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Abstract (English)

Medical images can be difficult to interpret. Not only because spotting structures and

potential changes therein requires experience and years of training, but also because

the presented measurements are often ambiguous at heart. This is fundamentally a

consequence of the fact that medical image modalities such as MRI or CT only provide

indirect measurements of the underlying molecular identities. The semantics of an image

therefore generally have to be inferred from the provided larger context, which is often

insufficient to pin down the interpretation to a singular, unique hypothesis.

Similar scenarios exist in natural images, where the contextual information required to

resolve potential ambiguities can be limited, for example due to occlusions or measurement

noise. Additionally, overlapping and vague class definitions may contribute to an ill-

defined or diverse solution space. The presence of such image ambiguity can hamper the

training and the performance of machine learning models. Moreover, current models are

mostly unable to capture complex-structured diverse outputs and instead are forced to

retreat to sub-optimal singular solutions or indiscernible mixtures.

This can be particularly problematic when scaling classifiers to dense prediction tasks

such as semantic segmentation. Semantic segmentation is concerned with predicting a

class label for every pixel in an image. This type of detailed image interpretation also

plays an important role in diagnosing and treating diseases such as cancer: Tumors are

often detected from MRI or CT scans and their precise location and delineation are

crucial steps in grading them, preparing potential biopsies or planning focal therapy.

This clinical interpretation of images, but also the perception of our surroundings in

everyday tasks such as driving, are currently performed by humans. As we move towards

incorporating learning based systems in our decision making processes, it is of course

vital to adequately model the tasks at hand. This involves capturing the uncertainties

that exist in the models’ predictions, including such that can be attributed to image

ambiguities.

This thesis proposes various ways in which to deal with ambiguous image evidence.

First we examine the current clinical standard of subjectively grading prostate lesions
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visible on MRI, that is associated with high inter-rater variability due to the ambivalent

MRI appearance of lesions. We find simple machine learning models and even just

quantifying certain MRI parameters to perform better than an individual subjective

expert, suggesting a promising potential to improve grading by quantifying the process.

Second, we probe the currently most successful segmentation architecture on a

strongly ambiguous dataset that was collected and annotated during clinical routine. Our

experiments show that the standard segmentation loss function may be sub-optimal when

applied in scenarios with heavy label noise. As an alternative we learn a model of the

loss with the aim of allowing for the co-existence of plausible segmentation predictions

during training. We observe performance improvements when employing this training

scheme to the otherwise identical deep neural network and find even more pronounced

relative gains in the small data limit. Lack of data and labels, high levels of imaging and

label noise and ambiguous image evidence are particularly common on medical image

datasets. This part of the thesis thus exposes some of the vulnerabilities that standard

machine learning techniques may face in the light of these particularities.

Current segmentation models such as the ones considered above are constrained to

produce a singular prediction. This contrasts the observation that a group of graders

typically produces a set of diverse but plausible annotations when given ambiguous image

data. In order to lift this model constraint and allow for the appropriate probabilistic

treatment of the task, we go on to develop two models that predict a distribution over

plausible annotations rather than predicting just a singular deterministic one. The first

of the two models combines an encoder-decoder model with the framework of variational

inference and employs a global latent vector that encodes the space of possible annotations

for a given image. We show that this model improves upon the performance of the

considered baselines and yields well calibrated uncertainties. The second model refines the

formulation of the first in that it introduces a more flexible and hierarchical latent space

decomposition that allows to capture segmentation variability at different image scales.

This increases the granularity of segmentation detail that the model can produce and

allows to model independently varying locations and scales, which we show on the task

of segmenting individual object instances. Both of these novel generative segmentation

models allow to sample diverse and coherent image segmentations if admissible, which

contrasts with prior work that is either deterministic, models uncertainty at the pixel

level or suffers from an under-complex modelling of the appropriate diversity.

In conclusion, this thesis is concerned with machine learning applications for the

interpretation of medical images: We expose the possibility to increase the standard

of care in clinical practice by a quantitative use of image markers which are currently



vii

subjectively factored into diagnoses, we show the potential utility of a new training scheme

to remedy the apparent susceptibility of the standard segmentation loss formulation

to strong label noise and we propose two novel probabilistic segmentation models that

are able to accurately capture the distribution over admissible labels given an image.

These contributions can be seen as steps towards a more quantitative, principled and

uncertainty-aware analysis of medical images -an important quest as learning based

systems will find increasing integration into clinical workflows.





Abstract (German)

Medizinische Bilder können schwer zu interpretieren sein. Nicht nur weil das Erkennen

von Strukturen und möglichen Veränderungen Erfahrung und jahrelanges Training bedarf,

sondern auch weil die dargestellten Messungen oft im Kern mehrdeutig sind. Fundamental

ist dies eine Konsequenz dessen, dass medizinische Bild-Modalitäten, wie bespielsweise

MRT oder CT, nur indirekte Messungen der zu Grunde liegenden molekularen Identitäten

bereithalten. Die semantische Bedeutung eines Bildes kann deshalb im Allgemeinen

nur gegeben einem größeren Bild-Kontext erfasst werden, welcher es oft allerdings nur

unzureichend erlaubt eine eindeutige Interpretation in Form einer einzelnen Hypothese

vorzunehmen.

Ähnliche Szenarien existieren in natürlichen Bildern, in welchen die Kontextinforma-

tion, die es braucht um Mehrdeutigkeiten aufzulösen, limitiert sein kann, beispielsweise

aufgrund von Verdeckungen oder Rauschen in der Aufnahme. Zusätzlich können überlap-

pende oder vage Klassen-Definitionen zu schlecht gestellten oder diversen Lösungsräumen

führen. Die Präsenz solcher Mehrdeutigkeiten kann auch das Training und die Leistung

von maschinellen Lernverfahren beeinträchtigen. Darüber hinaus sind aktuelle Modelle

ueberwiegend unfähig komplex strukturierte und diverse Vorhersagen bereitzustellen und

stattdessen dazu gezwungen sich auf sub-optimale, einzelne Lösungen oder ununterschei-

dbare Mixturen zu beschränken.

Dies kann besonders problematisch sein wenn Klassifikationsverfahren zu pixel-weisen

Vorhersagen wie in der semantischen Segmentierung skaliert werden. Die semantische

Segmentierung befasst sich damit jedem Pixel in einem Bild eine Klassen-Kategorie

zuzuweisen. Diese Art des detailierten Bild-Verständnisses spielt auch eine wichtige Rolle

in der Diagnose und der Behandlung von Krankheiten wie Krebs: Tumore werden häufig

in MRT oder CT Bildern entdeckt und deren präzise Lokalisierung und Segmentierung

ist von grosser Bedeutung in deren Bewertung, der Vorbereitung möglicher Biopsien oder

der Planung von Fokal-Therapien. Diese klinischen Bildverarbeitungen, aber auch die

optische Wahrnehmung unserer Umgebung im Rahmen von täglichen Aufgaben wie dem

Autofahren, werden momentan von Menschen durchgeführt. Als Teil des zunehmenden
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Einbindens von maschinellen Lernverfahren in unsere Entscheidungsfindungsprozesse,

ist es wichtig diese Aufgaben adequat zu modellieren. Dies schliesst Unsicherheitsab-

schätzungen der Modellvorhersagen mit ein, mitunter solche Unsicherheiten die den

Bild-Mehrdeutigkeiten zugeschrieben werden können.

Die vorliegende Thesis schlägt mehrere Art und Weisen vor mit denen mit einer

mehrdeutigen Bild-Evidenz umgegangen werden kann. Zunächst untersuchen wir den

momentanen klinischen Standard der im Falle von Prostata Läsionen darin besteht,

die MRT-sichtbaren Läsionen subjektiv auf ihre Aggressivität hin zu bewerten, was

mit einer hohen Variabilität zwischen Bewertern einhergeht. Unseren Studien zufolge

können bereits einfache machinelle Lernverfahren und sogar simple quantitative MRT-

basierte Parameter besser abschneiden als ein individueller, subjektiver Experte, was ein

vielversprechendes Potential der Quantifizerung des Prozesses nahelegt.

Desweiteren stellen wir die derzeit erfolgreichste Segmentierungsarchitektur auf einem

stark mehrdeutigen Datensatz zur Probe der während klinischer Routine erhoben und

annotiert wurde. Unsere Experimente zeigen, dass die standard Segmentierungsverlust-

funtion in Szenarien mit starkem Annotationsrauschen sub-optimal sein kann. Als eine

Alternative erproben wir die Möglichkeit ein Modell der Verlustunktion zu lernen mit

dem Ziel die Koexistenz von plausiblen Lösungen während des Trainings zuzulassen.

Wir beobachten gesteigerte Performanz unter Verwendung dieser Trainingsmethode für

ansonsten unveränderte neuronale Netzarchitekturen und finden weiter gesteigerte relative

Verbesserungen im Limit weniger Daten. Mangel an Daten und Annotationen, hohe

Maße an Bild- und Annotationsrauschen sowie mehrdeutige Bild-Evidenz finden sich

besonders häufig in Datensätzen medizinischer Bilder wieder. Dieser Teil der Thesis

exponiert daher einige der Schwächen die standard Techniken des maschinellen Lernens

im Lichte dieser Besonderheiten aufweisen können.

Derzeitige Segmentierungsmodelle, wie die zuvor Herangezogenen, sind dahingehend

eingeschränkt, dass sie nur eine einzige Vorhersage abgeben können. Dies kontrastiert

die Beobachtung dass eine Gruppe von Annotierern, gegeben mehrdeutiger Bilddaten,

typischer Weise eine Menge an diverser aber plausibler Annotationen produziert. Um

die vorgenannte Modell-Einschränkung zu beheben und die angemessen probabilistische

Behandlung der Aufgabe zu ermöglichen, entwickeln wir zwei Modelle, die eine Verteilung

über plausible Annotationen vorhersagen statt nur einer einzigen, deterministischen

Annotation. Das erste der beiden Modelle kombiniert ein ‘encoder-decoder’ Modell mit

dem Verfahren der ‘variational inference’ und verwendet einen globalen ‘latent vector’, der

den Raum der möglichen Annotationen für ein gegebenes Bild kodiert. Wir zeigen, dass

dieses Modell deutlich besser als die Referenzmethoden abschneidet und gut kalibrierte
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Unsicherheiten aufweist. Das zweite Modell verbessert diesen Ansatz indem es eine

flexiblere und hierarchische Formulierung verwendet, die es erlaubt die Variabilität der

Segmentierungen auf verschiedenden Skalen zu erfassen. Dies erhöht die Granularität

der Segmentierungsdetails die das Modell produzieren kann und erlaubt es unabhängig

variierende Bildregionen und Skalen zu modellieren. Beide dieser neuartigen generativen

Segmentierungs-Modelle ermöglichen es, falls angebracht, diverse und kohärente Bild

Segmentierungen zu erstellen, was im Kontrast zu früheren Arbeiten steht, welche

entweder deterministisch sind, die Modellunsicherheiten auf der Pixelebene modellieren

oder darunter leiden eine unangemessen geringe Diversität abzubilden.

Im Ergebnis befasst sich die vorliegende Thesis mit der Anwendung von maschinellem

Lernen für die Interpretation medizinischer Bilder: Wir zeigen die Möglichkeit auf den

klinischen Standard mit Hilfe einer quantitativen Verwendung von Bildparametern, die

momentan nur subjektiv in Diagnosen einfliessen, zu verbessern, wir zeigen den möglichen

Nutzen eines neuen Trainingsverfahrens um die scheinbare Verletzlichkeit der standard

Segmentierungsverlustfunktion gegenüber starkem Annotationsrauschen abzumildern und

wir schlagen zwei neue probabilistische Segmentierungsmodelle vor, die die Verteilung über

angemessene Annotationen akkurat erlernen können. Diese Beiträge können als Schritte

hin zu einer quantitativeren, verstärkt Prinzipien-gestützten und unsicherheitsbewussten

Analyse von medizinischen Bildern gesehen werden -ein wichtiges Ziel mit Blick auf die

fortschreitende Integration von lernbasierten Systemen in klinischen Arbeitsabläufen.
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Chapter 1

Introduction

When looking to examine the inner state of a body part, a surgical intervention would

almost always allow the best look at the state of affairs. Performing invasive procedures

on the target region or taking biopsies from it is however often extremely unattractive

due to associated health risks and patient discomforts. Instead, non-invasive diagnostic

approaches that leave a patient’s physique intact and reduce potential long term impacts,

are highly sought after [Bickelhaupt et al., 2018].

A powerful toolkit in this respect is of course offered by the discipline of medical

imaging. Using MRI or CT scanning technology allows a glimpse of the spatial composition

of living tissue with only little risk for a patients health if any at all [Hill et al., 2016].

These modalities offer 3D images by indirectly measuring certain tissue properties in

every voxel, e.g. measuring the absorption of X-rays allows to infer the tissue density

[Schlegel et al., 2018]. MRI and CT scanning find wide-spread clinical application, for

example in cancer diagnosis [Weinreb et al., 2016], i.e. the detection and grading of lesions,

and also during cancer therapy, where a pixel-precise localization of tissue boundaries

can be critical for radiation therapy [Nikolov et al., 2018] or tumor growth monitoring

[Kickingereder et al., 2019].

From a naive point of view, the interpretation of medical images may appear straight

forward, often akin to something like a tissue density map [Schlegel et al., 2018]. Squeezing

clinically actionable information out of them however, is hard - a task that for example

radiologists are only entrusted with after many years of training. Among the challenges

are the often only very subtle changes in appearance that abnormal tissue displays and

the fact that medical images really only indirectly measure the underlying molecular

identities [Borofsky et al., 2017]. For this reason the images alone are often ambiguous

and their interpretation may only be narrowed down by further evidence such as the one

provided by blood tests or -if need be- biopsies [Prostate Cancer UK, 2018].



2 Introduction

The current clinical standard relies on radiologists’ giving a qualitative assessment

of medical images and if required producing hand-drawn outlines of the structures of

interest [Weinreb et al., 2016]. As a consequence of the subtleties and ambiguities in

the images, even a set of very experienced clinicians and radiologists often shows large

variability in their diagnoses [Muller et al., 2015, Pierre et al., 2018, Rosenkrantz et al.,

2016b]. To give a real example, two CT scans of potential lung lesions are shown in

Fig. 1.1: The 4 clinical experts asked to assess them not only produce strongly varying

segmentations of the lesions but also disagree more fundamentally on whether or not the

scan shows a veritable lesion in the first place [Armato et al., 2011].

Figure 1.1 | Ambiguity in Lung CT Scans. Subfigures a) and b) show two different cases
of potential lung abnormalities alongside 4 expert segmentations (enumerated in green). Two
of the experts in a) disagree on whether the scan even shows an abnormality. The provided
segmentations in both a) and b) vary strongly. The examples are part of the LIDC-IDRI
dataset [Armato et al., 2011].

In clinical practice, grading and segmenting is typically performed by a singular

reader, which is why the range of plausible interpretations is not usually known and this

uncertainty is hence not taken into account in a quantitative way. This is in part due to

the fact that annotating a scan by even a single reader, much less by several, may be an

almost prohibitively laborious process, as manual screening and segmentation can take

up to several hours per scan, which is e.g. the case when segmenting head CT scans for

therapy planning [Nikolov et al., 2018].

The perhaps obvious choice is aiming to support or automate the process, e.g. by using

machine learning algorithms to grade and segment the images, and thus ideally quantify

the assessments and their associated uncertainties. The recent advances in computer

vision algorithms such as deep convolutional neural networks (CNNs) certainly appear
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ripe for applications in this domain [De Fauw et al., 2018, Isensee et al., 2019, Nikolov

et al., 2018]. At a closer look however, they do not allow for a direct drop-in solution in

the high-stake decision making process found in medical image analyses: CNNs excel,

when trained on large-scale image data with high-quality annotations [Hénaff et al., 2019]

and minimal image ambiguity [Rupprecht et al., 2017], e.g. little class confusions and

visual occlusions etc. Real world data in contrast, can however suffer from measurement

noise, exhibit domain shifts [De Fauw et al., 2018], come with noisy annotations [Borofsky

et al., 2017, Bratan et al., 2014], be very scarce or scarcely labelled [Ross et al., 2018],

and, as is often the case with medical images, may present ambiguous image evidence

only [Armato et al., 2011, Kitzing et al., 2015].

Contributions All of these problems are important domains to study in order to increase

robustness and reliability of deep neural networks in real world applications. In this thesis

we investigate how diagnoses and in particular the segmentation of tissues or objects,

can be algorithmically handled when the image evidence is (partially) inconclusive.

As a first step towards an improved quantification of the grading of lesions, we investi-

gate which image features derived from different MRI sequences may hold discriminative

power in the grading of potential tumors. The idea is, that already bare image-derived

features or comparatively simple machine learning algorithms may guide clinical decisions

that are currently mostly based on qualitative assessments. Such approaches could thus

reduce some of the variance and lead to improved decisions. This could have direct clinical

impact, in that difficult but aggressive cases could be spotted more reliably and benign

cases could be spared invasive biopsies. In Finding Discriminative MRI Features

(Chap. 5), we make the following contributions:

• We develop a simple machine learning based approach to classify the clinical

significance of prostate lesions based on MRI-derived features using a dataset and

biopsy reference standard that was collected in clinical practice and thus reflects

realistic conditions.

• We assess the method on a held-out dataset having fixed its working point so as

to reflect the radiologist’s sensitivity on the training set and observe an increased

performance compared to the radiologist.

• We rank the importance of the employed features and substantiate the discriminative

power of a specific MRI-derived feature largely refuting the utility of additional

modalities and features as found in the literature.
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• Finally, we analyze the utility of distinguishing between anatomical zones of the

prostate, which are handled differently in clinical guidelines. To this end we assess

the performance of separately trained models and find a combined model to perform

superior.

This work relied on the availability of expert-provided lesion segmentations, which

are laborious to produce manually and suffer from high inter-rater variability. Because

segmentations of anatomical structures of the prostate and even more importantly the

segmentation of lesions have numerous clinical applications, such as the guidance of

targeted biopsies and treatments such as focal therapy [Borofsky et al., 2017], reliable

machine learning models could have a large impact in supporting clinical decisions.

However, as is yet to argue, MRI images tend to be particularly ambiguous in the case of

the prostate [Hameed and Humphrey, 2010, Kitzing et al., 2015, Nagel et al., 2013, Sakala

et al., 2017]. As a consequence, the training labels provided by radiologists can exhibit

significant levels of seeming inconsistencies, acting as noisy training supervision. This

can have negative bearings on the training process of deep networks, as even plausible

network produced segmentations that deviate from the noisy ground truth get ‘punished’

in the training. We hypothesize that an otherwise identical segmentation network should

perform better when trained with a procedure that allows for the co-existence of multiple

segmentation modes. To this end we investigate the utility of a learned model of the

loss in form of a separate, adversarial network. In Mitigating Label Noise through

Adversarial Training (Chap. 6), we make the following contributions:

• We compare training of a state-of-the-art segmentation model with the standard

cross-entropy loss against training it in a mini-max game against an adversarial

discriminator.

• We observe increased performance when training adversarially, which we hypothesize

could be attributed to reduced gradient conflicts in the noisy label setting.

• Lastly, we find further increases in relative performance when reducing the number

of training examples, which seems in line with the hypothesis, that adversarial

training might mitigate label noise and suggests particular utility in the small

dataset regime.

This approach aims at mitigating the negative effects that a diverse ground truth can

have on the training of discriminative deep models. In order to capture the uncertainty

over segmentations, the models however need to learn the distribution over plausible

segmentations that a given image admits. For this purpose we developed a model
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that combines a state-of-the-art segmentation model with variational inference, allowing

to produce image-conditional distributions over segmentations. We refer to the model

presented in Learning Image-Global Distributions over Segmentations (Chap. 7),

as the Probabilistic U-Net and make the following contributions:

• We propose a model that can induce complex distributions over segmentations

including the occurrence of very rare modes, and is able to learn calibrated proba-

bilities of segmentation modes.

• Our framework provides consistent segmentation maps instead of pixel-wise proba-

bilities and can therefore give a joint likelihood of modes.

• Sampling from our model is computationally cheap.

The Probabilistic U-Net is a global latent variable model, which works well for images

with singular objects and segmentation variations that are mostly global in nature. When

several objects or lesions are depicted and ambiguities are present on different scales and

scopes a global model can be too constraint. For these reasons we introduce a hierarchical

version that is able to model complex output interdependencies on various image scales.

In Learning Multi-Scale Distributions over Segmentations (Chap. 8), we propose

the Hierarchical Probabilistic U-Net and make the following contributions:

• We propose a generative model for semantic segmentation able to learn complex-

structured conditional distributions equipped with a latent space that scales with

image size.

• Compared to prior art, strongly improved fidelity to fine structure in the models’

samples and reconstructions.

• Improved modelling of distributions over segmentations including independently

varying scales and locations, as demonstrated in its ability to generate instance

segmentations.

• Automatic learning of factors of variations across space and scale.

Both probabilistic models allow to produce coherent samples from the distributions

that they parameterize. This could be useful in various ways: A clinician could pick

the most appropriate segmentation from a provided set or interact with the model’s

latent space to quickly produce the desired results. The samples could further be used in

down-stream clinical tasks, such as disease or tumor classification and the consistency of

the samples naturally lends itself to forward propagation of the captured uncertainty.



6 Introduction

The methods for semantic segmentation developed and proposed as part of this thesis

are not specific to medical images. Ambiguities similar in nature to the ones described

above exist on natural images, e.g. occlusions, lens glare, resolution artifacts or vague

class definitions all lead to comparable situations. Modelling and quantifying the ensuing

distributions and uncertainties is also an important task with a view towards the ongoing

developments of vision systems in autonomous vehicles. As demonstrated in Chap. 7 and

Chap. 8 above techniques may also be applicable on natural images such as street scenes.

Thesis Structure The thesis is structured as follows. First, in Chap. 2, we introduce

the physical concepts behind relevant medical imaging techniques. Second, in Chap. 3, we

explain the process of clinical cancer diagnoses, following the example of prostate cancer

and highlight the ambiguities and uncertainties that need to be handled in the process.

In Chap. 4 we detail algorithmic developments in the analysis of medical images and

feature the similarity and differences with the broader field of computer vision, leading

up to state-of-the-art methods including such that aim to mitigate ambiguity and model

uncertainty. Chap. 5 - Chap. 8 describe our own contributions at length, following the

order in which they were sketched out above. Finally, Chap. 9 concludes this work with

a review and an outlook on the many areas that remain to be worked on.



Chapter 2

Medical Imaging Techniques

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is based on measuring the electromagnetic signal

that nuclei induce in a receiver coil, as their net magnetization after excitation by an

external magnetic field resumes its initial state [Lauterbur et al., 1973]. Due to their

abundance in the human body and strong response in MRI, most clinically relevant

applications of MRI target to measure the effect in hydrogen nuclei [Schlegel et al.,

2018]. In over-simplified terms, MRI can be thought of as measuring the local density

of hydrogen, resulting in a 3D image of its density. More details on what is actually

measured are given below.

Nuclei exhibit a quantum number that is referred to as spin, which can only occur in

increments of 1/2. Hydrogen nuclei for example, have a nuclear spin of I = 1/2. Because

nuclei are charged and the spin is a vector-valued quantity analogous to a classical angular

momentum, the spin is associated with a magnetic moment µ = ℏγI and can couple to

an externally applied magnetic field B. Here ℏ is proportional to Planck’s constant and

γ is the gyro-magnetic constant that is material dependent. The external field B exerts

a torque T = µ×B on the nucleus’ magnetic moment, inducing a rotation of µ around

the field axis, called precession. This results in a potential energy of

E = −µ ·B . (2.1)

Because the quantum-mechanic spin and its spatial projections are quantized, so are

the projections of µ onto B. Therefore the magnetic field induces only discrete and

equidistant energy levels, which is known as the Zeeman effect. With the mth level energy

amounting to E = ℏγmB, the energy levels (of which there are two in the hydrogen case)
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are separated by

∆E = ℏγB = ℏωL , (2.2)

where ωL is the Larmor frequency that is associated with emitted or absorbed radiation

(photons) during energy level transitions and also coincides with the frequency of pre-

cession of the nuclei. Due to this splitting, a nucleus with spin I = 1/2 can therefore

only be in parallel or anti-parallel alignment (Iz ± 1/2) with the magnetic field. Because

the parallel alignment is a lower energy state, a macroscopic collection of nuclei (e.g. in

the tissue volume of a voxel) in thermodynamic equilibrium has a net magnetization∑
i µi ̸= 0 parallel to the coil direction in an MRI scanner. Note that both the energy

gap and the precession frequency are material- and field-dependent.

Resonance In order to excite nuclei to an energetically higher Zeeman level, additional

external fields are employed. To effect transitions at resonance, i.e. with magnitude

ℏωL, the employed pulses have radio-frequency (RF, in the MHz range) and are typically

chosen so as to address hydrogen nuclei. Just after the application of an RF pulse,

the net longitudinal magnetization M∥ (parallel to B) is decreased or reversed and the

spins’ precessions have become synchronized. From a macroscopic view, the synchronized

precession adds a rotating net transverse magnetization M⊥ (in the plain orthogonal to

B), that due to macroscopic cancellations is zero when the phases are not in sync.

Relaxation After application of the pulse, both the longitudinal and transverse magne-

tization relax to the initial state. The disappearance in transverse magnetization is called

T1-relaxation and the restoration of the initial longitudinal magnetization is referred to

as T2-relaxation. The magnetizations follow the Bloch equations as functions of time t

after the pulse [McRobbie et al., 2017]:

M∥(t) =M eq
∥ − (M eq

∥ −M∥(0) exp(−t/T1)) , (2.3)

M⊥(t) =M⊥(0) exp(−t/T2) , (2.4)

where M eq
∥ is the equilibrium magnetization. The overall magnetization therefore follows

a spiralling motion after the pulse, which induces a current in a receiver coil that is

placed inside the MRI [Currie et al., 2013]. Both effects simultaneously contribute to the

relaxation of µ that is measured by the MRI. Different pulse sequences and pulse timings

however are used to increase the sensitivity to either of them thus allowing to ‘up-weight’

the effect in the measurement of one versus the other. The sequences and the ensuing

modalities are therefore referred to as T1- or T2-weighted (T1w or T2w)[Pooley, 2005].
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Spatial coding In order to spatially resolve the signal, the external magnetic field is

made dependent on space (and time) by using additional coils that induce linear field

gradients Gi along the spatial axes êi, i ∈ {x, y, z} resulting in a superimposed field inside

the MRI scanner of B(x, y, z, t) = B0+Gx(t)xêx+Gy(t)yêy +Gz(t)zêz [Rosen and Wald,

2006]. Note that simply using stationary 3D gradients can not code spatial positions as

the resulting Larmor frequencies are degenerate in space. Instead, in order to reduce the

problem to a 2D-measurement, typically a slice selection is performed first and before

acquisition. This entails applying a field gradient Gz in addition to the homogeneous

field B0 = B0êz, which induces a z-dependent resonance energy. This way, by employing

an RF pulse with ωL = γ(B0 + Gzz
′), it is possible to address and select a particular

tissue slice at z′, as slices with z ̸= z′ will not be excited by the pulse. Just after the RF

pulse, two additional gradients Gx and Gy can be applied. Both fields apply a torque on

the macroscopic magnetization vector of each voxel and make the precession frequencies

location dependent. In order to resolve both the x and y location, one of the fields,

e.g. Gx, is applied for a short time only and switched off before acquisition, while the

other gradient, e.g. Gy, is left constant throughout signal acquisition. The usage of a

short pulse (Gx) before acquisition is referred to as phase encoding, because the magnetic

moment component that precesses around x (in this case), picks up a location-dependent

relative phase ∆φ(x) = γGxx∆t. This is because magnetic moments with larger ωL

precess faster and thus ‘run off’, an effect that grows larger for larger x and longer pulse

times ∆t. After switching off Gx, only the phase of µx is altered dependent on x while

the precession frequencies ωL resume the same value for all x. Using a gradient field

that remains switched on during signal acquisition on the other hand (Gy here) is called

frequency encoding since the read-out signal will now entail a spectrum of frequencies,

each of which encode a y-position through ωL(y) = γ(Gyy + const).

Image Reconstruction During signal acquisition, the receiver coil picks up a (scalar)

signal S(t) that varies with time. The challenge becomes how to reconstruct the spatial

spin density from it. After slice selection as described above, this boils down to performing

a 2D Fourier transform of S(t), going from the frequency to the space domain. Assuming

the coil equally sums up contributions from all locations, i.e. neglecting geometrical

effects etc., the signal measures a superposition of all locations for the spin density ρ(x, y)

times the modulation by its phase γGxxt+ γGyy∆t:

S(t) =

∫∫
tissue

ρ(x, y)eiγGxxt+iγGyy∆tdxdy =

∫∫
tissue

ρ(x, y)e−ikxx−ikyydxdy , (2.5)
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where we introduced k-space variables that are conjugate to x and y. To solve for the

spin-density, we can apply the inverse Foruier transform (FT−1) [Rosen and Wald, 2006]:

ρ(x, y) = FT−1 [S(kx, ky)] =

∫∫
k−space

S(kx, ky)e
ikxx+ikyydkxdky , (2.6)

In practice the k-space integral is approximated with discrete steps in k constructing

a binned matrix S(kx, ky) that is filled using repeated measurements. The matrix is

typically sampled one row at a time since the pulse durations ∆t in ky = −γGyy∆t can

only be variied using a new RF-pulse, whereas various time samples and thus samples of

kx = −γGxxt can be obtained after a single resonance [Schlegel et al., 2018].

Diffusion Weighting Given an appropriate MRI sequence, it turns out something like

the local water mobility can be measured: Diffusion-weighted Imaging can be performed

by employing an MRI pulse sequence (‘contrast’) that is sensitive to the Brownian motion

of water molecules, referred to as diffusion. Diffusion is measured in terms of the average

squared distance that a molecule travels in some time t through a d dimensional space,

D(t) = ⟨(x1 − x2)
2⟩/ (2dt) [Schlegel et al., 2018]. The diffusion of water in vivo is affected

by cellular parameters such as cell dimensionality, compartmentation and transport

processes [Posse et al., 1993]. Due to changes in cell morphology, diffusivity can be

reduced in cancerous tissue [Chatterjee et al., 2015] making DWI a contrast with frequent

use in oncology.

The general principle to measure diffusion relies on the observation that protons

moving along some path r(t) for a time τ in a gradient field G(r) pick up a phase [Posse

et al., 1993]:

∆φ(τ) = γ

∫ τ

0

G(r) r(t) dt , (2.7)

which affects the signal intensity as a phase factor under the integral in Eq. 2.6 and

results in a signal attenuation:

ρb(x) = ρ0(x) e
−D(x)·b , (2.8)

where ρ0 is the signal intensity without diffusion, D is the diffusion coefficient in each

voxel and b is the gradient factor. b is ∝ (γGτ )2∆, where ∆ is the time between gradient

pulses (see below), and thus depends on the chosen sequence [Schlegel et al., 2018].

Reduced Brownian motion of water molecules, translates to smaller D and thus increased

intensity in the DWI image ρb.
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As suggested by [Stejskal and Tanner, 1965], a trick can be used to measure this

attenuation: First a gradient pulse is used to dephase the initially coherent precession

(similar to the phase encoding above). Then, after a time ∆, a second gradient pulse

that reverses the precession axis is applied. In a characteristic point in time the spins

of immobile nuclei again co-incide in-phase and induce a signal, called the spin echo,

whereas nuclei that moved in the mean-time will have picked up a phase as in Eq. 2.7,

resulting in a reduced signal.

In clinical scenarios the diffusion D cannot be measured without interference from

on non-linear effects involving the localization gradient fields [Le Bihan and Breton,

1985], such that in practice a combined measure, referred to as the Apparent Diffusion

Coefficient (ADC), is captured.

The ADC-map is commonly obtained from two or multiple b-value images, e.g. using

the relation

ADC(x) =
1

b1 − b2
ln(ρb2(x)/ρb1(x)) . (2.9)

For reduced noise, several different b-value images can be taken and an exponen-

tial fit for each voxel is performed, e.g. combining images with gradient factors

b = 40, 400 and 800 smm−2 [Mark Hammer, 2013].

Both T2 relaxation and diffusion are measured using phase shifts. Individual b-value

images ρb are therefore also sensitive to T2 relaxation, which is known as T2 shine-through,

as e.g. both lesions with restricted diffusion and long T2 relaxation will appear very bright

in DWI. ADC-maps on the other hand provide a modality that is cleared from this effect

[Mark Hammer, 2013]. Note that ADC maps invert the relation to diffusivity compared

to b-value images ρb: On ADC low intensity voxels correspond to lower Brownian motion,

which can be indicative of lesions.

2.2 Computed Tomography Scanning

Computed Tomography (CT) scanning employs X-rays to produce 3D images of the local

tissue density (to a good approximation). It is one of the most common medical imaging

modalities to date owing its popularity to its high resolution, speed of acquisition and

reconstruction, high availability, and importantly its quantitative nature.

This section largely follows [Schlegel et al., 2018]. The principle behind CT is the

attenuation of X-rays through absorption (‘photo effect’) or scattering (‘Compton effect’)

of photons as they traverse matter. According to the Lambert-Beer’s law, this results in a

reduction of the initial photon count (X-ray intensity) N0 to N as a collection of photons
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passes through a material with location dependent absorption coefficient µ(x). The rays’

paths can be parametererized in terms of an origin s and a unit vector θ resulting in a

signal attenuation of:

N = N0 e
−

∫
dλµ(s+λθ) . (2.10)

These line integrals of X-ray absorption in a probe, e.g. a human body, are successively

captured from many different angles. In order to obtain a 3D scan, CT scanners are

built with the x-ray source and the detector rotating around the subject, while the tray

carrying the subject can often move through the ring-shaped scanner in order to capture

the 3rd dimension.

Once transformed into Cartesian coordinates (see below), CT scans depict the spatial

distribution of the absorption coefficient µ(x). To a good degree of approximation µ(x)

is proportional to the local tissue density, allowing it to be interpreted as a density map.

Importantly, CT is a quantitative measure that is quantified in terms of Houndsfield

Units (HU). Diagnostic CT systems are calibrated using the HU value of water:

CT (x) =
µ(x)− µwater

µWater

· 1000HU . (2.11)

Using the conventional unsigned 12 bit encoding, CT values range from -1024 HU to

3071 HU. This is suitable to cover the human body’s density range, with air typically

ranging at -1000 HU and bone at up to 2000 HU on above scale.

Despite CT’s many favorable characteristics, there are downsides and reasons to prefer

MRI over it: For one, although decreasing due to technical advancements, CT deposits a

non-negligible amount of radiation dose in a subject’s tissue, which could be harmful.

For another, in certain use cases, such as prostate imaging, CT is less informative than

MRI [American Cancer Society, 2016b] and is known to result in ‘notoriously inaccurate

[segmentations]’ [Moghanaki et al., 2017].

Image Reconstruction In order to obtain µ(x), the measured line integrals need to be

inverted. Under specific geometric conditions the inversion can be performed analytically,

which is why such conditions are adopted in clinical CT set-ups. Analytical signal

inversions are for example possible for parallel, fan or cone beam geometries.

In parallel beam tomography, the employed machinery, called filtered back projection,

can perhaps be sketched out most easily. Parallel beam tomography entails scanning a

probe with parallel X-rays that are detected on an array situated behind the probe and

perpendicular to the beam. The scans are repeated under different angles θ which overall

results in the scan of a 2D slice of a probe. For each angle θ and spatial distance ξ from
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the origin (defining the 1D spatial coordinate on the detector), the detector array thus

measures the forward transform, called Radon transform [Radon, 1986]:

p(θ, ξ) =

∫
dλµ(s+ λθ) , (2.12)

whose inversion, i.e. transform to Cartesian space, can be shown to equal a convolution

with a ‘Ramp kernel’ k, followed by an integration of the acquisition angle [Schlegel et al.,

2018]:

µ(x, y) =

∫ π

0

dθ p(θ, ξ) ∗ k(ξ)
∣∣∣
ξ=x cos θ+y sin θ

, (2.13)

where ∗ denotes a convolution and the ramp kernel’s functional form can be derived in

ξ’s Fourier conjugate space (here k ∝ −1/ξ2).
In practice this corresponds to filling a CT scan’s pixels (x, y) with signal contributions

one angle after the other: For each θ, first the detector signal is filtered with the ramp

kernel, yielding p̂(θ, ξ) = p(θ, ξ) ∗ k(ξ), which is followed by smearing back (back

projecting) p̂ along the beam’s ray leading through each detector position ξ (a line given

by ξ = x cos θ + y sin θ). For this reason the inverse transform is referred to as filtered

backprojection.

2.3 Histopathologic Light Microscopy

In contrast to the non-invasive imaging techniques covered above, histopathologic ex-

aminations require the surgical extraction of a tissue sample. In order to enable the

interpretation of the sample under a microscope, a number of steps need to be carried

out, which we elaborate upon below, following [Peckham et al., 2013].

First, to prevent tissue decay, the probes require chemical fixation, e.g. by application

of formalin, which inactivates enzymes, kills bacteria etc. Additionally, in order to

enable the processing of the sample into thin slices, its mechanical stability during slicing

needs to be increased. This is either done by embedding the probe in paraffin (wax)

or by freezing it using a cryostat during slicing, a process referred to as frozen section

processing.

The most commonly employed technique however is the former, wax-embedding, and

it requires a dehydration of the specimen by subjecting it to increasing concentrations of

ethyl alcohol. Subsequently, the probe is embedded in warm paraffin, which fills voids

formerly occupied by water, and after cooling yields a hardened sample ready to be cut

by a slicer, called a microtome. Typical slice thinknesses rang at ∼ 5 µm.
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After chemical fixation and dehydration, most cells are colourless and nearly trans-

parent. In order to increase contrast, dyes are applied. Most commonly a dye is chosen,

that stains some of the cell components in a bright colour, together with a counter-stain

that stains the rest of the cells in a contrasting colour. The most popular dye of this

type is Haemotoxylin and Eosin (H&E) staining, which results in cell nuclei appearing

purple and most other cell components pink in tone, e.g. see Fig. 3.2c). Before staining,

the specimen are mounted on the microscope glass slide. In order to apply the dye, the

fixation wax needs to be dissolved and removed, upon which the probe is re-hydrated,

essentially reversing the steps required for section slicing [Anderson, 2019].

The stained and mounted specimen are then inspected through conventional light

microscopy, allowing resolutions of down to ∼ 200 nm (which refers to the smallest

spacing between two point objects that is still distinguishable) [Peckham et al., 2013].

Whole Slide Imaging Comparatively simple, man-operated and -interpreted light

microscopy is still the most common tool in histopathology [Barghaan, 2015]. Increasingly

the field however turns towards a technology, referred to as whole slide imaging (WSI).

Here scanners are employed to automatically create a digital image of the whole slide

of a mounted specimen [Farahani et al., 2015]. Under the hood, a light microscope is

combined with a digital camera, mechanisms to position the slide and a software that

stitches individual images together. The advantages of WSI lie in a simplified sharing and

archiving of histopathologic images and the possibility of an automated image processing

and interpretation. The images are typically taken at several magnifications, just like a

regular microscope would allow for, and saved alongside one another in what is called an

image pyramid. This results in very large files (several gigabytes per image), with the

highest resolution images exhibiting gigapixel sizes.



Chapter 3

Medical Image Analysis: The Diagnosis

of Prostate Cancer

Diagnosing cancer is typically a process that involves several successive steps, which are

set in motion upon an initial suspicion. Each such step involves taking a measure, such

as an MRI scan and its interpretation, and is chosen so as to bring information to the

table, that the previous step might not have been able to produce. For example because

a scan and its interpretation may have come out ambiguous. In that manner, the space

of hypotheses can be narrowed down successively, as gradually more powerful prognostic

tools are employed.

While this sounds fairly straight-forward on paper, it is a very complex process in

reality. A large part of the reason is that the decision making process needs to carefully

weigh the health risk, discomfort, financial cost and the uncertainties that are associated

with each diagnosis step. Traversing the chain of steps, it is in principle often possible

to fully disambiguate the diagnosis. In practice however, the personal cost associated

with that may often be unacceptably high. For example fully removing a suspicious

prostate that may or may not harbor aggressive cancer through what is called radical

prostatectomy would give the clearest diagnostic picture of what is (was) going on, but

would have a strong negative impact on a patient’s quality of life.

In this chapter we take a closer look at this diagnosis process and highlight the steps

and their abilities as well as their limitations as we follow along the example of prostate

cancer diagnosis. Besides arguably making for a particularly complex case, staying close

to the example of prostate cancer has the added benefit of directly introducing relevant

concepts for Chap. 5 and Chap. 6. After describing the pitfalls and ambiguities involved

in the interpretation of MRIs and histo-pathological images of biopsy probes, we discuss

studies on the ensuing inter- and intra-rater variance on those modalities.
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3.1 Current Clinical Diagnosis Steps

To exemplify the procedure for diagnosing cancer, we present it following the process for

a very frequent type: Prostate Cancer (PCa).

The prostate is a gland that is part of the male urinary and reproductive system

responsible for producing and secreting a fluid that constitutes ∼ 20−30% of the ejaculate.

It is embedded deep inside a man’s pelvis, below the bladder and in front of the rectum.

The gland wraps around the upper part of the urethra, a tube that carries urine from

the bladder out of the body. The prostate of men in their 20s and 30s is about the size

of a walnut but will often transform to the size of a peach later in life as part of a benign

growth. Fig. 3.1 gives more details on the anatomy of a ‘normal prostate’ and its distinct

anatomical zones.

According to the American Cancer Society about 1 man in 9 will be diagnosed with

prostate cancer during his lifetime. About 6 cases in 10 are diagnosed in men aged 65 or

older whereas it is rare before age 40 [American Cancer Society, 2016a]. The average age

at the time of diagnosis is about 66. It is estimated that PCa is the most frequent cancer

type among new male cancer cases in 2019 (20% of all new cases in the Unites States)

[American Cancer Society, 2019].

Although PCa is also the most deadly in absolute numbers (10% of all cancer-related

deaths in the US), only about 1 in 49 diagnosed men will die from the disease. If detected

at a local stage, the 5-year survival chance is approaching 100%, when detected late

(after infiltrating beyond the prostate gland) the chances of survival decrease to 30%

[American Cancer Society, 2019]. Therefore, as is true for cancer in general, an early

detection is key. These numbers, with the good chances of long-term survival, however

also highlight that there may be a unique chance to offer milder forms of treatment that

enable a high quality of life while the disease is on-going and monitored.

Progressively Narrowing down the Diagnosis Suspicious early symptoms for PCa

may be detected as part of routine screenings or surface in the form of certain urinary

conditions that a subject may experience and bring to the attention of a physician.

Upon an initial suspicion the first clinical steps involve what is called a Digital Rectal

Examination (DRE), where a clinician uses their finger to feel for whether the prostate’s

size is enlarged and whether it appears hard or lumpy, see Fig. 3.2a) for a schematic of the

process. This is naturally a subjective measure with limited accuracy and reproducibility

[Smith and Catalona, 1995], but it is fast, immediate, cheap and simple and may help

detect very unambiguous cases. Another early test that is often done before or in addition

to a DRE is a blood-test that screens for an elevated Prostate-specific Antigen (PSA)
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Figure 3.1 | Anatomy of the Prostate. The prostate gland’s transitional zone (TZ, in
yellow), central zone (CZ, in green) and the anterior fibromuscular stroma (AFS, in blue) are
partially wrapped by its peripheral zone (PZ, in pink). The urethral sphincter (US, in brown)
follows along the urethra that leads through the prostate. The illustrations show an idealized
‘normal prostate’ from a) a side, b) a frontal and c) a cross-sectional view (in which further
sectorial distinctions are shown). Image credit: [Weinreb et al., 2016].

level. A PSA level above 4 ngmL−1 is indicative of higher chances for PCa, although a

significant number of actual PCa cases may have a PSA test come out below 4 ngmL−1

[Prostate Cancer UK, 2018] and high numbers can also be caused by non-cancerous

diseases, highlighting the test’s fair but in isolation insufficient diagnostic value for

prostate cancer.

In case the suspicions hold up in the DRE or the PSA measurement, further diagnosis

steps are warranted. In the past this meant a prospective patient directly underwent

surgical biopsy, see Fig. 3.2c). Aside from discomfort during the procedure and the

days or weeks after, surgical biopsy involves the risk of infections of the prostate gland.

Furthermore, without knowledge of the locations of potential lesions within the prostate,

a grid of needle positions over the prostate needs to be scanned across in order to

get the necessary coverage, which further increases health risks and might negatively

affect potential imaging of the prostate at a later stage. For these reasons, suspicious

subjects increasingly undergo Multi-parametric MRI (mpMRI) scanning of their pelvis

region including the prostate gland - carried out before or ideally even instead of biopsy.

Typically T1-weighted/T2-weighted as well as DWI protocols (in order to calculate ADC

maps) are run. The resulting scans are then interpreted by a radiologist who produces

a report encompassing locations of prospective lesions, often delineating them on the
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Figure 3.2 | Current Clinical Prostate Cancer Diagnosis. a) After initial suspicions or
during routine screening a Digital Rectal Examination (DRE) may be conducted along with
a blood test to measure the subject’s Prostate-specific Antigen (PSA) level. b) Multipara-
metric MRI scans are taken and interpreted by a radiologist who produces a report entailing
segmentations of potential lesions and a PIRADS score for each lesion that assesses its
malignancy based on MRI appearance. c) If deemed appropriate, a targeted and/or systematic
(raster) Trans-rectal Ultra-Sound Guided Biopsy (TRUS-biopsy) is performed by a urologist.
Using biopsy needles, probes containing tissue are extracted, stain-dyed and examined by a
pathologist under a microscope at cell-level resolution, who assigns a Gleason Score to assess
the malignancy of the tissue in each probe. The images are borrowed from various sources:
the schematics showing patients are taken from [Prostate Cancer UK, 2018], the MRI scanner
is a Magnetom Prisma by Siemens [Siemens Healthineers, 2019], the mpMRI images are taken
from [Bonekamp et al., 2018] and the histopathology slide is from [Chen and Zhou, 2016].
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image (akin to a semantic segmentation of the lesion), and a score that expresses the

radiologist’s level of suspicion for malignancy for each prospectively detected lesion, called

the PIRADS score. This process is sketched in Fig. 3.2b).

Delineating and grading lesions from mpMRI images serves several purposes. For one,

it can provide image guidance for targeted biopsy and surgery and thus allows to reduce

the number of sampled probes or may even permit to avoid the invasive procedure of

a biopsy altogether. Instead, a subject may be declared cancer-free from the mpMRI

evidence alone or border cases meeting certain critera could be admitted into active

surveillance, which encompasses regular monitoring without aggressive treatments. The

circumstances under which it is warranted to make this distinction and to forgo biopsy

are currently under research, e.g. see Chap. 5. Part of this quest is the development

of diagnosis strategies that are not only very sensitive to PCa but also very specific,

thus reducing the amounts of false positives and allowing to skip invasive surgery or

treatments prone to side effects.

ADC images in particular are known to provide discriminative evidence for radiologists

experienced in the grading of prostate cancer from MRI. As is discussed below in more

detail, there however often still remain significant ambiguities in this modality. For this

reason, if the ambivalency persists, further diagnostic steps to decrease the uncertainty

on the malignancy grade of the apparent lesions are required and surgical biopsy may be

unavoidable. The biopsy is most commonly carried out using Trans-rectal Ultra-Sound

Guided Biopsy (TRUS-biopsy), see Fig. 3.2c), in which a urologists takes several tissue

probes using needles that are inserted though the wall of the back passage into the

prostate. This process is guided by ultra-sound which offers a good degree of needle

localization and allows to target lesions seen on mpMRI (targeted biopsy) as well as

sampling across a grid of locations (systematic biopsy). After extraction the tissue probes

are stain-dyed by a pathologist and viewed under a microscope of cell-level resolution, see

Sec. 2.3. The pathologist then assigns a score to each biopsy sample that is dependent on

the two predominant cells morphologies, the Gleason Score (GS), see below. This score is

often the best available ground truth and therefore treated as gold standard, but because

it is a human-assigned subjective measure, it also suffers from inter-rater variances, as is

discussed below.

By design, a prospective grid of biopsy samples does not cover the entire prostate

and there is a chance that areas are under-sampled. Similarly, target locations may be

missed. This introduces an additional degree of uncertainty. Unfortunately the most

reliable diagnosis involves removing the prostate gland altogether in a process called

radical prostatectomy. Because of risks such as the potential for incontinence and erectile
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dysfunction, it is very desirable to avoid this measure and only used as a last resort

in more advanced cases. Cases that had underwent TRUS-biopsy and later on radical

prostatectomy allow to assess the sensitivity of TRUS-biopsy, which was shown to find up

to 97% of the most severe lesions that were found after post vivo biopsy of the prostate

[Radtke et al., 2016], therefore promising strong sensitivity while however still leaving

some patients misdiagnosed.

3.2 Malignancy Quantification & Challenges

The core question after a suspicion for cancer is whether or not an abnormal finding is

benign or malignant. Benign lesions are typically defined as tissue alterations that do

not spread, which is in contrast to malignant lesions, that are characterized by aggressive

growth and spreading. Unfortunately, most of the times the distinction cannot be

made univocally and the grading instead aims at expressing a (subjective) likelihood for

malignancy given the evidence. This is true for the interpretation of MRIs and, perhaps

surprisingly, it is also true for the interpretation of biopsy probes, as is discussed in the

following.

Assessing MRI Evidence: The PIRADS System In an attempt to quantify their

malignancy assessment, radiologists currently employ a 5-grade system, called The

Prostate Imaging Reporting and Data System (PIRADS). A PIRADS score of 4 or

5 is considered as clinically significant tumor. The system aims at standardizing the

interpretation and reporting of prostate mpMRI examinations. It specifies rules for how

to grade and detect prostate cancer given different mpMRI modalities. If applicable these

rules are also specific to different anatomical parts of the prostate, such as the prostate’s

peripheral and transitional zone (PZ and TZ, see Fig. 3.1), as tumors can exhibit distinct

MRI appearance in different anatomical regions. PIRADS v2, the second version of the

protocol, is adopted as its current standard [Weinreb et al., 2016].

As discussed in Sec. 2.1, MRI images indirectly measure tissue properties such as

the diffusivity of water (DWI scans and ADC maps) and the tissue’s proton density and

proton spin relaxation times (T1w- and T2w-sequences). The difficulty in assessing the

tumor grade from MRI lies in the often subtle difference in appearance of lesions with

different malignancy, given those indirect measurements [Borofsky et al., 2017]. This

is particularly problematic in prostate MRI, as the prostate gland can exhibit tissue

density that is naturally heterogeneous and additionally suffer from ‘benign mimicers’

that can exhibit the same appearance as tumors, but are non-cancerous conditions. This
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Figure 3.3 | Examplary PIRADS Assessments on DWI images. This figure presents
examples for each PIRADS score (1 through 5) that a radiologist assigned based on the
provided high b-value DWI and ADC scan for the five different cases. Note that the images
are shown in an axial view, akin to a mid cross-section as in Fig. 3.1c). The rightmost column
gives an assessment based on PIRADS guidelines for the prostate’s peripheral zone. Images
and assessments are borrowed from [Weinreb et al., 2016].
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possibly ambiguous appearance can also make it difficult to pin down a precise location

or segmentation of lesions [Puech et al., 2012].

The PIRADS system recommends usage of both high b-value DWI- and ADC-maps

as well as T1w/T2w scans in order to narrow down the diagnosis by exploiting their

complementary measurements. The 5-grade scale gives empirical categorizations of

lesions, where a higher grade is more severe. Lesions are ‘manually’ distinguished based

on MRI intensity, focality, definiteness of margins, shape and size.

Because DWI measurements are non-quantitative, it is recommended to compare

a prospective lesion’s ADC-intensity to normal appearing tissue in the respective scan.

On DWI, lesions in both the TZ and PZ appear hyperintense (elevated intensity) on

high b-value images and hypointense (decreased intensity) on ADC-maps. Fig. 3.3 gives

example cases for all five PIRADS grades alongside the grading rules for PZ lesions on

ADC. For a comprehensive set of PIRADS grading rules, we refer to [Weinreb et al.,

2016].

On T2w images, clinically significant cancers in the PZ usually appear as round or

ill-defined hypointense (decreased intensity), focal lesions. This appearance is however not

specific and there are again many benign conditions or other non-cancerous diseases that

appear similar (‘benign mimicers’) [Weinreb et al., 2016]. TZ lesions on T2w may appear

as ‘non-circumscribed homogeneous, moderately hypointense lesions (‘erased charcoal’

or ‘smudgy fingerprint’ appearance) [and have] spiculated margins [...]’ [Weinreb et al.,

2016]. The more of these features are present, the higher is the likelihood of clinically

significant prostate cancer. An instance of the ‘erased charcoal signal’ is illustrated in

Fig. 3.4b), which shows a case where tumor tissue is very difficult to discern from normal

or benign tissue.

Some benign conditions or non-cancerous diseases may have a similar signature to

tumor on both T2w and ADC (signal hypointensity). Fig. 3.4a) shows a case of this type,

where prostatitis, a non-cancerous inflammation, ‘mimics’ the appearance of a lesion, as

can be seen in the displayed comparison to a (low-grade) prostate lesion. In some cases

high b-value images can break the tie and allow a distinction since on them, non-cancerous

cases can appear with lower intensity as compared to tumor. Benign Prostate Hyperblasia

(BPH) however, a benign condition very common among older men which is associated

with prostate growth later in life, unfortunately can be difficult to distinguish from cancer

based on DWI. Aside from the uncertainty on the grade, ambiguous appearance on

ADC often leads to an underestimation of tumor sizes compared to the true volumes

found through prostatectomy [Bratan et al., 2014], indicating the difficulty of faithfully

segmenting lesions on MRI.
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Figure 3.4 | Prostate MRI Ambiguities. Figure a) shows two very similar appearing
ADC-maps, with abnormal appearing tissue in red circles. Histopathology however revealed
that i) showed prostatitis (a non-cancerous inflammation) versus ii) harbored a benign prostate
lesion. In Subfigure i) of the right hand side (Figure b)) a case of TZ prostate tumor that is
embedded in BPH-tissue and shows very indistinct, smudged boundaries, that are difficult if
not impossible to tell apart from the benign BPH tissue. This is akin to a charcoal sketch,
see subfigure ii), and thus refered to as an ‘erased charcoal sign’. Figures a) are borrowed
from [Nagel et al., 2013] and Figures in b) from [Sakala et al., 2017].

The different MRI sequences are also believed to hold different discriminative power

depending on the prostate’s anatomical zone. For abnormalities in the TZ, T1w-/T2w-

MRI is considered the primary determining sequence, whereas PZ foci are recommended

to be graded based on DWI-images according to the PIRADS guidelines [Weinreb et al.,

2016]. Due to the increased tissue homogeneity, the detection and characterization of

clinically significant tumor is generally regarded more reliable in the PZ than in the TZ.

Assessing Biopsy Evidence: The Gleason System After surgical biopsy, the extracted

tissue samples are prepared on microscope slides and stain-dyed so as to increase contrast

giving a characteristic pink color signature, see Fig. 3.2c) and details in Sec. 2.3. A

pathologist then carries out the diagnosis of each probe using a microscope to assess the

morphology of the extracted cells. The morphology patterns are characterized based on

how well differentiated the cells appear. Normal cells have very regular, well differentiated

appearance and are closely packed whereas cancerous tissue shows cells of increasingly

indistinct, heterogeneous morphology with more loose spread, called anaplasia. Fig. 3.5

gives a definition of the 5 different Gleason patterns [Gleason, 1966] that are employed

and schematically illustrates the associated cell morphologies.
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Figure 3.5 | Gleason Pattern. A schematic illustration of different cell morphologies as
found in histologic tissue samples of the prostate alongside the 5 different Gleason patterns
that are employed to characterize them. Image borrowed from [National Cancer Institute,
2019].

Tissue probes very commonly exhibit more than one of the distinguished cell mor-

phologies, which is why pathologists summarize their findings in a score that combines

the found Gleason patterns, called the Gleason Score (GS). The score is produced by

adding the two most frequent Gleason patterns, such that it technically results in 9

different grades, from 1 + 1 = 2 to 5 + 5 = 10. Because significant differences in patient

hazards have been found depending on which of the Gleason patterns dominate the

probes [Epstein et al., 2016], further distinctions are commonly made for when the probe

shows Gleason patterns above 3. In these cases the predominant cell type (comprising

more than 50 % of the probe) is put first and the less frequent one (less than 50 % but

more than 5 % of the probe) is reported second, resulting in GS grades that account for

this majority-minority order by defining e.g. 3 + 4 =: 7a and 4 + 3 =: 7b. In practice it

is exceedingly rare for pathologists to diagnose Gleason patterns below 3, which is why

the GS effectively starts at 3 + 3 = 6. Taking this into account alongside statistically

determined clinical significance of the groups, a simplification to a 5-grade system called

Gleason Grade Group was recently proposed and is being increasingly applied [Epstein

et al., 2016]. Table 3.1 specifies the ensuing mappings between Gleason patterns, Gleason

Score and Gleason Grade Group.
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Table 3.1 | Gleason Score Categories. The table gives the mapping between the Gleason
pattern combinations and the Gleason Score and Grade Group.

Gleason Patterns 3+3 3+4 4+3 4+4 4+5 5+4 5+5

Gleason Score 6 7a 7b 8 9a 9b 10︸ ︷︷ ︸
Gleason Grade Group 1 2 3 4 5

While there is some debate about which GS threshold should be used to distinguish

benign from aggressive and thus malignant tumors, the consensus view appears to define

aggressive tumors as such with GS ≥ 7a [Carter et al., 2012, Epstein et al., 2016, Loeb

et al., 2016].

The fact that the Gleason Score’s attempt at quantifying abnormal cell morphology

holds prognostic value for the aggressiveness of prostate cancer [Epstein et al., 2016]

supports the view that Diffusion-weighted Imaging can give a handle on assessing tumor

aggressiveness in vivo, as the diffusivity of water correlates with changes in cellular

morphology [Chatterjee et al., 2015].

However, even the more direct examination of cellular morphology under a microscope

and the assessment in terms of the Gleason Score has considerable limitations, since the

qualitative nature of the assessment as well as the aggregation of only two predominant

patterns without further quantification, naturally leads to inter-rater variability and

potential inaccuracies. A large part of the problem may also be identified in the Gleason

pattern scheme itself, which bins the continuous cell alterations. Moreover, just like

on mpMRI, there are other, non-cancerous conditions that are known to mimic the

histopathologic appearance of prostate cancer [Hameed and Humphrey, 2010]. For these

reasons the Gleason Score should be viewed as the best available gold standard, but not

as an infallible ground truth.

3.3 Ambiguity and Inter-rater Variability

A range of studies have examined the variability in the interpretations of the respective

diagnosis steps. They largely confirm that each step’s reliance on an ambiguous measure,

results in pronounced inter-rater variability. Before diving into individual findings, let

us briefly review two popular statistics that measure the inter-grader agreement on

categorical assessments. In order to compare agreement between two graders, Cohen’s

Kappa (κC) [Cohen, 1960] is often the statistic of choice, it is however limited to exactly
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two graders. For a fixed but arbitrarily large number of graders Fleiss’s Kappa (κF )

[Fleiss, 1971] is often used instead. Both statistics correct for chance agreement such that

they come out 0 when agreement is attributable to chance only and reach a maximum

value of 1 for complete agreement between raters. [Landis and Koch, 1977] suggest a

categorization of intervals on κ-values for a more readily available interpretation: κ < 0

- poor agreement, 0 < κ ≤ 0.2 - slight agreement, 0.2 < κ ≤ 0.4 - fair agreement,

0.4 < κ ≤ 0.6 - moderate agreement, 0.6 < κ ≤ 0.8 - substantial agreement and

0.8 < κ ≤ 1 - almost perfect agreement agreement.

DRE [Smith and Catalona, 1995] compared the inter-rater variability for Digital Rectal

Examination to distinguish between malignant and benign cases using a cohort of 116

subjects. They found a κC = 0.22, which was statistically significantly above chance

agreement, but according to [Landis and Koch, 1977] may be described as no more than

a fair agreement, therefore highlighting a reduced reproducibility and reliability of the

(urologist performed) DRE examination in diagnosing prostate cancer.

PIRADS Several independent studies have assessed the inter-rater variability of the

PIRADS v2 interpretation of mpMRI images by radiologists. [Muller et al., 2015] have

examined the inter-rater variability of 5 radiologists given 162 lesions in 94 patients and

found a multirater κC = 0.46, indicating moderate agreement. [Rosenkrantz et al., 2016b]

asked 6 radiologists to give a PIRADS v2 assessment for 40 cases, upon which all of them

received extra training and discussed prior results. In a second session, all of them were

asked to grade another 80 cases. The inter-rater variability for PIRADS v2 ≥ 4 on PZ

lesions amounted to κC = 0.59 and κC = 0.51 on TZ lesions, in the first session. The

inter-rater agreement did not change significantly after the extra training session and

discussions. Overall this study thus found a moderate agreement on PIRADS v2 ≥ 4.

[Pierre et al., 2018] found the inter-rater agreement on 92 PZ lesions in 74 patients for

two radiologists to be only fair (κC = 0.39).

Aside from image ambiguities on mpMRI, there is a known learning curve, such that

some of the variability may be reduced with more experience [Latchamsetty et al., 2007].

TRUS-biopsy As mentioned above, using Trans-rectal Ultra-Sound Guided Biopsy can

be error prone due to under-sampling or missing target locations. Comparing cases that

subsequently underwent radical prostatectomy allows to assess the accuracy of TRUS-

biopsy. [Epstein et al., 2012] evaluated the GS assessment of almost 8000 TRUS-biopsy

cores against the later prostatectomy result and found that about a fourth of the cores
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that had been graded GS ≤ 6 were undergraded and were really clinically significant

cancer cores of grade GS ≥ 7a. On a patient level, i.e. combining the assessments of all

biopsy cores for the respective patient, the agreement may be more robust, as is suggested

in [Radtke et al., 2016], who found that the agreement with respect to the overall and

thus worst GS score per patient matched the one determined by radical prostatectomy in

97% of the times (evaluated on 120 patients).

Lesion Segmentation [Bratan et al., 2014] analyzed lesion segmentations of two ra-

diologists, provided for mpMRI images of 202 patients. Both radiologists significantly

undersegmented tumor on both T2W- and ADC-scans, as measured in tumor volume

agreement. [Borofsky et al., 2017] similarly found two radiologists to undersegment lesion

volume in 8% of the cases as observed on a dataset of 162 lesions from 100 patients.

Gleason Score [Melia et al., 2006] examined the inter-rater variability of 9 patholo-

gists. Each of them was asked to give an assessment for 81 slides of cancer-diagnosed

histopathology slides in terms of the Gleason score groups 2–4, 5–6, 7, 8–10. A statistic

of κF = 0.54 indicated only moderate agreement between them.

3.4 Discussion

The process of narrowing down the diagnosis for prostate cancer successively reduces

ignorance and ambiguity of the cancer grade. Informally speaking, this ignorance is

gradually lowered along the chain of potential steps given by DRE + PSA-measurement,

mpMRI scan + interpretation, TRUS-biopsy and, as a last resort, radical prostatectomy.

While the perhaps ultimate measure, radical prostatectomy, faithfully reveals the full

picture, most of the times it is not an acceptable option. Instead, less invasive measures

are preferred, ideally even shunning the need for biopsy altogether. This paradigm comes

at the cost of the remaining limitations of the individual measures, which are mostly

linked to an irreducible amount of uncertainty.

As documented above, there are considerable amounts of inter-rater variability present

in almost all diagnosis measures. Sometimes this variability can be partially reduced,

e.g. when it is due to different amounts of reader experience. For this reason it might be

helpful to develop algorithms that perform (at least) at the level of an average radiologist

and provide an algorithmic second opinion, that could supply clinical decision support.

Other times the variability cannot be reduced given the available evidence, due to

inherent ambiguity. In order to still enable the most informed decision possible, it
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is important to be aware of this ambiguity, quantify it and if admissible take further

diagnostic steps to reduce it.

An important part of the diagnostic pipeline is the delineation, i.e. segmentation,

of prostate lesions. A precise localization in this form offers many benefits, e.g. it

enables image-guided biopsy, surgery and treatments such as focal therapy and radiation

therapy. Monitoring tumor growth is yet another important application, especially

in prostate cancer, where active surveillance is a desirable way to forgo aggressive

treatment and invasive surgery for the sake of an improved quality of a patient’s life. All

these applications could benefit largely from well-calibrated uncertainty that allows an

understanding of the image ambiguities.



Chapter 4

Medical Image Analysis:

Algorithmic State-of-the-Art

By virtue of processing image-type data, medical image analyses naturally bear much

similarity to other vision problems on natural images. Medical image analysis, in the

past, has however required a lot of expert knowledge and posed barriers such as data

and annotation scarcity, which often lead to very tailored solutions. As more data is

becoming available and with natural image algorithms becoming increasingly domain

agnostic, medical imaging analysis techniques are more and more in sync with those for

natural images.

For this reason, medical image analyses have profited largely from the progress in

the field of computer vision that came over the last decade. Convolutional Neural

Networks (CNNs) were put (back) on the map with the sweeping win of 2012’s ImageNet

classification challenge [Deng et al., 2009] by AlexNet and have went on to dominate

virtually all current (natural) image understanding challenges (CIFAR10/100 [Krizhevsky

et al., 2009], MSCOCO [Lin et al., 2014], PascalVOC [Everingham et al., 2010] and

Cityscapes [Cordts et al., 2016]).

Aside from whole-image classification (the task of assigning a single label per image)

the field has increasingly considered more fine-grained image understanding tasks, such

as semantic segmentation, where a label for every pixel in an image is sought after. This

task also happens to be of large clinical value, as dense annotations allow to plan biopsies

or radiation therapy, monitor tumor growth or quantify the heart volume over time, etc.

For this reason, it is unsurprising, that after recording an MRI or a CT scan, radiologists

often produce a pixelwise annotation of structures of interest, thereby enabling subsequent

clinical steps that depend on the location and the semantics of things visible in the scan.
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Given enough and -if possible- clean annotations, the task of semantic segmentation is

now also handled very successfully by deep CNNs.

One of the foundations of this thesis however, is the observation that in certain cases,

producing a pixel-perfect segmentation may be difficult if not impossible. This class of

cases happens to be particularly common in medical images: ambiguous images, which do

not provide sufficient evidence to nail down a unique hypothesis. For examples thereof,

revisit Chap. 3.

The present chapter lays out the background that may underpin the discussions of

our contributions towards improvements in this scenario. In the following, models for

both image- and pixel-level classification, their relationship and developments up to the

current State-of-the-Art (SotA) are elaborated upon first. Then current tools that aim

at dealing with uncertainty and label noise in these discriminative models are presented.

The last part of this chapter is dedicated to current generative models and provides

context for Chap. 6 - Chap. 8.

4.1 From Image Classification

to Semantic Segmentation

A large area of computer vision is concerned with the interpretation and thus the

classification of images. The interpretation of an image can be performed on different

levels of granularity and the appropriate level is naturally chosen dependent on the

task of interest. On medical images for example, we might be interested in whether a

photographed skin lesion is benign, thus asking for an image global classification [Esteva

et al., 2017]. When screening for the necessity of biopsies, we might want to know the

location along with a malignancy estimate for a potential lesion in a lung CT scan [Jaeger

et al., 2018], therefore requiring an object-level classification. And conversely, when

planning for radiation treatment, we would like to have a pixelwise classification of organs

at risk in order to be able to minimize the radiation impact on healthy tissue [Nikolov

et al., 2018]. For an illustration of these examples see Fig. 4.1.

Historically, the interpretation of images was carried out at a local level, mostly

ignoring global context. Then came CNNs, allowing to learn a complex mapping from

the full image to a class label. Today’s deep semantic segmentation models allow to

make dense predictions, but this time around incorporating different scales of context

in a principled way rather than literally classifying every pixel independently. This

development is unfolded below in a (mostly) chronological way, leading up to the respective

State-of-the-Art (SotA).
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(a) Image-Level: Images of
skin lesions to be classified.

(b) Object-Level: Detection of
a malignant lesion on a lung CT.

(c) Pixel-Level: Semantic seg-
mentation of a brain MRI.

Figure 4.1 | Classification of Medical Images at different Levels of Granularity.
Subfigure (a) shows images of skin lesions whose malignancy is to be classified [Esteva et al.,
2017], (b) depicts a CT scan with an overlayed bounding-box and malignancy confidence for
a detected lesion [Jaeger et al., 2018] and (c) shows an MRI slice with overlayed multi-class
pixelwise annotations made by a deep neural network [Nikolov et al., 2018].

Hand-crafted Feature Classifiers Largely ignoring the pioneering work on CNNs of

the 1980s, other early efforts towards the algorithmic interpretation of images were trying

to deduce the semantic content of an image from local (dense), hand-crafted features

such as edge detectors [Gavrila and Philomin, 1999], Haar wavelets [Viola et al., 2001],

texture features [Tieu and Viola, 2004] or intensity gradients [Dalal and Triggs, 2005]. It

was quite apparent that modeling complex relationships, both between objects and also

in terms of the interplay of local and global image cues, should help in further improving

algorithmic image understanding. To this end many works proposed different handcrafted

hierarchies of local features, hierarchies of parts-templates or cascades of weak classifiers

[Fleuret and Geman, 2001, Serre et al., 2006, Ullman et al., 2002]. One of the most

widely known approaches in this spirit is SIFT (‘scale-invariant feature transform’) [Lowe,

2004], which constructs a hierarchy of features produced by difference of (fixed) Gaussian

functions.

Using local handcrafted features has several obvious pitfalls. For one, the set of

features may neither be optimal for, nor adapt to the intended application domain (e.g.

by learning). For another, producing classifications at the intended level of coarse-to-fine

granularity, requires either pre- or post-processing steps, or hand-crafting of a feature or

classifier cascade, that is prone to be brittle and suffer from modeling inadequacies.

Today such systems have by far and large been replaced by learning-based, deep

neural networks. In medical imaging however, they have remained a fairly popular tool.

The reason is two-fold: the hunger for labelled data of CNNs as well as the difficulty
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Figure 4.2 | Radiomic Feature Extraction Pipeline. Starting with step I), typically
the manual segmentation of structures of interest, step II) and III) entail the extraction of
handcrafted faetures and their analysis, for example by any type of classifier. Image borrowed
from [Aerts et al., 2014].

of interpreting individual classifications of CNNs. The shortage of labelled data often

prohibits the use of deep-learning approaches as they require a large number of labeled

examples in order to learn discriminative features without over-fitting the data. For

example see [Hénaff et al., 2019] who document the pronounced performance dependence

of a strongly performing ResNet [He et al., 2016b] on the number of examples per class

on ImageNet [Deng et al., 2009].

Radiomics One way to get by with less data, is to reduce the expressiveness of a classifier

(e.g. by using decision trees or kernel-based methods such as support vector machines)

and indeed train it on hand-crafted image-derived features as opposed to learning them.

This intuitive and empirical solution is also backed by theory, e.g. following the argument

in [Friedman et al., 2001] that models with increased expressiveness trade off their bias

for increased variance (a model’s tendency to explain the training data by simpler versus

more complex functions). Adding to that advantage, such simpler models, based on

handcrafted features, may allow an increased degree of interpretability, in the sense that

they often permit to determine the importance of individual features. This scheme and

the class of simpler ML-models has been popular in the analysis of medical images and

is referred to as radiomics in the medical imaging literature [Aerts et al., 2014, Gillies

et al., 2015].



4.1 From Image Classification to Semantic Segmentation 33

The reduced expressiveness of such models however comes at the obvious cost of a

reduced ability to model highly complex relationships between images and class labels.

Furthermore additional manual (or automated) steps as compared to end-to-end learning

approaches may be required. This is because the typically highly local radiomic features

do not readily allow to find the regions of interest (RoIs) that are discriminative (for an

example see Chap. 5). Instead they are often calculated on RoIs that are pre-segmented

by clinicians [Aerts et al., 2014, Bonekamp et al., 2018], see Fig. 4.2 and Fig. 5.1 for an

illustration of a typical pipeline.

CNN Classifiers Given enough data of sufficient annotation quality, the classification

of images is currently best handled by deep Convolutional Neural Network (CNN)s. The

task of assigning a global label to an image largely assumes that it depicts a single object,

most of the times centered and visible in full in the foreground. On natural images, the

prime example of this sort of task is the ImageNet dataset [Deng et al., 2009] whose

training set roughly holds 1000 unique classes with 1000 examples each and has been

used excessively to benchmark and develop deep CNN architectures.

The general building blocks of CNNs have not changed much since their conception

in the 1980s [Fukushima, 1980, LeCun et al., 1989, Waibel, 1989]: They use stacks of

convolutional filters with shared weights followed by non-linear activation functions and

down-sampling operations. Applied in a chain, these building blocks progressively reduce

the spatial resolution of the produced activations, while using an increasing number of

kernels, until typically an image global representation is reached [Krizhevsky et al., 2012,

LeCun et al., 1998].

More recent advances have primarily focused on increasing the expressiveness of the

models by means of two main levers: the number of layers (‘network depth’) [Simonyan

and Zisserman, 2014, Szegedy et al., 2015] and the number of convolutional kernels per

layer (‘network width’) [Wu et al., 2016b, Zagoruyko and Komodakis, 2016]. In order

to reach even larger network depths without suffering from vanishing gradients in the

early network layers, new connectivity patterns between the convolutional layers were

conceived such as residual blocks [He et al., 2016a,b] and dense blocks [Huang et al.,

2017]. Additionally different normalization schemes such as batch-, instance-, layer- and

group-norm [Ioffe and Szegedy, 2015, Lei Ba et al., 2016, Ulyanov et al., 2016, Wu and

He, 2018] have found wide-spread use, for the same and largely empirical reason. In

the last few years this toolkit has brought about large improvements in classification

accuracy on ImageNet and beyond. The task of finding improvements in architectures is
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increasingly automated, e.g. by evolution strategies, and indeed has lead to the latest

SotA results on ImageNet [Real et al., 2018, Tan and Le, 2019].

Common across architectures is their feed-forward formulation that produces a

categorical distribution over labels Y . This distribution is typically parameterized

as a categorical softmax probability P (Y |X) which is trained in fully supervised fashion,

i.e. each training example input X has a unique and known (‘one-hot’) target Y . The

training itself proceeds iteratively in that mini-batches (X,Y ) ∼ Pdata, are sampled for

which the classifier is set up to minimize a Cross Entropy (CE) loss LCE:

LCE = −E(X,Y )∼Pdata

[
Y logP (Y |X)

]
, (4.1)

where a mean-aggregation across batch instances and an additional mean aggregation

across pixels is implied in the case when the output Y has spatial dimensions, such as in

semantic segmentation.

CNN Classifiers in Medical Image Analyses Whole image classification is an im-

portant task in the analysis of medical images, as many clinical diagnoses could be

reformulated as a global assessments of the presented image evidence. In the past two

years large CNNs have been successfully trained to classify melanoma [Esteva et al., 2017],

mammographic lesions [Kooi et al., 2017] and retinal diseases from optical coherence

tomography OCT images [De Fauw et al., 2018]. Remarkably, a range of works report

physician-level classification performance, e.g. in the task of identifying moles from

melanomas, diabetic retinopathy, cardiovascular risk, referrals from fundus and OCT

images of the eye, breast lesion detection in mammograms, and spinal analysis with

magnetic resonance imaging [Esteva et al., 2019].

Pixel-level Semantic Segmentation The task of semantic segmentation is another

instantiation of the canonical classification problem. In this task one aims for an image

understanding at the finest resolution the image itself allows for, i.e. the pixel-level,

which has been considered a difficult computer vision problem for a long time.

Before the era of deep learning was ushered in, many approaches attempted to model

segmentation at either mostly local or mostly global resolutions. The line of local models

built on handcrafted features, very similar to the ones discussed above, e.g. leveraging

SIFT features [Lowe, 2004, Suga et al., 2008]. Other works tried to model the local

correlations between pixels and neighboring segmentation labels using random fields

over pixels [Boykov and Jolly, 2001, Rother et al., 2004] or random fields expressed over

features aggregated over local image areas (‘superpixels’) [Fulkerson et al., 2009, He et al.,
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(a) The FCN-8s. (b) The U-Net.

Figure 4.3 | Deep CNN Architectures for Semantic Segmentation. (a) shows a CNN
for ImageNet classification, adapted for dense semantic segmentation [Long et al., 2015].
(b) shows the U-Net architecture with a symmetric encoder and decoder, linked by skip
connections [Ronneberger et al., 2015].

2006]. The line of more global approaches on the other hand was largely template driven:

by modeling the objects’ outline, e.g. using statistical shape models [Cootes et al., 1995,

Winn and Jojic, 2005] or by modeling the internal composition of objects, e.g. in terms

of parts-based [Kumar et al., 2005] or fragment-based models [Borenstein and Ullman,

2008]. A more comprehensive discussion of these pre deep learning segmentation methods

can be found in [Eslami, 2014].

As laid out above, CNNs instead promise to learn a hierarchy of non-linear features,

encoding location and semantics in a local to global cascade. Because their original

instantiations involved a contraction in resolution leading to global features, it was

only gradually worked out how to successfully apply them to dense, i.e. full resolution,

prediction tasks such as semantic segmentation. The simplest but also most wasteful

approach conceivable is to literally, pixel by pixel, slide a CNN across an image and

classify each pixel individually, which indeed was one of the early deep learning based

proposals [Ciresan et al., 2012]. [Farabet et al., 2012] on the other hand, used several fully

convolutional networks to produce dense segmentations for different image resolutions.

The outputs were upsampled to matching resolutions and concatenated and then post-

processed through random fields and superpixel-based classifiers, therefore constituting a

model made up of components that were not jointly trained.

The first fully convolutional networks (FCNs) that were trained end-to-end were

presented in [Hariharan et al., 2015, Long et al., 2015]. Here the first steps to fuse coarse

semantic and fine appearance features were undertaken. [Long et al., 2015] proceeded by

pretraining the best known classification networks of the time (AlexNet [Krizhevsky et al.,
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2012], VGG-Net [Simonyan and Zisserman, 2014] and GoogLeNet [Szegedy et al., 2015])

on ImageNet and then replacing their final dense layers by 1× 1-convolutions thereby

turning them into fully convolutional networks able to produce coarse, but nonetheless

spatially resolved, output predictions (downsampled by a factor of 32 w.r.t the input),

see Fig. 4.3a. In order to improve localization they added segmentation heads at two

coarser locations (at stride 16 and 8) and used deconvolutions to learn an upsampling for

each of those heads. The upsampled outputs of each head were combined by addition

and then fine-tuned end-to-end on PascalVOC, yielding a new segmentation SotA by a

large margin at the time. This re-use of parts of the network at a later stage is referred

to as skip-connections.

Shortly after, the U-Net [Ronneberger et al., 2015] was introduced, which presented a

principled way of combining the high-level semantic information of later layers with the

fine-grained localization of earlier layers. The main idea is to not only add upsampled

segmentation outputs of earlier layers, but to successively combine coarser features

with more localized features in a learned fashion by means of convolutions. To this

end the U-Net forms an encoder-decoder architecture by adding a decoder made up of

convolutional and upsampling layers that mirrors its encoder (the network part that

resembles a whole-image classification network) in reverse order, see Fig. 4.3b. Each

processing scale of the decoder receives as input the concatentation of the upsampled

decoder features from the resolution scale below with the encoder features of the same

resolution. Allowing to successively recombine features of different scales by convolutions

and skip-connections at all resolutions turns out to be a very powerful approach, leading

to very successful semantic segmentation applications.

Another popular strand of work, referred to as DeepLab [Chen et al., 2017a], initially

refrained from using a learned decoder. Instead so-called à-trous convolutions, which

increase a convolution kernel’s field of view without increasing its number of parameters,

are used to aggregate context across the image in the model’s encoder. In its first

proposition DeepLab employed a conditional random filed to post-process the produced

segmentation, this was dropped in a second incarnation [Chen et al., 2017b] and finally

a decoder with skip-connections and upsampling were introduced, called ‘DeepLabv3+’

[Chen et al., 2018], effectively assimilating the model to the U-Net. DeepLabv3+ holds

the current SotA for semantic segmentation on Cityscapes and PascalVOC.

The encoder-decoder scheme proposed through the U-Net is the most widely and

successfully used archetype for semantic segmentation models today. Especially in medical

image segmentation it enjoys large popularity, with many successful adaptations in clinical

applications [De Fauw et al., 2018, Nikolov et al., 2018] and SotA entries in segmentation
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challenges like the Medical Segmentation Decathlon (10 distinct medical datasets), ACDC

(heart MRI) and LiTS (liver CT) among many others, see [Isensee et al., 2019].

Object-detection & Instance Segmentation Semantic segmentation models predict

a class label for every pixel in an image, but do not distinguish between instances

of a class. In certain scenarios it might be of interest to distinguish instances, for

example one might want to count objects or assign scores to individual objects, such as a

malignancy prediction for detected lesions, see Fig. 4.1b. The task of joint localization

and classification is referred to as object detection. In this task, it is not required to

find a pixelwise segmentation of the instance and usually bounding box coordinates are

regressed. The SotA model on this task is Mask R-CNN [He et al., 2017], an evolution

of Faster R-CNN [Ren et al., 2015]. Both employ a U-Net like encoder-decoder as the

‘backbone’ from which they branch off additional classification and regression heads.

The task of additionally finding pixelwise masks of each object instance is referred to

as instance segmentation, for which Mask R-CNN is also the SotA model by employing a

separate mask head.

4.2 Predictions under Uncertainty and Noise

Deep classification and semantic segmentation models as described above are discrimina-

tive models. That means they are trained to find a complex, non-linear decision boundary

between classes and behave deterministically, i.e. they produce a singular prediction

for a given image. This prediction is made in the form of a softmax probability, which

is often falsely interpreted as a model’s confidence in its prediction, when really it is a

relative measure of how far the data point is away from the learned decision boundary. In

fact a model can be uncertain in its prediction even when predicting with high softmax

probability [Blundell et al., 2015, Gal and Ghahramani, 2016].

Uncertainty can originate from various sources, among them the uncertainty from

an ambiguous mapping of X → Y and such that stems from not having found the right

model parameters due to limited access to the data distribution (not enough labelled

data). Given the high stakes nature of clinical applications, correctly handling ambiguity

and uncertainty can be of particular importance in medical image analyses. Here, two

important desiderata are sought after: 1) negative effects of diverse labels on model

performance should be reduced where possible, and 2) uncertainty should be meaningful,

i.e. calibrated as well as interpretable. Both goals are subject to ongoing research, which

is traced out below.
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Image Ambiguity and Label Noise Medical images in particular often only present

ambiguous image evidence for target measures of interest, like class labels or pixelwise

semantic segmentations. This is because they only indirectly measure the molecular

identity of the tissue within each voxel. This similarly holds true on natural images,

where the image evidence may be compromised due to limited resolution, measurement

noise and occlusions. Sometimes even the label space itself is ambiguous as a consequence

of an arbitrary quantification of a continuous space, e.g. think of cat vs. kitty, a concept

called ‘implicit class confusion’ [Lee et al., 2016]. In all cases, this ambiguity leads to sets

of plausible interpretations Y ∈ (y0, ..., yn) for a given image X, which is well documented

on clinical tasks (see Sec. 3.2) and also on annotations for natural images [Gurari et al.,

2018]. Because of the aforementioned lack of image evidence, the uncertainty with respect

to the labels is irreducible, even in the limit of infinite amounts of labelled data. This

type of uncertainty can be referred to as aleatoric uncertainty [Kendall and Gal, 2017].

Mitigating Label Noise The fact that there can be an irreducible amount of label

uncertainty for a given image does not mean that there is no unique ground-truth, only

that it cannot be pinned down beyond a certain degree from the image alone (a biopsy

however could for example resolve the ambiguity). Arguing that there can therefore

be labels that are preferable over others, with some labels even hurting a classifier’s

performance, there is a line of work seeking to mitigate the negative effects of label

ambiguity, which is label noise in this view.

In semantic segmentation, the perhaps simplest approach to reduce label noise is to

mask ambiguous image regions in the loss calculation. Such masks are often available

on datasets such as Cityscapes [Cordts et al., 2016], which however is neither principled

nor does it generalize well. For this reason a line of work is concerned with finding

loss-functions that are inherently more robust to label noise than the standard CE-loss

(Eq. 4.1). [Ghosh et al., 2017] for example propose to use a mean squared error (L2) loss

for multi-class classification under label noise and [Zhang and Sabuncu, 2018] show an

increased classification performance when employing a parametric relaxation between a

mean absolute error (L1) loss and a CE-loss under label noise.

The latter proposal hinges on the observation that the CE-loss gradient is inversely

proportional to the classifier’s softmax probability for the ground truth label. While this

is desirable on ‘clean’ labels or unambiguous classification tasks as a form of implicit

hard-negative mining, it might hurt on ambiguous ones. This is because putting a lot

more emphasis on difficult, therefore potentially ambiguous cases, may cause the classifier
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to overfit to ambiguous labels or to perform poorly as a result of large, confusing loss

gradients.

An extension towards a learned reduction of the impact from aleatoric label noise

is presented in [Kendall and Gal, 2017, Lakshminarayanan et al., 2017]. Here, a deep

segmentation network is equipped with an additional regression head that enables the

network to attenuate the loss function by down-weighting difficult pixels or examples. This

attenuation is learned indirectly, i.e. without uncertainty targets, and may be interpreted

as a pixelwise aleatoric uncertainty. Other works seek to ‘clean-up’ the labels by excluding

such training instances that are below some softmax probability threshold [Northcutt

et al., 2017] or deemed noisy by a separate network that is trained on known clean labels

[Veit et al., 2017]. Alternatively training and finetuning on self-generated labels has

been proposed [Tanaka et al., 2018] or learning to construct a training curriculum that

prioritizes data points with lower estimated noise [Jiang et al., 2017].

Capturing Label Distributions Another line of work seeks to model the distributions

of labels or moments of these distributions, rather than mitigating noisy training signals.

Making use of the Expectation Maximization (EM) algorithm, [Khetan et al., 2017]

estimate the label posterior distribution by explicitly modeling the annotation quality of

individual annotators and [Vahdat, 2017] infer a graphical model with clean labels, noisy

labels and images as nodes that allows to produce a probability distribution over clean

labels. Similar approaches exist for semantic segmentation, where the EM algorithm

is used to estimate the true underlying segmentation from a set of segmentations by

modeling the quality of individual annotators [Warfield et al., 2004], which however relies

on the availability of multiple annotations and only indirectly depends on the underlying

image itself.

Other works modify the architecture of deep nets, e.g. by adding an extra layer that

adapts the network outputs to match the (image global) label distribution by modelling

the confusion matrix between prospective true and observed labels [Goldberger and Ben-

Reuven, 2016, Sukhbaatar et al., 2014]. Relatedly, [Guan et al., 2018] model individual

annotators on retinopathy images by branching off classification heads at the end of a core

CNN, each of which is solely trained to match the diagnoses given by their corresponding

expert. In a second step they learn weights for each of the heads by matching the ground

truth label distribution and show that a respective weighted average across predictions

performs better than a naive arithmetic mean of the predictions (compared against

the arithmetic mean of the annotators). Again having access to multiple independent

diagnoses per retinopathy image, [Raghu et al., 2019] propose to directly predict the rater
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variance per image and show an improved performance in predicting rater disagreement

as compared to derivative uncertainty measures such as the entropy of the softmax

probabilities.

Modelling diverse outputs for semantic segmentation has also been considered in the

literature. For example by using an ensemble of models [De Fauw et al., 2018, Lee et al.,

2015, 2016] or by using multiple distinct output layers in combination with a stochastic

loss that encourages diverse specialization of the heads [Ilg et al., 2018, Rupprecht et al.,

2017]. Finally a cVAE for semantic segmentation was proposed in [Sohn et al., 2015a],

which was applied to small scale natural images and predates powerful encoder-decoder

segmentation architectures. More details on this line of work can also be found in Sec. 7.2.

Capturing Model Distributions Aside from uncertainty due to irreducible ambiguity

in particular observations, a model can be uncertain due to a lack of observed data.

This type of uncertainty is referred to as epistemic uncertainty and can be reduced by

providing data for unseen regions of the ‘data space’. In machine learning, epistemic

uncertainty unfolds in the uncertainty about which model is appropriate given all of

the seen data. As neural networks are parameterized by learned weights w, this can be

viewed as the uncertainty expressed by a distribution over the network weights Q(w|D),
having observed labelled data D. Intuitively, as the number of examples in D increases,

Q(w|D) should become sharper.

The exact Bayesian inference of Q(w|D) is intractable for deep neural networks

and so a range of approximations have been proposed. Several works use variational

approximation techniques, explicitly parameterizing weight distributions [Blundell et al.,

2015, Graves, 2011, Hinton and Van Camp, 1993]. Other approaches, popular for their

ease of implementation, re-interpret a regularization scheme that stochastically sets

individual network weights to zero (known as ‘dropout’ [Srivastava et al., 2014]) as

a variational Bernoulli distribution over the weights [Gal and Ghahramani, 2016, Gal

et al., 2017a, Kendall et al., 2015] and apply dropout at test time, called MC-dropout.

Interestingly, the MC-dropout technique may be viewed as subsampling smaller networks

and ensembling them. And indeed [Lakshminarayanan et al., 2017] showed that training

actual model ensembles can capture uncertainty and yield comparable (or improved)

performance to MC-dropout in terms of uncertainty calibration.

Distinguishing Aleatoric and Epistemic Uncertainty While the distinction between

aleatoric and epistemic uncertainty is well grounded from a theoretical perspective, it can

be a difficult one to make on real world, high dimensional data. [Kendall and Gal, 2017]
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for example report that the separate machinery they put in place to capture the two,

MC-dropout over the weights and a learned loss attenuation (see above), can in practice

also cover the respective other uncertainty type. [Smith and Gal, 2018] propose different

uncertainty measures to distinguish aleatoric from epistemic uncertainty and given MC-

dropout samples from a CNN classifier show that the distinction may be possible on a

simple task such as classifying digits on MNIST, but even here the separation appears

far from definite.

Informally, there appears to be a more fundamental problem: In real world vision

applications, such as classifying a small lesion on a CT scan, it cannot be known whether

the presented image evidence is truly ambiguous (giving rise to aleatoric uncertainty) or

whether our model has simply not learned the discriminative image cues yet, due to not

having observed enough data (causing epistemic uncertainty). This problem intensifies

on high-dimensional data such as CT or MRI scans. While there may be good reasons to

nonetheless strive to distinguish the two, e.g. for the detection of adversarial examples

[Smith and Gal, 2018] or for active learning [Siddhant and Lipton, 2018], the distinction

may be less relevant when diagnosing or segmenting medical images, where a combined

uncertainty assessment, the predictive uncertainty, can be sufficient for practical intents.

4.3 Generative Models for Images

As described in Sec. 4.1, whole-image classification and semantic segmentation are usually

approached with discriminative models. Although producing a categorical softmax

distribution P (Y |X), they are deterministic models trained to discriminate labels Y

based on learned boundaries and given the observed image evidence X. While conditional

generative models formally also model P (Y |X), they induce a complex distribution

over the possible values of Y , having observed X. The distinction is well apparent in

applications such as dense prediction, i.e. pixelwise outputs, as can be observed in the

later Chap. 7 - Chap. 8. Here, discriminative models produce a pixelwise predictive

distribution that is not meant to be sampled from, as it would result in independent and

thus incoherent samples, whereas generative models attempt to produce coherent output

samples.

This chapter provides the background for different types of generative models that are

used or referred to further down the line in the context of aiming at modeling complex

interdependencies for Y |X.
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Variational Autoencoders Variational Auto-Encoders (VAEs) aim to explicitly model

the likelihood of data-points, e.g. images X or labels given an image Y |X. They do so

by assuming that there is an intermediate, called latent, variable that maps to X and is

typically assumed much lower dimensional than X. From this point of view, finding the

likelihood of X becomes the marginalisation of the latent variable:

P (X) =

∫
z

P (X|z)P (z)dz . (4.2)

For convenience P (z) is usually chosen to be a spherical Gaussian and P (X|z) is

parametrized as a neural network, e.g. a CNN. In order to maximize P (X) for observed

X during training, we would like to adjust this net’s weights accordingly. Computing

P (X) turns out to be difficult though, as the marginalization of P (X|z) is analytically
intractable and approximations like MC-integration are inefficient as in practice only

small volumes of z are expected to contribute to particular mappings to X.

The solution lies in exploiting this intuition and assuming that it should be possible to

infer z that are likely to have produced X [Doersch, 2016]. For this purpose a distribution

Q(z|X), parameterized as a neural net, is introduced. During training this distribution

shall become as close as possible to the true (but unknown) posterior P (z|X), which can

be measured by means of a Kullback-Leibler divergence (KL) divergence, DKL. Using

Bayes theorem, this gives:

DKL(Q(z|X)||P (z|X)) := Ez∼Q

[
logQ(z|X)− logP (z|X)

]
(4.3)

= Ez∼Q

[
logQ(z|X)− logP (X|z)− logP (z) + logP (X)

]
,

(4.4)

regrouping and using DKL ≥ 0 then yields:

logP (X) = Ez∼Q

[
logP (X|z)

]
−DKL(Q(z|X)||P (z)) +DKL(Q(z|X)||P (z|X)) (4.5)

≥ Ez∼Q

[
logP (X|z)

]
−DKL(Q(z|X)||P (z)) := −LELBO . (4.6)

The Evidence Lower Bound (ELBO) objective LELBO is a tight lower bound assuming that

our distribution Q(z|X) is sufficiently close to the true posterior. From this it becomes

apparent, that indeed the log-likelihood of a data point (Eq. 4.5) can be approximated

(lower-bounded) by means of samples from the posterior Q(z|X), plus the evaluation of

a divergence term that is commonly analytically tractable. In practice often only a single

posterior sample suffices for training.
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For images, a contracting CNN is set up, that regresses the parameters for Q(z|X)

(commonly a Gaussian), which is referred to as the encoder, inference or posterior network.

P (X|z) on the other hand is setup as a CNN that gradually increases its resolution, having

as input a sample z and outputting an image resolution distribution P (X|z), referred
to as the decoder. The distribution in the output space is a design choice, for natural

images typically a pixel-wise Gaussian distribution, which turns −Ez∼Q

[
logP (X|z)

]
into

a pixelwise L2 -loss.

The derivation of the training ojective for conditional Variational Auto-Encoders

(cVAEs) in order to model P (Y |X) follows the same lines as Eq. 4.3 - Eq. 4.6 and is

detailed in [Doersch, 2016].

Autoregressive Models & Flows Two other classes of explicit likelihood models are

popular as generative models for images. Autoregressive models for one, use the chain

rule of probabilities to factorize the image likelihood in terms of pixelwise conditional

probabilities [Oord et al., 2016, Van den Oord et al., 2016]. These models are typically

trained to maximize the pixelwise likelihoods directly in rgb-space and while they are

very slow to sample from, yield state of the art likelihoods. Their applicability to large

scale image generation was not shown until very recently [De Fauw et al., 2019, Razavi

et al., 2019] with interestingly both works generating images in a hierarchical fashion.

Flows [Dinh et al., 2016, Kingma and Dhariwal, 2018], like VAEs, are latent variable

models. They allow for an exact likelihood maximization, by careful construction of the

neural network that maps f(X) = z, such that f is bijective. This allows maximizing

the likelihood P (X) by maximizing the likelihood of the latents P (z) under a simple

distribution, such as a spherical Gaussian, using the change of variables theorem. The

bijectivity requirement however dictates the total number of dimensions after each layer

to remain the same, which means that overall, z must have the same dimensionality as

X and the qualifying functions are reduced in expressiveness.

To the best of our knowledge, neither autoregressive models nor Flows have been

explored in the context of image-conditional generative modeling (P (Y |X)) to date.

Generative Adversarial Networks (GANs) allow the training of (deep) generative

models without maximizing an explicit likelihood of the data. The GAN-framework

involves two networks that are trained simultaneously, a generator filling the role of the

generative model and a discriminator, which is required only during training [Goodfellow

et al., 2014]. The generator G receives as input latent variables z and maps them to an

output X, e.g. an image, just like the decoder in the VAE-framework. Unlike the VAE
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case, G is however not trained by reconstructing the image X, that an inference network

has encoded in the form of z. Instead it learns the mapping G(z) = X simply by trying

to receive a high classification score for the generated X from the discriminator D. Since

D is parameterized as a neural net, it is possible to backpropagate gradients through it,

and training G can thus be formulated as minimizing:

LG = −Ez∼Pz

[
logD(G(z))

]
, (4.7)

see [Goodfellow et al., 2014], where the latent z is sampled from a fixed distribution

Pz, such as typically a spherical Gaussian. The discriminator is set up so as to answer the

question whether the input it receives may plausibly be part of the real data distribution

Pdata. This means D is trained to tell apart real data instances X ∼ Pdata (target label

1) from those generated by G (target label 0), by means of a simple binary classification

with loss:

LD = −Ez∼Pz

[
log

(
1−D(G(z))

)]
− EX∼Pdata

[
logD(X)

]
, (4.8)

The two networks play an adversarial mini-max game against one another, in which

both gradually get better, G at counterfeiting fakes and D at telling them apart from

real ones. This game is notoriously brittle, in that sudden and irrecoverable degradations

of performance can occur, and much research has dedicated effort towards understanding

and mitigating these issues [Arjovsky et al., 2017, Brock et al., 2018, Lucic et al., 2017,

Miyato et al., 2018].

Making GANs image-conditional (cGANs), i.e. again modelling P (Y |X), for the

purpose of image-to-image translation tasks of all sorts, has equally been difficult to

achieve. Many authors observed the latents z being largely ignored in favor of the image

to condition on [Isola et al., 2017, Luc et al., 2016]. Ways of constraining the architectures

so as to prevent this from happening have been found. For example [Zhu et al., 2017a]

use a chain of GANs to go back and forth between X ↔ Y , essentially adding in a

reconstruction constraint. [Zhu et al., 2017b] similarly use a reconstruction constraint

and have combined cGANs with VAEs in order to infer the semantics of the employed

latent space.



Chapter 5

Finding Discriminative MRI Features

Invasive diagnostic steps such as biopsies, have the ability to improve the grading of

prostate lesions as they can disambiguate the findings from non-invasive techniques, see

the more detailed discussion Chap. 3. However, because of the implied patient discomfort

and health risks, there is a quest to forgo surgical biopsy and instead rely on image

evidence, where admissible.

In current clinical practice, Multi-parametric MRI (mpMRI) images are qualitatively

interpreted by radiologists using rule-based grading systems (PIRADS). Due to the

subjective nature of the assessment, differences in rater experience as well as ambiguous

image evidence, these diagnoses can be sub-optimal and are known to suffer from high

inter-rater variability, see Sec. 3.3.

In this chapter we explore whether it is possible to find simple mpMRI-derived

features, that allow a quantitative and reproducible assessment of the image evidence

while matching or surpassing the radiologists’ diagnostic performance. We make the

following contributions:

• We develop a simple machine learning based approach to classify the clinical

significance of prostate lesions based on mpMRI-derived features using a dataset

and biopsy reference standard that was collected in clinical practice and thus reflects

realistic conditions.

• We assess the method on a held-out dataset having fixed its working point so as

to reflect the radiologist’s sensitivity on the training set and observe an increased

performance compared to the radiologist.

• We rank the importance of the employed features and substantiate the discriminative

power of a specific MRI-derived feature largely refuting the utility of additional

modalities and features as found in the literature.



46 Finding Discriminative MRI Features

• Finally, we analyze the utility of distinguishing between anatomical zones of the

prostate, which are handled differently in clinical guidelines. To this end we assess

the performance of separately trained models and find a combined model to perform

superior.

With kind permission by the Radiological Society of North America (RSNA), this

chapter reproduces many parts of the following publication:

David Bonekamp*, Simon Kohl*, Manuel Wiesenfarth, Patrick Schelb, Jan Philipp

Radtke, Michael Götz, Philipp Kickingereder, Kaneschka Yaqubi, Bertram Hitthaler,

Nils Gählert, Tristan Anselm Kuder, Fenja Deister, Martin Freitag, Markus Hohenfellner,

Boris A Hadaschik, Heinz-Peter Schlemmer, Klaus H Maier-Hein. “Radiomic Machine

Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC values.”

Radiology 289, no. 1 (2018): 128-137,

where * indicates equal contributions by David Bonekamp (radiologist and senior

physician at the German Cancer Research Center) and the author of this thesis, who

devised the machine learning models, carried out their training, evaluation and analysis

and co-wrote the manuscript. In the following the publication is cited as [Bonekamp

et al., 2018].

5.1 Problem Statement

Interpretation of mpMRI according to the The Prostate Imaging Reporting and Data

System (PIRADS) and its recent update to version 2.0 [Barentsz et al., 2012, Vargas

et al., 2016, Weinreb et al., 2016], in combination with Trans-rectal Ultra-Sound Guided

Biopsy (TRUS-biopsy), has shown promise in detecting clinically significant cancer, with

sensitivities reaching 97% [Moldovan et al., 2017, Radtke et al., 2016].

However, identifying patients with high sensitivity also comes at the cost of possible

overdiagnosis, and further improvement in the differentiation of non-aggressive and

aggressive prostate cancer is necessary [Cooperberg and Carroll, 2015, Donati et al., 2013,

2014, Woo et al., 2017]. While PIRADS scoring is based on the qualitative assessment

of DWI and T2w images, see Sec. 3.2, the ability of quantitative Apparent Diffusion

Coefficient (ADC) measurements to improve inter-reader concordance has recently been

pointed out [Hansen et al., 2017, Pierre et al., 2018].

DWI, and specifically the ADC, can be considered the current best mono-parametric

component of prostate MRI assessment, resulting from its ability to probe the micro-
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environment of neoplastic tissues efficiently and detect alterations in compartmental

volumes and cellularity [Chatterjee et al., 2015], see Sec. 2.1 for technical background.

The potential of radiomics to improve diagnostic accuracy, by extracting a large

number of hand-crafted, quantitative features from these radiologic images, has recently

received significant attention in clinical literature [Fehr et al., 2015, Vignati et al., 2015,

Wang et al., 2017, Wibmer et al., 2015].

Initial studies have reported promising performance of radiomics, with and without

the use of machine learning, in the prediction of the prostate cancer Gleason Score (GS)

[Vignati et al., 2015, Wang et al., 2017, Wibmer et al., 2015]. Accuracy however varies

depending on the machine learning approach used [Wibmer et al., 2015]. Additionally a

magnitude of features has been reported as dicriminative, e.g. various textural features

have been associated with prostate cancer aggressiveness and the pathologic index lesion:

Homogeneity gray-level co-occurrence matrix texture features from T2w images and ADC

maps have been suggested to be superior to first order ADC statistics such as mADC

[Vignati et al., 2015], and radiomics has been reported advantageous compared with and

in combination with retrospective PIRADS assessment [Wang et al., 2017].

The purpose of our study was to further examine multi-parametric quantitative

models, with the use of an independent, comparatively large test set and with direct

comparison to established mono-parameters (mADC) and clinical assessment (PIRADS).

For a definition of the PIRADS system please refer to Sec. 3.2 and the mADC denotes

the mean of the Apparent Diffusion Coefficient (see Sec. 2.1) calculated across the pixels

or voxels of a given segmentation mask.

The characterization of MRI-detected lesions was formulated as a binary classification

between clinically significant (aggressive) lesions and such with lower significance (non-

aggressive lesions). The binary targets reflect histopathological findings, such that lesions

with a Gleason Grade Group of 2 or larger (equivalent to GS ≥ 7a, see Sec. 3.2 and

specifically Table 3.1), were regarded as clinically significant ground truth [Carter et al.,

2012, Loeb et al., 2016].

We compared radiomics predictions and the mean Apparent Diffusion Coefficient

(mADC) (calculated across the respective radiologist provided segmentation masks)

under this prostate lesion classification task. For comparison on the independent test

set, working points corresponding to the sensitivity threshold of a radiologist’s clinical

reporting (employing a threshold on the given PIRADS scoring) were considered.
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5.2 Prostate MRI Dataset

This retrospective analysis was performed in a cohort of men undergoing MRI and Trans-

rectal Ultra-Sound Guided Biopsy (TRUS-biopsy), that was collected during routine

clinical practice at the German Cancer Research Center and the University of Heidelberg

Medical Center. This dataset is not currently publicly available and therefore requires

specification, which is provided in the following.

Cohort Inclusion Criteria The institutional and governmental ethics committee ap-

proved the study and waived informed consent. All patients had a clinical indication

leading to prostate biopsy (details on the biopsy protocol are given in Sec. A.1) which

was based on Prostate-specific Antigen (PSA) elevation, suspicious DRE results and MRI

examination or participation in the University of Heidelberg Medical Center’s active

surveillance program. MRI data of 316 consecutive patients (median age = 64 years;

interquartile range (IQR) = 58–71 years) examined with a single 3T MRI system in

2015-2016 were included in the analysis. 183 patients examined from May 2015 until

January 2016 were included in the training cohort for training and validation (median age

= 64.5 years; IQR = 59–71 years), while 133 patients, examined between January 2016

and September 2016, comprise the independent test cohort (median age = 63 years; IQR

= 58–71 years). Inclusion criteria were (a) imaging performed on our main institutional

3T MRI system and (b) extended systematic and targeted TRUS-biopsy performed after

MRI, see Fig. 3.2c). Exclusion criteria were (a) history of treatment for prostate cancer

(antihormonal therapy, radiation therapy, focal therapy, prostatectomy); (b) biopsy within

the past 6 months prior to the MRI examination; and (c) incomplete sequences or severe

artifacts on MRI images. More details on the inclusion and exclusion criteria can be

found in Fig. A.1 and Fig. A.2 gives specifics on the demographics and the distributions

of Gleason and PIRADS scores in the cohorts.

MRI Acquisition and Interpretation MR images at 3T were acquired prior to biopsy

according to the European Society of Urogenital Radiology, or ESUR, guidelines (Magne-

tom Prisma, Siemens Healthcare, Erlangen, Germany, see Fig. 3.2c)). T2-weighted and

DWI MR images were acquired according to the institutional prostate MRI protocol (with

b-values images at b = 50, 500, 1000 and 1500 smm−2). Interpretation of multiparametric

MRI images was performed by board-certified radiologists during clinical routine; eight

radiologists, seven of them with at least 3 years of experience in prostate MR image

interpretation, read 311 (98%) studies, and one younger colleague who joined the team

after completing a departmental training period interpreted five (2%) studies. All exami-
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nations were reviewed again in an interdisciplinary conference prior to biopsy for quality

assurance and all radiologists participated in regular retrospective review of MRI reports

and biopsy results. Clinical reports included PIRADS assessment for each detected lesion

and a pictogram indicating lesion location. For subsequent quantitative analysis, ADC

images, DWI images with b value of 1500 smm−2 (in the following referred to as B1500),

and T2w images were extracted and upsampled to 0.25mm in-plane resolution and 3mm

section thickness by using the medical imaging toolkit1 (MITK [Nolden et al., 2013]).

5.3 Radiomics Pipeline

Fig. 5.1 sketches the employed radiomics pipeline: MRI acquisition was followed by the

radiologist-performed lesion segmentation, an image normalization and the extraction

and selection of radiomics features which finally fed into the training and evaluation of

ML classifcation models. The individual steps are described in more detail below.

MRI Lesion Segmentation 3D volumes of interest (VOIs) of clinical lesions were

segmented by one investigator (with 6 months of experience in prostate MRI), using

the afore-generated clinical reports (MRI images and location pictograms) in consensus

with and under supervision of a board certified radiologist with 8 years of experience in

prostate MRI using MITK [Nolden et al., 2013], and performed separately on T2w images

and ADC images. Due to the natural co-registration of ADC maps to the source b-value

images, the ADC segmentations carry over to B1500 image on which the segmentation

process therefore does not need not be repeated. VOIs were drawn on consecutive axial

sections by using a polygon tool, encompassing the whole lesion while trying to avoid

areas of partial volume effects at the border and in regions of diffuse tumor infiltration.

A total of 462 lesions were segmented. Aside from the lesions, the whole gland as well as

the PZ were segmented. In addition, with the aim of normalizing the non-quantitative

modalities, normal appearing Peripheral Zone (PZ) was segmented, excluding any lesion

and minimizing diffuse signal changes while encompassing at least 50 voxels on at least

three adjacent sections. Fig. 5.2 depicts example segmentations of PZ, prostate boundary,

and a PIRADS 5 lesion in the anterior Transitional Zone (TZ) in a representative patient

with volume renderings.

Image Normalization T2w and B1500 images were normalized by dividing voxel inten-

sities with the mean value of background PZ tissue, which was delineated as described

1www.mitk.org

www.mitk.org
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Figure 5.1 | Radiomics Workflow. From left to right: I) T2w and DWI (ADC and
B1500) are extracted from the multiparametric MRI protocol; II) 3D segmentations of lesions,
peripheral zone, and prostate are drawn by radiologists, which is shown in five representative
patients overlaid on representative axial T2w images and using volume rendering; III) regions
of normal-appearing peripheral zone (dark blue) is used to normalize T2w and B1500 images;
IV) radiomic features are extracted, including first-order, volume, shape, and texture features;
V) the radiomic features are combined with clinical information and entered into machine
learning analysis (Random Forest (RF)). Performance is assessed by using receiver operating
characteristics (ROC) analysis.
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Figure 5.2 | Radiologist-Performed Example Segmentations. Segmentations in
prostate MRI taken for a 56-year-old patient with initial PSA level of 7 ngml−1. Highly
suspicious lesion in the anterior transition zone and anterior stroma (PIRADS category 5). A)
Top: T2-weighted image demonstrates erased charcoal sign and ill-defined margins; Middle:
ADC image shows moderate diffusion restriction; Bottom: B1500 shows moderate diffusion
restriction. B) Segmentations of prostate (yellow), peripheral zone (red), and suspicious
lesion (cyan) overlaid on corresponding images. C) Three-dimensional renderings from top to
bottom of lesion, peripheral zone, prostate, prostate combined with peripheral zone, and all
volumes of interest combined. Targeted biopsy revealed prostate cancer with a Gleason Grade
Group of 2 in 95% of cores. h = head, a = anterior, r = right.
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above. ADC, being a quantitative measurement, was not normalized. The normal appear-

ing tissue was segmented on ADC and the resulting segmentation map then employed in

the normalization of the B1500 image.

Extraction and Selection of Features Radiomic feature calculations were performed

by using the pyradiomics package2 [Van Griethuysen et al., 2017], resulting in a vector of

features for each pre-segmented lesion. Within each VOI, (a) 19 first-order features, (b)

16 volume and shape features, and (c) 59 texture features were calculated, leading to

94 features per VOI. Because these features were calculated separately on the available

ADC maps, the T2w and B1500 images, a total of 282 radiomics features were available

for each lesion.

First order features depend on image intensities and comprise statistics such as the

intensity mean (therefore also including the mADC), minimum or variance of the image

within the lesion VOI. The shape features rely entirely on the binary VOI masks and aim at

quantifying their shapes by means of measures such as the respective diameter, sphericity

or surface-to-volume ratio. The texture features are based on co-occurrence, run-length

and size-zone based features which are calculated from the image VOI in question from

discretized image intensities. Co-occurrence features assess spatial relationships between

adjacent voxels while run-length and size-zone features quantify the extent to which

pixels of a given gray-value appear in succession.

The number of radiomic features was reduced by univariate feature selection with

the remaining features serving as input into Random Forests (RFs), an approach well-

established in radiomics [Parmar et al., 2015]. We employed the Wilcoxon rank-sum test

[Wilcoxon, 1992] for feature selection and reduced the set of 282 features per VOI to

150 features, a choice that was selected in cross-validation. We integrated the feature

selection into the classifier bagging procedure [Breiman, 1996], thus the feature selection

was performed for each training data sub-split (fold), see below.

Model Training and Hyper-parameter Optimization We employed Random Forests

(RFs) [Breiman, 2001] to perform a binary classification for the aggressiveness of prostate

lesions and used the RF implementation available in scikit-learn3 [Pedregosa et al., 2011].

In a nutshell, random forests learn to classify by finding successive cuts on features that

optimally separate the classes. Each succession of cuts makes a tree and a number of

trees executed in parallel forms a forest.

2https://github.com/Radiomics/pyradiomics
3http://scikit-learn.org/

https://github.com/Radiomics/pyradiomics
http://scikit-learn.org/
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Random forests require comparatively little parameter tuning, e.g. allowing a limited-

scope hyper-parameter search over their number of tress, maximum depth, minimum

number of samples for a node-split and number of features (ranked according to the

Wilcoxon rank-sum test). This search was integrated into a bagging procedure, i.e. a

subject-stratified, repeated nested cross-validation, with the aim of preventing over-fitting

and reducing classifier variance [Cawley and Talbot, 2010].

As mentioned before, we grouped 243 lesions (183 patients) in a training cohort and

left the subsequent 219 lesions (133 patients) as an independent test cohort. The training

cohort was employed to pin down the RF hyper-parameters and the number of selected

features. For each bootstrap on the training cohort there exist held-out test folds, which,

across fold rotations and booststraps, enabled to assess the ensemble’s performance on

the entire training cohort, see below. The final ensemble was additionally validated on

the independent test cohort of 133 patients.

During cross-validation on the training cohort, in each of 100 bootstraps a random ten-

fold split of the subjects was sampled, with one fold withheld for later testing. Training

proceeded on six of ten folds and validated the hyper-parameter search on three folds.

Six folds picked from the nine available folds were permuted in a nested inner loop. Class

balances in the training split were addressed by re-weighting samples by the inverse class

frequencies during determination of node cuts.

The best hyper-parameters were found to be: 500 trees per RF, each grown using a

maximum depth of 7 splits (corresponding to 7 features), a minimum number of four

samples to split a node and a reduction to 150 best features according to the feature-

selection. Employing these hyper-parameters, we retrained a bagged RF ensemble, this

time using 9 of the 10 folds across 100 bootstraps. This final RF ensemble thus comprises

1000 forests. Because the random bootstrap splits were seeded to be equivalent to the

ones during cross-validation, we can aggregate the performance of the ensemble members

on their respective held-out test sub splits (which they were neither trained nor validated

on during cross-validation). Additionally, we evaluated the entire RF ensemble on the

133 patient large held-out test cohort.

Note that the bagged ensemble provides an additional source of bagging on top of

both feature and sample bagging inherent to random forests [Breiman, 1996].

5.4 Evaluation and Results

As mentioned above, the binary target was set to distinguish between aggressive and

non-aggressive lesions according to the Gleason Grade Group (defined as 2 or higher).
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We analyzed the bagged RF ensemble (also referred to as Radiomic Machine Learning

(RML)) as well as the mADC, in terms of their area under the ROC curve (ROC-AUC).

The ROC curve is created by plotting the true positive rate (TPR, equivalent to the

sensitvity) against the false positive rate (FPR, equivalent to 1−specificity) at various
classifier thresholds. The AUC thereof serves as an aggregate measure of performance

across all possible thresholds.

ROC curves were generated for mADC and RML and compared using the Delong

test [DeLong et al., 1988] in both the training and test cohort, see Fig. 5.3. Thresholds

for mADC and RML were selected to match the sensitivity of clinical assessment in the

training cohort (corresponding to PIRADS ≥ 4) in order to construct working points of

the models that maintain clinically achieved detection rates for significant prostate cancer.

In order to evaluate how the model’s performance translates to clinical findings, their

sensitivity and specificity was compared on a per-lesion as well as on a per-patient basis.

Specifically, the models’ performance was assessed against the radiologist’s performance

based on the reduction of false-positive (FP) lesions or patients with FP lesions and by

expressing this reduction as a ratio with the number of observations.

In order to test for statistically significant classification improvements as compared

to the radiologist, the McNemar test [McNemar, 1947] was employed. The test assesses

whether the disagreement between two paired sets of binary classifications is significantly

larger than chance and is frequently applied in the medical sciences, e.g. to compare

the sensitivity and specificity of two diagnostic tests on the same patient group [Hawass,

1997]. Correction for multiple comparisons was performed by using the Holm method

[Holm, 1979].

38 patients had no MRI-detected lesions and did not contribute to the lesion-based

analysis, which focused entirely on the task of lesion classification. Patient-based analysis

metrics were calculated for the entire cohort to assess the overall combined radiologist

lesion detection and model-based lesion classification performance.

A global radiomics model was trained on all lesions independent of lesion location

(i.e., TZ and PZ). For zone-specific performance assessment, previously proposed as

advantageous [Ginsburg et al., 2017], separate radiomics models were independently

trained on TZ and PZ lesions and their predictions combined to obtain a performance

assessment in the entire cohorts.

5.4.1 Lesion-based Analysis

Training Cohort The cross-validated analysis on the training cohort included 243 MRI-

detected lesions, 33% of which were positive for clinically significant prostate cancer
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(a) Training Cohort: Cross-validated ROC. (b) Test Cohort: Independent test ROC.

Figure 5.3 | ROC Curves for Prostate Lesion Classification. The ROC curves for the
RF ensemble (RML) and the mono-parameter mADC are shown in blue and black respectively.
The red point corresponds to the radiologist’s clinical performance. The blue and black
diamonds depict the model working points, which are chosen to match the radiologist’s true
positive rate on the training cohort, see subfigure a).

(found in 157 of 183 patients in the training cohort, see Fig. A.2). The classifier ROC-

AUC) was not found significantly different between mADC (0.79) and the RML (0.78)

(see Fig. 5.3a)).

At the fixed radiologist sensitivity of 79% (63 of 80 positive lesions), the specificity of

mADC (67% [110 of 163 negative lesions]) and RML (63% [103 of 163 negative lesions])

was improved, compared with 52% (84 of 163 negative lesions) for lesion classification by

radiologists (see Fig. A.3). The corresponding model working points were determined

to be 732mm2/s for mADC (values below indicate positive predictions) and 0.28 for

the RML model (values above indicate positive predictions). In comparison to clinical

interpretation by radiologists, measurement of the mADC reduced False Positive (FP)

lesions by 26 (10.7%) and RML reduced FP lesions by 19 (7.8%), both leaving False

Negative (FN) lesions unchanged. At their working points, both models performed

significantly better than the radiologist according to the McNemar test, see Fig. A.3.

Test Cohort This analysis included 219 MRI-detected lesions, 27% of which were

positive for prostate cancer (found in 121 of 133 patients of the independent test cohort,

see Fig. A.2). The classifier’s AUC was not significantly different for the mADC (0.84)
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versus RML (0.88) (p = .176, DeLong test) (see Fig. 5.3b). The radiologist interpretation

of mpMRI had a per-lesion sensitivity of 88% (53 of 60 positive lesions) and specificity of

50% (79 of 159 negative lesions). In comparison, measurement of the mADC reduced the

number of FP lesions from 80 to 60 (specificity, 62% [99 of 159 negative lesions]) and the

number of FN lesions from seven to six (sensitivity = 90% [54 of 60 positive lesions]; p =

.048, significant according to McNemar test). RML reduced the number of FP lesions

from 80 to 66 (specificity, 58% [93 of 159 negative lesions]) and the number of FN lesions

from seven to two (sensitivity = 97% [58 of 60 positive lesions]; p = .176, insignificant

according to McNemar test) (see Fig. A.3).

Fig. 5.4 and Fig. 5.5 show the mpMRI images of two test cohort cases, along with the

respective lesion segmentations. Biopsy revealed insignificant or no prostate cancer, while

both cases were assessed as suffering from aggressive PCa by the respective radiologist.

The captions give more details on the clinical assessments as well as the corresponding

model predictions.

5.4.2 Patient-based Analysis

By design and as described above, the RF ensemble (RML) and the mono-parameter

mADC were set up to classify individual lesions. However there is also large clinical

relevance in correctly classifying the patient as a whole. For this reason we further

evaluated above models on a patient basis by pooling the lesions of a patient and

assigning the patient both the most severe ground truth label and the most severe model

prediction in the pool (where labels and predictions are still binary).

Training Cohort The cross-validated per-patient specificity of the mADC (67% [80 of

120 negative lesions]) and RML classifier (62% [74 of 120 negative patients]) was higher

compared to that of the radiologist interpretation (57% [68 of 120 negative patients]).

Compared to radiologist interpretation, measurement of the mADC reduced the number

of FP patients by 12 and did not reduce the number of FN patients. RML showed a

lower reduction in FP patients (by six) and an increase by two in the number of FN

patients (see Fig. A.4).

Test Cohort Radiologist interpretation provided a per-patient sensitivity of 89% (40 of

45 positive patients) and specificity of 43% (38 of 88 negative patients). In comparison,

measurement of the mADC reduced the number of FP patients from 50 to 43 (specificity

= 51% [45 of 88 negative patients]) and the number of FN patients from five to three

(sensitivity = 93% [42 of 45 positive patients]) (p = .496, insignificant according to
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Figure 5.4 | Test Cohort Example Case 1. Images in a 74-year-old patient with mildly
elevated PSA level of 6.2 ngmL−1 and negative DRE. T2w, ADC and B1500 images are
shown in columns, and images without and with the superimposed, outlined segmented lesion
(in red) are shown in rows. A lesion in the left mid Peripheral Zone is shown, which was
read as PIRADS category 4 (‘aggressive’). This lesion was rated negative according to a
mADC value of 895mm2/ sec (above the 732mm2/ sec cut-off), and it was also negative,
as in below the radiomic machine learning (RML) cut-off, according to RML with a score
of 0.12 (cut-off 0.28). Targeted biopsy revealed no cancer at this location. Gleason Grade
1 prostate cancer was found in systematic cores and a targeted biopsy from the MRI index
lesion in the left mid anterior transition zone (not shown).

McNemar test). The use of RML reduced the number of FP patients from 50 to 43

(specificity = 51% [45 of 88 negative patients]) and the number of FN patients from five

to two (sensitivity = 96% [43 of 45 positive patients]) (p = .496, insignificant according

to McNemar test) (Fig. A.4).

5.4.3 Zone-based Analysis

As described in Sec. 3.2, prostate tumors can exhibit different MRI appearance depending

on whether they are located in the PZ or TZ. This is reflected in the zone-specific PIRADS

guidelines and was also found a useful distinction in related radiomics studies [Ginsburg

et al., 2017].
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Figure 5.5 | Test Cohort Example Case 2. mages in a 65-year-old patient with strongly
elevated PSA of 19.5 ngmL−1 and negative DRE. T2w, ADC and B1500 images are shown
in columns, and images without and with the superimposed, outlined segmented lesion (in
red) are shown in rows. A lesion in the left mid anterior transition zone is shown, which
was read as PIRADS category 4 (‘aggressive’). This lesion was rated negative according to
a mADC value of 756mm2/ sec (below the 732mm2/ sec cut-off), although it was found
positive, as in above the radiomic machine learning (RML) threshold, by RML with a score
of 0.50. Targeted biopsy revealed no cancer at this location. There was no presence of any
cancer in any of the systematic and targeted biopsy cores in this patient.

For this reason we trained zone-specific RF ensembles (RML) for both the PZ and

TZ and equally distinguished two mADC ‘models’. For each zone-specific model the

employed procedure was identical to the zone-agnostic models described above.

Zone-specific RML performance is shown in Fig. A.3 on a per lesion basis and in

Fig. A.4 on a per-patient basis. In both cases, the performance was lower than that for

the zone-agnostic (‘global’) model. For example, on a per-lesion basis in the test set,

sensitivity was 92% (55 of 60 positive lesions) and specificity was 53% (84 of 159 negative

lesions), compared with 97% (58 of 60 positive lesions) and 58% (93 of 159 negative

lesions), respectively, for the global model. The AUC for RML was 0.84 compared with

0.83 for mADC in the PZ (p = .822, insignificant according to McNemar test), and
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0.89 compared with 0.87, respectively, in the TZ (p = .493, insignificant according to

McNemar test).

5.4.4 Feature Importances

As mentioned above, the training of decision trees involves the finding of optimal cuts

on feature values. During training, this optimality can be determined by measuring the

decrease in Gini index [Gini, 1936] between the parent and the child nodes. The Gini

index measures the impurity of the data points in the respective node with respect to

the target classes. The higher the Gini index, the lower is the node’s ability to separate,

i.e. discriminate, the target classes. A decrease in Gini index after a split on a variable

thus indicates the respective variable’s ability to discriminate between the target labels.

Assessing this reduction in impurity after training can produce an empirical feature

importance, which can be produced in various ways. The decrease in Gini index by a

feature can for example be weighted by the probability with which the feature is cut (i.e.

employed in a node) and aggregated across a forest’s trees [Ronaghan, 2018], which is the

method we employed. After training the final zone-agnostic RF ensemble, we summed

these feature importances for each feature across the ensemble members. The resulting

top-10 most important features are reported in Table 5.1.

Table 5.1 | Top 10 Most Important Features. Ranking according to decrease in node
impurity across ensemble members and splits as measured by reduction in Gini index.

Rank Feature Name |∆Gini index|
1 ADC1500_original_firstorder_Maximum 41.72
2 ADC1500_original_firstorder_RootMeanSquared 39.41
3 ADC1500_original_firstorder_Median 36.84
4 ADC1500_original_firstorder_Mean 33.24
5 ADC1500_original_firstorder_90Percentile 30.63
6 ADC1500_original_firstorder_10Percentile 29.54
7 T2_original_shape_Maximum2DDiameterColumn 14.26
8 ADC1500_original_firstorder_Minimum 13.73
9 T2_original_shape_MinorAxis 13.61
10 T2_original_shape_SurfaceArea 12.37

The top most important features all relate to first order statistics of the Apparent

Diffusion Coefficient, including its mean value (mADC which is found the 4th most

important feature), with only few T2w-derived shape features ranking low within the
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top-10 ranking. This finding quantitatively substantiates the discriminative nature of

ADC features, which already play an important role in the subjective lesion grading

protocol that reflects current clinical standard (PIRADS, see Sec. 3.2)

5.5 Discussion

Prostate MRI may have the potential to spare patients the discomfort and potential

morbidity of biopsies [Ahmed et al., 2017], but limitations in the detection of clinically

significant prostate cancer with prostate MRI are well known [Borofsky et al., 2017]. In

particular, diagnostic accuracy varies based on the individual radiologist [Greer et al.,

2017, Rosenkrantz et al., 2016a, 2017].

Machine learning techniques, radiomics and quantitative assessment however could

have potential for decision support [Fehr et al., 2015, Sonn et al., 2017, Vignati et al.,

2015, Wang et al., 2017] and our results provide an assessment of their ability to aid

MRI interpretation. In the present study, quantitative measurement of the mADC, when

compared with clinical assessment, is able to significantly reduce the misclassification of

MRI-detected lesions. This is in agreement with recent analyses for the characterization

of TZ lesions [Pierre et al., 2018]. We found improved lesion classification over PIRADS

in both the PZ and TZ, confirming the high value of mADC for whole gland assessment.

This result is quite remarkable, given that the clinical value of ADC is already widely

known and reflected in the significance that current clinical guidelines place upon them.

The problem with current clinical standards may lie in their reliance on visual inspection

of ADC maps and subjective comparison of prospective lesions in relation to other

prostate regions. Our results suggest that a move to include quantitative measures, such

as simply calculating first-order ADC statistics across delineated lesions and comparing

them to an absolute threshold, may significantly improve clinical grading of lesions.

We further investigated the performance of radiomic-feature based machine learning

to assess if there is added value over measurement of the mADC alone. We found the

RF models (RML) did not perform better than simple mADC, as assessed by ROC. In

the RF model, all highly ranked features were in fact closely related to first-order ADC

features rather than to textural or morphologic information. Our results thus refute

findings of prior studies [Nketiah et al., 2017, Wibmer et al., 2015] of an added value of

radiomic features and lesion morphology derived from T2w images.

Interestingly, the performance of our ML model, the mADC and that of the PIRADS

assessment, all increased on the held-out test cohort. This may reflect the radiologists’

learning curve since the introduction of the PIRADS version 2 system and, upon review
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of the clinical images, may also be attributable to a larger number of patients with small

solitary PZ lesions in the training cohort, which could be more difficult to classify in

general.

The size of our training cohort and the presence and size of the test cohort exceeded

that of other radiomics studies for prostate cancer [Ginsburg et al., 2017, Khalvati et al.,

2015, Nketiah et al., 2017, Wang et al., 2017]. In fact, to the best of our knowledge, this

dataset forms the largest collection reported to date in a radiomic analysis involving

consecutive patients under suspicion for PCa that underwent a homogeneous protocol on

a single MRI unit, followed by mpMRI and TRUS-biopsy examinations.

Limitations of our study further include the use of radiomics for lesion characteriza-

tion but not for lesion detection, thus not examining if mADC or RML are better than

radiologists at cancer detection. Lesions were segmented manually, a time consuming

task that has to be regarded as prohibitive when very large databases are evaluated in the

future, requiring the development of automated segmentation techniques. Furthermore, a

histopathologic assessment based on MRI and TRUS-biopsy rather than radical prostate-

ctomy specimens was used. However, our biopsy approach has been tested against radical

prostatectomy as the reference standard and showed a sensitivity of 97% for significant

prostate cancer at the final histopathologic examination [Radtke et al., 2016].

In conclusion, this study compared the use of mADC and radiomics with machine

learning for the characterization of lesions that were prospectively detected during routine

clinical interpretation. Quantitative assessment of the mADC was more accurate than

qualitative PIRADS assessment in classifying a lesion as clinically significant prostate

cancer. Radiomics provided additional evidence that ADC-based features (including

mADC) were more discriminative than other MRI features. In fact, at the current cohort

size, no added benefit of the radiomic approach was found, and mADC is suggested as

the best choice for quantitative prostate assessment.

Using quantitative image features aids in reducing inter-rater variability as it reduces

the subjectivity inherent in current clinical grading. The presented techniques however

produce singular and deterministic assessments and are thus blind to plausible variations

due to ambiguities with the classifier scores and mADC values potentially presenting a

false sense of confidence. Given much larger datasets, model performance, robustness

and utility could however likely be taken much further e.g. by i) learning hierarchical

feature representations end-to-end using CNNs, ii) learning semantic segmentation models

end-to-end using FCNs (see Chap. 6) and iii) by employing methods that yield calibrated

uncertainty estimates in order to better guide down-stream decision making when facing

ambiguity.





Chapter 6

Mitigating Label Noise through

Adversarial Training

The interpretation of medical images suffers from large inter-rater variability. This anno-

tation variability is largely due to ambiguous image evidence and affects the segmentation

of anatomical structures and critically that of tumor lesions, see Chap. 3. The ensuing

diversity in the ground truth labels, can be seen as noise in the training process of ML

algorithms.

In this chapter we discuss how the de facto standard training procedure for deep

semantic segmentation approaches can be sub-optimal when learning from noisy ground

truth annotations. As a possible solution that is empirically found more robust to

such noise, we propose an adversarial training scheme borrowed from the framework

of Generative Adversarial Network (GAN) methods (see Sec. 4.3), while leaving the

deep segmentation network architecture itself unchanged. Our core contributions are as

follows:

• We compare training a U-Net with the standard pixelwise Cross Entropy (CE) loss

for semantic segmentation to training it in a mini-max game against an adversarial

discriminator.

• We observe increased performance when training adversarially, which we hypothesize

could be attributed to reduced gradient conflicts in the noisy label setting

• Lastly, we find further increases in relative performance when reducing the number

of training examples, which seems in line with the hypothesis, that adversarial

training might mitigate label noise and suggests particular utility in the small

dataset regime.
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Figure 6.1 | Training under Ambiguous Images. a) shows a diverse mapping from
X → Y in terms of an empirical data distribution between simplified image and segmentation
manifolds. b) Training with Stochastic Gradient Descent (SGD) and a CE-loss requires
sampling of (x, y) ∼ Pdata and may lead to high variance if not contradicting training signals
across batches, see scenario i) and ii). c) Using adversarial training and a discriminator network
D to distinguish between plausible and implausible segmentations is akin to learning a model
of the ground truth and holds the potential to better accommodate for co-existing modes.
Note that D does not induce a likelihood P (Y |X), but instead constitutes a discriminative
model telling apart plausible from implausible (X, Y )-pairs.

This chapter closely follows our prior publications [Kohl et al., 2017a,b] one of which

was presented at the Machine Learning for Health Workshop at the Advances in Neural

Information Processing Systems Conference (NeurIPS) 2017 1.

The main idea of this work is rooted in the observation that when faced with noisy

labels, stochastic gradient descent on a CE-loss produces conflicting training signals

with possible negative effects on segmentation performance. If however we were able to

formulate or learn a loss function that accommodates for sets of plausible annotations,

we could reduce the negative effects of noisy or conflicting labels. We elaborate on this

idea and its evaluation in more detail below.

6.1 How Ambiguity interferes with CE-based Training

As is standard in multiclass classification tasks, the learning target in semantic segmenta-

tion is formulated as a static and deterministic cross-entropy loss between the produced

softmax probabilities Pmodel(Y |X) and the one-hot ground truth segmentations Y . The

1See https://ml4health.github.io/2017/.

https://ml4health.github.io/2017/
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given image and segmentation pairs (X,Y ) of a dataset form an empirical distribution

Pdata from which during training mini-batches are sampled to compute parameter updates

via Stochastic Gradient Descent (SGD). Repeating Eq. 4.1, the loss thus reads

LCE = −E(X,Y )∼Pdata

[
Y logP (Y |X)

]
, (6.1)

where here Pdata(X, Y ) is a a mixture of Dirac-delta functions each centered on an image-

segmentation-pair. As elaborated upon in Sec. 4.2, ambiguous images X may lead to sets

of plausible ground truth segmentations Y ∈ (y1, y2, ...), corresponding to multi-modal

conditional distributions P (Y |X). This is illustrated in Fig. 6.1a), which presents a

schematic for a diverse mapping of an image to the segmentation manifold. Under these

circumstances the optimal solution for the model is to assign equal probability to all

ground truth modes Y ∈ (y1, y2, ...), i.e. predict a mixture. This can be difficult to

learn because when using mini-batch SGD, the sampling of (X,Y )-pairs may lead to

conflicting training signals across batches. A caricature of this is shown in Fig. 6.1b),

where scenarios i) and ii) show the sampling of different segmentation targets yi for a given

X = x1 into different mini-batches, therefore providing high-variance and potentially

even contradicting gradients across training iterations. Additionally it might be more

useful to find a single plausible mode than an implausible mixture of all of them. For this

reason we develop a way of reparameterizing the multi-modal ground-truth, that holds

the potential to allow for the co-existence of plausible modes under the loss, even across

mini-batches. The hope is for this scheme to mitigate potentially conflicting gradients

and to discourage implausible mixtures of modes.

6.2 Learning to reparameterize the Loss Function

The generation of high-fidelity images has profited largely from the introduction of

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]. The GAN model is

really a model tandem in which one of them, the discriminator D, learns to distinguish

between plausible images, e.g. real natural images, and implausible images, i.e. the ones

generated by its tandem partner, the generator G. As D forms the decision boundary

between what is plausible and implausible, G can take steps towards directing its output

towards plausible regions in the output manifold, see Sec. 4.3. In this scenario D provides

the training loss that G optimizes for and may be viewed as a learned higher-order

loss [Isola et al., 2017, Luc et al., 2016], that distills what makes a good output in
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S

D D

Real or fake? Real or fake?
Expert segmentation: Generated segmentation:

S tries to produce segmentations

that fool D
D tries to identify the fakes.

.

Figure 6.2 | Schematic of Adversarial Training for Semantic Segmentation. From the
left to right: the discrimintor D is shown expert annotations alongside a stack of corresponding
MRI images. To the right thereof, D is illustrated for the case of receiving the segmentations
net’s (S ’s) output alongside the stack of MRI images. When run deterministically G is
equivalent to S.
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form of a parametric model. In other words: the discriminator D constitutes a learned

reparameterization for the loss.

The work presented below hinges on the idea that this learned loss could provide a

training signal that allows for the co-existence of segmentation modes without encouraging

to mix them. As stated above, the optimal prediction in the presence of equally plausible

solutions is a uniform one over plausible labels. In the proposed scheme, the discriminator

is set up to learn the plausible data region (Y,X), therefore taking the burden from

the segmentation network to produce a mixture of all plausible segmentations. This is

sketched out in Fig. 6.1c). Instead, D is satisfied with a single mode for as long as it

is plausible and thus is expected to result in a loss without high-variance or conflicting

gradients. As is explained below, G is set up as a deterministic segmentation model and

not expected to produce diverse outputs, as is otherwise common in GANs and other

generative models.

The aim of our approach falls within the type of works that seek to mitigate negative

effects on model training under noisy labels, which was discussed in Sec. 4.2. To the

best of our knowledge none of them have considered reparameterizing the loss for this

purpose. To make the GAN-framework amenable for the training of deterministic semantic

segmentation networks it needs to be extended to the image-conditional case: G takes

on the form of a semantic segmentation network S, that produces a pixelwise softmax

output S(X) = Pmodel(Y |X). Note that we do not condition S on noise and instead opt

to use a strong deterministic model, the U-Net [Ronneberger et al., 2015]. D is a binary

classification network that outputs a single softmax node D(Y,X), given both images

and segmentations. The training objective for S and D then becomes:

LS = −EX∼pdata

[
logD(S(X), X)

]
, (6.2)

LD = −EX∼pdata

[
log

(
1−D(S(X), X)

)]
− E(X,Y )∼pdata

[
logD(Y,X)

]
. (6.3)

The adversarial training scheme between S and D that these losses provide for is

further illustrated in Fig. 6.2. S and D are updated in alternating fashion. Optimal

training requires for D to be near its optimal solution at all times. For this purpose, D

can be trained using k mini-batch gradient descent steps for each such step performed

on S [Goodfellow et al., 2014]. For semantic segmentation [Luc et al., 2016] further

propose a hybrid loss term for the segmentation net S in form of a weighted sum of the

discriminator-derived loss and the standard cross-entropy loss (Eq. 4.1): L′
S = LS+λLCE,

which we also compare against below.
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Note that the problem of image ambiguity and the diverse labels it induces exists also

when only a single annotation is available per image, rather than a set of annotations

Y ∈ (y1, y2, ...). In this case multi-modal distributions over labels manifest across images,

e.g. lesions on different images with very similar appearance might be annotated very

differently as a consequence of intra-grader variance or in the case for when different

parts of the data are annotated by different graders. The proposed adversarial training

does not rely on the availability of multiple annotations and may provide mitigation of

noise even when only a single annotation is available per image, as is the case here.

6.3 Dataset Details

We base our analysis on an internal prostate MRI dataset, a clinical case that can

be particularly ambiguous [Hameed and Humphrey, 2010, Kitzing et al., 2015, Nagel

et al., 2013, Sakala et al., 2017]. The employed dataset contains 152 patients with

MRI acquired using a Siemens Prisma 3T machine at the National Center for Tumor

Diseases (NCT) in Heidelberg, Germany. This dataset is a subset of the dataset employed

in the analysis described in the previous chapter (Sec. 5.2), which had been extended

after the analysis of the present chapter was carried out. All patients had a suspicious

screening result and a TRUS-biopsy yielding pathological classification, i.e. Gleason

Score (GS) [Gleason, 1966]. Image analysis was based on a T2-weighted (T2w), an

Apparent Diffusion Coefficient (ADC) map and a high b-value diffusion weighted image

at b=1500 smm−2 (B1500). The T2w images have an in-plane resolution of 0.25mm,

the other two modalities were upsampled accordingly. The prostate’s anatomical details

as well as lesions were segmented independently on both the T2w and the ADC-map

by an experienced radiologist. The segmentation annotations comprise -if present- four

classes: tumor lesion, Peripheral Zone, Transitional Zone and other (i.e. non-prostatic,

lesion-free tissue). The TZ segmentation was obtained as the complement of the PZ

within the whole gland segmentation. Example cases can be found in Fig. 5.2. Image

registration was performed using rigid translation maximizing the overlap between the

masks of the peripheral zone, as they are most informative for the relative alignment of

the images.

After registration, the two independent segmentations of all classes were fused by a

hierarchical label consensus. In that process first the intersection of the lesions was found

and fixed, then the intersection of the peripheral zone and then that of the transitional

zone, thus ensuring anatomically plausible results. We define aggressive lesions as such

with a biopsy-determined Gleason-assessment of GS ≥ 7a in line with Chap. 5. Lesions



6.4 Network Architecture and Training Procedure 69

found to exhibit GS < 7a are regarded free of aggressive tumor and the respective lesion’s

segmentations are removed from the ground truth annotations thus falling back to normal

appearing tissue.

6.4 Network Architecture and Training Procedure

Architecture We use an identical 2D U-Net-type architecture for the segmentation

network in each experiment, see Fig. 4.3b. We follow [Isola et al., 2017] and introduce

InstanceNorm layers after each convolutional layer, thus opting against BatchNorm,

conjecturing that it avoids harmful stochasticity, introduced by small batch-sizes. Let

C(I)N denote a Convolution-(InstanceNorm-)ReLU layer with N feature maps each.

Then the U-Net’s encoder takes on the following form: C64-CI128- CI256-CI512-CI1024,

while the decoder can be represented as: CI512-CI256-CI128-CI64-C4. The architecture

used for the discriminator in large parts mirrors that of the U-Net’s encoder: C64-CI128-

CI256-CI512-CI512-CI1024-GP1, where GP1 denotes a global average pooling layer

followed by a dense layer with one output node. InstanceNorm is neither applied to the

first nor the last layer in S and D. Convolutional layers employ 3×3-filters, except for
the last one in S ’s decoder which uses 1×1-filters. D takes 7×416×416 inputs, featuring

one channel for each of the three MRI modalities and four channels encoding the class

labels. Accordingly S receives inputs of shape 3×416×416.

Training To provide meaningful comparison, the training protocol is the same for all

evaluated schemes. We use a set of 55 patients (Sagg) comprising 188 2D-slices with

biopsy-confirmed aggressive tumor lesions of GS ≥ 7a and 97 patients (Sfree) with

475 2D-slices that were diagnosed lesion free (slice size 3×416×416). The experiments

are performed using four-fold cross-validation on Sagg with mutually exclusive subject

allocation to the folds, while Sfree is used during training only. In each cross-validation

permutation, 2 folds are employed for training the model, one fold for model selection

according to the DSC metric for tumor (see below, Sec. 6.5), and one held-out fold

for validation. All segmentation models are trained for 225 epochs, with 80 randomly

sampled batches each, using an initial learning rate (LR) of 10−5, that is halved every

75 epochs. During the adversarial training scheme we train the discriminator D on 3

batches for each batch the segmentor is trained on while using fixed LR=10−5 for D.

For parameter optimizations we use Adam [Kingma and Ba, 2014]. The training data

is augmented by in-plane rotations with angle ϕ ∼ U [−π/8, π/8], crops with a mask

shifted by (∆x,∆y) ∼ (U [−50, 50] ,U [−50, 50]) and random left-right mirroring. We use
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a batch-size of 5 with importance sampling, averaging to 3.5 samples from Sagg in each

batch.

6.5 Results

Because we are interested in evaluating whether it is hurtful to use a CE-loss for the

task of finding the semantic segmentation of ambiguous tissue such as aggressive lesions,

we exclude lesion free images in the evaluation, allowing to focus on the segmentation

performance rather than assessing the detection performance. As performance metrics

we employ the Sørensen–Dice Coefficient (DSC) [Dice, 1945, Sørensen, 1948], which is

defined in terms of the number of True Positive (TP), the False Positive (FP) and the

False Negative (FN) pixels given a binary ground truth label map Y and a predicted

map Y ′:

DSC(Y, Y ′) =
2|Y ∩ Y ′|
|Y |+ |Y ′|

=
2TP

2TP + FP + FN
, (6.4)

DSC is a popular metric in medical image segmentation and bears close resemblance to

the Intersection over Union (IoU) metric that is in turn popular as a segmentation metric

on natural images, see Eq. 7.5 for a definition. Additionally we report the pixelwise

sensitivity and specificity for aggressive lesions (tumor).

6.5.1 Improving Segmentation Performance

The adversarial approach scored better for tumor segmentation both in the Sørensen–Dice

Coefficient (DSC) as well as the sensitivity, see Table 6.1, which reports the inner-loop test

set results on Sagg. The improvement in Sørensen–Dice Coefficient (DSC) and sensitivity

were significant as determined by means of the Wilcoxon signed-rank test [Wilcoxon,

1945] (p-value < 0.001). The specificities between the approaches were equal. Using a

hybrid loss that adds both the CE-loss and the adversarial loss with the same weighting

as [Luc et al., 2016], i.e. λ = 0.5 , results in improvements over the CE-loss based training

but does not reach the performance of the proposed scheme of adversarial training only.

This is further evidence that the CE-loss might be a suboptimal choice when training

on ambiguous images with noisy labels. In Fig. 6.3 we show a comparison between the

ground truth and the U-Net predictions when training with either exclusively CE or

adversarial losses for a range of different patients.
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Figure 6.3 | Prostate MRI Example Cases. For each depicted test set example the three
MRI modalities, the expert annotation as well as the segmentations produced by training the
U-Net S with different loss schemes are shown (in that order starting from the top). The
first two columns from the left, i.e. columns a), depict examples in which the adversarial
is clearly more sensitive to aggressive tumor than the cross-entropy training. Columns b)
show examples for which the methods are on par. Columns c) feature examples for which
the adversarial method yields partially defective label maps. Columns d) exhibit examples
for which both methods deviate considerably from the ground-truth, the first of which likely
shows tumor detection by both methods, missed by the expert.
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Table 6.1 | Quantitative Results for Prostate Tumor Segmentation. Results are
obtained from an inner-loop test set of a four-fold cross-validation for GS ≥ 7 tumor.

Training Scheme Cross-Entropy Adversarial Hybrid
Loss Lmce LS &LD Lmce/2 + LS &LD

Tumor DSC 0.35 ± 0.29 0.41 ± 0.28 0.39 ± 0.29
Tumor Sensitivity 0.37 ± 0.33 0.55 ± 0.36 0.49 ± 0.35
Tumor Specificity 0.98 ± 0.14 0.98 ± 0.14 0.98 ± 0.14

6.5.2 Increasing Robustness on Fewer Training Samples

Having only few examples to learn from, makes it hard to tell apart different classes,

which gives rise to an uncertainty even when the classes could be disambiguated given

more data (epistemic uncertainty, see Sec. 4.2). In the small data limit, the effect on

the model may be the same as in the case for when classes are inherently ambiguous

(aleatoric uncertainty, Sec. 4.2), since it receives training signals that it can not reconcile,

in addition to potentially inherent ambiguities.

For this reason we seek to evaluate how the training schemes compare on progressively

smaller datasets. This is interesting as it allows to further probe our hypothesis that

adversarial training may mitigate conflicting training signals in addition to analyzing a

relevant case for medical image analyses, since they typically deal with small amounts

of labelled data. To this end we successively take away positive training samples, i.e.

examples from Sagg, from the fold that both schemes coincided to perform best on. We

then train from scratch in the exact same manner as described above and evaluate on

the same held-out fold from before.

The results for tumor DSC and sensitivity are reported in Fig. 6.4a) and b) respectively.

As expected, decreasing the number of positive patients in the training set results in

performance decreases for both training schemes. The adversarially trained U-Net however

increases in DSC and sensitivity relative to the CE-trained U-Net (reported in percent

in the lower panels of Fig. 6.4a) and b)) and thus exhibits a markedly more robust

segmentation performance when dealing with increasingly noisy training signals.

6.6 Discussion

Ambiguous images and associated noisy labels are very common in the medical disciplines.

Despite this, current semantic segmentation models are almost exclusively framed and

trained in a deterministic fashion using the Cross Entropy (CE)-loss. In this work we
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(a) Tumor DSC. (b) Tumor Sensitivity.

Figure 6.4 | Performance Comparison in the small Dataset Limit. Performance
measured in terms of (a) tumor DSC and (b) sensitivity between the adversarial and cross-
entropy training when successively taking away positive training data. The upper panels
illustrate the respective performance distributions for the two schemes in the form of box-plots.
The lower panels show the relative gain in median of the adversarial over the cross-entropy
training, from which particularly pronounced gains are visible in the small dataset limit.
Specificity (not shown) was around 0.98 in all experiments.

show that the CE-loss can exhibit sub-optimal performance when segmenting highly

ambiguous MRI images of the prostate.

Starting with the observation that the CE-loss encourages implausible mixtures

of segmentation modes when applied to multi-modal problems, we hypothesized that

mini-batch gradient descent may lead to conflicting gradients that are detrimental

to model performance. With the aim to ameliorate the gradient dynamics, we then

turned to an adversarial training scheme in which a model of the loss is learned. This

model (the discriminator D) distinguishes between real and fake segmentations and

thus acknowledges collective subspaces of plausible segmentation modes. Training an

otherwise identical segmentation network under both schemes empirically showed that

the adversarial training may be advantageous under label noise. In conjunction with

strong results in the small data limit these findings appear to affirm the utility of a

learned reparameterization of the loss when faced with multi-modal labels.

From a theoretical stand-point reducing the number of training data induces a different

type of uncertainty than the presence of ambiguous image evidence, see the discussion in

Sec. 4.2. From a practical point of view however, both scenarios may have comparable

bearing on the training dynamics, as both little training data and data ambiguity may
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result in training signals that are irreconcilable to the model. Having limited access to

labelled data is very common for medical images and the empirical advantages of the

adversarial training scheme over the regular CE-training suggests a possible avenue of

future research towards more data efficiency.

Unfortunately adversarial training in the GAN-framework comes with its own caveats

and may thus not constitute a drop-in solution for the simpler CE-based training:

For one, it is well documented in the literature that the GAN setup can result in

unstable training behavior such as sudden and irrecoverable deterioration of model

performance (see Sec. 4.3). For another, the necessity of co-training a separate, potentially

large discriminator, may limit the model and batch size that can be employed for the

segmentation network and additionally significantly reduce training speed.

The extent to which the documented performance gains can be attributed to our

intuition that the adversarial scheme allows for the co-existence of modes, which we

expect to be violated in CE training, requires further scrutiny. To this end the losses for

multiple annotations of a single image (and the statistics of the ensuing gradients) could

be compared between the adversarial and the Cross Entropy training. Such an analysis

was unfortunately not readily possible given the single annotations of our dataset.

Another possibility to ascertain the mechanism behind the empirical advantages

would be a comparison to other training schemes designed to better cope with label noise

such as [Ghosh et al., 2017, Zhang and Sabuncu, 2018]. These methods however were

not published at the time this work was carried out.

As sufficiently described above and with even more detail in Chap. 3, prostate mpMRI

images are often ambiguous with respect to lesion segmentations. Their outline and

location may thus appear different on T2w and ADC, for example see Fig. 5.4 and

Fig. 5.5. Another limitation of this work therefore lies in the approach of concurrently

using several mpMRI modalities and fusing their respective annotations, as the fusion

process itself may introduce additional label noise.

Lastly, training a discriminiative model such as the U-Net with a discriminator D

results in the deterministic prediction of only singular modes. A deterministic model how-

ever can not capture the admissible segmentation modes and the associated uncertainties

across them. One way to extend the framework in this direction is to make it generative

with the aim of producing multiple plausible modes given an image. Ways of doing so by

means of variational models rather than GANs are proposed and evaluated in the following.



Chapter 7

Learning Image-Global Distributions

over Segmentations

In this chapter we discuss a novel conditional generative model, the Probabilistic U-Net.

This model is based on the observation of prior chapters, that given a medical scan

alone, a single unique ground truth for the depicted tissues can often not be determined.

Instead of trying to learn a deterministic mapping to segmentations, we propose to model

plausible distributions over semantic segmentations for a given image in the presence

of such ambiguity. This is approached by combining a U-Net with a cVAE, samples of

which can be decoded to unique interpretations of a scan. We treat image observations

as evidence that can be used to narrow down the space of interpretations for the image.

The main contributions of this work are:

• Our framework provides consistent segmentation maps instead of pixel-wise proba-

bilities and can therefore give a joint likelihood of modes.

• Our model can induce arbitrarily complex output distributions including the

occurrence of very rare modes, and is able to learn calibrated probabilities of

segmentation modes.

• Sampling from our model is computationally cheap.

• In contrast to many existing applications of generative models that can only be

qualitatively evaluated, our application and datasets allow quantitative performance

evaluation including penalization of missing modes.

This work has been published in the Proceedings of Advances in Neural Information

Processing Systems, see [Kohl et al., 2018], where it was also presented as a spotlight
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talk. We provide an open-source re-implementation of our approach at https://github.

com/SimonKohl/probabilistic unet.

7.1 Segmenting Ambiguous Images

The semantic segmentation task assigns a class label to each pixel in an image. While

in many cases the context in the image provides sufficient information to resolve the

ambiguities in this mapping, there exists an important class of images where even the full

image context is not sufficient to resolve all ambiguities. Such ambiguities are common in

medical imaging applications, e.g. in lung abnormalities segmentation from CT images.

A lesion might be clearly visible, but the information about whether it is cancer tissue or

not might not be available from this image alone. Similar ambiguities are also present in

photos. E.g. a part of fur visible under the sofa might belong to a cat or a dog, but it is

not possible from the image alone to resolve this ambiguity. Most existing segmentation

algorithms either provide only one likely consistent hypothesis (e.g., ‘all pixels belong to

a cat’) or a pixel-wise probability (e.g., ‘each pixel is 50% cat and 50% dog’). Especially

in medical applications where a subsequent diagnosis or a treatment depends on the

segmentation map, an algorithm that only provides the most likely hypothesis might

lead to misdiagnoses and sub-optimal treatment. Providing only pixel-wise probabilities

ignores all co-variances between the pixels, which makes a subsequent analysis much

more difficult if not impossible.

Here we present a segmentation framework that provides multiple segmentation

hypotheses for ambiguous images (Fig. 7.1a). Our framework combines a conditional

Variational Auto-Encoder (cVAE) [Jimenez Rezende et al., 2014, Kingma and Welling,

2013, Kingma et al., 2014, Sohn et al., 2015b] which can model complex distributions,

with a U-Net [Ronneberger et al., 2015] which delivers state-of-the-art segmentations

in many medical application domains. A low-dimensional latent space encodes the

possible segmentation variants. A random sample from this space is injected into the

U-Net to produce the corresponding segmentation map (see Fig. 7.1). One key feature

of this architecture is the ability to model the joint probability of all pixels in the

segmentation map. This results in multiple segmentation maps, where each of them

provides a consistent interpretation of the whole image. Furthermore our framework

is able to also learn hypotheses that have a low probability and to predict them with

the corresponding frequency. We demonstrate these features on a lung abnormalities

segmentation task [Armato et al., 2015, 2011, Clark et al., 2013], where each lesion has

https://github.com/SimonKohl/probabilistic_unet
https://github.com/SimonKohl/probabilistic_unet
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Figure 7.1 | The Probabilistic U-Net. (a) Sampling process. Arrows: flow of operations;
blue blocks: feature maps. The heatmap represents the probability distribution in the low-
dimensional latent space RN (e.g., N = 6 in our experiments). For each execution of the
network, one sample z ∈ RN is drawn to predict one segmentation mask. Green block:
N -channel feature map from broadcasting sample z. The number of feature map blocks
shown is reduced for clarity of presentation. (b) Training process illustrated for one training
example. Green arrows: loss functions.

been segmented independently by four experts, and on the Cityscapes dataset [Cordts

et al., 2016], where we artificially flip labels with a certain frequency during training.

Depending on the down-stream task, it may be beneficial or even required to have self

consistent segmentation samples rather than e.g. pixel-wise samples at hand. For example

a classifier can be trained to map segmentations to diagnoses, such as in [De Fauw et al.,

2018], which naturally lends itself to propagate segmentation ambiguity to classifier

uncertainty, if and when multiple consistent hypotheses are available. Equally, multiple

plausible segmentations are arguably more readily interpreted by a clinician as opposed

to pixel-wise uncertainty estimates. They could be used to suggest further diagnostic

tests to resolve the ambiguities, or, when additional non-imaging information is available,

the appropriate one(s) can be selected for subsequent steps such as further diagnosis or

treatment planning and monitoring.

7.2 Related Work & Baselines

A body of work with different approaches towards probabilistic and multi-modal segmen-

tation exists. An overview is given in Sec. 4.2 and we discuss the closely relate work in

more detail below.
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The most common approaches provide independent pixel-wise probabilities [Kendall

and Gal, 2017, Kendall et al., 2015]. These models induce a probability distribution by

using dropout over spatial, network-internal feature maps. While this strategy fulfills this

line of work’s objective of quantifying the pixel-wise uncertainty, it produces inconsistent

outputs. A simple way to produce plausible hypotheses is to learn an ensemble of (deep)

models [Lakshminarayanan et al., 2017]. While the outputs produced by ensembles are

consistent, they are not necessarily diverse and ensembles are typically not able to learn

the rare variants as their members are trained independently. In order to overcome this,

several approaches train models jointly using the oracle set loss [Guzman-Rivera et al.,

2012], i.e. a loss that only accounts for the closest prediction to the ground truth. This

has been explored in [Lee et al., 2015] and [Lee et al., 2016] using an ensemble of deep

networks, and in [Rupprecht et al., 2017] and [Ilg et al., 2018] using one common deep

network with M heads. While multi-head approaches may have the capacity to capture

a diverse set of variants, they are not equipped to learn the occurrence frequencies of

individual variants. Two common disadvantages of both ensembles and M heads models

are their ungraceful scaling to large numbers of hypotheses, and their requirement of

fixing the number of allowed hypotheses at training time. Another set of approaches to

produce multiple diverse solutions relies on graphical models, such as junction chains

[Chen et al., 2013], and more generally Markov Random Fields [Batra et al., 2012, Kirillov

et al., 2015a,b, 2016]. While many of the previous approaches are guaranteed to find the

best diverse solutions, these are confined to structured problems whose dependencies can

be described by tractable graphical models.

The task of image-to-image translation [Isola et al., 2017] tackles a very similar

problem: an under-constrained domain transfer of images needs to be learned. Many of

the recent approaches employ GANs which are known to suffer from challenges such as

‘mode-collapse’ [Goodfellow, 2016]. In an attempt to solve the mode-collapse problem,

the ‘bicycleGAN’ [Zhu et al., 2017b] involves a component that is similar in architecture

to ours. In contrast to our proposed architecture, their model encompasses a fixed prior

distribution and during training their posterior distribution is only conditioned on the

output image. Recent work on generating appearances given a shape encoding [Esser

et al., 2018] also combines a U-Net with a VAE, and was developed concurrently to ours.

In contrast to our proposal, their training requires an additional pretrained VGG-net

that is employed as a reconstruction loss. Finally, [Bouchacourt et al., 2016] proposed a

probabilistic model for structured outputs based on optimizing the dissimilarity coefficient

[Rao, 1982] between the ground truth and predicted distributions. The resultant approach

is assessed on the task of hand pose estimation, that is, predicting the location of 14
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joints, arguably a simpler space compared to the space of segmentations we consider here.

Similarly to the approach presented below, they inject latent variables at a later stage of

the network architecture.

7.3 Network Architecture and Training Procedure

Our proposed network architecture is a combination of a conditional Variational Auto-

Encoder [Jimenez Rezende et al., 2014, Kingma and Welling, 2013, Kingma et al., 2014,

Sohn et al., 2015b] with a U-Net [Ronneberger et al., 2015], with the objective of learning

a conditional density model over segmentations, conditioned on the image.

7.3.1 Sampling

The central component of our architecture (Fig. 7.1a) is a low-dimensional latent space

RN (e.g., N = 6, which performed best in our experiments). Each position in this space

encodes a segmentation variant. The ‘prior net’, parametrized by weights ω, estimates

the probability of these variants for a given input image X. This prior probability

distribution (called P in the following) is modelled as an axis-aligned Gaussian with mean

µprior(X;ω) ∈ RN and variance σprior(X;ω) ∈ RN . To predict a set of m segmentations

we apply the network m times to the same input image (only a small part of the network

needs to be re-evaluated in each iteration, see below). In each iteration i ∈ {1, . . . ,m},
we draw a random sample zi ∈ RN from P

zi ∼ P (·|X) = N
(
µprior(X;ω), diag(σprior(X;ω))

)
, (7.1)

broadcast the sample to an N -channel feature map with the same shape as the segmen-

tation map, and concatenate this feature map to the last activation map of a U-Net (the

U-Net is parameterized by weights θ). A function fcomb. composed of three subsequent

1×1 convolutions (ψ being the set of their weights) combines the information and maps it

to the desired number of classes. The output, Si, is the segmentation map corresponding

to point zi in the latent space:

Si = fcomb. (fU-Net(X; θ), zi;ψ) . (7.2)

Notice that when drawing m samples for the same input image, we can reuse the output

of the prior net and the feature activations of the U-Net. Only the function fcomb. needs
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to be re-evaluated m times.

7.3.2 Training

The networks are trained with the standard training procedure for conditional VAEs

(Fig. 7.1b), i.e. by minimizing the Evidence Lower Bound (ELBO) (Eq. 7.4). The main

difference with respect to training a deterministic segmentation model, is that the training

process additionally needs to find a useful embedding of the segmentation variants in the

latent space. This is solved by introducing a ‘posterior net’, parametrized by weights ν,

that learns to recognize a segmentation variant (given the raw image X and the ground

truth segmentation Y ) and to map this to a position µpost(X,Y ; ν) ∈ RN with some

uncertainty σpost(X, Y ; ν) ∈ RN in the latent space. The output is denoted as posterior

distribution Q. A sample z from this distribution,

z ∼ Q(·|X, Y ) = N
(
µpost(X, Y ; ν), diag(σpost(X, Y ; ν))

)
, (7.3)

combined with the activation map of the U-Net (fU-Net) must result in a predicted

segmentation S (Eq. 7.2) identical to the ground truth segmentation Y provided in

the training example. A cross-entropy loss penalizes differences between S and Y (the

cross-entropy loss arises from treating the output S as the parameterization of a pixel-wise

categorical distribution Pc). Additionally there is a Kullback-Leibler divergence (KL)

DKL(Q||P ) = Ez∼Q [log Q− log P ] which penalizes differences between the posterior

distribution Q and the prior distribution P . Both losses are combined as a weighted sum

with a weighting factor β, as e.g. done in [Higgins et al., 2017]:

LELBO(Y,X) = Ez∼Q(·|Y,X)

[
− log Pc(Y |S(X, z))

]
+ β ·DKL

(
Q(z|Y,X)||P (z|X)

)
. (7.4)

The training is done from scratch with randomly initialized weights. During training, this

KL loss ‘pulls’ the posterior distribution (which encodes a segmentation variant) and the

prior distribution towards each other. On average (over multiple training examples) the

prior distribution will be modified in a way such that it ‘covers’ the space of all presented

segmentation variants for a specific input image.
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7.4 Performance Measures and Baseline Methods

In this section we first present the metric used to assess the performance of all approaches,

and then describe each competitor approach used in the comparisons.

7.4.1 Performance Measures

As it is common in the semantic segmentation literature, we employ the Intersection over

Union (IoU) as a measure to compare a pair of segmentations:

IoU(Y, Y ′) =
|Y ∩ Y ′|
|Y ∪ Y ′|

=
TP

TP + FP + FN
, (7.5)

where TP, FP and FN denote the number of True Positive, False Positive and False Neg-

ative predictions between a predicted segmentation Y ′ and a ground truth segmentation

Y .

In the present case however we not only want to compare a deterministic prediction

with a unique ground truth, but rather we are interested in comparing distributions of

segmentations. To do so, we use the Generalized Energy Distance (GED) [Bellemare

et al., 2017, Salimans et al., 2018, Székely and Rizzo, 2013], which leverages distances

between observations:

D2
GED(Pgt, Pout) = 2E

[
d(S, Y )

]
− E

[
d(S, S

′
)
]
− E

[
d(Y, Y

′
)
]
, (7.6)

where d is a distance measure, Y and Y
′
are independent samples from the ground truth

distribution Pgt, and similarly, S and S
′
are independent samples from the predicted

distribution Pout. The energy distance DGED is a metric as long as d is also a metric

[Klebanov et al., 2005]. In our case we choose d(x, y) = 1− IoU(x, y), which as proved

in [Kosub, 2016, Lipkus, 1999], is a metric. In practice, we only have access to samples

from the distributions that models induce, so we rely on statistics of Eq. 7.6, D̂2
GED. The

details about its computation for each experiment are presented in Sec. B.1.

7.4.2 Baseline Methods

With the aim of providing context for the performance of our proposed approach we

compare against a range of baselines. To the best of our knowledge there exists no other

work that has considered capturing a distribution over multi-modal segmentations and

has measured the agreement with such a distribution. For fair comparison, we train the

baseline models whose architectures are depicted in Fig. 7.2 in the exact same manner
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as we train ours. The baseline methods all involve the same U-Net architecture, i.e.

they share the same core component and thus employ comparable numbers of learnable

parameters in the segmentation tasks.

1
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Figure 7.2 | Baseline architectures. Arrows: flow of operations; blue blocks: feature
maps; red blocks: feature maps with dropout; green block broadcasted latents. Note that
the number of feature map blocks shown is reduced for clarity of presentation. (a) Dropout
U-Net. (b) U-Net Ensemble. (c) M-Heads. (d) Image2Image VAE.

Dropout U-Net (Fig. 7.2a). Our ‘Dropout U-Net’ baselines follow the Bayesian

segnet’s [Kendall et al., 2015] proposition: we dropout the activations of the respective

incoming layers of the three inner-most encoder and decoder blocks with a dropout

probability of p = 0.5 during training as well as when sampling.

U-Net Ensemble (Fig. 7.2b). We report results for ensembles with the number of

members matching the required number of samples (referred to as ‘U-Net Ensemble’).

The original deterministic variant of the U-Net is the 1-sample corner case of an ensemble.

M-Heads (Fig. 7.2c). Aiming for diverse semantic segmentation outputs, the works

of [Rupprecht et al., 2017] and [Ilg et al., 2018] propose to branch off M heads after

the last layer of a deep net each of which contributes one output variant. An adjusted

cross-entropy loss that adaptively assigns heads to ground-truth hypotheses is employed

to promote diversity while reducing the risk of idle heads: the loss of the best performing

head is weighted with a factor of 1− ϵ, while the remaining heads each contribute with a

weight of ϵ/(M − 1) to the loss. For our ‘M-Heads’ baselines we again employ a U-Net

core and set ϵ = 0.05 as proposed by [Rupprecht et al., 2017]. In order to allow for the

evaluation of 4, 8 and 16 samples, we train M-Heads models with the corresponding

number of heads.

Image2Image VAE (Fig. 7.2d). In [Zhu et al., 2017b] the authors propose a U-Net

VAE-GAN hybrid for multi-modal image-to-image translation, that owes its stochasticity

to normal distributed latents that are broadcasted and fed into the encoder path of the

U-Net. In order to deal with the complex solution space in image-to-image translation
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tasks, they employ an adversarial discriminator as additional supervision alongside a

reconstruction loss. In the fully supervised setting of semantic segmentation such an

additional learning signal is however not necessary and we therefore train with a cross-

entropy loss only. In contrast to our proposition, this baseline, which we refer to as the

‘Image2Image VAE’, employs a prior that is not conditioned on the input image (a fixed

normal distribution) and a posterior net that is not conditioned on the input either.

In all cases we examine the models’ performance when drawing a different number of

samples (1, 4, 8 and 16) from each of them.

7.5 Quantitative Results

A quantitative evaluation of multiple segmentation predictions per image requires an-

notations from multiple labelers. Here we consider two datasets: The LIDC-IDRI

dataset [Armato et al., 2015, 2011, Clark et al., 2013] which contains 4 annotations per

input, and the Cityscapes dataset [Cordts et al., 2016], which we artificially modify by

adding synonymous classes to introduce uncertainty in the way concepts are labelled.

7.5.1 Lung Abnormalities Segmentation

The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative

(IDRI) dataset [Armato et al., 2015, 2011, Clark et al., 2013] contains 1018 lung CT

scans from 1010 lung patients with manual lesion segmentations from four experts. This

dataset is a good representation of the typical ambiguities that appear in CT scans. For

each scan, 4 radiologists (from a total of 12) provided annotation masks for lesions that

they independently detected and considered to be abnormal. We use the masks resulting

from a second reading in which the radiologists were shown the anonymized annotations

of the others and were allowed to make adjustments to their own masks.

For our experiments we split this dataset into a training set composed of 722 patients,

a validation set composed of 144 patients, and a test set composed of the remaining

144 patients. We then resampled the CT scans to 0.5mm× 0.5mm in-plane resolution

(the original resolution is between 0.461mm and 0.977mm, 0.688mm on average) and

cropped 2D images (180×180 pixels) centered at the lesion positions. The lesion positions

are those where at least one of the experts segmented a lesion. By cropping the scans,

the resultant task is in isolation not directly clinically relevant. However, this allows

us to ignore the vast areas in which all labelers agree, in order to focus on those where

there is uncertainty. This resulted in 8882 images in the training set, 1996 images in the
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Figure 7.3 | Qualitative results. The first row shows the input image and the ground truth
segmentations. The following rows show results from the baselines and from our proposed
method. (a) lung CT scan from the LIDC test set. Ground truth: 4 graders. (b) Cityscapes.
Images cropped to squares for ease of presentation. Ground truth: 32 artificial modes. Best
viewed in colour.

validation set and 1992 images in the test set. Because the experts can disagree whether

the lesion is abnormal tissue, up to 3 masks per image can be empty. Fig. 7.3a shows an

example of such lesion-centered images and the masks provided by 4 graders.

As all models share the same U-Net core component and for fairness and ease of

comparability, we let all models undergo the same training schedule, which is detailed in

Subsec. B.5.1.

In order to grasp some intuition about the kind of samples produced by each model, we

show in Fig. 7.3a, as well as in Sec. B.3, representative results for the baseline methods and

our proposed Probabilistic U-Net. Fig. 7.4a shows the squared generalized energy distance

D̂2
GED for all models as a function of the number of samples. The data accumulations

visible as horizontal stripes are owed to the existence of empty ground-truth masks. The

energy distance on the 1992 images large lung abnormalities test set, decreases for all

models as more samples are drawn indicating an improved matching of the ground-truth

distribution as well as enhanced sample diversity. Our proposed Probabilistic U-Net

outperforms all baselines when sampling 4, 8 and 16 times (numerical results can be

found in Table B.1). The performance at 16 samples is found significantly higher than

that of the baselines (p-value ∼ O(10−13)), according to the Wilcoxon signed-rank test.

Finally, in Subsec. 7.7.3 we show the results of an experiment regarding the capacity

different models have to distinguish between unambiguous and ambiguous instances (i.e.

instances where graders disagree on the presence of a lesion).
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Figure 7.4 | Comparison of approaches using the GED. Lower energy distances corre-
spond to better agreement between predicted distributions and ground truth distribution of
segmentations. The symbols that overlay the distributions of data points mark the mean
performance. (a) Performance on lung abnormalities segmentation on our LIDC-IDRI test-set.
(b) Performance on the official Cityscapes validation set (our test set).

7.5.2 Stochastic Cityscapes Street Scene Segmentation

As a second dataset we use the Cityscapes dataset [Cordts et al., 2016]. It contains

images of street scenes taken from a car with corresponding semantic segmentation maps.

A total of 19 different semantic classes are labelled. Based on this dataset we designed a

task that allows full control of the ambiguities: we create ambiguities by artificial random

flips of five classes to newly introduced classes. We flip ‘sidewalk’ to ‘sidewalk 2’ with

a probability of 8/17, ‘person’ to ‘person 2’ with a probability of 7/17, ‘car’ to ‘car 2’

with 6/17, ‘vegetation’ to ‘vegetation 2’ with 5/17 and ‘road’ to ‘road 2’ with probability

4/17. This choice yields distinct probabilities for the ensuing 25 = 32 discrete modes

with probabilities ranging from 10.9% (all unflipped) down to 0.5% (all flipped). The

official training dataset with fine-grained annotation labels comprises 2975 images and

the validation dataset contains 500 images. We employ this offical validation set as a

test set to report results on, and split off 274 images (corresponding to the 3 cities of

Darmstadt, Mönchengladbach and Ulm) from the official training set as our internal

validation set. As in the previous experiment, in this task we use a similar setting for the

training processes of all approaches, which we present in detail in Subsec. B.5.2.

Fig. 7.3b shows samples of each approach in the comparison given one input image. In

Sec. B.4 we show further samples of other images, produced by our approach. Fig. 7.4b

shows that the Probabilistic U-Net on the Cityscapes task outperforms the baseline

methods when sampling 4, 8 and 16 times in terms of the energy distance (numerical

results can be found in Table B.2). This edge in segmentation performance at 16 samples

is highly significant according to the Wilcoxon signed-rank test [Wilcoxon, 1945] (p-value
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∼ O(10−77)). We have also conducted ablation experiments in order to explore which

elements of our architecture contribute to its performance. These were (1) Fixing the

prior, (2) Fixing the prior, and not using the context in the posterior and (3) Injecting

the latent features at the beginning of the U-Net. Each of these variations resulted in a

lower performance. Detailed results can be found in Subsec. 7.7.2.

7.6 Qualitative Results

The embedding of the segmentation variants in a low-dimensional latent space allows a

qualitative analysis of the internal representation of our model. For a 2D or 3D latent

space we can directly visualize where the segmentation variants get assigned, see Fig. 7.5

and 7.6.

The segmentation variants from the proposed Probabilistic U-Net correspond to

latent space samples from the learned prior distribution. Fig. 7.5 and Fig. 7.6 below

show samples from the Probabilistic U-Net for an LIDC-IDRI and a Cityscapes example

respectively. The samples are arranged so as to represent their corresponding position in

a 2D-plane of the respective latent space. This allows to interpret how the model ends

up structuring the space to solve the given tasks.

7.6.1 Lung Abnormalities Segmentation

In the LIDC-IDRI case the z0-component of the prior happens to roughly encode lesion

size including a transition to complete lesion absence. The probability mass allocated

to absence is relatively small in the particular example, which arguably is in tune with

the fact that 1 of the 4 graders assessed the image as lesion free. The z1-component on

the other hand appears to encode shape variations. In the training, the posterior and

the prior distribution are tied by means of the KL-divergence. As a consequence they

‘live’ in the same space and the graders (alongside the image to condition on) can be

projected into the same latent space. Fig. 7.5 shows the grader’s position in the form

of green dots. All four graders map into the 3-sigma interval of the prior. One of the

segmentations that indicates lesion presence and arguably delineates only the most salient

region (grading number 3) is highly likely, i.e. within the 1-sigma isoprobability contour,

under the prior. Fig. 7.3 gives more LIDC-IDRI examples with their corresponding grader

masks and 16 random samples of the Probabilistic U-Net. It appears that our model

agrees very well with cases for which there is inter-grader disagreement on lesion presence.

For cases where the graders agree on presence, our model at times apparently shows an
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under-conservative prior, in the sense that uncertainty on presence can be elevated. The

shape variations however are covered to a very good degree as attested by quantitative

experiments above.

7.6.2 Street Scene Segmentation

In the Cityscapes task we employ a latent space with more dimensions than on the lung

abnormalities task in order to equip the prior with sufficient capacity to encode the

grader modes. The best performing model used a 6D latent space, however, for ease of

presentation the following discusses the latent structure of a 3D latent space version.

Fig. 7.6 shows a z0-z1 plane of the latent space in which we again map corresponding

segmentation samples, this time for a Cityscapes example. The precisely defined grader

modes in the Cityscapes task can be identified with coherent regions in the latent space.

As the space is 3D, not all 32 modes are fully manifest in the shown z2-slice. The location

of the modes is shown via white mode numbers and the degree of transparency indicated

the proximity in z2 relative to the shown slice. As this particular task involves discrete

modes, the semantically different regions are coherent and well confined as hoped for.

There however inevitably are transitions between those latent space regions that will

translate to mixtures of the grader modes that cross over. Ideally these transitions

are as sharp as possible relative to the order of magnitude of the prior variance, which

is arguably the case. Fig. B.9 shows Cityscapes examples with their corresponding

grader masks and 16 random samples of the Probabilistic U-Net. The shown samples

exhibit largely coherent variants alongside occasional variant mixtures that correspond to

semantic cross overs in the latent space. As alluded to quantitatively before, the samples

also appear to respect the grader variant frequencies, which are captured by structuring

the latent-space under the prior in such fashion that the correct probability mass is

allocated to the respective mode. In the upper boundary region of Fig. 7.6 improper

samples are found that show miss-segmentations (although those are unlikely under the

prior). The erroneously encoded modes found here are presumably attributable to the

presence of inherent ambiguities in the dataset.

7.7 Additional Analyses

7.7.1 Calibration Analysis.

In the Cityscapes segmentation task, we can provide further analysis by leveraging our

knowledge of the underlying conditional distribution that we have set by design. In
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Figure 7.5 | Visualization of the latent space for the LIDC segmentation. 19× 19
samples for a LIDC-IDRI test set example mapped to their prior latent-space position, using
our model trained with a latent space of only 2 dimensions. For ease of presentation, the latent
space is re-scaled so that the prior likelihood is a spherical unit-Gaussian. The isoprobable
yellow circles denote deviations from the mean in sigma. The ground-truth grader masks’
posterior position in this latent space is indicated by green numbers. The input image is
shown in the lower left, to the right of it, the 4 grader masks are shown.
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Figure 7.6 | Visualization of the latent space on Stochastic Cityscapes. 19 × 19
samples of a Cityscapes validation set example, mapped here to their latent-space position in
the z0-z1 plane (z2 = 0) of the learned prior, using our model trained with a latent space
of only 3 dimensions. For ease of presentation, the samples are squeezed to rectangles and
the latent space is re-scaled so that the prior likelihood is a spherical unit-Gaussian. The
isoprobable yellow circles denote deviations from the mean in sigma. The ground-truth grader
masks’ posterior position in this latent space is indicated by white numbers. (color-map as in
Fig. B.9).
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particular we compare the frequency with which every model predicts each mode, to the

corresponding ground truth probability of that mode. To compute the frequency of each

mode by each model, we draw 16 samples from that model for all images in the test set.

Then we count the number of those samples that have that mode as the closest (using

1-IoU as the distance function).
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Figure 7.7 | Calibration of Mode Frequencies of the Probabilistic U-Net on Stochas-
tic Cityscapes. The artificial flipping of 5 classes results in 32 modes with different ground
truth probability (x-axis). The y-axis shows the frequency of how often the model predicted
this variant in the whole test set. Agreement with the bisector line indicates calibration
quality.

In Fig. 7.7 (and Figs. B.1, B.2, B.3 in Sec. B.2) we report the mode-wise frequencies

for all 32 modes in the Cityscape task and show that the Probabilistic U-Net is the

only model in this comparison that is able to closely capture the frequencies of a large

combinatorial space of hypotheses including very rare modes, thus supplying calibrated

likelihoods of modes. The Image2Image VAE is the only model among competitors that

picks up on all variants, but the frequencies are far off as can be seen in its deviation from

the bisector line in blue. The other baselines perform worse still in that all of them fail to

represent modes and the modes they do capture do not match the expected frequencies.

7.7.2 Ablation Analysis

In this section we explore variations in the architecture of our approach, in order to

understand how each design decision affects the performance. We have tried three

variations over the original approach, these are:

Fixing the prior: Instead of making the prior a function of the context, here we fix

it to be a standard Gaussian distribution.

Fixing the prior, and not using the context (input image) in the posterior:

In addition to fixing the prior to be Gaussian, we also make the posterior a function of

the ground truth mask only, ignoring the context.
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Injecting the latent features at the beginning of the U-Net: Starting from our

original model, we change the position in which the latent variables are used. Specifically

here we concatenate them to the context (input image) and propagate that through the

U-Net.

Figure 7.8 | Ablation analysis on Stochastic Cityscapes. Comparison of architectural
variations of our approach using the energy distance. Lower energy distances correspond to bet-
ter agreement between predicted distributions and ground truth distribution of segmentations.
The symbols that overlay the distributions of data points mark the mean performance.

In Fig. 7.8 we can observe that our approach is better than the other variations.

As the mechanisms that induce the distributions over segmentations during sampling

and training are blinded towards the context image, the performance in terms of the

IoU-based energy distance decreases. In particular, our model is much better than the

variation that injects latent samples at the beginning. This is a pleasant finding, given

that our decision of injecting the latent variables at the end of the U-Net was motivated

by efficiency reasons when sampling. Here we find that we do not lose performance by

doing so, but instead observe an improved matching of the samples with the ground-truth

distribution. We hypothesize that injecting the latent variables at the final stage of the

pipeline makes it easier for the model to account for different segmentations given the

same input. This hypothesis is supported by the slightly better performance shown by

the alternative architecture when sampling only once, and how this advantage is lost,

and actually reversed, when sampling several times.
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7.7.3 Predicting Ambiguity

In this section we assess the capacity of different models trained on LIDC for distinguishing

between unambiguous and ambiguous instances. Specifically we define an instance to be

ambiguous if 1 or more graders disagree on the presence of abnormal tissue. To do so, for

each model we draw 16 samples per instance (as in all other experiments in the paper) and

count the number of lesion presences out of the 16. This lesion presence is binned in two

histograms with [0, 16] bins, one for ambiguous and one for unambiguous instances (they

are shown in Fig. 7.9). Finally we evaluate the discriminatory power of such histograms

by computing the best threshold that separates ambiguous and unambiguous instances

on the validation set. We present the accuracy scores on the test set in Table 7.1, which

shows the advantage that our approach has over the competitors in this regard.

Table 7.1 | Predicting ambiguity for the presence of abnormalities. This table gives
the accuracy for the prediction of whether graders disagree on the presence of an abnormality
(evaluated on the test set). This prediction is made using a threshold on the number of
non-empty samples which is determined on the validation set, see Fig. 7.9.

Dropout U-Net U-Net Ensemble M-Heads Image2Image VAE Probabilistic U-Net

0.328 0.699 0.678 0.678 0.736

7.8 Discussion

Our first set of experiments demonstrates that our proposed architecture provides consis-

tent segmentation maps that closely match the multi-modal ground-truth distributions

given by the expert graders in the lung abnormalities task and by the combinatorial

ground-truth segmentation modes in the Cityscapes task. The employed IoU-based energy

distance measures whether the models’ individual samples are both coherent as well as

whether they are produced with the expected frequencies. It not only penalizes predicted

segmentation variants that are far away from the ground truth, but also penalizes missing

variants. On this task the Probabilistic U-Net is able to significantly outperform the

considered baselines, indicating its capability to model the joint likelihood of segmentation

variants.

The second type of experiments demonstrates that our model scales to complex output

distributions including the occurrence of very rare modes. With 32 discrete modes of

largely differing occurrence likelihoods (0.5% to 10.9%), the Cityscapes task requires
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Predicted samples with lesion for each instance

Figure 7.9 | Histograms of non-empty samples. The histograms result from 16 samples
for each model and are evaluated on the validation set. For each model two histograms are
produced, one for cases that are ambiguous (blue) and one for such that are non-ambiguous
(red) with respect to abnormality presence, according to the set of ground truth annotations.
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the ability to closely match complex data distributions. Here too our model performs

best and picks the segmentation modes very close to the expected frequencies, all the

way into the regime of very unlikely modes, thus defying mode-collapse and exhibiting

excellent probability calibration. As an additional advantage our model scales to such

large numbers of modes without requiring any prior assumptions on the number of modes

or hypotheses.

The lower performance of the baseline models relative to our proposition can be

attributed to design choices of these models. While the Dropout U-Net successfully

models the pixel-wise data distribution (Fig. B.1a bottom right, in the Appendix), such

pixel-wise mixtures of variants can not be valid hypotheses in themselves (see Fig. 7.3).

The U-Net Ensemble’s members are trained independently and each of them can only

learn the most likely segmentation variant as attested to by Fig. B.1b. In contrast to that

the closely related M-Heads model can pick up on multiple discrete segmentation modes,

due to the joint training procedure that enables diversity. The training does however not

allow to correctly represent frequencies and requires knowledge of the number of present

variants (see Fig. B.2a, in the Appendix). Furthermore neither the U-Net Ensemble, nor

the M-Heads can deal with the combinatorial explosion of segmentation variants when

multiple aspects vary independently of each other.

The Image2Image VAE shares similarities with our model, but as its prior is fixed

and not conditioned on the input image, it can not learn to capture variant frequencies

by allocating corresponding probability mass to the respective latent space regions.

Fig. B.8 in the Appendix shows a severe miss-calibration of variant likelihoods on

the lung abnormalities task that is also reflected in its corresponding energy distance.

Furthermore, in this architecture, the latent samples are fed into the U-Net’s encoder

path, while we feed in the samples just after the decoder path. This design choice in

the Image2Image VAE requires the model to carry the latent information all the way

through the U-Net core, while simultaneously performing the recognition required for

segmentation, which might additionally complicate training (see analysis in Subsec. 7.7.2).

Beside that, our design choice of late injection has the additional advantage that we

can produce a large set of samples for a given image at a very low computational cost: for

each new sample from the latent space only the network part after the injection needs to

be re-executed to produce the corresponding segmentation map (this bears similarity to

the approach taken in [Bouchacourt et al., 2016], where a generative model is employed

to model hand pose estimation).

Aside from the ability to capture arbitrary modes with their corresponding probability

conditioned on the input, our proposed Probabilistic U-Net allows to inspect its latent
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space. This is because as opposed to e.g. GAN-based approaches, VAE-like models

explicitly parameterize distributions, a characteristic that grants direct access to the

corresponding likelihood landscape. Sec. 7.6 discusses how the Probabilistic U-Net chooses

to structure its latent spaces.

Compared to aforementioned concurrent work for image-to-image tasks [Esser et al.,

2018], our model disentangles the prior and the segmentation net. This can be of

particular relevance in medical imaging, where processing 3D scans is common. In this

case it is desirable to condition on the entire scan, while retaining the possibility to

process the scan tile by tile in order to be able to process large volumes with large models

with a limited amount of GPU memory.

On a more general note, we would like to remark that current image-to-image

translation tasks only allow subjective (and expensive) performance evaluations, as it is

typically intractable to assess the entire solution space. For this reason surrogate metrics

such as the inception score based on the evaluation via a separately trained deep net

are employed [Salimans et al., 2016]. The task of multi-modal semantic segmentation,

which we consider here, allows for a direct and thus perhaps more meaningful manner of

performance evaluation and could help guide the design of future generative architectures.

All in all we see a large field where our proposed Probabilistic U-Net can replace the

currently applied deterministic U-Nets. Especially in the medical domain, with its often

ambiguous images and highly critical decisions that depend on the correct interpretation

of the image, our model’s segmentation hypotheses and their likelihoods could 1) inform

diagnosis/classification probabilities or 2) guide steps to resolve ambiguities. Our method

could prove useful beyond explicitly multi-modal tasks, as the inspectability of the

Probabilistic U-Net’s latent space could yield insights for many segmentation tasks that

are currently treated as a uni-modal problem.





Chapter 8

Learning Multi-Scale Distributions over

Segmentations

In Chap. 7 we proposed a generative model that can induce a global distribution over

semantic segmentations. This image-global approach however has limitations in that it

can not efficiently model more local factors of variation. A common example for such a

case may be the presence of multiple lesions in a scan. Speaking more generally, medical

images can exhibit regions whose ambiguity may inter-depend in complex ways and

across various scales, spanning all the way from the pixel to the image level.

To improve upon our earlier model, a more flexible generative model is required, such

as the Hierarchical Probabilistic U-Net (HPU-Net), which we describe in this chapter.

The main contributions of this work are:

• A generative model for semantic segmentation able to learn complex-structured

conditional distributions equipped with a latent space that scales with image size.

• Compared to prior art, strongly improved fidelity to fine structure in the models’

samples and reconstructions.

• Improved modelling of distributions over segmentations including independently

varying scales and locations, as demonstrated in its ability to generate instance

segmentations.

• Automatic learning of factors of variations across space and scale.

This work was presented as an oral at the Med-NeurIPS Workshop at Advances

in Neural Information Processing Systems and is available under [Kohl et al., 2019],

which this chapter follows closely. We provide an open-source re-implementation of our
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approach at https://github.com/deepmind/deepmind-research/tree/master/hierarchical

probabilistic unet.

The key idea presented here, is the usage of a hierarchical latent space, that is weaved

into the U-Net’s decoder structure. This way there is a top-down inter-dependency

between latent samples that allows for a very flexible but coordinated generation of

appropriate semantic segmentation maps.

8.1 The Need for a More Flexible Model

As discussed in Sec. 7.2 several algorithms have been proposed that provide samples

from the output distribution (here: consistent segmentation maps instead of pixel-wise

samples). They are based on ensembles [Lakshminarayanan et al., 2017], networks with

multiple heads [Batra et al., 2012, Lee et al., 2015, 2016, Rupprecht et al., 2017], or

image-conditional generative models [Isola et al., 2017, Liu et al., 2017, Park et al., 2019,

Zhu et al., 2017a,b] such as cVAEs [Esser et al., 2018, Jimenez Rezende et al., 2014,

Kingma and Welling, 2013, Kingma et al., 2014, Sohn et al., 2015a].

The Probabilistic U-Net introduced a number of significant improvements over these

approaches (see contributions in Chap. 7). In practice it however shares a shortcoming

with the aforementioned prior work: Depending on the model, they (can) work well for a

single object in the image or for other global variations (like different segmentation styles,

e.g. more narrow or more inclusive outlining), but do not scale to images containing

multiple objects with uncorrelated variations.

In the case of the Probabilistic U-Net, this is because the image global latent space

that it employs does not have any explicit spatial correspondence for the structure(s)

and the segment(s) that it models, e.g. see Fig. 7.1. In theory it should be able to

learn to parameterize such mappings, in practice however a global latent vector proves

to be a strong constraint on the model, even when allotting many dimensions to the

used latent space, as we show below. This is undesirable, as in a more general case, the

interpretations of different regions in a medical image can vary in complex ways including

conditional independence, e.g. a CT scan may show several lesions with independent

possible interpretations. There may further be conditional top-down dependencies, e.g. a

patient’s genetic predisposition for a certain disease may alter the interpretation of the

scan as a whole with effects for more local annotation decisions, based on the presence of

indiscernible tissue types, or fuzzy borders at different scales.

In order to model complex high-dimensional data such as images, expressive models

with the power to model complex interactions between elements are required. One way

https://github.com/deepmind/deepmind-research/tree/master/hierarchical_probabilistic_unet
https://github.com/deepmind/deepmind-research/tree/master/hierarchical_probabilistic_unet
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to model rich interactions is by means of hierarchical generative models. The idea of

employing a hierarchical approach for the unconditional generation of images has entered

all main strands of generative models by now: GANs, employed for large scale image

synthesis, have been endowed with the ability to decompose and employ a conditional

input such that it modulates layers at different depths and scales of the generator [Brock

et al., 2018, Karras et al., 2018, Park et al., 2019]. Autoregressive models such as

PixelCNN [Van den Oord et al., 2016] have been stacked across different image scales to

form hierarchical generative models with improved log-likelihood performance and sample

coherence [De Fauw et al., 2019, Menick and Kalchbrenner, 2018, Salimans et al., 2017].

Various examples of VAEs [Jimenez Rezende et al., 2014, Kingma and Welling, 2013,

Kingma et al., 2014] equipped with hierarchical latent spaces are reported in the literature:

ConvDRAW [Gregor et al., 2016] performs an iterative inference using two layers of

spatially arranged Gaussian latents, the Ladder VAE [Sønderby et al., 2016] employs up

to 5 latent scales and both the Inverse Autoregressive Flow VAE [Kingma et al., 2016]

and BIVA [Maaløe et al., 2019] make use of bi-directional inference respectively using up

to 8 and 15 latent scales.

With the exception of one piece of concurrent work (see below), hierarchical genera-

tive models have not been adapted to image-conditional tasks such as image-to-image

translation or semantic segmentation before.

We propose the Hierarchical Probabilistic U-Net and benchmark it against what we

refer to as the standard Probabilistic U-Net (sPU-Net) from hereon (to distinguish it

from the hierarchical model) and demonstrate the improved quality of the segmentations

on LIDC, e.g. the sPU-Net often produces only ‘blobby’ segmentation samples (low

segmentation fidelity). Furthermore we show the ability of the model to learn highly

complex probability distributions, by presenting an instance segmentation task, where

we ask the model to label (‘colorize’) each instance consistently with a random instance

id. We test this ability on neuronal structures in Electron Microscopy (EM) images (a

dataset called SNEMI3D [Kasthuri et al., 2015]) as well as on car instances in natural

images (Cityscapes [Cordts et al., 2016]). Finally we show that the model is also capable

of predicting consistent segmentations with corresponding uncertainties in a blacked

out region of the image. In a medical application this could be used to predict disease

progression by applying a 4D version of the proposed network to time series (3 spatial

axes and 1 time axis), where the blacked out part corresponds to the unknown future

development of the disease.
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8.2 Network Architecture and Learning Objective

The sPU-Net models segmentation ambiguities using a low-dimensional, image global

latent vector, that is sampled from a separate ‘prior net’ and is combined with U-Net

features by means of a shallow network of 1× 1-convolutions [Kohl et al., 2018]. As we

show below, this image-global latent space heavily constrains the granularity at which

the output space can be modelled. While our proposed architecture also combines a

U-Net with a cVAE, it instead employs a hierarchical latent space that resides in the

U-Net’s decoder, as illustrated in Fig. 8.1. A hierarchical decomposition yields a much

more flexible generative model that can further easily model top-down dependencies. E.g.

the global part can model the patient’s genetic predisposition for a certain disease, while

the local parts can model indiscernible tissue types, or fuzzy borders at different scales.

The spatial arrangement of the latent variables further enables the network to easily

model local independent variations (like multiple lesions). Due to the fully-convolutional

architecture, it can also generalize from few to many lesions at arbitrary locations. Beside

these fundamental extensions, we additionally removed the separate prior net and instead

use U-Net internal features to predict the parameters of the prior distributions (as in

[Esser et al., 2018]), which results in parameter and run-time savings. For the network to

employ the full hierarchy, we further found it crucial to minimize obstructions between

latent scales by introducing (pre-activated) residual blocks [He et al., 2016b] (as discussed

in Sec. C.2 and in line with [Kingma et al., 2016, Maaløe et al., 2019]).

8.2.1 Sampling

The architecture’s main feature is its highly flexible parameterization of the conditional

prior that it employs. This prior is composed of a) a deterministic feature extractor that

computes features at spatial resolutions up to scale L (counted with ascending resolution)

for the given input image X and b) a cascade of distributions interleaved with the U-Net’s

decoder, that allows to hierarchically sample latents. In a conventional U-Net, the U-Net

decoder’s features of every resolution are up-sampled and then concatenated with the

features of the U-Net’s encoder from the respective resolution above [Ronneberger et al.,

2015]. In our proposed architecture there is one additional step at each scale of the

latent hierarchy: Conditioned on the decoder features of each scale i ≤ L, we sample

a spatial grid of latents zi and concatenate it with the input decoder features, before

the usual up-sampling and concatenation with encoder features from above takes place,

see Fig. 8.1a. The latents of each scale i thus depend on the input image X and on all

latents of scales i′ < i that have already been sampled lower in the hierarchy, which we
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Figure 8.1 | The Hierarchical Probabilistic U-Net. The model is based on a U-Net
and adds a hierarchy of spatially arranged Gaussian distributions that is interleaved with
the U-Net’s decoder. (a) Sampling process: For each iteration of the network, latents zi
at scale i (slim orange blocks) are successively sampled from the prior when going up the
hierarchy towards increasing resolutions. (b) Training process illustrated for one training
example: During training samples zi from the posterior (slim purple blocks) are injected into
the U-Net’s decoder and used to reconstruct a given segmentation. Green connections: loss
functions. For more details see Sec. 8.2 and Sec. C.2.

collectively denote as z<i := (zi−1, ..., z0). At each scale with spatial dimensions Hi ×Wi

the model uses conditional Gaussian distributions with mean µprior
i ∈ RHi×Wi and variance

σprior
i ∈ RHi×Wi . The means and variances are predicted by 1× 1-convolutions for each

spatial position of that scale. Sampling from the corresponding Gaussian distribution

results in the spatial latents zi ∈ RHi×Wi :

zi ∼ N
(
µprior

i (z<i, X),σprior
i (z<i, X)

)
=: p(zi|z<i, X). (8.1)

Our experiments did not benefit from going beyond scalar latents at each spatial location,

which however is a choice that one might want to make depending on the application.

The hierarchical (ancestral) sampling results in a joint distribution for the prior that

decomposes as follows:

P (z0, ..., zL|X) = p(zL|z<L, X) · ... · p(z0|X). (8.2)

Every run of the network yields a segmentation hypothesis Y ′ = S(X, z) for the given

image (where z = (zL, ..., z0) and S stands for the segmentation network), which is

illustrated in Fig. 8.1a. Note that only the U-Net’s decoder (including the hierarchical
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sampling) needs to be rerun to produce the next segmentation samples for the same

image. The number of latent scales L is a hyper-parameter and typically chosen smaller

than the full number of scales of the U-Net; our models use L = 3 (4 scales).

8.2.2 Training

As is standard practice for VAEs, the training procedure aims at maximizing the so-

called evidence lower bound (ELBO) on the likelihood p(Y |X), where in our case Y is

a segmentation and X is an image, as was the case for the sPU-Net, see Eq. 7.4. This

requires to model a variational posterior Q(.|X, Y ) that depends on both X and Y . By

choice, the structure matches with that of the prior:

zi ∼ N
(
µpost

i (z<i, X, Y ),σpost
i (z<i, X, Y )

)
=: q(zi|z<i, X, Y ), (8.3)

Q(z0, ..., zL|X, Y ) = q(zL|z<L, X, Y ) · ... · q(z0|X, Y ). (8.4)

The posterior Q is modeled in form of a separate network with the same hierarchical

topology in which for each scale i ≤ L, we compute conditional Gaussian distributions

with mean µpost
i ∈ RHi×Wi and variance σpost

i ∈ RHi×Wi . During training, samples z ∼ Q

are fed into the U-Net’s decoder (as illustrated in the bottom half of Fig. 8.1b) with

the aim of learning to reconstruct the given input segmentation Y . The reconstruction

objective (Lrec) is formulated as a cross-entropy loss between the prediction Y ′ and the

target Y (below formulated as a pixel-wise categorical distribution Pc). Additionally there

is a Kullback-Leibler divergence DKL(Q||P ) = Ez∼Q [logQ− logP ], that assimilates P

and Q, just as for the sPU-Net, see Eq. 7.4. The KL-divergence terms for our choice of

posterior and prior topology come about as follows:

DKL(Q||P ) = Ez∼Q [logQ− logP ] (8.5)

=

∫
z0,...,zL

L∏
j=0

q(zj|z<j)
L∑
i=0

[log q(zi|z<i)− log p(zi|z<i)] dz0...dzL, (8.6)

using

∫
ϕ(zi)

L∏
j=0

q(zj|z<j)dz0...dzL =

∫
ϕ(zi)

i∏
j=0

q(zj|z<j)dz0...dzi (8.7)

=
L∑
i=0

∫
z0,...,zi

i∏
j=0

q(zj|z<j) [log q(zi|z<i)− log p(zi|z<i)] dz0...dzi (8.8)
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=
L∑
i=0

∫
z0,...,zi

i−1∏
j=0

q(zj|z<j) q(zi|z<i) [log q(zi|z<i)− log p(zi|z<i)] dz0...dzi

(8.9)

=
L∑
i=0

Ez<i∼QDKL(q(zi|z<i)||p(zi|z<i)), (8.10)

where for improved clarity we omit X and X, Y as conditional arguments to p and q in

the derivation above. For brevity our notation additionally subsumes q(z0) := q(z0|z−1)

and similar for p(z0). For our choice of posterior and prior distribution (see Eq. 8.1 and

8.3) the KL-terms above can be evaluated analytically. The expectations in Eq. 8.11 and

8.12 using samples z ∼ Q are performed with a single sampling pass. This yields the

following ELBO objective:

LELBO = Ez∼Q

[
− logPc(Y |S(X, z))

]
+β ·

L∑
i=0

Ez<i∼QDKL

(
qi(zi|z<i, X, Y )||pi(zi|z<i, X)

)
.

(8.11)

Minimizing LELBO leads to sub-optimally converged priors in our experiments. For this

reason we make use of the recently proposed GECO-objective [Rezende and Viola, 2018]

that adds in a constraint on the reconstruction term and thus dynamically balances it

with the KL terms from above:

LGECO = λ ·
(
Ez∼Q

[
− logPc(Y |S(X, z))

]
− κ

)
+

L∑
i=0

Ez<i∼QDKL

(
qi(zi|z<i, X, Y )||pi(zi|z<i, X)

)
, (8.12)

where κ is chosen as the desired reconstruction loss value and the Lagrange multiplier λ is

updated as a function of the exponential moving average of the reconstruction constraint.

This formulation initially puts high pressure on the reconstruction and once the desired

κ is reached it increasingly moves the pressure over on the KL-term. For more details we

refer to Sec. C.2 and the literature [Rezende and Viola, 2018].

We additionally perform an online hard-negative mining, specifically, we only back-

propagate the gradient of the kth percentile of the worst pixels of the batch [Wu et al.,

2016a], Lrec → top k mask (Lrec). We chose k = 0.02 (the worst 2% pixels) in all

experiments of the HPU-Net and stochastically pick the kth percentile [Nikolov et al.,

2018] (we sample from a Gumbel-Softmax distribution [Jang et al., 2016] over Lrec per

pixel).
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8.2.3 Architecture and Training in more Detail

Architecture The HPU-Net implementations employed for the different tasks differ

in their number of processing scales, the depth of each such scale and the number of

latent scales employed. At each processing scale of the HPU-Net we employ a stack

of n pre-activated residual blocks [He et al., 2016b] (grey blocks in Fig. 7.1), where n

determines the depth of that scale. For both the LIDC and SNEMI3D experiments we

use n = 3 residual blocks and for the Cityscapes experiment we use n = 2 residual blocks

at each processing scale of the U-Net’s encoder and decoder respectively. Similar to

[Kingma et al., 2016, Maaløe et al., 2019], we find the use of unobstructed connections

(in our case residual blocks) between latent scales of the hierarchy to be crucial for the

lower scales to be employed by the generative model. Without the use of residual blocks

the KL-terms between distributions (indicated by green connecting lines in Fig. 8.1) at

the beginning of the hierarchy often become ∼ 0 early on in the training, essentially

resulting in uninformative and thus unused latents.

In each residual block the residual feature map is calculated by means of a series

of three 3× 3-convolutions, the first of which always halves the number of the feature

maps employed at the present scale, such that the residual representations live on a

lower dimensional manifold. At the end of the residual branch a single (un-activated)

1× 1-convolution projects the features back to the number of features of the given scale.

The resulting residual is then added to the skipped feature map, which is skipped forward

(i.e. left untouched) unless the number of feature maps is set to change, in which case it

is projected by a 1× 1-convolution. This happens only at transitions that change the

feature map resolutions. For down-sampling of feature maps we use average pooling and

upsample by using nearest neighbour interpolation. As described in Sec. 8.2, the spatial

grid of latent variables is sampled at the end of each U-Net decoder scale that is part of

the hierarchy and concatenated to the final feature map produced at this scale, before

both are up-sampled.

The number of latent scales is chosen empirically such as to allow for a sufficiently

granular effect of the latent hierarchy. For the tasks and image resolutions considered

here, we found 3 - 5 latent scales to work well. The number of processing scales is

chosen such that a smallest possible spatial resolution is achieved in the bottom of the

U-Net. For the square images in LIDC and SNEMI3D this means a resolution of 1× 1

and for the Cityscapes task the minimum resolution is 1× 2 (in this case we however

employ 2 × 4, which is detailed below). The employed separate posterior mirrors the

number of scales and the number of feature maps of the corresponding components in

the U-Net, see the bottom part of Fig. 8.1b. Its only architectural difference is its first
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convolutional layer, which processes the input image concatenated with the corresponding

one-hot segmentation along the channel axis. All weights of all models are initialized

with orthogonal initialization having the gain (multiplicative factor) set to 1, and the

bias terms are initialized by sampling from a truncated normal with σ = 0.001.

Training The HPU-Net is trained using the GECO-objective (Eq. 8.12) and a

stochastic top-k reconstruction loss. As described in Sec. 8.2, the kth percentile employed

for the top-k objective is fixed across tasks to 2% of each batch’s pixels. The GECO-

objective aims at matching a reconstruction target value κ. For each experiment we

chose κ sufficiently low so as to correspond to a strong reconstruction performance while

resulting in a training schedule that is not dominated by the reconstruction term over

the entire course of the training (e.g. if κ is chosen too high, the Lagrange multiplier λ,

and thus the learning pressure it exerts, mounts and remains on the reconstruction term

rather then moving over on the KL terms). The desired behavior of the reconstruction

objective Lrec and the Lagrange multiplier λ can be observed in Fig. C.1 and Fig. C.2,

where λ rises until Lrec matches κ, after which λ drops and the pressure on the KL-terms

increases.

In contrast to the regular cross-entropy employed in semantic segmentation, the

reconstruction error in Eq. 7.4, 8.11 and 8.12 is not averaged but summed over individual

pixels (before being averaged across batch instances). This is because the likelihood is

assumed to factorize over the pixels of an image and so their log-likelihood is summed

over. For comparability we however report Lrec and κ per pixel (e.g. in Fig. C.1, Fig. C.2

and in Table 8.2).

The precise training setups for each of the tasks and models are reported in Sec. C.2.

Note that the training objectives for all models encompass an additional weight-decay

term that is weighted by a factor of 1e−5.

8.3 Dataset Details

LIDC-IDRI We again use the LIDC-LIDC dataset [Armato et al., 2015, 2011, Clark

et al., 2013] in exactly the same fashion as described in Subsec. 7.5.1 and Subsec. B.5.1.

LIDC-IDRI subset B For ‘Subset B’ we consider only those test set cases, which have

annotations by all 4 graders, i.e. all graders agree on the presence of an abnormality.

This results in 638 images, so close to a third of the full test set.
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SNEMI3D As a second dataset we use the SNEMI3D challenge1 dataset that is com-

prised of a fully annotated 3D block of a sub-volume of mouse neocortex, imaged slice by

slice with an electron microscope [Kasthuri et al., 2015]. This stack is 1024× 1024× 100

voxels large, comes at a voxel size of 6 × 6 × 29 nm3 and contains a total of 400 fully

annotated neurite instance annotations. We use the first 80 z-slices as our training

dataset, the adjacent 10 slices as a validation set and the remaining 10 slices as a test set

to report results on. We crop non-overlapping patches of size 256× 256× 1 resulting

in 1280 images for training, 160 for validation and 160 for testing. During training

we randomly map the instance identifiers (ids) of the cells to one of 15 labels, thereby

treating the instance id of the cells as latent information that the networks need to

model. Because the number of individual cells per image can surmount this number,

the training task does not necessitate a unique predicted instance id for every cell. This

means that in order to obtain a predicted instance segmentation at test time, we need

to aggregate a number of samples for a given image. For this purpose we propose a

greedy Hamming distance [Hamming, 1950] based clustering across n samples followed

by a light-weight post-processing, detailed in Algorithm 1 below and Sec. C.1 (we chose

n = 16 and Hamming distance threshold α = 16).

Cityscapes As a third dataset we use the Cityscapes street scene dataset that comes

with both dense category segmentations, as well as with instance segmentations for a

number of categories. General information on the dataset can be found in Subsec. 7.5.2,

where it was used as an experiment for the sPU-Net. We again employ the official

validation set of 500 images as a test set to report results on, and split off 274 images

(corresponding to the 3 cities of Darmstadt, Mönchengladbach and Ulm) from the official

training set as an internal validation set. As opposed to the Experiments in Chap. 7

we do not randomly flip semantic segmentation classes. Instead, we randomly sample

car instance segmentation classes while keeping the remaining 18 semantic segemntation

classes unaltered, which is described in more detail below. At test time, we cluster 32

samples per image (see Algorithm 1), using a threshold of α = 32.

8.4 Performance Measures

8.4.1 Distribution Agreement

As introduced before (see Eq. 7.6) we report how well the distribution produced by the

respective generative model and the given ground-truth distribution agree by means of

1http://brainiac2.mit.edu/SNEMI3D/home

http://brainiac2.mit.edu/SNEMI3D/home
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Algorithm 1 | Hamming Distance based greedy Clustering. The clustering makes use
of the assumption that pixels of the same object vary together across samples. Pseudo-code
used to get instance segmentations from segmentation samples Yi for a given image X
of size H ×W . The employed algorithm assigns pixels to clusters based on the Hamming
distance between a cluster’s prototype and the pixel’s vector representation. The Hamming
distance is a simple count of element-wise mismatches. Both vectors consist of the respective
pixels’ sampled class labels in one-hot form, i.e. for n samples and C classes, they have
length nC. The algorithm proceeds in a greedy manner, i.e. once no more matches satisfying
an upper bound on the distance to the current prototype are found, a new prototype is
randomly picked from the remaining unassigned pixels. Sampling at random rather than
picking the next available pixel minimizes the clustering run-time (which is O ≤ (HW )2)
and the likelihood of picking cluster prototypes from object boundaries. The algorithm
starts with assigning pixels to a provided background class label. This assures that cluster
c = 0 always corresponds to the background class, but is not strictly necessary, alternatively
the algorithm can omit the case distinction in line 10ff.

Result: Instance Segmentation I ∈ ZH×W .
Parameters: n: number of samples, α: threshold.

1 Retrieve n sample segmentations Yprob
i ∈ RH×W×C ; Yprob

i ← S(X, zi), zi ∼ P (.|X);

2 Transform samples to one-hot Yi ∈ ZH×W×C , Yi ← one hot(argmax(Yi
prob));

3 Concatenate samples over channels Y ∈ ZH×W×nC ; Y ← concat([Y0, ...,Yn]);
4 Initialize Instance Segmentation I ∈ ZH×W ; I← [[−1, . . . ], . . . ];
5 Inititalize set of unassigned pixels U = where(I == −1);
6 Initialize background one-hot vector b ∈ ZC×1; b← one hot(background label);
7 Initialize protoype p ∈ ZnC×1 with the prototype of the background class

p← concat([b,b, . . . ]);
8 Inititialize cluster id c = 0;
9 while |U| > 0 do

10 if c==0 then
11 Do nothing, as p is initially assigned to background class prototype;
12 else
13 Draw a random pixel from the set of unassigned pixels i ∼ U ;
14 Use the one-hot sample vector of this pixel as the cth cluster’s prototype

p← Y[i];
15 I[i]← c;
16 Drop i from set of unassigned pixels U ← U \ {i};
17 end
18 foreach j ∈ U do
19 Retrieve one-hot sample vector of the pixel j as ν ← Y[j];
20 Calculate Hamming distance d = hamming distance(ν,p);
21 if d ≤ α then
22 I[j]← c;
23 U ← U \ {i};
24 end

25 end
26 c← c+ 1;

27 end
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the Generalized Energy Distance (GED) with distance kernels of the form 1− IoU(Y, Y ′).

In such cases where the models’ samples only poorly match the ground truth samples,

we found this measure inadequate since the metric then unduly rewards sample diversity,

regardless of the samples’ adequacy. As an alternative that appears less vulnerable

to such pathological cases, we propose to use the Hungarian algorithm [Kuhn, 1955,

Munkres, 1957] to match samples of the model and the ground-truth. The Hungarian

algorithm finds the optimal 1:1-matching between the objects of two sets, for which we

use IoU(Y, Y ′) to determine the similarity of two samples. We report the match as the

Hungarian-matched IoU, i.e. the average IoU of all matched pairs and duplicate both

sets so that their number of elements matches their least common multiple. As empty

segmentations can be valid gradings in the LIDC dataset we need to define how the

IoU enters the distribution metrics for the case of correctly predicted absences, which

is detailed below. As an additional benefit, the Hungarian-matched IoU may be more

readily interpreted by those familiar with semantic segmentation metrics.

8.4.2 Reconstruction Fidelity

The reconstruction fidelity is an upper bound to the fidelity of the conditional samples
2. In order to asses this upper bound on the fidelity of the produced segmentations we

measure how well the models’ posteriors are able to reconstruct a given segmentation in

terms of the IoU metric, i.e. we report the reconstruction IoU, IoUrec(Y, Y
′) where

Y ′ = S(X,µpost(X,Y )). Whenever we employ the IoU-metric, i.e. also when it enters

the measures for distribution agreement, we calculate it with respect to the stochastic

foreground classes only (as done for the sPU-Net). We further do not calculate it globally

across all the test set pixels (i.e. across all the pixels of all images, as is regularly done in

semantic segmentation challenges, e.g. in Cityscapes [Cordts et al., 2016]), but calculate it

across the pixels of each image and then average across all test set images. The reason for

this is that evaluating the predicted distribution over segmentations is only meaningful

on the image level. While the reconstructions could be evaluated across all test set

pixels, we stick with the image level evaluation for consistency between the metrics. As a

consequence the question arises how to deal with a correctly predicted absence of a class

in an image, a case for which the IoU metric is undefined (the denominator would be 0).

For the LIDC dataset, empty ground-truth segmentations can be a valid grading which

is why we proceed as for the sPU-Net (see Sec. B.1) and define a correctly predicted

2The term reconstruction refers to decoding posterior latents, implying a conditioning on the ground
truth that is to be reconstructed. The term sampling on the other hand denotes the decoding of prior
latents.
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absence as IoU = 1. In the SNEMI3D and Cityscapes instance segmentation tasks we

do not want to evaluate whether a model correctly predicts a class’ absence, which is

why correct class absences are simply excluded from the mean IoU of an image, while

wrongly predicted absences are penalized (in practice we perform a ‘NAN-mean’ over

the classes of interest). In the Cityscapes case we additionally make use of the provided

ignore-masks, keeping unlabeled pixels out of the evaluations.

8.4.3 Instance Segmentation

In order to score how well the predicted instance segmentations (the instance clusters)

agree with the ground truth, we calculate the Rand Error. This measure is defined as

1− F -score, where the precision and recall values that enter the F -score are determined

from whether pixel pairs between the ground truth clustering and a predicted clustering

belong to the same segment (positive class) or different segments (negative class) [Arganda-

Carreras et al., 2015, Rand, 1971]. We use the foreground-restricted version as employed

in the SNEMI3D challenge3.

On Cityscapes instance segmentation we additionally report the Average Precision

(AP). It is based on object level scoring and defined as the area under the precision recall

curve for all predicted object detections. To span the precison recall curve, an object level

score that quantifies a model’s confidence in the ‘objectness’ of its prediction is required.

For our car instance segmentation experiments we employ the Cityscapes evaluation

scheme4, reporting AP50 and AP, the average precision when requiring predictions to

match above a thresholded IoU, IoUthres > 0.50, and when averaging across multiple such

thresholds (10 different overlaps ranging from 0.5 to 0.95 in steps of 0.05), respectively.

To artificially obtain object-level scores we average the softmax scores of all stochastic

classes across samples and pixels of a predicted instance mask [Kulikov et al., 2018].

8.5 Results

The sPU-Net has established significant performance advantages over other approaches

in segmenting ambiguous images, see Fig. 7.4 and 7.7. With the HPU-Net we aim at

improving on the flexibility of the sPU-Net to model complex output interdependencies

as well as segmentation fidelity. To this end we compare the two models’ performance on

the segmentation task of CT scans showing potential lung abnormalities annotated by

four expert graders, called LIDC which we considered before (for a discussion of those

3Available as adapted_rand_error in the python package gala [Nunez-Iglesias et al., 2014].
4Official evaluation code can be found here.

https://gala.readthedocs.io/en/latest/api/gala.evaluate.html
https://github.com/mcordts/cityscapesScripts
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experiments and results see Subsec. 7.5.1). Samples and reconstructions of both models

are shown in Fig. 8.2. We further consider the task of segmenting individual instances,

i.e. inferring both a latent id and a mask for each object in an image, and use it to assess

the models’ ability to capture correlated pixel-uncertainty. We use the EM dataset of

the SNEMI3D challenge (published in [Kasthuri et al., 2015]), which contains instance

segmentations of neuronal cells (examples are shown in Fig. 8.4) and further probe our

model’s performance on the segmentation of car instances on natural street scenes from

Cityscapes (see Fig. 8.6). For training details in the respective tasks we refer to Sec. C.2.

Table 8.1 | Test Set Results. Mean and standard deviation for the HPU-Netand sPU-
Netare calculated from results of 10 random model initializations and 1000 bootstraps with
replacement. Data splits are defined in Sec. 8.3.

i) LIDC GED2 Hung.-m. IoU Hung.-m. IoU (subset B) IoUrec

HPU-Net 0.27 ± 0.01 0.53 ± 0.01 0.47 ± 0.01 0.97 ± 0.00
sPU-Net 0.32 ± 0.03 0.50 ± 0.03 0.37 ± 0.07 0.75 ± 0.04

ii) SNEMI3D Rand Error IoUrec

HPU-Net 0.06 ± 0.00 0.60 ± 0.00
sPU-Net 0.52 ± 0.10 0.13 ± 0.03

iii) Cityscapes Car Instances Rand Error AP50 IoUrec

HPU-Net 0.13 46.8 0.62

8.5.1 LIDC: Segmentation of Ambiguous Lung Scans

The LIDC results are reported in Table 8.1a. The HPU-Net performs better in terms

of the Hungarian-matched IoU (and in terms of GED2 = 0.27 ± 0.01), while showing

a largely improved reconstruction fidelity, that amounts to a near perfect posterior

reconstruction of IoUrec = 0.97. Retraining the sPU-Net with an identical training set-up

as in [Kohl et al., 2018], we obtain an unsatisfactorily low value of 0.75 for the foreground-

restricted reconstruction IoU (IoUrec) and recapture [Kohl et al., 2018]’s GED2 of 0.29

(re-implementation: GED2 = 0.32± 0.03). We additionally evaluate the models on the

test subset of samples for which all 4 graders agree on the presence of an abnormality

(‘subset B’, see Sec. 8.3), exposing the HPU-Net’s significantly improved ability to capture

shape variations (see also Sec. C.3). For the sake of completeness we also report the

GED2 and Hungarian-matched IoU of the baselines described in Subsec. 7.4.2 on the full

LIDC test set, see Table C.1.
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Figure 8.2 | Comparing Reconstructions & Samples on LIDC. Two example CT scans
with the 4 available expert gradings. (i) Reconstructions of the 4 graders and (ii) Sampled
segmentations. Note that the gradings can be empty, as foreground annotations correspond
to supposed abnormal cases only. More cases in Fig. C.3 and C.4.

The HPU-Net’s capacity to faithfully learn segmentation distributions with high

reconstruction and sample fidelity is also qualitatively evident. Fig. 8.2 compares samples

from both models given a pair of CT scans of prospective lung abnormalities. The

hierarchical model exhibits enhanced local segmentation structure. Its samples reflect the

difficulty to pin-down the boundary of normal vs. abnormal tissue from the image alone

(Fig. 8.2a) and also whether or not the salient structure is abnormal. The sPU-Net’s

samples on the other hand appear much coarser and ‘blobby’ (Fig. 8.2b), see the panels

marked ii) in Fig. 8.2a). The same holds true for both models’ posterior reconstructions

(panels marked i) in Fig. 8.2a), where a much improved reproduction of fine structure is

at display.

In order to explore how the model leverages the hierarchical latent space decomposition,

we can use the predicted means µprior
i for some scales instead of sampling. Fig. 8.3a

shows samples for the given CT scans resulting from the process of sampling from the

full hierarchy, i.e. from 4 scales in this case. Fig. 8.3b,c show the resulting samples

when sampling from the most global or most local scale only. The hierarchical latent

space appears to induce the anticipated bias: the global scales determine the coarse

structure, which in this case includes the decision on whether or not the structure at

hand is abnormal, while the more local scales fill in appropriate local annotations.
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Figure 8.3 | HPU-Net Samples using different Latent Scales on LIDC. Samples and
standard deviations across 16 samples given the CT scans on the left. Sampling from (a) the
full hierarchy, (b) from only the most local latent scale and (c) from only the most global
scale while fixing the respectively remaining scales to their predicted means µprior

i . Observe
in the standard deviations how the local latents alter fine details, mostly at the boundaries,
while the global latents can flick the presence of coarser abnormality segmentations on and
off. The illustrations above the samples use red padlocks to indicate which scales are fixed.

8.5.2 SNEMI3D: Generative Instance Segmentation of Neurites

As a second dataset we use the SNEMI3D challenge dataset as described in Sec. 8.3.

During training we randomly map the instance ids of the cells to one of 15 labels. The

HPU-Net, in this case using four latent scales, displays both a strong reconstruction

fidelity, IoUrec = 0.60, as well as a very low Rand error = 0.06. Although we want to

caution against a direct comparison between results obtained on our smaller test set

(in 2D) against those from the official test set (in 3D), it is interesting to put an eye

on the official leader-board, where the best dedicated algorithms reach a Rand Error

of ∼ 0.025 (e.g. [Lee et al., 2017]) and the human baseline achieved a value of 0.0595.

For the sPU-Net, employing low dimensional latent spaces (O ∼ 10) as before (on other

datasets) did not produce satisfactory results. Even when matching the number of global

latents of a 4-scale HPU-Net (
∑3

i=0 2
2i = 85), the sPU-Net struggles with reconstructing

instance segmentations of neurites and likewise scores badly in terms of the Rand Error,

see Table 8.1c).

From Fig. 8.4 it is evident that the HPU-Net is able to sample coherent instance

segmentations of these amorphous structures with largely varying size and shape, resulting

in faithful instance segmentations when clustered across samples. In contrast, the sPU-

Net has a hard time accommodating for the independently varying instances and also

5http://brainiac2.mit.edu/SNEMI3D/leaders-board

http://brainiac2.mit.edu/SNEMI3D/leaders-board
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Figure 8.4 | Instance Segmentation of Neurons. From left to right: EM images from
SNEMI3D, the ground-truth mapped to 15 random instance ids, the corresponding posterior
reconstructions, predicted instance segmentation after clustering as well as 6 samples. Color
denotes instance id (one of 15) and background is shown in black. For more examples see
Fig. C.5 and C.6 in the appendix. The first row of Fig. a) and b) respectively corresponds to
the HPU-Net and the second row to the sPU-Net (using 85 latents).

fails to coherently segment individual instances which is apparent in its samples, the

clustering thereof and its reconstructions.

8.5.3 Extrapolation Task on SNEMI3D

In order to further explore the expressiveness of the proposed generative model, we train

it to generate extrapolated segmentations given masked images. The masked parts are

maximally ambiguous and sensible ways of extrapolating need to be inferred from the

unmasked regions. Samples and reconstructions are shown in Fig. 8.5. To be able to

visualize the extrapolations across samples we feed in both the image and the ground-truth

segmentation of the unmasked region to the prior, so that it can fix the found instance

ids (which is not required for this to work). We observe that the model’s generative

structure can produce convincing extrapolations, note how the model preserves scale and

appearance of unmasked instances, e.g. large cells are more likely to cover larger areas in

the masked region and slim cells remain slim and elongated, see third row of samples.

8.5.4 Cityscapes Cars: Generative Instance Segmentation of Cars

In order to test our model’s ability to coherently flip independent regions on natural

images, we evaluate it on the task of segmenting car instances on Cityscapes. We train
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Figure 8.5 | Generative Extrapolation on masked EM Images. Examples show HPU-
Net samples and reconstructions. Areas above the dashed line in each row correspond to the
masked part. Colors denote instance ids (one of 15) with black for background segmentation.

Figure 8.6 | Generative instance segmentation of Cars. Cityscapes test set examples
on 512× 1024 resolution using the HPU-Net. From left to right: Input street scenes, ground
truth car instances, clustered model samples as well as individual samples. Last row that
shows crops zoomed in on samples from above. More examples can be found in Fig. C.7 and
C.8.
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our model to segment all 19 Cityscapes classes while introducing additional alternative

car classes that are randomly flipped during training. We run on half-resolution, i.e.

512 × 1024 (more details in Sec. 8.3 and C.2). At test time we cluster 32 samples

per image (see Algorithm 1). Results on the official validation set (our held-out test

set) are reported in Table 8.1d). Employing 4 latent scales (with the highest latent

resolution at 16× 32), we reach an IoUrec = 0.62, a Rand error = 0.13 and a AP50 = 46.8,

without ensembling or any other test-time augmentations. While these results are not

competitive with top-performing bounding box regressors such as Mask R-CNN [He

et al., 2017] (AP50 = 68.3 on the Cityscapes test set), which are tailored towards instance

segmentation of boxy objects, we observe an arguably solid out-of-the-box performance

of the HPU-Net. Direct comparison may further suffer from the post-hoc computation of

object-level confidence scores which we are required to carry out for the AP-metric and

which bounding-box regressors on the other hand can optimize for during training.

Fig. 8.6 shows predicted and ground truth instance segmentations for five scenes. This

task is difficult as aside from varying factors such as appearance and illumination, cars

nestled along the road can be heavily occluded and individual cars can cover anything

between tiny to large regions of the image. Nonetheless our proposed model can sample

individual instance segmentations with good coherence, resulting in strong instance

segmentations. Interestingly the model also picks up on ambiguity that is naturally

present in the data, e.g. the samples in the first row show coherent flips between parts

of the road and sidewalk and the last row shows coherent flips between bus and truck

annotation for the bus at the end of the road (for which we provide zoomed crops of size

200× 200 in Fig. 8.6). Fig. 8.7 shows samples and the standard deviations when sampling

from only the most local versus only the most global latent scales. It is apparent that

the local latents affect small and distant cars while the global latents control more global

factors such as cars close to the observer. This shows that also on this large scale natural

image data, the model has learned to separate scales.

8.5.5 Ablation Study

In order to show the effect of some of the main choices we made for the model and

the loss formulation, we perform an ablation study on the LIDC lung abnormalities

segmentation task. All models are trained with the same training setup and hyper

parameters as used in the LIDC experiments (described in Sec. C.2), if not stated

differently in the following. First we evaluate the importance of the latent hierarchy. We

train 10 random initializations for a model with a global latent scale in the ‘U-Net’s

bottom’ that otherwise employs the same model topology as the HPU-Net that we



Figure 8.7 | HPU-Net Samples using different Latent Scales on Stochastic
Cityscapes. Test set samples for a model trained with 5 distinct latent car ids on res-
olution 512× 1024. (a) Samples and standard deviation (std. dev.) across 32 samples when
sampling from the full hierarchy. (b) Predictions from the prior mean. (c) Samples and
std. dev. when sampling only from the most local scale. (d) Samples and std. dev. when
sampling only from the most global scale. Note how the global and local scales affect the
instance mask generation almost complementarily.



8.6 Discussion 117

employ on LIDC. For this model we use 85 global latents, i.e. the same number of total

latents that the 4-scale hierarchical model employs. In order to arrive at a comparable

reconstruction IoU, we found it necessary to raise the reconstruction target κ above the

value of 0.05 (employed for the other models) to a value of κ = 0.15. As reported in

Table 8.2, this model performs significantly worse than the HPU-Net in terms of both

GED2 and the Hungarian-matched IoU, while also suffering from a loss in reconstruction

fidelity. As a second model configuration we consider a model with the same topology as

the employed HPU-Net, however employing only its most local scale of latents (a spatial

grid of size 8× 8). The idea is to assess to what degree the latents lower in the hierarchy

help coordinate the sampling from the last, most finely resolved grid of latents. The

results in Table 8.2 show another significant decrease in the model’s ability to match the

ground truth distribution, suggesting that the hierarchy indeed is an important model

choice enabling the strong performance in terms of GED2 and the Hungarian-matched

IoU. Lastly we quantify the effect of employing a top-k loss for the hierarchical model.

The last row in Table 8.2 shows the positive effect that the top-k loss formulation has

on the reconstruction IoU (IoUrec), while allowing to keep the same level of distribution

match (there is a slight increase in Hungarian-matched IoU when ablating the top-k loss,

it is however insignificant across 10 random initializations).

Table 8.2 | Ablation study on for the HPU-Net on LIDC. All results are reported
on our test set and the given means and standard deviations are taken across 10 random
initializations of the same respective model setup and 1000 bootstraps with replacement
each. The values reported for κ are normalized per pixel and for comparison the LIDC results
reported in Table 8.1 are shown in the first row of this table.

model + loss formulation IoUrec GED2 Hungarian-matched IoU

4-scale hierarchy + GECO (κ = 0.05) + top-k (k=0.02) 0.97 ± 0.00 0.27 ± 0.01 0.53 ± 0.01

local latents + GECO (κ = 0.05) + top-k (k=0.02) 0.97 ± 0.00 0.34 ± 0.01 0.45 ± 0.01

global latents + GECO (κ = 0.15) + top-k (k=0.02) 0.94 ± 0.02 0.40 ± 0.02 0.37 ± 0.02

4-scale hierarchy + GECO (κ = 0.05) 0.94 ± 0.00 0.27 ± 0.01 0.54 ± 0.01

8.6 Discussion

Targeted at the segmentation of ambiguous medical scans we have previously introduced

the Probabilistic U-Net (sPU-Net) which learns an image-global distribution that allows

to sample consistent segmentation hypotheses, see Chap. 7. As we show here, this model
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however suffers from poor sample and reconstruction fidelity and breaks down altogether

in more complex scenarios such as instance segmentation.

With the Hierarchical Probabilistic U-Net (HPU-Net), we propose a model which

shows clear quantitative and qualitative evidence for its advantages over the prior art.

The proposed model uses a much more flexible generative model and further profits from

advances such as improved training procedures for VAEs and efficient hard-negative

mining. We ablate those choices in experiments conducted on LIDC for which we

report and discuss results in Subsec. 8.5.5). The hierarchical latent space formulation

enables to model ambiguities at all scales and affords the learning of complex output

interdependencies such as e.g. coherent regions of pixels as found in the task of instance

segmentation.

In addition to presenting high-quality results on the segmentation of ambiguous lung

CT scans, we achieve strong out of the box performance in instance segmentation of both

neurobiological images as well as natural images of street scenes, showing the flexibility

and amenability of the proposed model to such tasks. While state-of-the-art deterministic

bounding-box regressors [He et al., 2017, Lin et al., 2017] still perform significantly better

on car instance segmentation, they are predominantly based on a pixel-wise refinement of

bounding-boxes and are not designed for overlapping or intertwined instances as found

in neurobiological instances. Our generative approach could be a way to directly perform

dense object-level segmentation, which has recently attracted attention [Chen et al., 2019,

Kirillov et al., 2018, Kulikov and Lempitsky, 2019, Kulikov et al., 2018, Xiong et al.,

2019].

The HPU-Net’s samples are indicative of model uncertainty for ambiguous cases that

it has seen during training, which is expected to benefit prospective down-stream tasks.

As such the expressed model uncertainty is valid within the data distribution only and,

like many others, the model is not aware if and when it fails out-of-distribution [Nalisnick

et al., 2018]. Aside from allowing to capture multiple scales of variations simultaneously,

the latent hierarchy further imposes an inductive bias that mirrors the structure of many

medical imaging problems, in which global information can affect top-down decision

making, i.e. local annotations in our case. We show this trait in our lung CT scan

experiments, where the model learns to separate variations at different scales. Here our

model automatically opts to take the decision as to whether the given structure may be

abnormal at its most global scale, while reserving more local decisions for local latents,

see Fig. 8.3. A similar decomposition is apparent on natural images (Fig. 8.7). In terms

of KL cost, it is more expensive to model global aspects locally, which in combination

with the hierarchical model formulation itself, is the mechanism that puts into effect the
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separation of scales. Disentangled representations are regarded highly desirable across

the board and the proposed model may thus also be interesting for other down-stream

applications or image-to-image translation tasks.

In the medical domain the HPU-Net could be applied in interactive clinical scenarios

where a clinician could either pick from a set of likely segmentation hypotheses or may

interact with its flexible latent space to quickly obtain the desired results. Additionally,

the sampled set of segmentations could be used to propagate uncertainty through the

down stream tasks, much like it was done for segmentation ensembles in [De Fauw et al.,

2018]. The model’s ability to faithfully extrapolate conditioned on prior observations

could further be employed in spatio-temporal predictions, such as e.g. predicting tumor

therapy response.

Lastly and developed concurrently to the HPU-Net, there is work that similarly

extends the sPU-Net by employing a hierarchical latent structure. In contrast to our

work, their segmentation network S is only based on the sampled hierarchical latents, so

takes on the form S = S(z) instead of S = S(X, z) as in the HPU-Net. This also implies

that their model does not use the high-resolution skip-connections (above scale L) that

link the U-Net encoder to its decoder, potentially setting it up for decreased fine-grained

details. This work, see [Baumgartner et al., 2019], was published shortly after ours [Kohl

et al., 2019].





Chapter 9

Discussion

The contributions brought forth in this thesis are concerned with the algorithmic inter-

pretation of image evidence that may be ambiguous with respect to the target measure

of interest.

One way of conveying an interpretation of an image is to assign a label to each pixel or

voxel within it, a task referred to as semantic segmentation. A pixel-level understanding

of medical images plays a crucial role in many clinical diagnoses and treatments, since e.g.

biopsy planning [Epstein et al., 2012], radiation therapy [Borofsky et al., 2017, Nikolov

et al., 2018] and tumor surveillance [Kickingereder et al., 2019] hinge on the precise

localization of tissues.

Because medical imaging modalities such as MRI or CT only indirectly measure

the molecular identity of tissues, they often only provide ambiguous evidence for target

measures of interest [Hameed and Humphrey, 2010, Kitzing et al., 2015, Nagel et al.,

2013, Sakala et al., 2017]. For example a lesion may be clearly visible on a scan but the

information on whether it is cancerous or not may have been deleted in the imaging

process. In such scenarios a group of clinical experts typically produces a set of diverse

but plausible segmentations [Armato et al., 2011] that can show significant variation

[Borofsky et al., 2017, Bratan et al., 2014].

Having available an estimate of the ensuing distribution holds the potential to improve

decision making and care. In real-world clinical practice however, it is common for only

a single reader to be involved in the interpretation of medical images, which given

their past experience and momentary opinion yields a single subjective outcome. The

subjective nature of the current process of detecting and grading lesions is reflected and

well documented in present clinical guidelines, such as for example (in the case of prostate

imaging) in the ‘Prostate Imaging - Reporting and Data System‘ (PIRADS) [Weinreb

et al., 2016]. This current clinical practice bars a more principled handling of the inherent
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uncertainties of the annotation process and with it the possibility to propagate these

uncertainties into down-stream decision making.

A hot question is thus whether learning based systems are a viable approach to

improve the interpretation of medical images to that effect. For one, such approaches

hold the potential to improve overall performance and reduce subjectivity that arises due

to different levels of past experience, since machine learning algorithms can be trained on

thousand- or million-fold the cases that a typical clinician is exposed to in a typical career.

For another, learning based systems open up the possibility to quantify uncertainties

associated with each image analysis that is performed during the process of diagnosis

and treatment. Furthermore, stacking up parts of the system responsible for different

sub tasks could allow to propagate the individual uncertainties all the way to the final

decision that needs to be taken, provided they interface one another in an appropriate

way [De Fauw et al., 2018].

In a first step we set aside the modelling of ambiguities and instead explore the utility

of a simple but quantitative approach to lesion grading, considering the example of

prostate MRI interpretation (see Chap. 5). We show that both a simple cross-validated

threshold on a lesion diffusion measurement (ADC) [Posse et al., 1993] and a tree-based

machine learning model trained on image-derived lesion features can significantly improve

upon the performance of an individual experienced radiologist in subjectively grading

lesions during clinical routine. This observation not only quantitatively affirms the

discrimination power of ADC, a measure usually qualitatively accounted for in clinical

grading, but also ascertains that quantitative and learning based systems can match and

surpass the performance of clinical experts, given appropriate training data, which echos

the findings of many recent studies [De Fauw et al., 2018, Esteva et al., 2017].

The discipline of medical imaging shoulders significant responsibility but with it

also bears the potential to have tangible impact with already comparatively small

improvements. For example sparing patients from biopsies that can be fraught with risks,

can ultimately preserve a patient’s quality of life [Bickelhaupt et al., 2018, Bonekamp

et al., 2018]. One way to improve the performance and the robustness of machine learning

models that are largely developed on natural image benchmarks, is to carefully account

for peculiarities in medical image analyses such as the comparatively large measurement

noise, the often considerable image ambiguity [Armato et al., 2011, Kitzing et al., 2015]

and the associated noisy image annotations [Borofsky et al., 2017, Bratan et al., 2014].

In Chap. 6 we follow this paradigm and explore the possibility to improve model

performance in the face of label noise. We empirically find the standard loss formulation

for multi-class segmentation tasks, the Cross Entropy-loss, to result in sub-optimal



123

performance when training on a prostate MRI dataset, a scenario known to suffer from

high ambiguity and consequently large label noise [Hameed and Humphrey, 2010, Kitzing

et al., 2015, Nagel et al., 2013, Sakala et al., 2017]. We find that swapping the Cross

Entropy-loss for a model of the loss that is learned in an adversarial training scheme

[Goodfellow et al., 2014] results in significantly improved test performance and additionally

observe growing relative gains when artificially reducing the number of training examples.

While the mechanism behind the improvements may require further confirmation, this

study emphasizes the utility, if not necessity, of tailoring machine learning methods to the

peculiarities of medical image applications and cautions against simple drop-in solutions

of deep learning models.

As elaborated upon above, knowing the empirical distribution over plausible image

interpretations rather than predicting a single segmentation, could enable more appropri-

ate and informed clinical steps when the presented image evidence is inconclusive. If for

example the empirical distribution indicated the possibility of ambiguous interpretations,

further clinical steps to resolve the ambiguity, such as biopsies, could be mandated. A

range of prior works exists that has sought to capture the appropriate output diversity

of deep neural networks given an image. These models either produce only a pixelwise

uncertainty corresponding to the distribution’s pixelwise marginals, employ an ensemble

of networks or only indirectly condition their output distribution on the given image

[Kendall and Gal, 2017, Lakshminarayanan et al., 2017, Rupprecht et al., 2017, Zhu et al.,

2017b].

In Chap. 7, we introduce the Probabilistic U-Net (PU-Net), a segmentation model

that is combined with a conditional variational autoencoder [Jimenez Rezende et al., 2014,

Kingma and Welling, 2013]. Using a dataset of ambiguous lung CT scans that provides

four expert segmentations for each image [Armato et al., 2011], we show that our model

captures the appropriate output distribution significantly better than aforementioned

prior work. An additional advantage over producing pixelwise uncertainties lies in the fact

that samples from our model are consistent and may thus readily be used in subsequent

steps that seek to extract information from predicted segmentation maps. Additionally

clinicians could pick an appropriate segmentation sample from a set of samples in order

to quickly produce a strong segmentation or alternatively interact with the model’s latent

space to swiftly make desired adjustments.

However, because the Probabilistic U-Net’s latent space is image global, it can exhibit

difficulty accommodating for multiple independent factors of variation within a single

image, for example in the case when multiple lesions are present, and the sampled

segmentations can lack in finer detail (i.e. suffer from blobby contours). Additionally,
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image ambiguities may be present across different scales and locations, thus affecting

different output scales in distinct manners.

In Chap. 8, reflecting the need for a more flexible model, we thus introduce the

Hierarchical Probabilistic U-Net (HPU-Net). The HPU-Net combines a hierarchical

variational autoencoder with a U-Net [Ronneberger et al., 2015] and gets away with

the separate prior network that is present in the Probabilistic U-Net. We show that

this model formulation enables sampling and reconstruction of segmentations with high

fidelity, i.e. with finely resolved detail, while providing the flexibility to learn complex

structured distributions across scales. We demonstrate these abilities on the task of

segmenting ambiguous lung CT scans [Armato et al., 2011] on which we outperform

all considered baselines including the Probabilistic U-Net. We additionally consider

the task of instance segmentation of neurobiological images [Kasthuri et al., 2015] and

instance segmentation of natural images (Cityscapes [Cordts et al., 2016]), on which we

demonstrate good out of the box performance, highlighting the largely improved flexibility

of the model to capture distributions over independently varying image locations.

9.1 Outlook

In this thesis we have sought to improve the handling of ambiguous image evidence in

semantic segmentation tasks. We have shown the possibility to outperform an experienced

radiologist in the grading of prostate lesions in the case when lesion segmentations are

given by an oracle (i.e. an expert annotator) using comparatively simple machine learning

techniques and demonstrated an avenue to improve the segmentation performance of

a deep segmentation model under noisy labels using a clinical prostate MRI dataset.

With the aim of appropriately capturing the plausible distribution over segmentations

that is admissible for a given image, we stepped beyond the prediction of deterministic

segmentation maps and instead proposed two generative models that allow sampling

consistent segmentation hypotheses from a predicted conditional distribution.

These contributions can be viewed as steps in a broader quest towards more quantita-

tive and objective clinical procedures. As elaborated upon in Chap. 3, the diagnosis and

eventually the treatment of cancer typically involves a whole range of steps, each chosen

so as to bring information to the table, that the previous step might not have been able

to produce. Looking ahead and given the advantages of learning based systems, it is clear

that the interpretation of evidence and the decision making required in each step could

in the future be aided by or perhaps even be carried out by such systems. The arguably

hardest part of getting there is endowing algorithms with the soft qualities that every
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clinician masters with ease: A radiologist (mostly) recognizes when they are confronted

with a case they have never seen before (out-of-distribution robustness), a radiologist

can (mostly) explain their interpretation and decision (interpretability), a radiologist

is inherently robust to domain shifts such as images from a new scanner type as they

understand anatomy at a more abstract level (robustness to domain shifts), a radiologist

knows about alternative measures and can actively seek for more evidence (akin to active

learning) and a radiologist can integrate all the evidence they are presented with into a

coherent mental model of the patient.

All of these are desiderata that we should require from models that might be integrated

into clinical workflows with increasing autonomy. In the following we briefly discuss the

extent to which the models in this thesis may already partially fulfill the criteria and

highlight potential future research:

In order to increase trust in algorithmic predictions, but also to debug models and

potentially distill scientific knowledge from them, ways to interpret the decision-making

of deep neural networks are highly sought after [Kelly et al., 2019]. Perhaps the main

obstacle in that quest is simultaneously one of the deep network’s biggest advantages:

their highly complex and hierarchical representations which can express functions that

live in spaces far too large for a human to parse. In light of this complexity, there are only

few techniques that allow for human digestible explanations of deep nets [Lipton, 2016].

One way of producing a level of interpretability, is to enforce meaningful intermediate

representations, such as producing semantic segmentations that feed into a classification

network, see [De Fauw et al., 2018], or by otherwise constraining the network to depend

on low-dimensional representations that can be decoded into something that is meaningful

to a human 1 [Iten et al., 2018].

The Probabilistic U-Net and the Hierarchical Probabilistic U-Net, open up avenues for

both. Instead of producing a per-pixel uncertainty, they predict distributions (and with

it the distributions’ spreads) over low-dimensional latent spaces, that carry semantic and,

in this looser sense, interpretable meaning. Additionally, because each of the models’

samples are coherent and plausible image interpretations, the samples can readily be fed

into down-stream models, similar in spirit to [De Fauw et al., 2018], thus providing a

direct handle on how segmentation uncertainty affects down-stream tasks. While it is left

as future research to put such a combined system to a test and explore the practical utility

of interpreting its latents, it is clear that this formulation allows for straight-forward and

principled ways of propagating the uncertainty of the image interpretations.

1Note that this entails a relaxed notion of interpretability that does not require an understanding of
the causal chain that produced those interpretable representations in the first instance.
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Both of the proposed generative models are able to capture diverse predictions, admis-

sible given the presented image, and can thus constrain or broaden their interpretation

depending on the ambiguity of the image evidence. Nonetheless, the models are not

able to indicate their own failure, i.e. flag out-of-distribution cases, that do not fall onto

the data manifold they were trained on. This ability is at the focus of recent research

and is addressed under many different cloaks such as from the perspective of outlier

detection [Nalisnick et al., 2018], adversarial robustness [Arnab et al., 2018, Smith and

Gal, 2018], robustness to domain shifts [Ganin et al., 2016] and uncertainty calibration

[Lakshminarayanan et al., 2017]. None of these angles unfortunately have produced a

fully satisfying answer to the problem (yet) for when the models operate on very high

dimensional spaces such as real world medical images. Consequently, the problem still

requires further research.

Humans are able to learn good representations from few, but highly representative

data points and can actively query for such, drawing on their ability to internalize what

they do not know. As mentioned above, this is also a highly desirable feature for machine

learning algorithms since it could reduce the number of data points needed to train

them [Gal et al., 2017b] and potentially allow for a hypothesis-driven reasoning at test

time. In machine learning, calibrated output uncertainties can serve as a proxy for the

internal model of ignorance, which we have shown the Probabilistic U-Net to exhibit (see

Subsec. 7.7.1). Probing the usefulness of our models in the context of active learning is

however left for future research.

Furthermore, looking at the chain of measures typically involved in a clinical diagnosis

or by extension the cognitive integration of many environmental cues when driving a

car, it is clear that image evidence may be complemented with many other sources of

information. Among them e.g. blood tests in clinical scenarios or lidar in autonomous

vehicles, all of which are chosen somewhat orthogonally so as to help in disambiguating

the prediction tasks. While the proposed models in this thesis can simultaneously

condition on different imaging modalities (showing the same view), they are not designed

to integrate other (clinical) inputs or temporal inputs (e.g. scans taken across different

points in time). The ability to do so promises to improve diagnostic and segmentation

performance and may be a crucial step towards more holistic and reliable models. One

promising area of research in this direction are conditional generative models that combine

the representations of different observations such as conditional neural processes [Garnelo

et al., 2018] or generative query networks [Eslami et al., 2018]. First steps towards

conditioning a Probabilistic U-Net on several successively taken image observations have
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been taken in [Petersen et al., 2019] with the aim to model tumor growth along the

temporal axis.

9.2 A Golden Future?

It has only been very few years since the availability of large, annotated data sets

coincided with the availability of large-scale computation power as well as the conception

of machine learning techniques that allow to profit from the two. Despite remarkable

successes, deep learning systems are thus far still narrow in scope in that they are made

up of models that are separately trained on and tailored towards individual problems

and singular data sources.

Leveraging streams of different data modalities on the other hand, similar to how

humans perceive and probe their environment seems to be one natural and promising

extension. Not many works however report a successful integration of several different

modalities or domains as well as different time horizons. Similarly, current forays into

automatic systems for real-world decision making, constitute static input-output mappings.

Bringing to mind the dynamic, hypothesis-driven reasoning and active acquisition of

relevant data points that is characteristic of human scientists and radiologists, it is clear

that current automatic systems largely lack in such capabilities. With the current and

arguably strong momentum in machine learning research and ever more data to learn

from, there is little doubt, that new holistic systems have the potential of creating ever

more reliable, well-calibrated and personalized systems that, in the clinical context, will

aid both diagnosis and treatment.

Below we dare a glimpse at a potential mid-term future, in which information about

the workings of our bodies is abundant in almost real time and its interpretation is

reliable to within well understood bounds of uncertainty.

Fin just turned 65. He was a man of excellent health, something that was also apparent
from his decidedly youthful physique. His good condition filled him with a sense of pride, as he
had to make a number of painful changes to the irresponsible habits he had picked up in the first
two or three decades of his life. The self-administered 180-turn had almost come over night, af-
ter he had participated in an early-adopter tech trial program in the late 2020s. The (then) novel
whole-body-state simulator that he had signed up to test, had projected a very grim future for
his virtual alter ego: Bad health, rapidly degrading looks, a short life. All presented in minute
detail and backed up by medical and biological data of a dazzling number of participants.
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The number of times his meter readings for blood decomposition, heart rate and brain oxy-
genation were out of his prescribed ranges ever since, was very low. He knew that for a fact,
because his health portal kept track of every single measured point in time. It was a self-learning
system that had continually improved as more and more people opted in globally. Yes, it had
been hacked a few times, but the encrypted data handling and storage coupled with the strong
anonymization guarantees, rendered the captured data useless to the intruders.

Aside from the assurance that the portal was learning from more and more real cases and thus
steadily increased its utility to him, it allowed Fin to compare to his de-identified peers. And
boy, he was doing well. All his current numbers looked splendid. His projected age surpassed
the 110 mark with high confidence. There was even a chance, small but non-negligible, that he
may live beyond 130 years. With this prognosis he ranked in the top percentile.

In that sense he had barely reached the mid point of his life and yet he was not surprised when,
just a few weeks ago, he learned of a prostatic cell alteration. In fact, he was expecting it:
Given his diagnosed genetic predisposition and a family history of prostate cancer, the portal
had raised a 95%-confidence warning for occurrence within the next 2 years. Being enrolled
in the omni-screening program, Fin regularly visited one of the fully automated check-up pods
that were dispersed across the city. The pods performed measurements that his portable meters
weren’t equipped for, such as a full-body fast MRI. As he stepped out the pod that morning a
few weeks ago, he had already received a summary diagnosis from the portal: an integration
of all the evidence from MRI, PSA antigen readings and epigenetic blood markers into his per-
sonalized model, indicated that an early onset prostatic cell alteration was in progress.

No need to get nervous, as he had already been informed about the best course of action, even be-
fore the detected onset. A simulation-based personalized response assessment had determined,
that he stood a 74% chance of stopping the cell growth before it even forms a veritable lesion
by taking tailored DNA transcription blockers. The blocker protein would be engineered so
as to impede transcription of the mutated prostate genome, otherwise leaving the transcription
process untouched and thus virtually excluding side-effects. Recent advances in protein design
further allowed to spec the drug with a tertiary structure that survives the aggressive micro-
environment of his digestive tract -an important requirement for simple and non-invasive oral
intake.

Aside from taking the bespoke drug, Fin would not have to abide by any restrictions whatsoever.
Continued participation in the omni-screening program would remain part of his routine. His
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pod-visits however would now hold the added excitement of localizing the cell-alteration and
tracking its change over time, which within well quantifiable limits was possible despite its
markedly subtle and ambiguous appearance. He lived with the firm knowledge that even if this
treatment would unexpectedly not hit the nail on the head, his portfolio of options was by far
and large not exhausted yet.

And really there was not much need to worry: A few weeks into rolling out the portal response
and his PSA levels had already begun falling.
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Appendix A

Finding Discriminative MRI Features

With kind permission by the Radiological Society of North America (RSNA), Appendix
A reproduces parts of the following publication:

David Bonekamp, Simon Kohl, Manuel Wiesenfarth, Patrick Schelb, Jan Philipp
Radtke, Michael Götz, Philipp Kickingereder, Kaneschka Yaqubi, Bertram Hitthaler,
Nils Gählert, Tristan Anselm Kuder, Fenja Deister, Martin Freitag, Markus Hohenfellner,
Boris A Hadaschik, Heinz-Peter Schlemmer and Klaus H Maier-Hein. “Radiomic Machine
Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC values.”
Radiology 289, no. 1 (2018): 128-137,

cited in the following as [Bonekamp et al., 2018].

A.1 Systematic and Targeted MR Imaging/TRUS-Fusion
Biopsies

All men underwent transperineal grid-directed biopsy performed under general anesthesia
with rigid software registration using BiopSee (MEDCOM, Darmstadt, Germany). Fusion-
biopsy of MR imaging-suspicious lesions was performed first (interquartile range (IQR)
3–5 cores, median 4 per lesion) followed by systematic saturation biopsy (20–26 cores,
median 23 cores), as previously described [Hadaschik et al., 2011, Radtke et al., 2016].
This biopsy approach combining targeted biopsies and transperineal systematic saturation
biopsies has been validated against and confirmed concordance to radical prostatectomy
specimen [Radtke et al., 2016]. A median of 29 biopsies (IQR 24–33) were taken per
patient with the number of biopsies adjusted to prostate volume. Histopathological
results of targeted regions and whole gland assessment served as standard of reference.
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A.2 Cohort Inclusion Criteria and Demographics

Figure A.1 | Patient Inclusion and Exclusion Flow. Diagram for inclusion of patients
into the study, as published in [Bonekamp et al., 2018].
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Figure A.2 | Demographic and Clinical Characteristics of Included Patients as
published in [Bonekamp et al., 2018].
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A.3 Detailed Results

Figure A.3 | Performance on a per Lesion Basis. Diagnostic performance of the
radiologist interpretation (PIRADS), mean ADC (mADC), and the RF ensemble (RML)
Learning on the train and the test cohort, as published in [Bonekamp et al., 2018].
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Figure A.4 | Performance on a per Patient Basis. Diagnostic performance of the
radiologist interpretation (PIRADS), mean ADC (mADC), and the RF ensemble (RML)
Learning on the train and the test cohort, as published in [Bonekamp et al., 2018].





Appendix B

The Probabilistic U-Net

B.1 Metrics

In the LIDC-IDRI dataset, given that we have m = 4 ground truth samples and n samples
from the models, we employ the following statistic:
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Here d(x, y) = 1− IoU(x, y), where x and y are the predicted and ground truth masks of
the lesion. In the case that both are empty masks, we define its distance to be 0, so that
the metric rewards the agreement on lesion absence.

On the Cityscapes task, given that we have defined the settings, we have full knowl-
edge about the ground truth distribution, which is a mixture of M = 32 Dirac delta
distributions. Hence, we do not need to sample from it, but use it directly in the
estimator:
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(B.2)
where ωj is the weight for the j-th mixture, which is a delta distribution containing all
the density in Yj. Here the distance d depends on the average IoU of the 10 switchable
classes only. Predicting one of such classes that is not present in the ground truth leads
to a 0 score, which will be one of the terms over which we average. The computed average
does not account for classes that are not present in both prediction and ground truth.

B.2 How models fit the ground truth distribution

In this section we analyse the frequency in which each mode of the Cityscape task is
targeted by each model, and how much that varies from the ground truth distribution.
We report the mode-wise and pixel-wise marginal occurrence frequencies of the sampled
segmentation variants. In the mode-wise case, each sample is matched to its closest
ground truth mode (using 1-IoU as the distance function). Then, the frequency of each
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Table B.1 | Numerical (mean) results of the Probabilistic U-Net on LIDC. The full
distributions are shown in Fig. 7.4a.

# Samples 1 4 8 16

D̂2
GED 0.811 0.388 0.321 0.287

mode is computed by counting the number of samples that most closely match that mode.
In the pixel-wise case, the marginal frequencies p(predicted class|ground-truth class) are
obtained by counting all pixels across all images and corresponding samples that show a
valid pixel hypothesis given the ground-truth, normalized by the number of respective
uni-modal ground-truth pixels. In Fig. B.1 we present the results for U-Net Ensemble
and Dropout U-Net, in Fig. B.2 we show the results for M-Heads and Image2Image VAE,
finally in Fig. B.3 we present the results for our approach.

B.3 Sampling LIDC masks using different models

Fig. B.4-B.8 show samples of our proposed model as well as all the baselines given the
same input images. For reference the expert segmentations are shown in the four rows
just below the images. Table B.1 shows the numerical results from Fig. 7.4a.

B.4 Sampling Cityscapes segmentations using our model

Fig. B.9 shows samples of our proposed model on the Cityscapes dataset, and Table B.2
shows the numerical results from Fig. 7.4b, so that new approaches can be compared to
those.

Table B.2 | Numerical (mean) results of the Probabilistic U-Net on Stochastic
Cityscapes. The full distributions are shown in Fig. 7.4b.

# Samples 1 4 8 16

D̂2
GED 0.874 0.337 0.248 0.206
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a)

b)

Figure B.1 | Probability calibration of the Dropout U-Net and U-Net Ensemble.
The vertical histogram shows the mode-wise occurrence frequencies of samples in comparison
to the ground-truth probability of the modes, and the horizontal histogram reports the
pixel-wise marginal frequencies, i.e. the sampled pixel-fractions for each new stochastic class
(e.g. sidewalk 2) with respect to the corresponding existing one (sidewalk).
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a)

b)

Figure B.2 | Probability calibration of M-Heads and Image2Image VAE. The vertical
histogram shows the mode-wise occurrence frequencies of samples in comparison to the
ground-truth probability of the modes, and the horizontal histogram reports the pixel-wise
marginal frequencies, i.e. the sampled pixel-fractions for each new stochastic class (e.g.
sidewalk 2) with respect to the corresponding existing one (sidewalk)
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Figure B.3 | Probability calibration of the Probabilistic U-Net. The vertical histogram
shows the mode-wise occurrence frequencies of samples in comparison to the ground-truth
probability of the modes, and the horizontal histogram reports the pixel-wise marginal
frequencies, i.e. the sampled pixel-fractions for each new stochastic class (e.g. sidewalk 2)
with respect to the corresponding existing one (sidewalk).
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Figure B.4 | LIDC samples from the Probabilistic U-Net. The upper panel shows LIDC
test set images from 15 different subjects alongside the respective ground-truth masks by the
4 graders. The panel below gives the corresponding 16 random samples from the network.
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Figure B.5 | LIDC samples from the Dropout U-Net. Same layout as Fig. B.4.
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Figure B.6 | LIDC samples from the U-Net Ensemble. Same layout as Fig. B.4.
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Figure B.7 | LIDC samples from the M-Heads model (using a network with 16 heads).
Same layout as Fig. B.4.
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Figure B.8 | LIDC samples from the Image2Image VAE. Same layout as Fig. B.4.
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Figure B.9 | Stochastic Cityscapes samples from the Probabilistic U-Net. The first
row shows Cityscapes images, the following 4 rows show 4 out of the 32 ground truth modes
with black pixels denoting pixels that are masked during evaluation. The remaining 16 rows
show random samples of the network.
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B.5 Training Details

In this section we describe the architecture settings and training procedure for both
experiments.

B.5.1 Lung Abnormalities Segmentation

We only use those lesions that were specified as a polygon (outline) in the XML files
of the LIDC dataset, disregarding the ones that only have center of shape. That is,
according to the LIDC-IDRI paper [Armato et al., 2011] we use the ones that are larger
than 3mm, and filtering out the others, that are clinically less relevant [Armato et al.,
2011]. We also filter out each Dicom file whose absolute value of SliceLocation differs
from the absolute value of ImagePositionPatient[-1]. Finally we assume that two masks
from different graders correspond to the same lesion if their tightest bounding boxes
overlap.

During training image-grader pairs are drawn randomly. We apply augmentations to
the image tiles (180× 180 pixels size): random elastic deformation, rotation, shearing,
scaling and a randomly translated crop that results in a tile size of 128× 128 pixels. The
U-Net architecture we use is similar to [Ronneberger et al., 2015] with the exception
that we down- and up-sample feature maps by using bilinear interpolations. The cores of
all models are identical and feature 4 down- and up-sampling operations, at each scale
the blocks comprise three convolutional layers with 3 × 3-kernels, each followed by a
ReLU-activation. In our model, both the prior and the posterior (as well as the posterior
in Image2Image VAE) nets have the same architecture as the U-Net’s encoder path,
i.e. they are made up to the same number of blocks and type of operations. Their last
feature maps are global average pooled and fed into a 1× 1 convolution that predicts the
Gaussian distributions parameterized by mean and standard deviation. The architecture
last layers, corresponding to fcomb., comprise the appropriate number of 1× 1-kernels
and are activated with a softmax. The base number of channels is 32 and is doubled or
respectively halved at each down- or up-sampling transition. All individual models share
this core component and for ease of comparability we let all models undergo the same
training schedule: the training proceeds over 240 k iterations with an initial learning rate
of 1e−4 that is lowered to 1e−6 in 5 steps. All weights of all models are initialized with
orthogonal initialization having the gain (multiplicative factor) set to 1, and the bias
terms are initialized by sampling from a truncated normal with σ = 0.001. We use a
batch-size of 32, weight-decay with weight 1e−5 and optimize using the Adam optimizer
with default settings [Kingma and Ba, 2014]. A KL weight of β = 10 with a latent space
of 3 dimensions gave best validation results for the baseline Image2Image VAE, and
β = 1 and a 6D latent space performed well for the Probabilistic U-Net, although the
performances were alike across the hyperparameters tried on the validation set.

B.5.2 Stochastic Cityscapes Street Scene Segmentation

We down-sample the Cityscapes images and label maps to a size of 256× 512. Similarly
to above, we apply random elastic deformation, rotation, shearing, scaling, random
translation and additionally impose random color augmentations on the images during
training. The U-Net cores in this task are identical to the ones above, but process an
additional feature scale (implying one additional up- and one additional down-sampling
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operation). The training procedure is also equivalent to the previous experiment, also
using 240 k iterations, except that here we employ a batch-size of 16, and the initial
learning rate of 1e−4 is lowered to 1e−5 in 3 steps. The Cityscapes dataset includes ignore
label masks for each image with which we mask the loss during training, and the metric
during evaluation. A KL weight of β = 1 and 3D latents gave best validation results for
the Image2Image VAE and a β = 1 and 6D latents performed best for the Probabilistic
U-Net (although 3-5D performed similarly).





Appendix C

The Hierarchical Probabilistic U-Net

C.1 Instance Segmentation Post-Processing

For the instance segmentation experiments we post-process the clustered samples to
remove tiny regions that sometimes appear at segmentation borders. For each cluster
(instance) found via Algorithm 1, we check whether it survives an erosion operation
with an n× n-structure element. If the given erosion eliminates the cluster, we replace
each pixel within the cluster in question by its majority neighbour label. The majority
neighbour label is determined from a m×m-box centered at the given pixel. The cluster
label that is to be replaced as well as background labels are ignored while finding the
majority label. If this results in 0 valid neighbour labels, we keep the current pixel’s
label in SNEMI3D and use the background label in Cityscapes. In both SNEMI3D and
Cityscapes, we chose n = 5 and m = 11. Painting in the majority label is carried out on
the fly.

Training The HPU-Net is trained using the GECO-objective (Eq. 8.12) and a
stochastic top-k reconstruction loss. As described in Subsec. 8.2.3, the kth percentile
employed for the top-k objective is fixed across tasks to 2% of each batch’s pixels. The
GECO-objective aims at matching a reconstruction target value κ. For each experiment
we chose κ sufficiently low so as to correspond to a strong reconstruction performance
while resulting in a training schedule that is not dominated by the reconstruction term
over the entire course of the training (e.g. if κ is chosen too high, the Lagrange multiplier
λ, and thus the learning pressure it exerts, mounts and remains on the reconstruction term
rather then moving over on the KL terms). The desired behavior of the reconstruction
objective Lrec and the Lagrange multiplier λ can be observed in Fig. C.1 and Fig. C.2,
where λ rises until Lrec matches κ, after which λ drops and the pressure on the KL-terms
increases.

In contrast to the regular cross-entropy employed in semantic segmentation, the
reconstruction error here is not averaged but summed over individual pixels (before being
averaged across batch instances). This is because the likelihood is assumed to factorize
over the pixels of an image and so their log-likelihood is summed over. For comparability
we however report Lrec and κ per pixel (e.g. in Fig. C.1, Fig. C.2 and in Table 8.2).

The precise training setups for each of the tasks and models are reported below. Note
that the training objectives for all models encompass an additional weight-decay term
that is weighted by a factor of 1e−5.
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C.2 Training Details by Dataset

C.2.1 LIDC-IDRI Lung CT scans

During training on LIDC, image-grader pairs are drawn randomly. Similar to Sub-
sec. B.5.1, we apply random augmentations1 to the image and label tiles (180× 180 pixels
size) including random elastic deformation, rotation, mirroring, shearing, scaling and a
randomly translated crop that results in a tile size of 128 × 128 pixels. Any padding
added to the images and labels during the augmentation process is masked from the loss
during training.

In order to evaluate the Probabilistic U-Net on additional metrics than those employed
in [Kohl et al., 2018] and in order to bootstrap from 10 model instantiations, we retrain
a re-implementation of the model with the exact same hyperparameters and setup as
described in Subsec. B.5.1, i.e. we employ a 5-scale model, with three 3× 3-convolutions
per encoder and decoder-scale, a separate prior and posterior net that mirror the used
U-Net’s encoder as well as 6 global latents and three final 1× 1 convolutions. Moreover
we employ an identical ELBO-formulation (β = 1), train with identical batch-size of 32,
number of iterations (240k) and learning rate schedule 0.5e−5 → 1e−6.

On LIDC, the HPU-Net uses 8 latent scales resulting in a global 1× 1-‘U-Net bottom’
and 3 res-blocks per encoder and decoder scale. The base number of channels is 24
and until the fourth down-sampling the number of channels is doubled after each down-
sampling operation, resulting in a maximum width of 192 channels. The U-Net’s decoder
mirrors this setup. We train the HPU-Net with an initial learning rate of 1e−4 that is
lowered to 0.5e−5 in 4 steps over the course of 240k iterations. The employed batch-size
is 32. The HPU-Net is trained with the GECO-objective using κ = 0.05.

Fig. C.1 shows how the top-k reconstruction term Lrec, the Lagrange multiplier λ, as
well as the individual KL-terms (and their sum) progress in the course of training for
the 10 random model initializations reported in Table 8.1. As mentioned above, GECO
structures the dynamics such that λ puts pressure on Lrec until it reaches its target value
κ. After that the training objective holds the reconstruction term at κ while optimizing
for lower overall Kullback-Leibler divergence (KL). The KL is a measure for how much
more information the posterior distribution carries compared to the prior, a quantity
that we aim to minimize. Note that the KL-sum is very similar for all models, but the
way the KL splits across the hierarchy can differ. The models that end up using the
global latents profit from a slightly lower overall KL indicating that this decomposition
is more efficient, e.g. it is more efficient not to repeat global information in the local
latents when it is already provided by global latents etc.

C.2.2 SNEMI3D neocortex EM slices

During training on SNEMI3D we randomly sample a latent (class) id for each cell
in each image. We limit the number of instance ids to 15 and just like on LIDC we
apply random augmentations including random elastic deformation, rotation, mirroring,
shearing, scaling and a randomly translated crop. Any padding added to the images and
labels during the augmentation process is masked from the loss during training.

1We use the code available at
https://github.com/deepmind/multidim-image-augmentation/.

https://github.com/deepmind/multidim-image-augmentation/
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Figure C.1 | Losses during training on LIDC. Components of the learning objective in
the course of the LIDC training for 10 random initializations.

For the standard Probabilistic U-Net we employ a 9 scale architecture and a base
number of 24 channels, that until the 4th down-sampling, is doubled after each down-
sampling operation, resulting in a maximum width of 192 channels. The sPU-Net again
uses three 3× 3-convolutions per encoder and decoder scale, while the HPU-Net employs
three res-blocks. The HPU-Net also employs 32 base channels, a total of 9 scales
interleaved with four (scalar) latent scales, resulting in a total of 85 latents. This is also
the number of global latents that we used for the sPU-Net, since employing low numbers
of latents, such as ∼ 10 as used on the datasets in Chap. 7 never converged (even working
with 85 global latents does not make for a very stable training). Both models are trained
for 450k iterations with a batch-size of 24, and an initial learning rate of 1e−4 that is
lowered to 1e−7 in 5 steps. The HPU-Net is trained with the GECO-objective using
κ = 1.20.

Fig. C.2 again shows how the top-k reconstruction term Lrec, the Lagrange multiplier
λ, as well as the individual KL-terms (and their sum) progress in the course of training
for the 10 random model initializations reported in Table 8.1. Again the KL sums to a
similarly low value across models with different decompositions across the four scales.

C.2.3 Cityscapes Car Instances

We resample the Cityscapes images and labels to half-resolution, i.e. 512× 1024. During
training we randomly sample a (latent) instance id for each car in the image, where
we limit the total number of car ids to 5. We apply random deformations including
random color augmentations, elastic deformation, rotation, mirroring, shearing, scaling
and a randomly translated crop. Any padding added to the images and labels during
the augmentation process is masked from the loss during training alongside any such
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Figure C.2 | Losses during training on SNEMI3D. Components of the learning objective
in the course of the SNEMI3D training for 10 random initializations.

pixels that are marked as part of the ‘ignore’-class in the dataset (pixels that can’t be
attributed to one of the provided 19 classes).

We train a HPU-Net with 9 scales, resulting in a 2× 4-‘U-Net bottom’ and 4 latent
scales. Using another scale (so 5 latent scales and a number of 10 overall scales) did not
significantly change the results and due to the image aspect ratio of 1:2, does not result in
a fully global latent scale either. The employed model uses two res-blocks for each encoder
and decoder scale and we train the model with a batch-size of 128 for 100k iterations
using TPU accelerators and spatial batch partitioning. We use an initial learning rate
of 2e−4 that is halved after 70k iterations. The base number of channels is 32 and until
the fourth down-sampling the number of channels are doubled after each down-sampling
operation, resulting in a maximum width of 256 channels. The HPU-Net is trained with
the GECO-objective using κ = 0.77.

C.3 GED2 on LIDC subset B

On ‘Subset B’ the sPU-Net achieves a GED2 = 0.52± 0.09 while the HPU-Net achieves
as GED2 = 0.38± 0.02. Both values result from the set of 10 models used for the LIDC
results in Table 8.1 (again using 1000 bootstraps with replacement).
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Table C.1 | Baseline Test Set Results on LIDC. The mean and standard deviations
for the baselines are calculated from one random initialization and 1000 bootstraps with
replacement. Both GED2 and the Hungarian-matched IoU are calculated using 16 samples.

LIDC GED2 Hung.-m. IoU

U-Net Ensemble 0.49 ± 0.01 0.50 ± 0.01
Dropout U-Net 0.47 ± 0.00 0.24 ± 0.00
M-Heads 0.33 ± 0.00 0.47 ± 0.00
Image2Image VAE 0.41 ± 0.01 0.44 ± 0.00

C.4 GED2 and Hungarian-matched IoU for Baselines on
LIDC

C.5 LIDC, SNEMI3D and Cityscapes: Extra Examples
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Figure C.3 | HPU-Net examples on LIDC. Qualitative results on test set. An asterisk
(*) denotes cases that we also use in Fig. 8.3.
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Figure C.4 | sPU-Net examples on LIDC. Qualitative results on our test set.
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Figure C.5 | HPU-Net examples on SNEMI3D. Qualitative results on our test set.
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Figure C.6 | sPU-Net examples on SNEMI3D. Qualitative results on our test set.
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Figure C.7 | HPU-Net examples for Instance Segmentation on Cityscapes. Quali-
tative results on our test set for a model trained with 5 distinct latent car ids on resolution
512× 1024. The 5 car ids take on different shades of blue. Samples show good consistency
across individual car instances resulting in high-quality instance segmentations, see the 4th
row from the top. Note how the model flips other natural ambiguous regions aside from cars
e.g. street↔ sidewalk in the first scene and truck↔ bus in the second last.
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Figure C.8 | HPU-Net examples for Instance Segmentation on Cityscapes (difficult
cases). Qualitative results on our test set for a model trained with 5 distinct latent car ids
on resolution 512× 1024. The 5 car ids take on different shades of blue. Here we show the
top difficult cases in the test set in terms of the Rand error, which shows the difficulty of
segmenting individual cars when they are very distant in the scene or heavily occluded.
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Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep
hierarchy of latent variables for generative modeling. arXiv preprint arXiv:1902.02102,
2019.

Mark Hammer. MRI Physics: Diffusion-Weighted Imaging, 2013. URL http://xrayphysics.
com/dwi.html#adc. Accessed: 2019-07-13.

Quinn McNemar. Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika, 12(2):153–157, 1947.

http://xrayphysics.com/dwi.html#adc
http://xrayphysics.com/dwi.html#adc


178 References

Donald W McRobbie, Elizabeth A Moore, Martin J Graves, and Martin R Prince. MRI
from Picture to Proton. Cambridge university press, 2017.

J Melia, R Moseley, RY Ball, DFR Griffiths, K Grigor, P Harnden, M Jarmulowicz,
LJ McWilliam, R Montironi, M Waller, et al. A uk-based investigation of inter-and
intra-observer reproducibility of gleason grading of prostatic biopsies. Histopathology,
48(6):644–654, 2006.

Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale pixel
networks and multidimensional upscaling. arXiv preprint arXiv:1812.01608, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957,
2018.

Drew Moghanaki, Baris Turkbey, Neha Vapiwala, Behfar Ehdaie, Steven J Frank,
Patrick W McLaughlin, and Mukesh Harisinghani. Advances in prostate cancer
mri and pet/ct for staging and radiotherapy treatment planning. In Seminars in
radiation oncology, volume 27, page 21. NIH Public Access, 2017.

Paul C Moldovan, Thomas Van den Broeck, Richard Sylvester, Lorenzo Marconi, Joaquim
Bellmunt, Roderick CN van den Bergh, Michel Bolla, Erik Briers, Marcus G Cumber-
batch, Nicola Fossati, et al. What is the negative predictive value of multiparametric
magnetic resonance imaging in excluding prostate cancer at biopsy? a systematic
review and meta-analysis from the european association of urology prostate cancer
guidelines panel. European urology, 72(2):250–266, 2017.

Berrend G Muller, Joanna H Shih, Sandeep Sankineni, Jamie Marko, Soroush Rais-
Bahrami, Arvin Koruthu George, Jean JMCH de la Rosette, Maria J Merino, Bradford J
Wood, Peter Pinto, et al. Prostate cancer: interobserver agreement and accuracy with
the revised prostate imaging reporting and data system at multiparametric mr imaging.
Radiology, 277(3):741–750, 2015.

James Munkres. Algorithms for the assignment and transportation problems. Journal of
the society for industrial and applied mathematics, 5(1):32–38, 1957.

Klaas NA Nagel, Martijn G Schouten, Thomas Hambrock, Geert JS Litjens, Caroline MA
Hoeks, Bennie ten Haken, Jelle O Barentsz, and Jurgen J Fütterer. Differentiation of
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Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on
distances. Journal of statistical planning and inference, 143(8):1249–1272, 2013.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv preprint arXiv:1905.11946, 2019.

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint optimization
framework for learning with noisy labels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5552–5560, 2018.

Kinh Tieu and Paul Viola. Boosting image retrieval. International Journal of Computer
Vision, 56(1-2):17–36, 2004.

Shimon Ullman, Michel Vidal-Naquet, and Erez Sali. Visual features of intermediate
complexity and their use in classification. Nature neuroscience, 5(7):682, 2002.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Arash Vahdat. Toward robustness against label noise in training deep discriminative
neural networks. In Advances in Neural Information Processing Systems, pages 5596–
5605, 2017.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves,
et al. Conditional image generation with pixelcnn decoders. In Advances in neural
information processing systems, pages 4790–4798, 2016.

Joost JM Van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole
Aucoin, Vivek Narayan, Regina GH Beets-Tan, Jean-Christophe Fillion-Robin, Steve
Pieper, and Hugo JWL Aerts. Computational radiomics system to decode the radio-
graphic phenotype. Cancer research, 77(21):e104–e107, 2017.

HA Vargas, AM Hötker, DA Goldman, CS Moskowitz, T Gondo, Kazuhiro Matsumoto,
B Ehdaie, S Woo, SW Fine, VE Reuter, et al. Updated prostate imaging reporting
and data system (pirads v2) recommendations for the detection of clinically significant
prostate cancer using multiparametric mri: critical evaluation using whole-mount
pathology as standard of reference. European radiology, 26(6):1606–1612, 2016.



184 References

Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge Belongie.
Learning from noisy large-scale datasets with minimal supervision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 839–847,
2017.

A Vignati, S Mazzetti, V Giannini, F Russo, E Bollito, Francesco Porpiglia, M Stasi,
and Daniele Regge. Texture features on t2-weighted magnetic resonance imaging: new
potential biomarkers for prostate cancer aggressiveness. Physics in Medicine & Biology,
60(7):2685, 2015.

Paul Viola, Michael Jones, et al. Rapid object detection using a boosted cascade of
simple features. CVPR (1), 1:511–518, 2001.

Alex Waibel. Consonant recognition by modular construction of large phonemic time-
delay neural networks. In Advances in neural information processing systems, pages
215–223, 1989.

Jing Wang, Chen-Jiang Wu, Mei-Ling Bao, Jing Zhang, Xiao-Ning Wang, and Yu-Dong
Zhang. Machine learning-based analysis of mr radiomics can help to improve the
diagnostic performance of pi-rads v2 in clinically relevant prostate cancer. European
radiology, 27(10):4082–4090, 2017.

Simon K Warfield, Kelly H Zou, and William M Wells. Simultaneous truth and perfor-
mance level estimation (staple): an algorithm for the validation of image segmentation.
IEEE transactions on medical imaging, 23(7):903, 2004.

Jeffrey C Weinreb, Jelle O Barentsz, Peter L Choyke, Francois Cornud, Masoom A Haider,
Katarzyna J Macura, Daniel Margolis, Mitchell D Schnall, Faina Shtern, Clare M
Tempany, et al. Pi-rads prostate imaging–reporting and data system: 2015, version 2.
European urology, 69(1):16–40, 2016.

Andreas Wibmer, Hedvig Hricak, Tatsuo Gondo, Kazuhiro Matsumoto, Harini Veer-
araghavan, Duc Fehr, Junting Zheng, Debra Goldman, Chaya Moskowitz, Samson W
Fine, et al. Haralick texture analysis of prostate mri: utility for differentiating non-
cancerous prostate from prostate cancer and differentiating prostate cancers with
different gleason scores. European radiology, 25(10):2840–2850, 2015.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, 1(6):
80–83, 1945.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in
statistics, pages 196–202. Springer, 1992.

John Winn and Nebojsa Jojic. Locus: Learning object classes with unsupervised
segmentation. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, volume 1, pages 756–763. IEEE, 2005.

Sungmin Woo, Chong Hyun Suh, Sang Youn Kim, Jeong Yeon Cho, and Seung Hyup
Kim. Diagnostic performance of prostate imaging reporting and data system version
2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis.
European urology, 72(2):177–188, 2017.



References 185

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 3–19, 2018.

Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Bridging category-level and
instance-level semantic image segmentation. arXiv preprint arXiv:1605.06885, 2016a.

Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. Wider or deeper: Revisiting the
resnet model for visual recognition. arXiv preprint arXiv:1611.10080, 2016b.

Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and
Raquel Urtasun. Upsnet: A unified panoptic segmentation network. arXiv preprint
arXiv:1901.03784, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels. In Advances in Neural Information Processing Systems,
pages 8778–8788, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–2232, 2017a.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver
Wang, and Eli Shechtman. Toward multimodal image-to-image translation. In Advances
in Neural Information Processing Systems, pages 465–476, 2017b.





List of figures

1.1 Ambiguity in Lung CT Scans. . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Anatomy of the Prostate. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Current Clinical Prostate Cancer Diagnosis. . . . . . . . . . . . . . . . . 18

3.3 Examplary PIRADS Assessments on DWI images. . . . . . . . . . . . . . 21

3.4 Prostate MRI Ambiguities. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Gleason Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Classification of Image Analysis at different Granularities. . . . . . . . . 31

4.2 Radiomic Feature Extraction. . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Deep CNN Architectures for Semantic Segmentation. . . . . . . . . . . . 35

5.1 Radiomics Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Radiologist-Performed Example Segmentations. . . . . . . . . . . . . . . 51

5.3 ROC Curves for Prostate Lesion Classificaion. . . . . . . . . . . . . . . . 55

5.4 Test Cohort Example Case 1. . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Test Cohort Example Case 2. . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Training under Ambiguous Images. . . . . . . . . . . . . . . . . . . . . . 64

6.2 Schematic of Adversarial Training for Semantic Segmentation. . . . . . . 66

6.3 Prostate MRI Example Cases. . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Performance Comparison in the small Dataset Limit. . . . . . . . . . . . 73

7.1 The Probabilistic U-Net. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Baseline architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Qualitative results of the Probabilistic U-Net. . . . . . . . . . . . . . . . 84

7.4 Squared energy distance results. . . . . . . . . . . . . . . . . . . . . . . . 85

7.5 Visualization of the latent space for the lung abnormalities segmentation. 88

7.6 Visualization of the latent space for the Cityscapes task. . . . . . . . . . 89

7.7 Calibration of Mode Frequencies of the Probabilistic U-Net. . . . . . . . 90



188 List of figures

7.8 Ablation analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.9 Histograms of lesion presences. . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1 The Hierarchical Probabilistic U-Net. . . . . . . . . . . . . . . . . . . . . 101

8.2 Qualitative Comparison of Reconstructions & Samples on LIDC . . . . . 111

8.3 HPU-Net Samples using different Latent Scales on LIDC. . . . . . . . . . 112

8.4 Instance Segmentation of Neurons. . . . . . . . . . . . . . . . . . . . . . 113

8.5 Generative Extrapolation on masked EM Images. . . . . . . . . . . . . . 114

8.6 Generative instance segmentation of Cars. . . . . . . . . . . . . . . . . . 114

8.7 HPU-Net Samples using different Latent Scales on Stochastic Cityscapes. 116

A.1 Patient Inclusion and Exclusion Flow. . . . . . . . . . . . . . . . . . . . . 134

A.2 Demographic and Clinical Characteristics of Included Patients. . . . . . . 135

A.3 Patient Inclusion and Exclusion Flow. . . . . . . . . . . . . . . . . . . . . 136

A.4 Patient Inclusion and Exclusion Flow. . . . . . . . . . . . . . . . . . . . . 137

B.1 Probability calibration of the Dropout U-Net and U-Net Ensemble. . . . 141

B.2 Probability calibration of M-Heads and Image2Image VAE. . . . . . . . . 142

B.3 Probability calibration of the Probabilistic U-Net. . . . . . . . . . . . . . 143

B.4 LIDC samples from the Probabilistic U-Net. . . . . . . . . . . . . . . . . 144

B.5 LIDC samples from the Dropout U-Net. . . . . . . . . . . . . . . . . . . 145

B.6 LIDC samples from the U-Net Ensemble. . . . . . . . . . . . . . . . . . . 146

B.7 LIDC samples from the M-Headsmodel. . . . . . . . . . . . . . . . . . . . 147

B.8 LIDC samples from the Image2Image VAE. . . . . . . . . . . . . . . . . 148

B.9 Stochastic Cityscapes samples from the Probabilistic U-Net. . . . . . . . 149

C.1 Losses during training on LIDC. . . . . . . . . . . . . . . . . . . . . . . . 155

C.2 Losses during training on SNEMI3D. . . . . . . . . . . . . . . . . . . . . 156

C.3 HPU-Net examples on LIDC. . . . . . . . . . . . . . . . . . . . . . . . . 158

C.4 sPU-Net examples on LIDC. . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.5 HPU-Net examples on SNEMI3D. . . . . . . . . . . . . . . . . . . . . . . 160

C.6 sPU-Net examples on SNEMI3D. . . . . . . . . . . . . . . . . . . . . . . 161

C.7 HPU-Net examples for Instance Segmentation on Cityscapes. . . . . . . . 162

C.8 HPU-Net examples for Instance Segmentation on Cityscapes (difficult cases).163



List of tables

3.1 Gleason Score Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Top 10 Most Important Features. . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Quantitative Results for Prostate Tumor Segmentation. . . . . . . . . . . 72

7.1 Predicting ambiguity of LIDC images. . . . . . . . . . . . . . . . . . . . 92

8.1 Test set results: HPU-Net vs. sPU-Net . . . . . . . . . . . . . . . . . . . 110

8.2 Ablation study for the HPU-Net on LIDC. . . . . . . . . . . . . . . . . . 117

B.1 LIDC results of the Probabilistic U-Net. . . . . . . . . . . . . . . . . . . 140

B.2 Stochastic Cityscapes results of the Probabilistic U-Net. . . . . . . . . . 140

C.1 Baseline Test Set Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 157





Acronyms

ADC Apparent Diffusion Coefficient. 11, 17, 19–23, 27, 46, 47, 49–52, 57–61, 68, 74,

122, 136, 137

AUC Area Under the Curve. 54, 55, 58

B1500 Diffusion-weighted image with b = 1500 smm−2. 49–52, 57, 58, 68

CE Cross Entropy. xiv, 34, 38, 63, 64, 70, 72–74, 122, 123

cGAN conditional Generative Adversarial Network. 44

CNN Convolutional Neural Network. 2, 3, 29–35, 39, 41–43, 61

CT Computed Tomography. 1, 2, 11–13, 29, 41, 98

cVAE conditional Variational Auto-Encoder. 40, 43, 75, 76, 79

DRE Digital Rectal Examination. 16–18, 26, 27, 48, 57, 58

DSC Sørensen–Dice Coefficient. 69, 70, 72

DWI Diffusion-weighted Imaging. 10, 11, 17, 20–23, 25, 46, 48–50

ELBO Evidence Lower Bound. 42, 80, 103

EM Electron Microscopy. 99, 110, 113

FCN fully convolutional network. 35, 36, 61

FN False Negative. 55–57, 70, 81

FP False Positive. 55–57, 70, 81

GAN Generative Adversarial Network. 43, 44, 63, 65, 67, 74, 78, 95, 99



192 Acronyms

GED Generalized Energy Distance. 81, 85, 108

GS Gleason Score. 18, 19, 24–27, 47, 68, 69

HPU-Net Hierarchical Probabilistic U-Net. 97, 99, 103–105, 109–119, 153–156, 188,

189

IDRI Image Database Resource Initiative. 2, 83, 85, 86, 88, 139, 150

IoU Intersection over Union. 70, 81, 92, 108, 109

KL Kullback-Leibler divergence. 42, 80, 86, 102, 150, 151, 153, 154

LIDC Lung Image Database Consortium. xv, 2, 83–86, 88, 92, 99, 105, 108, 109, 118,

139, 140, 144–148, 150, 154, 188, 189

mADC mean Apparent Diffusion Coefficient. 47, 52, 54–61

MC Monte Carlo. 40–42

ML Machine Learning. 32, 49, 60, 63

mpMRI Multi-parametric MRI. 17, 19, 20, 25–27, 45, 46, 56, 61, 74

MRI Magnetic Resonance Imaging. 1, 3, 4, 7–10, 12, 15, 20, 22, 23, 29, 41, 45, 47–49,

54, 55, 57, 60, 61, 73

NAN Not-A-Number. 109

PCa Prostate Cancer. 16, 17, 19, 56, 61

PIRADS The Prostate Imaging Reporting and Data System. 18–23, 26, 45–49, 51, 54,

57, 58, 60, 61, 121, 136, 137

PSA Prostate-specific Antigen. 16–18, 27, 48, 51, 57, 58

PZ Peripheral Zone. 20, 22, 23, 26, 49, 54, 57, 58, 60, 61, 68

RF Random Forest. 50, 52–56, 58–60, 136, 137

RML Radiomic Machine Learning. 54–58, 60, 61

ROC Receiver Operator Characteristic. 50, 54, 55, 60



Acronyms 193

RoI Region of Interest. 33

SGD Stochastic Gradient Descent. 64, 65

SNEMI3D 3D Segmentation of Neurites in EM images. 99, 106, 109, 110, 112, 113, 154

SotA State-of-the-Art. 30, 34, 36, 37

sPU-Net standard Probabilistic U-Net. 99, 100, 102, 106, 108–113, 117, 119, 155, 156,

189

T1w T1-weighted. 8, 17, 20, 22, 23

T2w T2-weighted. 8, 17, 20, 22, 23, 46–52, 57–60, 68, 74

TP True Positive. 70, 81

TRUS-biopsy Trans-rectal Ultra-Sound Guided Biopsy. 18–20, 26, 27, 46, 48, 61, 68

TZ Transitional Zone. 20, 22, 23, 26, 49, 54, 57–60, 68

VAE Variational Auto-Encoder. 42–44, 78, 95, 99, 118

VOI Volume of Interest. 49, 52


