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Abstract: The integration of multiple energy sectors, such as electricity, heating, and mobility,
into an overall smart energy system is a key part of the journey towards a fossil-free energy system.
Exploiting the operational flexibility of these sectors will lead to the efficient operation of the integrated
smart energy system. The use of heat pumps for the heating supply based on renewable energy
resources is reasonable in many cases. Combining heat pumps with thermal storages, these systems
can offer flexibility to an energy system based on fluctuating power generation. Flexibility can be
defined as the capability to adapt an initial schedule in order to support the energy system in terms
of the provision of power reserve. In this paper, an approach to determine the time-dependent
flexibility potential of a heat pump system is presented. The optimization-based approach considers
all the constraints resulting from the system topology, including the required heating demand of the
connected building. As a result, constraints for the integration of the available flexibility in a modified
Optimal Power Flow (OPF) calculation are given. These lead to the ensured feasibility of the flexibility
provision without considering the system boundaries of the heat pump site within the OPF.

Keywords: heat pump operation; time-dependent flexibility; sector integration; smart energy systems

1. Introduction

In Germany, the majority of renewable energy generation is connected to the distribution grid, with
the highest share of renewable generation sites in low voltage grids [1]. Hence, high power generation
occurs in the low voltage grid, leading to inversions of the power flow from low to medium voltage
grids if the power consumption is low in times of high generation. In the same time, the coupling of
the heat, mobility, and electricity sectors leads to an increasing power consumption in distribution
grids because of growing numbers of electric vehicles or electric heaters [2,3]. These developments
might lead to operation situations exceeding the capacity of the grid. Consequences of this might be
line overloads or voltages out of specified voltage ranges, with the latter occurring more frequently [1].
To guarantee an operation within the specified limitations, a conventional approach is the extension of
the grid. A competing approach to grid extension measures is the consideration of system flexibility.

In [4], literature about energy system flexibilities is reviewed, concluding that there is a high
interest in this topic. Amongst others, storage options, demand side management, and flexibility in
generation as types of system flexibility are discussed [4].

Considering the distribution grid, especially demand side management as well as generation
curtailment are of importance. The authors of [4] highlight the flexibility potential of thermal energy
storages in residential heating systems.
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The authors of [5] give an overview of investigations tackling the potential of residential
power-to-heat as a technology to support the integration of renewable energies. Model formulations
for heat pumps and thermal storages as well as an overview of actual research questions and findings,
e.g., the integration of renewable energy generation or reducing CO2 emissions, are presented.
Following the conclusion of the authors of [5], for the integration of renewable energy generation
technologies, heat pumps may play a major role of the residential power-to-heat options.

The authors of [6] report on an increasing role of heat pumps in the heating sector based on data
about sold heat pumps in Europe in 2010–2015. Furthermore, the results of the analysis of pathways
for transforming the German energy system [7] indicate that heat pumps are the dominating heat
supply technology for buildings in 2050. The technology of heat pumps is an open field of research.
The authors of [8] present the research activities of recent years, focusing on better coefficients of
performance (COP) in heat pump systems based on vapor compression through, e.g., multistage cycles
or improving compressor performance.

The consideration of heat pump system flexibility to support the grid through the adjustment
of the power consumption schedule is tackled in different ways. One approach in making use of
the flexibility regarding the time of electricity consumption of heat pumps combined with a thermal
storage is to implement a schedule optimization. In [9–11], the flexibility potential of heat pumps
is investigated by comparing different optimization strategies of the heat pump operation schedule
and a temperature controlled schedule. Another possibility is the integration of the flexibility option
as a power generator in an optimal power flow (OPF) calculation, as it is done for battery storages
in [12,13]. Both options presume that the power consumption scheduling is done with respect to
optimal grid operation states and internal system boundaries only.

As these operation strategies might collide with the interests of the owner in a cost-optimized
operation strategy, [14] investigates a multi-use approach, in which a cost optimization takes place,
while the flexibility option is still operating in a grid supporting manner. Therefore, the approach of [15]
is implemented, in which a modified OPF setting calculates capacity corridors, which limit the power
consumption for each grid connection point. Subsequently, an optimization of the power consumption
schedule within this corridor, e.g., a cost optimization, is executed for each connection point.

In [16], the flexibility of different energy hubs is also integrated in a modified OPF calculation,
but the sequence is the other way round. First, an optimization for each grid connection point
is done. Then, the power consumption at grid connection points, where flexibility is available,
is changeable within the OPF calculation. In the OPF itself, no information about the system boundaries
of grid-connected systems is available. This leads to an iterative approach, as a second schedule
optimization follows the OPF calculation, which maximizes the provision of the demanded flexibility
considering the system boundaries of the individual energy hub.

Avoiding additional iterations requires an adequate constraining of the flexibility use to the
available flexibility at an individual energy hub. In this paper, these constraints are formulated for the
flexibility provided by an individual household with a heat pump and photovoltaic (PV) system on
the rooftop.

Starting with the model of a household with heat pump system, which provides the flexibility,
the time-dependent availability of flexibility is investigated. Constraints for the modified OPF are
formulated in such a way that, in the OPF, no state equations or system boundaries of the heat pump
system are applied. The remainder of this paper concludes with the application of the found constraints
in the modified OPF calculation. Therefore, a case study with a 12-bus low voltage distribution grid is
set up, into which the household with a heat pump system is connected.
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2. Methods

2.1. Model of an Exemplary Heat Pump

The aim of this work is to define the flexibility offered by a heat pump while in operation. Therefore,
a heat pump model, indicating the specific characteristics, is set up. To investigate the flexible power
of a heat pump system, the critical parameters are the electric power consumption as well as the
COP, which describes the relation between thermal power output and electrical power consumption.
The parameters of one exemplary heat pump are approximated in order to be able to quantify the
flexibility offered by this particular heat pump dependent on its scheduled power consumption.

Considering an on/off controlled heat pump, the electrical power consumption of the compressor
depends on the mass flow as well as the difference in enthalpy of the fluid before and after compression,
which is proportional to the temperature difference presuming a constant heat capacity cp of the
refrigerant. A throttle within the thermodynamic cycle of heat pumps controls the mass flow,
guaranteeing superheating in the evaporator [17]. The dependency of the power consumption Pel of
the exemplary heat pump “WPL 34” [18] (p. 5) on the sink temperature ϑst as well as the temperature
difference between ambient ϑa and sink temperature ϑst is linearly approximated (Equation (1)).

Pel = 1.9374− 0.0056·(ϑst − ϑa) + 0.1081·ϑst (1)

The temperature dependency of the COP of the heat pump is implemented in Equation (2),
following the linear modelling in [11] based on the idea of modelling the COP depending on the
temperature difference between source and sink temperature [19]. Again, the data of the exemplary
heat pump “WPL 34” [18] (p. 5) is approximated. The absolute value is adjusted to model a heat
pump with a thermal energy generation that is at minimum 3.5 times higher than the electrical energy
input in one year. This is done since in Germany incentives promote air/water heat pumps with this
specification [20].

COP = 6.2− 0.0608·(ϑst − ϑa) (2)

Considering the heat pump as the sole heat generator of a private household, the flexibility
is provided through combination with a thermal storage, which is supposed to be perfectly mixed
and contain 800 liters of water. Simplified, the storage temperature is supposed to equal the sink
temperature ϑst. With the difference between this temperature ϑst and the minimum allowed one ϑmin

of the storage, which is set to 45 ◦C in this model, the calculation of thermal energy in the storage in
kWh with the mass m and specific heat capacity of water c is possible (3). The maximum possible
temperature of the storage and sink is set to 66.5 ◦C, resulting in a maximum possible thermal energy
in the storage of approximately 20 kWh.

Est = m·c·(ϑst − ϑmin) (3)

With these Equations (1)–(3), a steady state simulation model of a heat pump system with discrete
time steps ∆t is set up. Assuming a storage without thermal losses and installed in parallel with the
heat pump and heating system of the household, the thermal energy in the storage Est,t before the time
step t and the in and out flowing thermal energy while ∆t add up to the thermal energy Est,t+1 after the
time step. This leads to the following Equation (4), with Pth,d,t representing the thermal power demand
in time step t:

Est,t+1 = Est,t + Pel,t·COPt·∆t− Pth,d,t·∆t (4)

To simulate the operation schedule of a heat pump within a household, an optimization problem
is set up. The simulated system includes a household with the heat pump as a sole heat generator,
combined with storage to offer flexibility. Furthermore, the household has a photovoltaic (PV) site on
the rooftop. The aim of the heat pump scheduling is to maximize the self-consumption of the electricity
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generated by the PV system to reduce the electricity costs. Considering losses that might occur with
start-ups, a cost optimization would also result in promoting full cycles of thermal storage.

This behavior of the heat pump is approximated by the objective function (5), containing a penalty
factor for switching and promoting run times while electricity is generated with the PV system.
Avoiding a mixed integer optimization, the model allows continuous states of the heat pump power
but privileges the maximum power state. Hence, the optimal solution contains some forbidden states,
which are manually set to an allowed state afterwards.

min
Pel,t

(−d1·

T∑
t=1

P2
el,t + d2·

T−1∑
t=1

(
Pel,t − Pel,t+1

)2
− d3·

T∑
t=1

PPV,t·Pel,t) (5)

To provide an exemplary schedule of the heat pump, the optimization runs for the simulation
horizon T of 24 h, considering the heat demand Pth,d and PV production PPV as perfectly predicted
values. As the second term in the objective function promotes power consumption between the on and
off states, whereas the first term privileges maximum power consumption, they need to be differently
rated. To reach adequate schedules with mostly full cycles of the thermal storage and still promoting
self-consumption four sequenced optimizations of the same time horizon are executed. The parameters
are ∆t = 15 min, d1 = 4, d3 = 75, and d2 reducing by one in each optimization run being d2 = 3; 2; 1; 0
in the four runs. The result of one optimization forms the starting vector of the following one with
changed d2.

Additional constraints (6) and (7) represent the upper and lower bounds of power consumption
and storage capacity. Est,max,t represents the maximum storage capacity of 20 kWh in all time steps
besides the last one. Est,max,t=T is set to 10 kWh to avoid maximum energy in the storage at the end of
the optimization horizon, which is promoted by the objective function. As the variable Est,t describes
the energy in the storage at the beginning of time step t, constraints (8) and (9) are implemented to
guarantee an allowed state of storage after the last time step in the considered simulation horizon.
Constraint (10) further specifies the charging state of the storage in the initial considered time step.
E0 is set to zero on the first simulated day and adopts the charging state after the last simulation step
of the previous day, if more than one day is simulated.

0 ≤ Est,t ≤ Est,max,t f or ∀t ∈ T (6)

0 ≤ Pel,t ≤ Pel,max f or ∀t ∈ T (7)

Est,t=T ≥ Pth,d,t=T·∆t (8)

Pel,t=T = 0 (9)

Est,t=1 = E0 (10)

2.2. Implementation of the Heat Pump Flexibility

The authors of [21] define flexibility as the changing of electrical power consumption or generation
as a reaction to an external signal, providing ancillary services. Following this definition, available,
flexible power per time step represents the possibility of a heat pump to change the electrical power
consumption compared to the initial schedule.

Based on the two-step optimization of [16], the required flexibility in the operation time of
a heat pump is calculated. In this two-step approach, a cost optimization of individual energy hubs,
e.g., the household with a heat pump in this example, is the first optimization step. In the second
step, the required flexibility in active power consumption is calculated with the scheduled power
consumption as input. As in this calculation no information about the availability of flexible power is
included, another re-optimization of the individual energy hubs is needed, trying to adapt the new
schedules with the required flexibility [16].
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The contribution of this work is to characterize the time-dependent availability of flexibility
depending on the scheduled power consumption, aiming a two-step optimization based on the
one in [16] but without the need of energy hub re-optimization. The flow chart of this two-step
optimization is shown in Figure 1.
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The objective of the included optimal flexibility calculation is to minimize flexibility use while
guaranteeing a grid state within the limitations (e.g., voltage limitations). Therefore, a grid-connected
heat pump, as an exemplary flexibility option, communicates its power consumption schedule Pscheduled
and its possibilities to change this schedule P f lex, available.

To keep the calculation of the optimal flexibility use as simple as possible, P f lex, available should
suffice as input for a calculation of flexible power use. Thus, neither physical system equations nor
states of the heat pump system are integrated in this calculation. Accordingly, the calculation of the
resulting schedule of the heat pump, with the required flexibility as input and under consideration of
the physical states as well as the boundaries of the system is the next step in Figure 1.

3. Results

Limiting factors for load shifting potential of heat pumps are heat demand, the size of the heat
pump, and storage, as well as the dynamic properties of the system [6]. In addition, the load shifting
potential depends on different states of the system, as described in [11].

The first step of the characterization of time-dependent availability of flexibility is a definition of
limiting factors and a characterization of interdependencies between different time steps. Secondly,
the available, flexible power of a heat pump system is integrated in a modified OPF calculation, in
which the state of the heat pump as well as the heat pump model are not considered.

3.1. Available, Flexible Power of the Heat Pump System

Figure 2 shows the scheduled power consumption resulting from the optimization problem of the
heat pump model for one day. Based on this and considering only the power restrictions of an ON/OFF
controlled heat pump, the available, flexible power in positive and negative direction depends only
on the actual state of the heat pump. If the heat pump is on in a specific time step, only negative,
flexible power of the amount of actual power consumption is available, as only switching off is possible.
The same is valid if the heat pump is off, as only switching on is possible (see Figure 2 thin lines).

The heat pump is defined as the sole heat generator of the household, and resident’s comfort
should not be affected by the flexibility supply. Therefore, a consideration of the thermal energy in the
storage in addition to the power restriction is obligatory. The thermal energy in the storage effects the
available, flexible power in two ways. Firstly, negative, flexible power is only available if switching off
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is possible and the storage can cover the thermal demand of the time step. Positive, flexible power
is available if switching on is possible and does not lead to an exceeding of the maximum storage
capacity. Secondly, the thermal energy in the storage is a linkage between time steps, since power
generation in one time step affects the thermal energy in the storage for the following time steps.
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As the heat pump is the sole heat generator, power consumption can be shifted in time but is
not replaceable. Therefore, a use of flexibility in one time step results in changing availabilities for
flexibility in the following time steps. Figure 3 illustrates this.
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Figure 3. Thermal energy in the storage with (dashed line) and without the use of flexible power.

Figure 3 shows a comparison of two possible courses of thermal energy in the storage in one day.
The continuous line shows the scheduled energy in the storage, while the dashed one shows the
resulting energy after the use of flexibility at 12:30. The use of flexibility without further changes in the
heat pump schedule leads to negative values of thermal energy in the storage at 15:00, implying that
the thermal demand cannot be covered anymore. Since this is a forbidden state, the use of flexibility
at 12:30 results in the need for another change in the heat pump schedule before the storage reaches
negative values.
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Equation (1) points out the dependency between the electrical power consumption of the heat
pump and the temperatures of heat source and sink. As the temperature of the heat sink is varying
with changing thermal energy in the storage, the use of flexibility in one time step (see the filled area
in Figure 4) induces a changing power consumption of the heat pump in the following time steps
(Figure 4).
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after using flexibility.

In addition, considering the heat pump power Equation (1) and the storage Equation (3), the thermal
energy generation also varies with different temperatures and electrical power consumptions.
This indicates a dependency between the electrical power consumption, the thermal energy generation
and the operating point of the heat pump.

In summary, the previous investigations describe the available, flexible power of a heat pump
according to the planned power consumption, the energy in the storage and the operating point of the
heat pump. Table 1 represents the limitations of the time-dependent flexibility of a heat pump and the
parameters they depend on.

Table 1. Summary of limitations of the time-dependent flexibility of heat pumps.

Limitation Dependency

Time-dependent
flexibility

Power limitation Planned power consumption

Energy limitation Linkage of use of flexibility in different time steps

Operating parameters State/State history of heat pump

3.2. Formulation of Constraints for the Modified Optimal Power Flow Calculation

The above-mentioned flexibility limitations and their dependencies need to be expressed state
independent for the integration in the modified OPF calculation.

As sown in Figure 5, this is done with additional inequality constraints. The power limitation is
dependent on the scheduled power consumption, which is a fixed input parameter for the modified
OPF. Therefore, this limitation is a static constraint of the following structure (11).

P f lex,min,t ≤ xp, f lex,t ≤ P f lex,max,t (11)
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For an ON/OFF controlled heat pump, the switching operation is the only possibility to change
the power consumption. Thus, an integer variable xi, f lex,t indicates the use of flexibility. Multiplication
with the available power of the time step P f lex,t yields to the flexible power of the time step xp, f lex,t (12).

xp, f lex,t = xi, f lex,t·P f lex,t (12)

The energy limitation, however, forms a dynamic constraint, as this limitation is a linkage of the use
of flexibility of different time steps. Hence, the energy constraint has to consider the required flexibility
of all time steps until the current one. Comparable to [12], this dynamic constraint is implemented by
a summation of flexibility in all time steps. For each time step t, there are two additional inequality
constraints: one for the lower and one for the upper energy limitation (13), (14). Eth describes the
thermal energy generation within a specific time step.

t∑
k=1

xi, f lex,k·Eth,k ≤ Emax − Et+1; with : Eth,k =

{
−Eth,k, i f xp, f lex,k < 0
Eth,k, i f xp, f lex,k > 0

(13)

t∑
k=1

xi, f lex,k·Eth,k ≥ −Et+1; with : Eth,k =

{
−Eth,k, i f xp, f lex,k < 0
Eth,k, i f xp, f lex,k > 0

(14)

As stated above, the actual power consumption and thermal energy generation is dependent on
the state as well as the state history. Regardless of the fact that the actual state of the heat pump is not
part of the modified OPF calculation, the availability of the requested flexibility from the heat pump
system must be ensured. To this end, an adaptation of the power and energy constraints (12)–(14) is
necessary, as the time-dependent flexibility depends on the state and state history (see Table 1).

Therefore, P f lex,t is set to the minimum available, flexible power Pmin,t, if it is positive in time
step t (15). With a given ambient temperature ϑa,t, the minimum flexible power is a minimization of
Equation (1) with respect to the storage temperature ϑst.

Pmin,t(ϑa,t, ϑst) = min
ϑst

(Pel) (15)

This ensures the availability of the flexible power. In addition, the real power consumption of
the heat pump, considering the actual state of the system, forms a valid solution to the modified OPF
problem. In case of the use of negative, flexible power, P f lex,t is set to the scheduled power consumption
Pscheduled,t, as switching off means a reduction of planned power consumption by this amount of power.

The procedure for the energy constraints is similar as the minimum (16) and maximum (17)
thermal energy generation per time step are used to calculate the change of thermal energy in the
storage by the use of flexibility. The minimum and maximum thermal energy generation are the
extreme values of the quadratic equation of ϑst, using Equations (1) and (2) and presuming that the
ambient temperature is known.

Eth,min,t = min
ϑst

(
Pel,t·COPt·∆t

)
(16)
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Eth,max,t = max
ϑst

(Pel,t·COPt·∆t) (17)

Summing up, Table 2 represents the used additional constraints for the implementation of the
available, flexible power of a heat pump system in the modified OPF calculation.

Table 2. Additional constraints added to the modified OPF calculation to constrain the use of flexibility
to the available flexibility.

Power limitation

xi, f lex,t ∈ {0; 1}

xp, f lex,t = xi, f lex,t·Pmin,t ∀xp, f lex,t > 0

xp, f lex,t = xi, f lex,t·
(
−Pscheduled,t

)
∀xp, f lex,t < 0

Energy limitation

t∑
k=1

xi, f lex,k·Eth, f lex,k ≤ Emax − Et+1

∀t ∈ T
with:

Eth, f lex,k =

{
−Eth,min,k, i f xp, f lex,k < 0
Eth,max,k, i f xp, f lex,k > 0

∑t
k=1 xi, f lex,k·Eth, f lex,k ≥ −Et+1

∀t ∈ T
with:

Eth, f lex,k =

{
−Eth,max,k, i f xp, f lex,k < 0
Eth,min,k, i f xp, f lex,k > 0

4. Case Study

The method for the optimal calculation is based on the contributions in [8]. The aim of this
approach is to calculate the cheapest combination of several flexibility options to enable a grid
operation compliant to relevant standards, such as EN 50160, which defines the voltage characteristics
of electricity supplied by public networks. In this contribution, a linearized power flow calculation
method is used to reduce the required computation time of the modified OPF approach. This approach
is based on the Implicit Linearization of the Power Flow Manifold developed by the authors of [22].
The state variables describing the power network are voltage magnitudes υ̃, voltage angles θ and
active P and reactive Q loads at the buses. Injections, such as photovoltaic systems are modelled as
negative loads. All buses, except the slack bus, are modelled as PQ-buses.

x = [υ̃ θ P Q]T (18)

Using these state variables, the linear model given in (19) can be formulated. In this case the flat
voltage solution is chosen as linearization point x∗. The matrix Ax∗ contains the linearized power flow
equations that describe the load flow between the buses. In Cx∗, the derivatives of the bus models
(PQ-buses and slack bus) are given. As the shunt admittances are set to zero, dx∗ contains the load
profile values of the buses. [

Ax∗

Cx∗

]
(x− x∗) =

[
0

dx∗

]
(19)

To include the flexibility of controllable units such as heat pumps in the calculation, the load at
bus i is decomposed. The load at bus i is the sum of the initially scheduled load resulting from the cost
optimization and the flexible load P f lex,i.

Pscheduled,i + P f lex,i − Pbus,i = 0 (20)
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The objective function of the modified OPF approach is to minimize the required flexibility.
This results in a quadratic objective function (21). This function is the sum of the squared flexible loads
weighted by an individual cost term Ci. The state variable xp, f lex,t can be calculated according to (12).

J(x) =
T∑

t=1

N∑
i=1

Ci·x2
p, f lex,t,i (21)

The flexible load variables P f lex and Q f lex also need to be included in the linear power flow
constraints. First, the additional state variables need to be included in the state vector. Since the flat
start solution is chosen as linearization point, x∗f lex is a zero vector (23).

x f lex =
[
P f lex Q f lex

]T
(22)

x∗f lex = 0 (23)

The consideration of the flexible load variables in the power flow equations leads to the linear
equality constraints given in (24). With x f lex being added to the state vector, the matrix on the left hand
side needs to be modified. With the addition of the matrix Dx∗ the active and reactive flexible power is
added to the bus models. The matrix Dx∗ extends the PQ-bus models. All entries are zero except for
the entries at the positions of the state variables included in x f lex.[

Ax∗

Cx∗

0
Dx∗

] [ x
x f lex

]
−

 x∗

x∗f lex

 = [
0

dx∗

]
(24)

In addition to this system of linear equality constraints and the limitation of the available flexibility,
the following bounds (25) and (26) are included as further constraints. The limitation of the available
flexibility is described in the previous sections.

Vmin ≤ Vbus ≤ Vmax (25)

− Pi j,max ≤ Pi j ≤ Pi j,max (26)

The first bound limits the voltage magnitude values Vbus to the values in accordance to the relevant
standard. In the following simulations, this range is set to +/−5%. The second bound limits the power
flows Pi j to the technically feasible values to avoid line overloading.

For an investigation of whether the deduced constraints limit the availability of the flexibility
in the way that the heat pump system of the household could realize the resulting schedule, the test
grid from [16] is set up. This grid consists of one low voltage feeder with 0.4 kV nominal voltage and
12 buses. Bus 1 represents the slack bus, at which the exchange power with the overlaying medium
voltage grid is calculated. Figure 6 shows the grid of the case study.
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Figure 6. Test Case: 12-bus low voltage grid.

The household with a heat pump is connected to bus six of the low voltage feeder, and, at bus ten,
there is a PV site with 25 kWpeak. The input data for the modified OPF calculation, as described in
the previous section, are the planned power consumption or feed in for a specified time horizon TOPF
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at each grid connection point. These are exemplary time series for households developed with [23]
and PV power generation, as well as the simulated time series for the household with PV site and the
heat pump at bus six. The optimization variables in this OPF calculation are the flexible active power
consumption xp, f lex,t at buses six and ten, as these two buses are the only ones providing flexibility.
For bus ten, the provision of flexibility means the curtailment of the power generation at the PV site,
whereas at bus six flexibility is provided through a change of the heat pump schedule. Aiming to
integrate as much renewable power generation as possible, the flexibility provision with the heat pump
is preferred through lower costs.

The top of Figure 7 shows that the state of the ON/OFF controlled heat pump is the same in
all time steps in the feasible schedule realized by the heat pump and the schedule calculated by the
modified OPF method. In time steps, in which the heat pump is switched on to provide flexibility, the
OPF considers the minimum possible power consumption for this time step. Therefore, the scheduled
power consumption calculated with the OPF is lower than in the realized schedule (e.g., at 12:00 or
12:30 in Figure 7, top and middle).
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Figure 7. Top: a comparison of the resulting schedule from the OPF calculation and the related feasible
schedule calculated with the method described in Section 2; middle: a comparison of the modified OPF
input time series of power consumption and consumption with the use of flexibility for bus six; bottom:
the same as in the middle for bus ten.

Figure 8 shows that without the use of flexibility, the voltage exceeds the required voltage range at
bus ten between 11:15 and 13:00. In two time steps within this period (at 12:00 and 12:30), it is possible
to use the flexibility of the heat pump to prohibit the curtailment of the power generation by the PV
site at bus ten (Figure 7 middle and bottom). All the other switching procedures, activated through
the modified OPF calculation (Figure 7, middle), aim to fulfill the energy constraints, introduced in
Section 3.2 to guarantee a feasible solution with the heat pump being switched on and off, as defined
by the OPF calculation.

The changing states of the heat pump in former time steps lead to different temperatures in
the storage. Therefore, even in time steps without changing states of the heat pump, the power
consumption differs from the initial schedule (e.g., Figure 7 (top) at 14:00, 17:30 as well as at 21:15).

However, Figure 8 shows that, in this case, the use of flexibility leads to a voltage within the
required range in all considered time steps. The heat pump system connected to bus six can deliver
the requested flexible power and adjusts the schedule. With the implementation of the described
constraints, it is possible to consider only available flexible power in the modified OPF calculation.
The calculated on and off states of the heat pump are therefore feasible considering the constraints at
the household site. Minor differences in power consumption occur because of differing temperatures
in the storage.



Energies 2020, 13, 903 12 of 13

Energies 2020, 13, x FOR PEER REVIEW 11 of 13 

 

modified OPF method. In time steps, in which the heat pump is switched on to provide flexibility, 
the OPF considers the minimum possible power consumption for this time step. Therefore, the 
scheduled power consumption calculated with the OPF is lower than in the realized schedule (e.g., 
at 12:00 or 12:30 in Figure 7, top and middle). 

 

Figure 7. Top: a comparison of the resulting schedule from the OPF calculation and the related feasible 
schedule calculated with the method described in Section 2; middle: a comparison of the modified 
OPF input time series of power consumption and consumption with the use of flexibility for bus six; 
bottom: the same as in the middle for bus ten. 

Figure 8 shows that without the use of flexibility, the voltage exceeds the required voltage range 
at bus ten between 11:15 and 13:00. In two time steps within this period (at 12:00 and 12:30), it is 
possible to use the flexibility of the heat pump to prohibit the curtailment of the power generation by 
the PV site at bus ten (Figure 7 middle and bottom). All the other switching procedures, activated 
through the modified OPF calculation (Figure 7, middle), aim to fulfill the energy constraints, 
introduced in Section 3.2 to guarantee a feasible solution with the heat pump being switched on and 
off, as defined by the OPF calculation.  

The changing states of the heat pump in former time steps lead to different temperatures in the 
storage. Therefore, even in time steps without changing states of the heat pump, the power 
consumption differs from the initial schedule (e.g., Figure 7 (top) at 14:00, 17:30 as well as at 21:15). 

 

Figure 8. Comparison of voltage time series at bus ten with planned power consumption at all buses 
and with usage of flexibility at bus six and ten (dashed line). 

However, Figure 8 shows that, in this case, the use of flexibility leads to a voltage within the 
required range in all considered time steps. The heat pump system connected to bus six can deliver 
the requested flexible power and adjusts the schedule. With the implementation of the described 

Figure 8. Comparison of voltage time series at bus ten with planned power consumption at all buses
and with usage of flexibility at bus six and ten (dashed line).

5. Discussion

The investigation of the available flexibility deduced from an optimal schedule of a heat pump leads
to abstract constraints for the implementation in a modified OPF calculation. With these constraints, it
is possible to consider only the available, flexible power of the heat pump system in the modified OPF
calculation. Knowledge about the actual state of the flexibility providing system is not required in
the modified OPF calculation as the abstract inequality constraints ensure that the calculated use of
flexibility can be provided.

Further investigations need to characterize the impact of changing power consumption because of
the different storage temperatures in changed schedules. In addition, this investigation considers only
perfect foresight. The handling of uncertainties in power consumption planning and the prediction of
PV power generation is left for future work.
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