advantage of better understand-
able parameters for the geometric model and also subsequent processes usually
use a local 2D coordinate system to handle vehicle behaviors.
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While many approaches [34], [70], [31] use Random Sampling Consensus (RAN-
SAC) [48] to properly match a lane model neglecting outliers in sensor data, more
recent approaches [67], [124] use graphical models, e.g. Markov Random Fields.
Besides estimating the ego vehicle’s lane, these approaches have the potential to
estimate whole road layouts, including merging and diverging lanes and inter-
sections using multiple sensory inputs, such as lane markings, curbs, stop lines,
traffic signs and lights. A well-chosen road model can then also be used to com-
bine it with geometric map data or even to update such a map [62].

The approach proposed in this work is largely based on Markov Random Fields,
so-called Compositional Hierarchical Models (CHMs) introduced by Daniel Top-
fer [125], [124], [126].

8.2 Application Goal

The goal of the application is to estimate a consistent road layout in the vehicle
surrounding using several environment observations (Fig. 8.1).

Intersection Patch

Probability
Distribution

\‘

Traffic Sign

SER) ine Feature

Road Patch
Feature

Figure 8.1: A probabilistic hierarchical model is used to estimate the road layout:
Observable features like stop lines (green) or traffic signs (red) and
road patches (orange) are brought into relation described by spatial
constraints to infer higher level objects like intersections (blue). [8]

The basic idea, introduced by Topfer [124] is to model all real world entities in
a markov random field and design weak spatial constraints between these en-
tities that describe their relative positions, e.g. a lane marking is usually at the
boundary of a lane. Longitudinally the lanes are split into patches to deal with
changes in lane width or curvature. The lane features build up patches, which
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build up lanes, which build up multilane roads and finally lead to whole road
layouts including intersections. This generative process is called Compositional
Hierarchical Models (CHMs) and with the aid of part-sharing [137] and depth-
first message passing [125] Topfer is able to estimate real world highway and
urban scenes even on a per image evaluation without temporal fusion.

Due to the limited sensor in the AADC there are many occlusions and missing
features especially in curves. Therefore temporal fusion is beneficial, integrated
and a special grid-based message representation is used where useful. The tem-
poral fusion introduces a dependency to the ego vehicle’s localization (since the
observing vehicle moves over time) and thus makes it necessary to treat the for-
mulated problem with a more complete approach.

Key idea of this application is to perceive environment features, such as different
longitudinal lane markings, stop lines and traffic signs, and use them to estimate
different kinds of patches that are not directly observable but build up the road
environment, such as road patches, intersection patches and parking lot patches.
Spatial and temporal constraints have to be modeled between these elements to
describe a consistent road layout.

8.3 Application Specific Ontology

From the DSL (Chapter 5) an application specific ontology has to be derived to
represent the conditions of the application (Sec. 8.2). From the entity and rela-
tion class structure of the DSL for the traffic domain (Fig. 5.3) appropriate entities
and relations have to be chosen to bring over to the application specific ontol-

ogy (Fig. 8.2).

For this application several entities and relations have to be included: The Auto-
matedVehicle and the RoadLayout correspond to the real world entities. The
RoadLayout includes the road hierarchy consisting of Lane Segment s and Lane
Features. These correspond to the aforementioned patches and features. The
detects relation describes the fact that lane features are observed by the ego ve-
hicle. The changesTo relation represents the temporal fusion of the ego vehicle
pose estimate as well as the static road elements. Since the ego vehicle moves
over time, an inertial sensor is used to estimate the local movement and filter it
by a state space model, similarly to the GNSS example in Chapter 6.

Analogously to the previous example applications (Chapter 6, Chapter 7) this
basic ontology is extended by sub classes and helper classes to fully define the
estimation problem, approach and inference method.
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Figure 8.2: The necessary entities and relations comprise the ego vehicle, dynamic
objects and the road layout.
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Figure 8.3: More detailed view on the application specific ontology. The temporal
ChangesTo relations are acting on the dynamic vehicle state and the
static road layout. Focus will be on the road layout estimation.
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8.4 Classes and Attributes

The classes describing the entities and relations are equipped with attributes and
dependency models to describe the real world properties (Fig. 8.3). The lower
part of the figure including the ego vehicle localization and feature perception
has already been elaborated in detail in the previous applications (Chapter 6,
Chapter 7) and will be used similarly. Thus, the upper part concerning the road
layout is focused. The important entities here are the LaneFeatures and the
LaneSegments.

8.4.1 Lane Features

All lane features match the possible sensory evidences observable from the en-
vironment. They consist of a position (z,y) € R? and orientation ¢ € [0,7) in a
world coordinate system and a feature type

7 € Ty := {center_line, side_line, stop_line, parking_line, traffic_sign} (8.1)
to distinguish between different features:

f = (x,y, ¢7 Tf) (82)

8.4.2 Lane Segments

The lane segments are defined in the same coordinate system as the lane features.
Each lane segment fully describes a hypothesis for a single road patch. Besides
position (z,y) € R?, orientation ¢ € [0, 7) and patch type

7, € T, := {road, intersection, parking} (8.3)
the lane segments include a width w and length [:

p= (29,0, 7, w,1) (8.4)

Note that for application in the AADC prior knowledge can be incorporated for
width and length according to the three different types of patches:

o A road patch represents the full width of the uniform road with an adjustable
fixed length. This is sufficient since during the AADC the number of lanes,
as well as the width of the road, are fixed. Road patches are not only used
for straight roads — multiple road patches are used to approximate curves.

e An intersection patch matches the width and length of the fixed intersection
size.
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8.5 Dependency Model

o A parking lot patch matches the width and length of parking lots which are
known to be parallel or perpendicular to the road.

These entity attributes are modeled in the OOFGML using already introduced
generic classes (e.g. Pose2D for the pose of patches and features). Note that the
specialization is realized by a hierarchy of sub classes. Details are neglected since
they were already discussed in Chapter 6.

8.5 Dependency Model

Several factors describe dependencies between real world entities (Fig. 8.4). They
can be classified as spatial constraints between features and patches or among
patches and temporal constraints over time.

ChangesTo ConnectsTo

parameters
#~ ~\\\ A
segment
b 9 v M

) (N ” Spatial S
Patch-Patch
Constraint

Y
RoadLayout

N
) LaneSegment

——————— Temporal o S
Patch-Patch
Constraint

Feature-Patch
Constraint

LaneFeature

T

Figure 8.4: Several dependency models mainly represent spatial and temporal
constraints between real world entities.

8.5.1 Spatial Feature-Patch Constraints

All feature-patch constraints describe the spatial dependencies between observ-
able features and patches. They are represented by

Vi (fisp5) = Poy(fi, pj)- (8.5)
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8 Road Layout Estimation

with a general probability distribution Py modeling the relative positioning and
uncertainties. This probability distribution has to be chosen to handle several
correlations: Lateral features like center lines and side lines are connected to
road patches with a tight lateral coupling while their longitudinal dependency
has high variance (Fig. 8.5). Similarly, stop lines are connected to intersection
patches and parking lines to parking space patches with high longitudinal preci-
sion. Traffic signs are located in corners of intersections but their orientation can
vary. Therefore a spatial constraint in the form of a quarter circle is assigned to
them, representing a large angular variance (Fig. 8.6).

All these dependencies can be defined as sub classes of the feature-patch spatial
constraint factor.

4

\ v(f2rp)

l/)(fll p)
Y(fu.p)

f
P(plf1)

Figure 8.5: Spatial constraints ¢’ describe the relationship between features f and
patches p. Exemplarily a side line feature f; (blue arrow) and a center
line feature f; (red arrow) are shown. While the spatial constraint for
the center line feature can be modeled with a single gaussian distribu-
tion, the one for the side line feature has a bimodal gaussian distribu-
tion. [8]

8.5.2 Spatial Patch-Patch Constraints

All patch-patch constraints are represented by a generic probability distribution

Y5 (pisv;) = P (pi, 0j)- (8.6)

Road-road constraints exist between consecutive road patches and ensure con-
tinuity between them. Road patches are also correlated to intersection patches:
There is a higher probability for an intersection if patches are located at the arms
of the intersection (Fig. 8.6). Parking spaces are connected similarly to road patches
laterally.
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Figure 8.6: Spatial constraints for intersection patches on the example of Fig. 8.1.
The combination of previously found road patches p1, p,, stop line fea-
tures f, and traffic sign features f, give a precise estimation of the in-
tersection patch P(ps|f1, f2, p2). [8]

8.5.3 Temporal Patch-Patch Constraints

Temporal constraints realize the dependency between single time steps in the
changesTo relation.

Because of the assumption that static environment elements do not move over
time, the past patches are transmitted to the next time step by applying a tempo-
ral constraint that represents an identity transformation. This dependency can be
modeled by a Gaussian potential function:

wTi,j(pnpj) = ./\/’[pi,Ei,j](pj). (8.7)
This results in a tracking of single road patches over time with a transition model

representing a constant position process. Per step observation uncertainties are
smoothed out.

8.6 Inference Methods

The defined model so far is usable for different applications. For example it could
also be used for a localization using known map data, similarly to the application
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in Chapter 7. In the here described application the goal is to estimate the road
layout. Therefore, a proper message passing schedule passes messages from the
lower part up to the road layout at the top of the model.

To define the actual inference methods, the message representations have to be
chosen. For the original CHM approach a sampling based method was chosen
with a depth-first message passing schedule to overcome the large complexity
in the hierarchical model. The temporal component in the given model further
increases the complexity and a sampling based inference method does not have
to be the best choice.

Instead a local choice for message representations is desired: In the lower part
the ego vehicle pose tracking can be best estimated by linear gaussian models,
estimating a pose variance over time. The feature extraction from camera images
is usually implemented by a hypothesis generation with confidence values. In
the upper part local lane segment hypotheses (patches) have to be created using
the constraints to past lane segments and current lane features. Looking at this
step in detail reveals a large association problem (Fig. 8.7). A grid representation
of the lane segment space is chosen to overcome this problem (which can also be
seen as a general hough transformation). The actual road segments in the road
layout are represented as single values and are sampled from the grid space.

The grid space is used as follows: Since width and height of patches are given by
prior knowledge (Sec. 8.4.2), the unknowns to estimate for a patch hypothesis are
the position and angle as well as the type of the patch:

pEX XY XPxT, (8.8)

All four dimensions are discretized in a way that a proper resolution around the
ego vehicle is achieved (see [8] for more details). The spatial and temporal con-
straints are applied on the features and patches and their results are projected
into the grid (Fig. 8.8). Actual lane segments are sampled from the grid space by
searching for maximas. The grid representation allows further performance im-
provements by using rectangular block distributions with separate blurring and
working in the log-space [8].

8.7 Implementation Opportunities

One of the five implementation opportunities described in Sec. 3.4 has to be cho-
sen. The road layout estimation application is more complex than the previous
applications (Chapter 6, Chapter 7). Different message representations were cho-
sen for different parts of the model and they can be separated straightforwardly.
A modular implementation is an obvious approach.
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Figure 8.7: A detailed view on the lane segments reveals an association problem.
Every LaneFeature could have a relation to every LaneSegment
hypothesis. Same holds for spatial and temporal patch-patch con-
straints.
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generic TimeSlice. All dependencies are defined in separate classes.
Key element ist the LaneSegments class (green) with two probabil-
ity distribution representations. Inference directions are depicted by
small arrows.
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8.8 Evaluation

For the experiments in this chapter the ego vehicle pose estimation is imple-
mented separately using an established filter implementation. The feature ex-
traction is managed using well-known computer vision algorithms. Finally, the
grid-based fusion is a specialized implementation.

The OOFGML coherently describes the overall model which is then implemented
in smaller modules.

8.8 Evaluation

The approach was evaluated at the Audi Autonomous Driving Cup 2016. The
student team' implemented a full system that enables autonomous driving capa-
bilities for the small-scale vehicles. For the robust environment perception they
followed the approach described in this chapter and in [8]. In the finals they were
able to test the approach on a test track with various advanced challenges like
glare light, missing road markings, a tunnel, snow and additional markings at a
pedestrian crossing.

The results can be seen as a first qualitative evaluation of the approach. For pro-
found evidence further, also quantitative evaluation on a larger dataset using
real-scale vehicles is necessary.

8.8.1 Experiment Configuration

The AADC is an international student competition realized annually. Teams of
5 students participate in the cup. A fixed hardware setup is provided and the
students have a 6 months period to implement a full autonomous driving func-
tionality that can handle several tasks set in the cup.

Basic tasks like emergency stopping, overtaking or handling intersections are al-
ready required in the base competition. In the final the three best teams face
additional unforeseen challenges like missing lane markings, tunnels or new sit-
uations like pedestrian crossings.

The cars are equipped with several sensors and actuators that simulate real-scale
sensors for the small scale vehicles (e.g. ultrasonic sensors instead of radar sen-
sors). The environment consists of road tiles of the size 1x1 meters that are ar-
ranged to build straight and curved roads, intersections and parking spaces.

Team KACADU created a modular system architecture that includes the here pro-
posed robust road layout perception modeled using the OOFGML (Fig. 8.9).

team KACADU consists of Vitali Kaiser, Jan-Markus Gomer, Micha Pfeiffer, Peter Zimmer and
David Zimmerer
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Figure 8.9: The system architecture follows the approach of an intelligent agent
(Sec. 2.2): Perception provides an environment model that can be
used by execution modules. The here proposed approach using the
OOFGML includes the three modules Road Layout perception, Fea-
ture Extraction and Ego Localization. For robustness, a system perfor-
mance assessment surveils the components to react in case of failures.
This is not part of this thesis and further described in [8].

The feature extraction is implemented in two sub modules:

e For line features a chain of steps including a birds eye transformation and
haar-feature detection is used (Fig. 8.10)

e For the marker-equipped traffic signs the ArUco library [94] is used. It
delivers the class and 3D pose of each traffic sign in the coordinate system
of the camera.

With this setup, team KACADU was able to perform in the Audi Autonomous
Driving Cup 2016 and won the overall second place with an additional first place
award for the scientific presentation that largely handled the robust road layout
perception. The final run (with the advanced challenges) was recorded during the
competition and evaluated afterwards. A video summarizes the most challeng-
ing tasks and is available for download?. Fig. 8.11 shows an example frame with
visualizations of the top view, grid space and resulting environment model.

8.8.2 Basic Performance

Fig. 8.12 highlights the grid-based feature fusion. A left turn is chosen since be-
cause of the narrow camera field of view this is one of the most challenging tasks:
Only the right lane boundary is visible. Without temporal fusion it is hard to de-
cide whether this is the right or left boundary of the road. In the shown part of
the grid space the patch votes placed by the detected features form a bimodality
with large longitudinal variance. Due to the previously detected road patches

2Video: url.fzi.de/aadc2016
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iy

Figure 8.10: The line feature extraction strategy. 1: The input image. 2: Inverse
Perspective Mapping (IPM). 3: Integral images are calculated from
the IPM. 4: Haar-Features as applied to the image, for a thin center
line and a thicker side line, 5: Examples of the found side line (blue)
and center line (red) features displayed on top of the IPM. [8]

the ambiguity can be solved. This is a basic capability that is needed many times
during a drive on a common track.

8.8.3 Advanced Challenging Situations

In the final competition several new challenging situations were given that re-
quire a robust road layout perception. In the already mentioned video some of
these challenges are shown:

Besides the glare light and the sensor failure due to snow, that were only solvable
by an action of the performance assessment module, there is also the tunnel and
missing lane markings. At the tunnel, a correct estimation of the road is possible
even though there are only a little number of detected features. The temporal fu-
sion is able to track the previously estimated road over time and extend it using
the little amount of new features. Similarly missing lane markings on intersec-
tions do not affect the performance. At the pedestrian crossing the white big
zebra bars are not detected as lane markings and do not reduce the perception
performance.

8.9 Conclusion

In this chapter it is shown how an advanced method for road layout estimation
can be modeled using the proposed language.
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Figure 8.11: Exemplary frame of the video. The video data recorded by the vehi-
cle and used for perception is displayed in the lower right. Inverse
perspective transform is already applied. Furthermore lane features
(red lines) and patches (red and green boxes) are displayed. In the
upper right the local map of the current state is shown. Road patches
(red boxes) as well as the ego vehicles position (white arrow and
green box) and the planned trajectory (white line strip) are displayed.
In the bottom a part of the grid space is shown: Several x-y-grids of
different orientations for the road patches. An excerpt of the grid is
discussed in detail in Fig. 8.12. [8]
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R

Figure 8.12: Road detection on a curved road. The upper image shows the top-
view generated from the input image. Only the right outer marking
can be seen. These markings are detected using the Haar-Line fil-
ters which generate features (red lines on the lane marking). The
lower image shows a portion of the voting space for straight patches
(1, = road). Gray votes are generated by previously found patches,
green votes are generated by the line features. The maxima which
are found when sampling from the grid space are marked by small
red circles. Note that the patch votes locate new patch hypotheses
mainly in the longitudinal position while feature votes locate them
in the lateral position. Patches are shown as green boxes in the top-
view. Even though only a very small portion of the road is visible,
the algorithm correctly approximates the curve. [8]
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8.9.1 Summary

The key points are:

e Compared to the related work the proposed road perception method is new.

e From a real world oriented application description, the application ontol-
ogy can be derived, based on the generic DSL for the traffic domain.

e Spatial constraints between real world entities are described as dependen-
cies between attributes.

e Message representations can be chosen locally in the overall model.

e Thelocal message representations and different inference methods motivate
a modular implementation of the coherently described model.

e The resulting implementation was integrated in a complete automated driv-
ing system and performed well at the Audi Autonomous Driving Cup show-
ing the proof of the concept.

8.9.2 Used Language Properties

The key goal of presenting this application within this thesis is to exemplarily
show the usage of properties (Chapter 4) of the proposed language.

Complexity Uncertain Information Real World Relationships
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Vs /\ /WYZ) i dea o

/\4
)\

Encapsulation Hierarchy Probabilistic Hybrid Relation Observable and
O 4
Y 2
N DA N\ 50~ \l/.

Dependencies Representations ~ Representation  Hidden Variables
1 ]
A e ] Q- ] O
d % [ y D [ o i ‘.

Classes Inheritance Integrated Parameter Representation Varying
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Figure 8.13: Some of the language properties are highlighted that are beneficial to
the road layout estimation application.
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In this application the following properties (Fig. 8.13) are beneficial:

e Encapsulation (Sec. 4.1.1):
Since the overall model is splittable at class and dependency borders the
implementation can be separated into distinct independent modules such
as pose estimation, visual feature extraction and grid-based fusion (Sec. 8.7).

e Hierarchy (Sec. 4.1.2):
The hierarchical modeling helps defining the overall principle (Sec. 8.4) and
inference schedules (Sec. 8.6) on a higher level. The spatial and temporal
dependencies are defined in separate classes describing the factors (Sec. 8.5).

e Inheritance (Sec. 4.1.4):
The inheritance property is beneficial at several places. Especially the spa-
tial constraints can be defined in very different ways (Sec. 8.5) but used as
generic dependency in the overall estimation (Sec. 8.6).

e Probabilistic Dependencies (Sec. 4.2.1):
A key component of this application is to define the dependencies proba-
bilistically to incorporate uncertainties. Complex probability distributions
(Sec. 8.5) can be incorporated using the grid representation (Sec. 8.6).

e Hybrid Probability Distribution Representations (Sec. 4.2.2):
Different attributes of the model are represented differently. The language
allows easy combination and conversion between them. Especially the two
representations of the RoadSegment s class (Sec. 8.6) are incorporated within
the same class and accessable from factors.

e Integrated Inference (Sec. 4.2.3):
The language’s capability of describing inference schedules on a high level
allows focusing on relevant message passing directions. This gives sup-
port to several designing decisions, from message representations to mod-
ule separation (Sec. 8.6).

e Observable and Hidden Variables (Sec. 4.3.2):
The application has several observable variables: The ego vehicle’s odom-
etry and many observed object measurements, such as different lane mark-
ings and traffic signs. The actual road layout is estimated from these fea-
tures (Sec. 8.3).

e Representation of Time (Sec. 4.3.3):
A key functionality of this application is the temporal fusion to overcome
sensor noise and difficultly observable situations (Sec. 8.8.3). The temporal
aspects of the modeling language are used in two areas: At the vehicle pose
estimation and at the road layout estimation (Sec. 8.4).

The application in Chapter 9 also profits from the remaining properties, especially
the machine learning capabilities and the massive usage of relations.
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9 Route, Behavior and Trajectory
Estimation

This final application chapter handles route, behavior and trajectory estimation
of traffic participants, especially for future time where no evidences by observa-
tions have been gathered. The result will be a traffic participant prediction. Since
the inclusion of ego vehicle localization and feature extraction from sensor data
have already been shown in Chapter 8, focus is on the estimation and prediction
using given object measurements and how to utilize the OOFGML there. On this
level of abstraction, the approach is not only applicable for a single automated
vehicle observing the environment but also for multiple vehicles or intelligent
infrastructure [2].

The goal of this chapter is to outline how the features of the OOFGML can be
utilized to achieve the application: It is shown that all relevant aspects are de-
scribable in a consistent way. Nevertheless also the performance of the resulting
application is evaluated by comparing it to baseline methods, e.g. prediction by
basic Kalman filter motion models.

Two different approaches for behavior estimation are followed: A single-shot
approach and a temporal model approach. Starting with an initial view on the
related work (Sec. 9.1), followed by the general application goal (Sec. 9.2) and on-
tology definition (Sec. 9.3), applicable for both approaches. Then the OOFGML-
aided specialization for the single-shot approach is handled in detail (Sec. 9.4) be-
fore the temporal model approach is focused in same detail (Sec. 9.5). In Sec. 9.6
several aspects of the traffic participant prediction problem are evaluated.

This whole chapter is largely based on the previous publications [6] and [9]. Some
more details considering the applications can be found there.

9.1 Related Work

Prediction of traffic participant’s behaviors is an important research topic with
various facets. While basic prediction with little model knowledge is already
applied inside simple filters for years, more long-term and semantic predictions
are the focus of research in recent years. To drive fully autonomously in urban
traffic a precise long-term prediction is essential.
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Precise prediction can be achieved by directly utilizing sensor data [26], [132].
These are dependent on the actual sensor. One step to more generality is to han-
dle abstract data but to learn for a specific environment like one specific intersec-
tion [133], [91].

To reach more generality, also the infrastructure can be considered explicitly.
Then the influence of the road geometry can restrict the traffic participant’s future
trajectory probability distribution, e.g. at the level of lanes [27] or corridors [5].
The infrastructure information can also include information about traffic lights
and right-of-way. Often this information is loaded from a predefined map but
there are also approaches that estimate the road layout, even of complex intersec-
tions, online [53]. All infrastructure information is prone to uncertainties, either
because the map is not precise or up-to-date or because it is estimated by uncer-
tain observations from perceiving sensors (Chapter 8).

Additionally, there are uncertainties in the traffic participant’s behavior which
cannot be modeled precisely by human experts. Promising approaches use ma-
chine learning to parametrize general models, e.g. by Case Based Reasoning [59]
or by learning generic behavior models from unlabeled observations in a Dy-
namic Bayesian Network [58]. This way, street-dependent behaviors like braking
in front of turns or intersections and object-dependent behaviors influenced by
interactions between vehicles like braking because of a slower vehicle are consid-
ered when estimating predictions.

To handle all uncertainties in a generic model, probabilistic methods like Bayesian
Networks [105] [71] [106] or Dempster Shafer Theory [103] [128] are applied. Es-
pecially generic state space models (Sec. 2.6.1) tackle the prediction problem per-
fectly with their sequential estimation character and are already used in many
works [57] [136] [82] [58]. Usually they do not consider the object-oriented char-
acter of the real world explicitly and assume simplifications like a predefined
map without uncertainties.

In other works, object-orientation and relations (FOPL, Sec. 2.7) have been the fo-
cus to attain a higher level of scene understanding. Schamm et al. [115] showed
the potential of applying these methods to traffic situations. The proposed model
derives condensed information (like a time-to-collision) from uncertain prepro-
cessed sensor data. The result is usable for advanced decisions, e.g. risk assess-
ment.

In the application in this chapter it is shown how the OOFGML can handle the
different known challenges in one common description language and how vehi-
cle prediction can profit from this.
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9.2 Application Goal

The goal of this application is to estimate a consistent scene understanding of
the ego vehicle’s surrounding. This understanding shall include semantic infor-
mation about the traffic participants’ inner states such as their current behavior,
planned route and future trajectories. In traffic situations the interaction between
different traffic participants has a large impact on the actual individual behav-
ior. These have to be taken into account to allow a precise scene understand-
ing (Fig. 9.1).

Interaction

Street

Behaviors

Figure 9.1: Interactions have a large impact on vehicle prediction: The constella-
tion of the left and the right vehicle induces a braking behavior for the
left vehicle if it turns left, because then their routes intersect and they
have to react to each other (red velocity profile). Observing a braking
behavior of the left vehicle can be used to predict a left-turn of this
vehicle. [9]

The basic idea starts with the separation of discrete and continuous attributes
(Fig. 9.2): While routes and behaviors can be modeled as a discrete set, there is
an infinite number of possible trajectories representing a specific behavior. The
trajectories can be estimated by combining several states over time that are mea-
sured using noisy measurements. A basic Bayesian model can be constructed to
represent these dependencies (Fig. 9.3).

Such a Bayesian model can be used to estimate a coherent understanding of an
observed traffic scene, including (per traffic participant) a route and behavior es-
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Figure 9.2:

Figure 9.3:

186

Routes

Measurement

A more detailed view on the relevant elements: Different behaviors
can be possible on a single route. Each behavior can be realized by an
infinite number of possible trajectories, which are visualized here as
velocity profiles over the track of the vehicle. Adapted from [6].

Measurement
Measurement

The basic dependencies in traffic scenes can be desribed by a Bayesian
model. The route induces possible behaviors which result in possible
vehicle states that can be measured (left). Also interactions between
vehicles can be integrated into a basic model (right). Adapted from

[9].



9.3 Application Specific Ontology

timation, a trajectory prediction as well as a more precise current state estimation.
Having observed many vehicle behaviors the model can also be used to learn dif-
ficult to parametrize dependencies such as the actual form of the trajectory given
a specific behavior, e.g. braking early or later in front of an intersection.

The idea for the temporal aspect of the application is inspired by the concepts
of [56] summarized in Fig. 9.4. The past state of the dynamic object and the
state of its environment (other dynamic objects, road layout) are combined to
a context-aware state of the dynamic object. This holds all information to derive
a probability distribution over possible actions which will lead to the new state
of the dynamic object. Since the state can be observed from measurements, these
observations give evidence on what actions have been taken and what part of
the constellation leads to this decision. This is the principle how behaviors and
interactions are estimated from traffic participant state observations.

TimeSlice

TimeSlice

environment.properties

action

dynamic_object.state

Y

dynamic_object.state context_aware_state

observation

observation

Figure 9.4: Bayesian temporal estimation principle inspired by Gindele [56]. The
object states are combined to context-aware states from which actions
are derived that result in a new object state. Object states can be ob-
served by noisy sensor measurements.

9.3 Application Specific Ontology

From the general DSL for the traffic domain (Chapter 5) an application specific
ontology has to be derived to represent the conditions of the application (Sec. 9.2).
From the entity and relation class structure of the DSL (Fig. 5.3) appropriate en-
tities and relations have to be chosen to be included in the application specific
ontology (Fig. 9.5).

For this application several entities and relations have to be included: The Auto-
matedVehicle and the RoadLayout correspond to the real world entities. The
RoadLayout includes the road hierarchy consisting of LaneSegments. Lane
Features do not have to be considered if the road layout is loaded from prere-
corded map data. The focus of this application lies on the details of the Dynamic
Object class. There, several relations describe the relationship between the
Route and Behavior of different dynamic objects and their environment.
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Figure 9.5: The necessary entities and relations comprise the ego vehicle, the road
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layout and the dynamic objects with a focus on routes and behaviors
and the relations between these. Note that react sTo is modeled as a
relation but is included in the relation decribedBy. This is possible
by replacing the react sTo relation by an entity. The relation is kept
because of simplicity.



9.3 Application Specific Ontology

9.3.1 Routes, Behaviors and Interactions

To understand the relevant relations, they are discussed seperately for infras-
tructure (lane segments) related behaviors and dynamic object related behaviors.
Fig. 9.6 shows a more detailed view with explicitly depicted has relations for a
single object and the two behavior sub classes. Reconcile that the goal is to es-
timate what dynamic object reacts to what scene object. The probabilities of the
relationships are unknown, so each object can possibly react to any object. Thus,
to start estimating, any possibly probable relationship has to be modeled.

In Fig. 9.6a the reactsTo relation describes that a DynamicObject reacts to a
LaneSegment. If the existence probability of this relation is high, there has to be
a behavior with high probability that matches this reaction. The describedBy
relation connects the react sTo relation to all behaviors that (would) realize this
reaction. The has relation of the DynamicObject connecting the Behavior
includes the existence probability that can be estimated by observations. The
existence probability of the reaction is then a sum over all existence probabilities
of behaviors describing this reaction. Simultaneously an existence probability
of routes can be estimated as a sum over all reactions that are related to lane
segments in the route. Additionally, to define the behaviors, the lane segment
properties have to be considered, which can be accessed by the relation chain
through the reactsTo relation.

The behaviors related to dynamic objects are modeled similarly (Fig. 9.6b). There,
the reactsTo relation relates to another DynamicObject (instead of a Lane
Segment) but is again described by one or many behaviors. The properties of
the behavior are dependent on the relative position of the dynamic objects and
the relation between the routes they are driving on. The ontology structure allows
again the summation for route probability and reaction probability.

In Fig. 9.6¢ it is shown how the existence probability of vehicles on routes is actu-
ally derived from both, the InteractionBehaviors and the RoadBehaviors.

9.3.2 Relative Attributes

The relations among dynamic objects, between dynamic objects and road ele-
ments and among road elements allow to integrate attributes that are related to
both involved entities (subject and object). Examples are given in Fig. 9.7.

The relative attributes can be offered in sub class definitions of the relations but
will be used depending on the application and the desired precision.
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Q described_by.has.existence D)

DescribedBy
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(a) Sub class RoadBehavior for reac- (b) Sub class InteractionBehavior for re-
tions to LaneSegments. actions to DynamicObjects.

ReactsTo

S~
@ described_by.has.existence )
_—

S
<
=
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(c) Both sub classes combined.

Figure 9.6: The two behavior sub classes for reactions to infrastructure (Lane
Segment) and reactions to other traffic participants (DynamicOb—
ject). The overall existence probability of a relation that a Dynamic
Object Has a given Route is calculated by all reactions to dynamic
objects and infrastructure on this route.
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Figure 9.7: Examples of relative attributes depending on the combination of two

entities.
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9.3.3 Gating for Complexity Reduction

The ontology only describes the relations between entities in the application. The
actual dependencies of class attributes can be modeled very differently, depend-
ing on the desired precision or focus.

For example, because of all the possible behaviors, routes and interactions a pre-
cise estimation considering any possible constellation would have an exploding
complexity: For a situation with no dynamic objects and n routes (Fig. 9.8) there
is a possibility for np * ng * ng * (no — 1) interactions. An object will not inter-
act with itself (= no — 1) but objects can interact on the same route, e.g. when
following each other.

No no*(no-l)

I
DynamicObject ReactsTo

| InteractionBehavior |
| nO nO 1) nR*nR |
RelatesTo

R

RelatesTo

Figure 9.8: If all possible behaviors are instantiated a scene with no dynamic ob-
jects and np routes leads to no * ng * ng * (np — 1) interactions.

An exemplary 3-way bidirectional intersection (no one-way streets) has 6 differ-
ent routes. A situation with 4 vehicles leads to 4 %6 x 6 x 3 = 432 interactions (1728
interactions on a 4-way intersection). The higher the number of routes and the
higher the number of vehicles, the more this becomes a crucial problem, while
the majority of interactions has a very low probability of becoming probable. If
the precise calculation of the interaction probability is expensive it is obvious that
this will lead to a high computational overload.

An efficient inference algorithm detects the configurations that tend to a low joint
probability early, and tries to avoid them. The technique of Gating known from
multi target tracking (Sec. 2.6.6) can be applied here (Fig. 9.9).

A map matching algorithm can give a prior on the route existence by compar-
ing the vehicles’ lateral distance and orientation difference to the involved lane
segment geometry [5]. This is a simple implementation of the DynamicObject-
drivesOn-LaneSegment and DynamicObject-has-Route relations. Instan-
tiating this for all vehicle-route combinations allows estimating a basic probabil-
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Gating
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...relates_to.type
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Figure 9.9: Sub models for gating: Map matching and interaction selection.
Thresholds on the resulting existence probabilities allow discard-
ing unlikely relations.
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ity for all route existence probabilities. Using thresholds on these results allows
discarding many unlikely hypotheses. In the case of the 3-way intersection the 6
possible routes usually reduce to 1 or 2. For actual interaction estimation only this
subset of vehicle route relations has to be instantiated at all. Analogously from
the relation types between routes (Fig. 9.10), a prior on the existence of interac-
tions can be derived and thus the number of ReactsTo instances and induced
Behaviors can be reduced.

(a) Cross (b) Merge (c) Diverge (d) Follow (e) None

Figure 9.10: The five types of route relations Cross, Merge, Diverge, Follow and
None are used to reduce instances of the reactsTo relation. The
routes (green, red) can be derived from the road layout (cyan). [9]

9.3.4 Single Shot and Integrated Temporal Model Approach

After having reduced the number of instances to instantiate, the actual precise
interaction estimation can be solved in different ways. The main basic differ-
ence is if the temporal estimation is integrated into the interaction estimation or
separated (Fig. 9.11). In the separated case, inference can be implemented in a
modular way, separating the temporal tracking of object hypotheses from a static
single shot evaluation of the compressed object states. In the integrated case, the
temporal filtering is directly part of the interaction estimation. The interaction
estimation is then handled in the temporal changesTo relation using environ-
ment related transition models which lets the state estimation also profit from the
higher scene understanding.

The two approaches are discussed separately in Sec. 9.4 and Sec. 9.5. Each ap-
proach introduces attributes and sub classes to the basic ontology to fully define
the estimation problem, approach and inference method.
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InteractionEstimation

Condensed
object states

R .

MultiTargetTracking

(a) Single-shot approach: Interaction estimation is performed on a situation description
that is estimated by a preceding multi target tracking.

IntegratedFilter

(b) Integrated temporal approach: Interaction estimation is directly integrated into the
temporal filtering process.

Figure 9.11: Principles of the single shot and temporal approach.
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9.4 Single-Shot Approach

The goal of this approach is to estimate routes of traffic participants from sin-
gle compressed object states. Since there is little temporal information and no
temporal smoothing, the approach largely depends on a profound interpretation
of the relations between objects and the corresponding road layout. An accu-
rate parametrization of behavior models is crucial to this approach. They will be
learned from observations.

9.4.1 Behavior Estimation

The basic assumption in this approach is that the object observations include at-
tributes that depict the state of the object as well as attributes that correspond
to the actions. From the object state possible reasonable actions can be inferred
(depending on route and interaction hypotheses) that can then be compared to
the observed action (Fig. 9.12). It is also assumed that these observations are only
slowly changing over time. Thus the full state of one time slice (observed state
and observed action) can be used instead of two time frames (comp. Fig. 9.4).
This makes the interaction estimation independent of the temporal tracking and
can behave in a single-shot manner.

The context-aware state can consist of several relative attributes that are derived
from the relational structure (Sec. 9.3.2). For example for an interaction-related
behavior it can be useful to consider the velocities of the interacting objects, their
distance and time to a crossing point of their routes and the right of way at this
crossing point (Fig. 9.12). The reasonable action can be expressed as the object’s
velocity or acceleration.

On the one hand the potential function of the factor connecting the context-aware
state to the reasonable action is hard to parametrize by expert knowledge. On the
other hand there are parts like for example the relative velocity between vehicles
that can easily be described by a mathematical expression. Thus, it is desired to
select explicitly which dependencies are parametrized by experts and which are
learned from observations.

Subsequently the full class and attributes structure (Sec. 9.4.2) is built up before
learning is focused (Sec. 9.4.3).

9.4.2 Classes and Attributes

For each entity and relation in Fig. 9.5 an OOFGML class and sub classes are
defined with attributes and dependencies. An excerpt of the overall class struc-
ture is depicted in Fig. 9.13 focusing on the core functionality that is implemented
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BehaviorExistenceEstimator

environment.properties

dynamic_object.state

context_aware_state

reasonable_action
observed_action

observed
State
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Action

|

BehaviorEstimator

context_aware_state reasonable_action

InteractionBehaviorEstimatorExample

e

~

reasonable_action

Figure 9.12: Core behavior estimation idea in the single-shot approach. Context-
aware states are created from object state and environment, reason-
able actions are derived and compared against observed actions from
the same observations (top). The key component is the BehaviorEsti-
mator which has a complex dependency model depending on many
object and relation related attributes (bottom).
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Figure 9.13: Core behavior estimation functionality around the InteractionBehavior class. Details of the Interaction
BehaviorEstimator and sub classes are depicted in Fig. 9.14.
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around the InteractionBehavior class. The resulting behavior existence prob-
ability is handled as described in Fig. 9.6 to derive route and interaction proba-
bilities.

The core behavior estimation is handled in the factor that refers to the Inter-—
actionBehaviorEstimator class. Sub classes of the InteractionBehavior
class (CrossingBehavior and FollowingBehavior) refer to sub classes of
the InteractionBehaviorEstimator class. These are depicted in Fig. 9.14.

9.4.3 Learned Dependency Model

The behavior estimator base class infers reasonable actions from the context-
aware state vector. Different discrete interaction behaviors are defined for fol-
lowing another object and for crossing the route of another object as sub classes
(Fig. 9.14). This makes sense since following another vehicle means adapting the
velocity to keep a desired distance to the other vehicle over a longer time while
crossing another vehicle’s route means adapting the velocity to not be at the in-
tersection point at the same time. In both cases a reasonable velocity as well as a
reasonable acceleration is estimated in two separate factors.

The dependency model for the following behavior is inspired by algorithms for
adaptive cruise control, e.g. the reasonable acceleration is calculated from the po-
sition and velocity difference between the objects. The factors for inferring the
difference are defined by models described in Sec. 9.3.2 while the actual reason-
able acceleration and velocity are learned from observations.

The dependency model for the crossing behavior uses the distance and time to
the intersection point and is then completely learned from observations.

To learn the model parameters, observations are recorded and automatically la-
beled with actually driven routes. Then every data set, consisting of a single
time frame with given road layout, observed dynamic object state and ground-
truth driven route is shown to the learning algorithm (in the sense of Fig. 4.8):
Matching instances of the application-specific OOFGML model are instantiated,
evidences applied and the parameters for the desired dependency models are it-
eratively learned via Expectation Maximization [36]. The parameters are hold
fixed among multiple instances of the same class and stored in the class defini-
tion.

This way, a few discrete behavior models are learned from real traffic data and
can then be instantiated multiple times according to the constellation of a new
unknown traffic scene.
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Figure 9.14: Details of the InteractionBehaviorEstimator class. The two sub classes for following and crossing behav-
iors model the derivation of reasonable velocity and acceleration differently. The factors which parameters are
learned from observations are highlighted in orange.
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9.4 Single-Shot Approach
9.4.4 Inference Methods

Inference in this application is split into three steps:

1. The dynamic objects in the ego vehicle’s surrounding are temporally tracked
by a multi target tracking (comp. Sec. 2.6.6).

2. A gating step including map matching and interaction selection reduces
combinatorial complexity (comp. Sec. 9.3.3).

3. The actual inference of interactions and probable routes or learning of be-
havior model parameters is performed on a reduced subset of instances us-
ing the full detailed model (Sec. 9.4.2).

These steps can be modeled in a central class holding a set of processing scripts
that instantiate the corresponding sub models (Fig. 9.15).

ApplicationOntology

MultiTargetTracking Gating DetailedEstimation

4 A

1 3

infer() / learn()

SingleShotApproach

Figure 9.15: Inference and learning is split into three steps that are handled from a
central class SingleShotApproach. The numbers describe the se-
quence of instantiation and inference. All estimation models inherit
from the basic application ontology classes.

Together with the learning step the processing from sensor data to predicted
routes is described using the OOFGML as schematically depicted in Fig. 9.16.

9.4.5 Implementation Opportunities

One of the five implementation opportunities described in Sec. 3.4 has to be cho-
sen. Because of the three step inference (Sec. 9.4.4) it is obvious to choose a modu-
lar implementation similarly to the road layout estimation application (Chapter 8).
For the multi target tracking an established filter implementation is chosen. The gat-
ing is solved in a specialized implementation specialized for the two tasks. Finally
the actual interaction estimation is implemented as a FOPL.

201



9 Route, Behavior and Trajectory Estimation

Perception

Learned
Model Parameters

Behavior .
Learning Predicted
Routes

Interaction
Estimation

Class T
Definitions
Gating

A

>

Software

Environment
Model

Object
Tracking

. A
Car

Hardware Liagy Mg

Figure 9.16: System overview depicted as part of an automated vehicle (comp.
Fig. 2.3). Sensor data (e.g. from Lidar) and predefined maps are pro-
cessed by the three inference methods. The OOFGML class defini-
tions are the basis for all three steps. Behavior Learning updates the
model parameters while Interaction Estimation provides the predicted
routes as part of the environment model.

For the FOPL an existing implementation of the OPRML based on the discrete
inference library libDAI [93] is chosen. LibDAI offers various generic inference
algorithms, such as Loopy Belief Propagation [79], Fractional Belief Propagation
[131] and Generalized Belief Propagation [134]. Additionally, parameter learn-
ing is supported by Expectation Maximization [36]. The implementation has
the limitations of only being able to use discrete random variables and a lim-
ited number of aggregate slots (that can be mapped to multi-reference attributes
in the OOFGML (Sec. 3.5)). Therefore several adaptations are added when im-
plementing the application-specific OOFGML model (Fig. 9.13) in the OPRML
(Fig. 9.17):

e Low-dimensional discrete state spaces are defined for all attributes.
e All continuous evidences are discretized using fuzzy logic.

o The class structure is adapted to reduce the number of classes and instances
where reasonable, especially:

— The road behavior is integrated into the route, more precisely in the
has relation between the dynamic object and the route.

— Pollowing and crossing behaviors are combined in one Behavior class.
— The reactsTo relation is integrated in the behavior class.

— The has relation between dynamic object and behavior is integrated in
the behavior class.
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Figure 9.17: The OOFGML based definition (Fig. 9.13) is adapted to an object-
oriented probabilistic relational model (OPRM) implementation. The
dependencies in the factor graph are now replaced by arrows be-
tween attributes describing a Bayesian Network as described in
Sec. 2.4.
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e Behavior existence is not aggregated at the level of the existence attribute
but at the level of the reasonable action.

e The calculation of distance and time to the crossing point is shared among
behaviors and thus separated into a class related to a has-route relation and
the relation to another route.

e All dependencies are described as causalities, resulting in a Bayesian Net-
work (Sec. 2.4.2), which is the basis for the OPRM.

This implementation of the single shot approach is used in the evaluation in
Sec.9.6.1. The more integrated temporal filtering approach is described in Sec. 9.5.

9.5 Integrated Temporal Model Approach

The goal of this approach is to simultaneously estimate the route, current state
and future state of traffic participants in a single model. The evidences come
directly from noisy sensor input and the multi target tracking is integrated into
the estimation of behaviors, interactions and routes. The idea is that also basic
state estimation and prediction can profit from high-level knowledge.

9.5.1 Behavior Estimation

The basic idea of this approach is that the state of the dynamic object in the current
time slice can be derived by a transition from the context-aware state of the past
time slice (Fig. 9.18a, comp. Fig. 9.4). All different actions that can be taken result
in a mode of the next state variable. It is assumed that each of these modes be-
longs to one discrete behavior. The existence probability of the behavior matches
the weight of the mode in the state. The state can therefore be seen as a gaussian
mixture, similar to W, and V, in Fig. 2.15. Now each behavior describes a sep-
arate transition model (Fig. 9.18b) which puts the whole state transition into the
class of switching transition model filters (Sec. 2.6.5).

As described in Sec. 2.6.5 such a switching transition model can estimate the state
and the mode probabilities from observations simultaneously and the IMM filter
is an efficient implementation of such a model.

In the object-oriented description of this approach mode probability, state vari-
able and the transition model descriptions are grouped in the behaviors of each
dynamic object (Fig. 9.18c). The relation between objects give prior knowledge on
possibly probable behaviors and prepare relative attributes for the context-aware
state as described in Sec. 9.3.

Transition model properties can be derived from the context-aware state. For
example a curved road induces a reduced target velocity at a given point in the
curve or another dynamic object motivates a transition model that adapts the
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Transition
@ntext_aware_state Il context_aware_state

(a) The state at one timeslice can be derived via a transition function
from the previous time slice.

behaviors

context_aware_state

(b) The context_aware_state can be seen as Gaussian mixture
where every mode results from a separate transition model (with
parameters F') corresponding to one behavior.

measurement

(c) In an object-oriented manner transition model, state variable and
mode probability are grouped in the Behavior class.

Figure 9.18: Principle of behavior estimation in the integrated temporal model
approach.
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velocity to hold a desired distance to the object. Exemplary transition models are
given in Sec. 9.5.3.

9.5.2 Classes and Attributes

Figure 9.19: Behavior estimation approach integrated into the application ontol-
ogy. Key functionality is placed in the ChangesTo relation of every
DynamicObject entity. The objects’ context is incorporated in the
process_model_parameters as described in Fig. 9.20.

The ontology from Fig. 9.5 is used with a focus on the changesTo relation.
Fig. 9.19 shows the classes around this relation. Every dynamic object in the time
slices is embedded in the relational class structure of Fig. 9.6 with the existence
probability estimation of routes and interactions. Visible in Fig. 9.19 is the group-
ing of state hypotheses in the behavior class, the conversion to gaussian mixture
representations and gaussian representations of the state attribute as well as the
transition model including the different mode-dependent continuous transition
models and the discrete transition of the mode distribution. The inference via
IMM filter is described in Sec. 9.5.4.

9.5.3 Dependency Model

The important part of the dependency model is the definition of the different
behavior-dependent transition models. They are defined by the process_model_
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parameters attribute which can depend on relative attributes induced by the
ontology as depicted in Fig. 9.20.

Behavior

.— GaussianState
process_model_parameters

7T NS
N A W
// \

/| DynamicObject \ DynamicObject

//
va behaviors behaviors ))
/
//
. -
measurement

RoadBehavior

LaneSegment
RelatesTo N\
AN
\
\
FollowObjectBehavior

P -
{ describes.reacts_to :;

{ subject ) { object )
A Py R Py
P P
| state ) [ statelul
L \ / \ y

IDMParameterCalculation |‘

process_model_parameters

Figure 9.20: process_model_parameters are derived from relations given
by the application ontology. The FollowObjectBehavior imple-
ments the behavior for following another vehicle using the intelligent
driver model in IDMParameterCalculation.

For this work focus lies on longitudinal behaviors, such as braking in front of an
intersection or adapting the velocity to follow another vehicle. The state of the
dynamic objects can be described by the longitudinal position s; and velocity v;:

=2 ©.1)
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This is the basic input to the transition models which are all of this type:

Yt = f(y-1,0) 9.2)

with model parameters § which can include additional (context-aware) state at-
tributes.

Transition models are defined to represent the following longitudinal behaviors:

1. constant-ride
2. brake-for-turn
3. brake-for-stop
4. follow-object

5. unknown-behavior

The constant-ride and unknown-behavior behavior will be implemented by the con-
stant velocity transition model, the brake-for-turn and brake-for-stop behavior will
be implemented by the target velocity transition model and the follow-object be-
havior will be implemented by the intelligent driver model.

These transition models are defined in the following.

Constant Velocity Model

The Constant Velocity (CV) model is used to describe the constant-ride and the
unknown-behavior behavior. It is known from many basic filter applications and is
based on the physical formula

s =389+ v-At. (9.3)

The transition matrix F' from Equ. 2.96 is set to

1 At
Foy = (0 1 ) (9.4)
and the process noise covariance ¥, is defined as
0.5 - At? 0.5- A2\ "
Yoy = ( At ) g ( At ) . (9.5)

Then ¢ can be seen as the allowed acceleration of the vehicle. If the CV model
is used as single model to fit the whole process, this value must be quite high
to match every acceleration and braking maneuver. Since in this approach this
model is applied to the constant-ride behavior, the noise must be much smaller to
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match the small velocity changes that happen while driving without interactions.
With a high variance it is used for the unknown-behavior behavior similar to the
zero mean, high-variance Gaussian outlier process in [124].

The complete CV transition model can be written as

1 At
Yy = (O 1 ) *Yt—1 + Wy (96)

with wy ~ Ng s, (w). Since it is a linear model the update rules from Table 2.2
can be applied during inference.

Target Velocity Model

For the brake-to-turn and brake-to-stop behavior the Target Velocity (TV) model is
introduced. Key idea is to calculate the necessary acceleration a; for reaching a
target state 2. The target state consists of a target velocity vy at a specific target
position sp. The target velocity is 0 in the brake-to-stop case and equals a specific
curve velocity in the brake-to-turn case. vy and sp can be loaded from map data
and calculated as relative attributes using the OOFGML ontology (Sec. 9.3.2).

Assuming constant acceleration from current time slice ¢ to the future target state
x7 leads to

2 2
Uy 1 — U

2. (ST - Stfl) ‘ (97)

ay =

This calculated currently best acceleration a; can be used as control input. With
the transition matrix Fry from the CV model (Equ. 9.4) the TV transition model

can be written as
1 At 0.5 At?
Y = (0 1) yt1+( At )~at—i—wt (98)

withw; ~ Mg, 1(w) and ¥p,,, defined analogously to the CV model (Equ. 9.5).
g can be used to allow derivation from the estimated acceleration a;.
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Note that y, depends on the velocity of the previous time slice quadratically via
a;. Hence, the system becomes nonlinear. Therefore, instead of simply using
the update rule 3 of Table 2.2 the Jacobian matrix J, is taken for the covariance

update:
(VAN (05 AR g, (9.9)
oy, = 0 1 Hoyy 4 At 2. (ST - /jlstfl) .
Zyt = Jtzytfl‘]tT (910)
with
8§t aét
a= % % o

O0si—1 Oviq

aiftl =1+ .(i;l__ ;:%3)2 At (9.12)

8?51 say ﬁ A 9.13)
3 2 _ 02

aif_tl - 2.1(};;_ sii)? At 9.14)

a?fjl = ﬁ A (9.15)

Intelligent Driver Model

For the follow-object behavior an adapted Intelligent Driver Model (IDM) is used.
The IDM was originally introduced by Treiber et al. [127] for microscopic simula-
tions. It is a longitudinal car following model that allows a (simulated) vehicle to
adapt its velocity to a leading vehicle. It is one way to consider the environment
when deciding about the motion of a dynamic object.

Therefore the following quantities are used from the context-aware state repre-
sentation:

sa(t) The longitudinal position of the dynamic object itself
va(t) The longitudinal velocity of the dynamic object itself
Asy(t) The position difference As(t) = sp(t) — sa(t) to the object in front
Avy(t) The velocity difference Av(t) = vp(t) — va(t) to the object in front
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Additionally these parameters describe the driving style and physical constraints
of the dynamic object:

Vo The target velocity

b A desired deceleration of the dynamic object

Umaz The maximum acceleration of the dynamic object
50 A minimum distance between the two objects

T A desired time head away between the two objects

An acceleration exponent. The higher this exponent, the higher the
slope of the acceleration of the dynamic object

Standard values for these parameters including parameters to drive in town or
on highway are given in [33, p.22] .

The original IDM is defined by

CL]DM(t) :[DM(SA<t),UA(t),SB(t),’UB(t)) (916)
va®\" [ salt) \?
S = N T

with a target distance s%(t), given by

(9.18)

s (t) = so + max (O,T Coa(t) — va(l) - Am(t))

2\/ Amazx b

This definition delivers proper acceleration values for physically reasonable in-
put. When using it in a transition model also hypotheses that are not physically
reasonable will be evaluated. If the distance between the objects is close to zero,
the acceleration gets unrealistically high. Similarly the model is not defined for
negative relative velocities. Therefore, the model has to be slightly adapted before
using it as a transition model.

The unrealistically high outputs are overcome by limiting a;p,(t) to a maximum
acceleration a,,,, and deceleration b,,,,:

a; = min (amaz, max (aIDM(t), —bmm)> (9.19)

This calculated currently best acceleration a; is used analogously to the target
velocity model to build up the IDM transition model:

1 At 0.5 At?
w=(p ) vt (P00 9.20)
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Figure 9.21: Additional classes define the inference method that is based on the
IMM filter principle. Single letter attribute names have been chosen
to emphasize the correlation to Sec. 2.6, especially IMMTimeS1lice
corresponds to the FFG in Fig. 2.15.
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9.6 Evaluation

9.5.4 Inference Methods

As already mentioned, the behavior-mode-dependent temporal component can
be seen as a switching transition model filter (Sec. 2.6.5). Efficient inference can
be achieved by using the principle of the IMM filter. Inference classes have to
be created analogously to the Kalman filter classes in Sec. 6.2.5. Fig. 9.21 shows
how corresponding inference classes can be stacked around the existing ontology
to describe the IMM filter inference schedule. Observation model, continuous
transition models and behavior mode distribution transition model are mapped
to the already defined dependency model.

The overall inference in this approach is split into two steps:

1. A gating step reduces combinatorial complexity when receiving new mea-
surements (comp. Sec. 9.3.3).

2. The actual inference of interactions and probable routes is performed on a
reduced subset of instances using the full detailed model based on multiple
IMM filters (Sec. 9.5.2).

These steps can be modeled in a central class holding a set of processing scripts
that instantiate the corresponding sub models analogously to the single shot ap-
proach in Sec. 9.4.4.

9.5.5 Implementation Opportunities

One of the five implementation opportunities described in Sec. 3.4 has to be cho-
sen. For this application a specialized implementation that matches the special re-
quirements is chosen. The gating is solved similarly as in the single shot approach
(Sec. 9.4). The actual interaction estimation is implemented in an object-oriented
fashion around the established filter principle of the IMM filter.

This implementation of the temporal filter approach is used in the evaluation in
Sec. 9.6.2 and Sec. 9.6.3.

9.6 Evaluation

The two approaches for route, behavior and trajectory estimation are chosen to
show the capabilities and applicability of the proposed OOFGML. Nevertheless,
also a look at the performance in the application’s field of research is taken.

The approaches are evaluated on different experiment setups to show their capa-
bility of predicting traffic participants’ routes, behaviors and future states as well
as estimating their current state. The following sections focus on different aspects
of the evaluated systems.
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9.6.1 Route Prediction from Object Constellations
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Figure 9.22: Experiment setup for route prediction from object constellations. [9]

The route prediction from object constellations was evaluated using the single
shot approach (Sec. 9.4) at a three-way bidirectional intersection consisting of a
straight priority road and a side road. The three-way intersection is depicted
in Fig. 9.22. Sensor data for learning behavior models was recorded from real
sensors of the test vehicle CoCar (cognitive car) [74] of the FZI Research Center
for Information Technology as well as from the open source traffic simulation
package SUMO [78]. Following [98] all recordings are divided into training and
test data in the ratio 3 : 1. Note that the data has to be separated on whole vehicle
track basis since the high correlation between consecutive time frames would
lead to falsely good results. The experiment setup and evaluation results are
described in detail in [9]. An excerpt is given here.

The output of the OPRM includes the route probabilities as well as the interac-
tion probabilities. The interactions are visualized as cyan connections between
objects and give an impression which interaction has a high impact on the route
decision (Fig. 9.23). To evaluate the route prediction, a threshold-based classi-
fier is applied, that delivers unsure if no route probability reaches the threshold.
If a route probability reaches the threshold the route is compared to the ground
truth route to obtain true and false classifications. Results during approaching the
intersection are given in Fig. 9.24. Comparing the results without considering
interactions (Fig. 9.24a) to the results with interaction detection (Fig. 9.24b) the
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following findings can be gathered which are also presented in a video'.

Interactions Allowing More Decisions

The number of correct route predictions has increased, especially in the range of
10 - 0 meters in front of the intersection (Fig. 9.24):

Interaction-dependent behavior models can help predicting the correct route in
situations where road-dependent behaviors are very similar for different routes.
Such a situation is given when a vehicle approaches an intersection from the side
street (Fig. 9.25), where the road-dependent behaviors for driving left or right are
very similar.

Looking at the internally estimated existence values for the instantiated route and
interaction classes, it can be stated that the improved estimation correlates with
the detected interactions (Fig. 9.26b).

This is substantiated by a separate experiment only concerning vehicles approach-
ing the intersection from the side road with traffic on one of the main road’s lanes
(Fig. 9.28a).

Video: url.fzi.de/interaction

Figure 9.23: Exemplary interaction detection and route prediction at an intersec-
tion. The cyan cubes show the estimated interaction potential. Ve-
hicle 14 is predicted as turning left because this is the only blocked
route while it is waiting. The route of vehicle 15 cannot be predicted
because the braking behavior is caused by the preceding vehicle. [9]
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Figure 9.24: Classification results by using a classifier with threshold of 53% de-
pending on the distance to the intersection. Detecting interactions,
more route predictions can be made in 10 - 0 meters to the intersec-
tion and false predictions can be reduced. [9]
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Figure 9.25: When a vehicle (1) approaches the intersection from the side street,

road-dependent behaviors for driving left or right are very similar.
Interactions (cyan cube) with other passing (route-blocking) vehicles
can help estimate the correct route (small cyan arrows). [9]
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Figure 9.26: Values of Route Existence nodes, color-coded by correct routes

(green) and false routes (red). The value of the Interaction Existence
node (blue) shows that the better result with interaction-dependent
behavior models (correct routes above threshold, false routes below
threshold) is correlated to the occurance of interactions. Adapted
from [9]
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Figure 9.27: When a vehicle (31) is braking because of a preceding vehicle it can
be falsely interpreted as braking for a turn if no interactions are con-
sidered. The detected interaction is visualized by the cyan cube. [9]

Table 9.1: Results of the four experiment configurations depicted in Fig. 9.28.
Threshold-based route decision within 5 meters in front of the inter-
section, without (w/0) and with (w) interaction-dependent behavior

models. [9]
Scenario Interactions false unsure true
. W/O 0(70 1 000/0 0(70
left/right 1%  49% 50%
. w/o 0% 11% 89%
left/straight 0% 2 98%
random w/o 2% 72% 26%
ando w 0%  48% 52%
real w/o 6% 18% 76%
A% 40/0 210/0 750/0
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wlo w w/o w wlo w wlo w

Figure 9.28: Four experiment configurations and their results for a threshold-
based route decision within 5 meters in front of the intersection,
without (w/0) and with (w) interaction-dependent behavior models.
From left to right: a) Entering the main street left or right, b) leaving
the main street with opposing traffic or staying straight, c) random
traffic on every route (details in Fig. 9.24), d) random traffic on real
sensor data. [9]

219



9 Route, Behavior and Trajectory Estimation

Interactions Avoiding False Decisions

A second result is that if interactions are considered, false route decisions can be
reduced in a large range before the intersection (Fig. 9.24).

When using only road-dependent behavior models, behaviors that are caused by
interactions can lead to false predictions. Such a situation is given in Fig. 9.27: If
a vehicle brakes in front of an intersection because of another vehicle, the brak-
ing behavior misleadingly results in a high probability for driving a turn. With
interaction-dependent behavior models this can be correctly explained by the in-
teraction: Both routes stay probable and fewer false decisions are made by the
threshold-based route decision.

9.6.2 Route Prediction with Interaction-dependent Motion
Models

The route prediction using interaction-dependent transition models was evalu-
ated using the test vehicle CoCar (cognitive car) [74] of the FZI Research Center
for Information Technology at a 4-way intersection. The high precision internal
state estimation sensor delivers accurate position measurements that can be used
as ground truth information. At the intersection 4 different maneuvers have been
recorded multiple times:

e 5x Turn right
5 x Turn left

5 x Straight
e 5x Stop

The temporal filter approach (Sec. 9.5) was used with 3 different behavior mod-
els:

e constant-ride (straight)
o brake-for-turn (turn)
e brake-for-stop (stop)

The estimated behavior is compared to the actually driven behavior (Fig. 9.29).
One second before reaching the intersection the three behaviors right, straight
and stop are correctly detected. Only turning left is mixed with the straight be-
havior. At this intersection the left turn can be driven with high velocity and
thus the fixed target velocity of the turn behavior does not map this behavior
precisely.

It can be seen that the environment-dependent motion models can be used to
estimate discrete behaviors of traffic participants if the behaviors are represented
sufficiently.
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Figure 9.29: Results of the route prediction. The route is predicted 1 second before
the intersection. Only driving the left turn is confused with driving
straight. Adapted from [6].
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Figure 9.30: Results of the localization (left) and state prediction 2 seconds ahead
(right). The approach using the proposed IMM filter is compared to
two basic Kalman Filters with Constant Velocity Model and Constant
Acceleration Model. [6]
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9.6.3 Interaction-dependent State Prediction

The experiment setup is the same as in Sec. 9.6.2 with the test vehicle CoCar, the
4-way intersection, 20 tracks and the three instantiated behavior models.

For evaluating the state estimation and prediction the results are compared to
two basic Kalman filters, one using a constant velocity model and one using a
constant acceleration model. In all three filters the same measurement noise of
0.1 m is assumed. For every run, the root mean square error (RMSE) is calculated
between the estimated value and the ground truth value from the high precision
reference sensor. The average RMSE over all 5 runs of one maneuver can be
compared to those of the two reference filters (Fig. 9.30).

In state estimation the new approach reduces the error from between 0.05 m and
0.25 m to a value that is lower than 0.03 m for all maneuvers. This already matches
the precision of 0.02 m of the reference sensor. For evaluating the prediction re-
sults, the estimated velocity and acceleration (if available) is used to predict the
state 2 seconds ahead. This value is then compared to the value of the reference
sensor at that time. The improvement is not that significant but the maximum
reduces from about 3.5 m (constant velocity) and 2.2 m (constant ccceleration) to
lower than 1.5 m.

This demonstrates that knowledge about environment-dependent behaviors in
the filtering process improves state estimation and prediction, especially in the
case of the advanced behaviors stop and turn-right based on the target velocity
transition model.

9.7 Conclusion

This chapter showed how traffic participant prediction can profit from the pro-
posed holistic modeling language.

9.7.1 Summary

The key points are:

e Compared to the related work the proposed traffic participant prediction
methods based on the OOFGML introduce a new degree of generalization.

e Most of the DSL description can be shared among the two shown approaches
including the basic relational idea, relative attributes and complexity-redu-
cing gating.

e The single shot approach separates interaction estimation from object state
estimation.
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e Hard to parametrize behaviors are learned on class level.

e The single shot approach can be implemented as discrete FOPL.

e The temporal filter approach integrates high level estimation with object
state estimation.

e Interaction-dependent transition models can represent different behaviors.

e The temporal filter approach is implemented as extended IMM filter.

e The evaluation shows promising results in route and behavior estimation
as well as in state estimation and prediction.

9.7.2 Used Language Properties

The key goal of presenting this application within this thesis is to exemplarily
show the usage of properties (Chapter 4) of the proposed language.
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Figure 9.31: Some of the language properties that are beneficial to the route, be-

havior and trajectory estimation application are highlighted.

In this application the following properties (Fig. 9.31) are beneficial:

e Classes and Instances (Sec. 4.1.3):

Just a little amount of classes is defined (Sec. 9.3) but instantiated multiple
times to represent complex situations (Sec. 9.3.3). They are directly matched
to OPRM classes in the single shot approach (Sec. 9.4.5).
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e Inheritance (Sec. 4.1.4):

Different sub classes of the behavior class (Sec. 9.4.2, Sec. 9.5.3) are used
in the same application. They inherit from a parent class describing their
common interface that allows an unspecialized view on them from other
classes.

Hybrid Probability Distribution Representations (Sec. 4.2.2):

The discrete and continuous state representations are handled differently
in the two approaches: In the single shot case the continuous states are
quantized at the transition from temporal filtering to interaction estima-
tion (Sec. 9.4.5). In the integrated temporal filter case (Sec. 9.5.4) discrete
and continuous states are handled like in an IMM filter.

Parameter Learning (Sec. 4.2.4):

Behaviors of human traffic participants are hard to model by expert knowl-
edge. The parameters on class level are learned from instantiations with
varying number of traffic participants (Sec. 9.4.3).

Relation Representation (Sec. 4.3.1):

The relations between real world entities are modeled in the ontology (Sec.
9.3). During inference their existence is estimated in several estimation steps
(Sec. 9.4.4 and Sec. 9.5.4) using the technique of gating (Sec. 9.3.3).

Note that besides the here highlighted properties also all other properties have
been used in this application. They were already discussed in detail in the preced-
ing chapters. Combining all these properties in one language makes the OOFGML
a perfect foundation for solving the complex task of traffic participant predic-

tion.

With its capability to also solve other estimation tasks (e.g. road layout estimation
(Chapter 8) or localization (Chapter 7)) it is natural to use it also for a higher
integration of all different estimation tasks in the field of autonomous driving.
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This chapter concludes the findings of this work. A summary is given in Sec. 10.1
and an outlook to future research directions in Sec. 10.2.

10.1 Summary

This thesis focuses on a holistic approach to complete situation estimation in the
traffic domain, especially for predicting future actions of traffic participants.

Traffic participant prediction is a challenging task that requires a complete and
consistent understanding of the environment. Therefore, the estimation has to
be seen as a holistic problem considering all processing steps from sensor data
acquisition and basic estimation tasks to high level estimation of unobservable
behaviors of traffic participants.

The goal of this thesis is to contribute to the development process of future au-
tonomous driving systems by proposing an overall probabilistic modeling lan-
guage for estimation problems and a domain specific specialization to the traffic
domain. The approach has been applied to selected autonomous driving applica-
tions to show its feasibility and potential to advance towards human estimation
capabilities.

A probabilistic modeling language called OOFGML has been introduced. It is the
first modeling language that successfully implements the four ideas:

e A factor graph models probabilistic dependencies in a unified way.

e Scalability is achieved by object orientation including classes and instances
and inheritence based on a class hierarchy.

e Message passing schedules and hybrid state space representations allow
efficient inference.

e Relationships that are hard to define by expert knowledge are mastered by
locally applied machine learning.

These four directions induce a lot of properties that are all available in the pro-
posed modeling language.

It has been shown how the generic language can contribute to the development
of applications: Generic estimation algorithms including inference methods can
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be described using the language. Depending on the domain, a domain specific
language can be defined that includes entities and relations representing the real
world objects and characteristics. For a specific application solving a task in the
domain an application specific model can be derived from the domain specific
language and the generic algorithm classes. Thus, the unified modeling language
allows sharing and exchange of modules and inference methods between differ-
ent applications.

This has been shown on exemplary applications in the traffic domain that cover
a wide field of estimation tasks including ego vehicle localization, static envi-
ronment perception and advanced estimation of interactions between dynamic
objects. In ego vehicle localization it has been shown how advanced interpreted
dynamic objects can be used to estimate the ego vehicle’s pose relative to a road
map more precisely than before. The static environment perception has focused
on local dependencies to derive a coherent road layout from various environment
measurements incorporating a hybrid state space. In interaction estimation object
orientation has been utilized to achieve scalability and temporal dependencies
have been modeled to estimate discrete vehicle behaviors as well as continuous
vehicle states simultaneously.

The detailed description of these applications has shown that all estimation tasks
are describable by the proposed language in a consistent way.

The language contributes to the development of autonomous driving systems
bringing them closer to human performance. This includes capabilities like cre-
ating a coherent scene understanding from multiple environment measurements,
estimating basic knowledge from scene understanding and deriving advanced
interpretations from temporal context. These capabilities are covered by the ex-
emplary applications that have been chosen to evaluate the proposed language.

While the applications show how the proposed language eases the development
of future autonomous driving systems, the language can also be applied to other
estimation tasks outside the traffic domain.

10.2 Outlook

The introduced modeling language opens a new field for subsequent research.
Some of the possible directions are described in the following.

Deeper Integration of Estimation Tasks

Some of the estimation tasks in the autonomous driving domain have been con-
sidered in separate applications. A next step is to integrate them in one model.
The complete model should reach from sensor data to estimated environment
and driving decisions. Inference methods have to be chosen and integrated into
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the model. Finally, the model can be the concept for a whole system architecture
for automated vehicles.

Hierarchical Learning

The class hierarchy offers new opportunities for parameter learning. In this work
it has been shown that behavior models can be learned from real world obser-
vations but varying behaviors make it difficult to find precise parameters. The
variation depends largely on the vehicles” physical capabilities but also on the
drivers” mental constitution. While the second is hard to detect in advance, the
physical capabilities could be derived from the vehicle class. An open question is
how these insights can be stored efficiently in the class hierarchy. For example if
a sports car is detected and a behavior is observed, should the new knowledge be
stored in the sports car class, the car class, the vehicle class or the dynamic object
class?

Deeper Learning

The language can be applied to other fields of learning. Recent deep learning
methods can be integrated in factors. A first concept is given in [3]. It is an open
question how learning algorithms can be adapted in a generic way to support the
probabilistic graphical model. For example the deep learned model could pro-
vide additional information about the inner uncertainties to give a detailed prob-
ability distribution to the probabilistic model. Or the deep learned model sup-
plies additional complementary information via an integrated additional learn-
ing task. The graphical model has the potential to integrate safety criterias based
on expert knowledge into otherwise non-transparent approaches based on ma-
chine learning.

More Relational Database Features

The proposed definition of the language supports direct references via attributes.
Often classes have to be referenced explicitly during instantiation although the
information would be already available in the existing relations. An extension
towards more SQL-like queries is conceivable, such as for example "reference the
behavior class, that describes the reaction of object A to object B". Additionally if
focusing on relational components and the inference of additional relations from
observed relations new efficient data structures can be introduced. A first idea of
an efficient tensor representation is presented in [10].
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Language Specification, Tooling and Software Integration

The proposed language is a basis for describing all estimation tasks in a coher-
ent way. The language can already help developers to model complex systems
with deep integration of various estimation tasks. Nevertheless the expert still
needs a not to be underestimated amount of knowledge to not step into pitfalls.
It is desirable to support the whole development process by specialized tooling.
A graphical editor can support the construction of the domain specific graphical
model. Knowledge about possible inference methods could be presented to the
user and replacement rules (like in the Kalman filter example) can be automati-
cally applied.

All constraints and restrictions should be supported by the language definition.
Existing formal languages and tooling as for example the UML and correspond-
ing editors can be utilized in more detail than it has been only rudimentarily
started in this work. Automatic consistency checks will be possible and code
generators can directly produce efficient machine code from the graphical de-
scription.

The same base graphical model can be used for automated vehicles with different
capabilities including sensor setup and computing performance. If the language
is supported in all layers from graphical interface down to the online running
system it is also imaginable that an online performance assessment (similar to
the one presented in [13]) can utilize the class structure to dynamically switch
to the currently best fitting technology. Increased robustness is one of the core
features to make the dream of self driving cars come true.
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