
Karlsruhe Institute of Technology

Fakultät für Elektrotechnik

Institut für Technik der

Informationsverarbeitung (ITIV)

TalkyCars: A Distributed

Software Platform for Cooperative

Perception among Connected

Autonomous Vehicles based on

Cellular-V2X Communication

Master’s Thesis by

B. Sc. Ferdinand Mütsch

January 31, 2020

Head of Institute: Prof. Dr.-Ing. Dr. h.c. J. Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. rer. nat W. Stork

Author: B. Sc. Ferdinand Mütsch

Supervisor: M. Sc. Martin Böhme
M. Sc. Marco Stang

Abstract

Autonomous vehicles are required to operate among highly mixed traffic during their
early market-introduction phase, solely relying on local sensory with limited range. Ex-
haustively comprehending and navigating complex urban environments is potentially not
feasible with sufficient reliability using the aforesaid approach. Addressing this challenge,
intelligent vehicles can virtually increase their perception range beyond their line of sight
by utilizing Vehicle-to-Everything (V2X) communication with surrounding traffic partic-
ipants to perform cooperative perception. Since existing solutions face a variety of limi-
tations, including lack of comprehensiveness, universality and scalability, this thesis aims
to conceptualize, implement and evaluate an end-to-end cooperative perception system
using novel techniques. A comprehensive yet extensible modeling approach for dynamic
traffic scenes is proposed first, which is based on probabilistic entity-relationship models,
accounts for uncertain environments and combines low-level attributes with high-level
relational- and semantic knowledge in a generic way. Second, the design of a holistic,
distributed software architecture based on edge computing principles is proposed as a
foundation for multi-vehicle high-level sensor fusion. In contrast to most existing ap-
proaches, the presented solution is designed to rely on Cellular-V2X communication in
5G networks and employs geographically distributed fusion nodes as part of a client-server
configuration. A modular proof-of-concept implementation is evaluated in different simu-
lated scenarios to assess the system’s performance both qualitatively and quantitatively.
Experimental results show that the proposed system scales adequately to meet certain
minimum requirements and yields an average improvement in overall perception quality
of approximately 27 %.

Zusammenfassung

Autonome Fahrzeuge müssen besonders während ihrer frühen Markteinführungsphase in
der Lage sein, sich in homogenem Mischverkehr zurecht zu finden. Dabei reicht es mögli-
cherweise nicht aus, sich lediglich auf die lokale Sensorik mit eingeschränkter Reichweite zu
verlassen, um komplexe, innerstädtische Verkehrssituationen zuverlässig wahrzunehmen.
Stattdessen können intelligente Fahrzeuge ihre Sensorreichtweite durch den Einsatz von
Vehicle-to-Everything (V2X) Kommunikation und Cooperative Perception virtuell über
ihren ursprünglichen Horizont hinaus erweitern. Bisherige Ansätze gehen jedoch mit ei-
ner Reihe von Einschränkungen einher, da sie oftmals wenig holistisch, nicht ausreichend
allgemeingültig oder schwer skalierbar sind. Daher hat diese Masterarbeit das Ziel, ein
umfangreiches Cooperative Perception System auf Basis modernster Techniken zu entwer-
fen, implementieren und evaluieren. Dazu wird zunächst ein umfassender, aber dennoch
leicht erweiterbarer Modellierungsansatz für dynamische Verkehrssituationen vorgestellt,
der mithilfe probabilistischer Entity-Relationship Modelle ungewisse Umgebungenswahr-
nehmungen unterstützt und einfache Attribute mit abstrakteren, relationalen und se-
mantischen Informationen auf möglichst generische Weise kombiniert. Anschließend wird
der Entwurf einer ganzheitlichen, verteilten Software Architektur auf Basis von Edge
Computing-Prinzipien als Grundlage für fahrzeugübergreifende Sensorfusion vorgestellt.
Im Gegensatz zu den meisten bestehenden Ansätzen setzt unsere Lösung auf Cellular-V2X
Kommunikation in 5G-Netzen und verwendet geographisch verteilte Rechenknoten. Eine
modulare Proof-of-Concept Implementierung wird in verschiedenen simulierten Szenarien
evaluiert, um das System sowohl qualitativ als auch quantitativ zu bewerten. Entspre-
chende Experimente zeigen, dass das vorgestellte System ausreichend gut skaliert, um
bestimmte Mindestanforderungen zu erfüllen und erzielt eine durchschnittliche Verbesse-
rung der Wahrnehmungsqualität von ca. 27 %.

Erklärung

Ich versichere hiermit, dass ich meine Masterarbeit selbständig und unter Beachtung der
Regeln zur Sicherung guter wissenschaftlicher Praxis im Karlsruher Institut für
Technologie (KIT) in der aktuellen Fassung angefertigt habe.
Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und
wörtlich oder inhaltlich übernommene Stellen als solche kenntlich gemacht.

Karlsruhe, den 31. Januar 2020

———————————
Ferdinand Mütsch

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

Contents

1 Introduction 1

1.1 Motivation . 1

2 Background 3

2.1 Autonomous Driving . 3

2.1.1 Current Status . 3

2.1.2 Sensor Fusion . 4

2.1.3 Autonomous Driving Pipeline . 6

2.2 Vehicle-to-X Communication . 8

2.2.1 Application Types . 8

2.2.2 Communication . 10

2.3 Cooperative Perception . 10

2.3.1 Theory . 10

2.3.2 Use Cases . 11

2.4 Edge Computing . 12

2.5 5G Cellular Networks . 13

2.6 Geo Tiling . 13

2.6.1 QuadKeys . 14

3 Related Work 15

3.1 Environment Modeling & State Representation 15

3.2 Cooperative Perception . 16

3.3 Cellular V2X Communication . 19

3.4 Summary . 19

4 Problem Analysis 21

4.1 Limitations of Prior Work . 21

4.2 Traffic Volume Estimation . 22

4.2.1 Methodology & Results . 22

4.2.2 Conclusion . 25

4.3 Goals & Requirements . 26

4.3.1 Environment Modeling & State Representation 26

4.3.2 Cooperative Perception System . 26

4.4 Scope . 27

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

5 Concept & Design 29
5.1 Environment Modeling & State Representation 29

5.1.1 Object-Level Representation & Fusion 29
5.1.2 Principles of Dynamic World Modeling 31
5.1.3 Discrete Environment Model with Occupancy Tiles 32
5.1.4 Probabilistic Entity Relationship Model for Cooperative Perception 33
5.1.5 Final Model . 36
5.1.6 Summary . 37

5.2 Cellular Communication . 39
5.2.1 5G Usage Scenarios & Advantages 39
5.2.2 Vehicle-to-Network-to-Everything Communication Topology 40
5.2.3 Summary . 41

5.3 System Architecture . 42
5.3.1 Central Fusion Nodes . 42
5.3.2 Geographical Partitioning . 43
5.3.3 Messaging & Further Considerations 44
5.3.4 Components Overview . 46
5.3.5 Summary . 48

5.4 Fusion . 49
5.4.1 Goals . 49
5.4.2 Problem Statement . 50
5.4.3 Scope . 51
5.4.4 Open- & Closed World Assumption 51
5.4.5 Mechanism: Time-Decayed Weighted Average 53
5.4.6 Architecture: Doubly Updated Merging 55
5.4.7 Summary . 56

5.5 Conclusion . 56

6 Implementation 57
6.1 Meta Model, Representation- & Message Format 57

6.1.1 Object-Oriented Model . 57
6.1.2 Serialization Format . 59

6.2 Simulation Environment . 60
6.3 Server-Side Software Components . 63

6.3.1 Message Broker . 63
6.3.2 Talky Fusion Node . 65
6.3.3 Web Visualization . 66

6.4 On-Board Client-Side Software Components 67
6.4.1 Simulator Bridge . 67
6.4.2 Talky Client . 69

6.5 Configurable Parameters . 72
6.5.1 Simulation Parameters . 72
6.5.2 Scene Parameters . 73
6.5.3 Cooperative Perception Parameters 73

6.6 Open-Source Contributions . 74
6.7 Summary . 74

7 Evaluation 77
7.1 Performance Evaluation . 77

7.1.1 Methodology . 78
7.1.2 Results . 81
7.1.3 Discussion & Conclusion . 84

7.2 End-to-end Evaluation . 85
7.2.1 Methodology . 86
7.2.2 Results . 90
7.2.3 Discussion & Conclusion . 92

7.3 Summary & Conclusion . 93

8 Conclusion & Future Work 95
8.1 Summary . 95
8.2 Outlook . 96

Appendix A Supplementary Texts 111
A.1 Background . 111

A.1.1 Levels of Autonomy . 111
A.2 Related Work . 112

A.2.1 Further Modeling and Representation Approaches 112
A.3 Concept & Design . 113

A.3.1 Geographical Sharding Schema . 113
A.4 Evaluation . 114

A.4.1 Perception Evaluation Analyses . 114

Appendix B Source Code 115
B.1 SQL Queries for Traffic Volume Estimation 115

B.1.1 Query: Geographic Area . 115
B.1.2 Query: Total Road Length . 115
B.1.3 Query: Average Number of Lanes 116

B.2 Ray Casting Intersection Algorithm . 116

Appendix C Evaluation Results 117
C.1 Serialization Benchmark . 117
C.2 MQTT Broker Benchmark . 117

Abbreviations

3GPP 3rd Generation Partnership Project
AD Autonomous Driving
ADAS Advanced Driver Assistance System
API Application Programming Interface
BEV Battery Electric Vehicle
C-V2X Cellular Vehicle-to-Everything
CAM Cooperative Awareness Message
CEN European Committee for Standardization
CP Cooperative Perception
CPM Cooperative Perception Message
DSRC Dedicated Short-Range Communications
ER Entity Relationship
ETSI European Telecommunications Standards Institute
FCEV Fuel Cell Electric Vehicle
GPS Global Positioning System
IMU Inertial Measurement Unit
IoT Internet of Things
ITS Intelligent Transportation Systems
LiDAR Light Detection and Ranging
LOS Line of Sight
LTE Long Term Evolution
NLOS Non Line of Sight
OBU On-Board Unit
P2P Peer-to-Peer
PER Probabilistic Entity Relationship
PHEV Plug-In Hybrid Vehicle
QoS Quality of Service
ROP Reliability of Perception
RSU Road-Side Unit
SLAM Simultaneous Localization and Mapping
V2C Vehicle-to-Cloud
V2G Vehicle-to-Grid
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2P Vehicle-to-Pedestrian
V2V Vehicle-to-Vehicle

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

V2X Vehicle-to-Everything
VANET Vehicular Ad-Hoc Network

Chapter 1

Introduction

This first chapter introduces the interested reader to the subject area of this thesis and

its main purposes and demonstrates the demand for research on the covered topics.

1.1 Motivation

Public and academic interest in Autonomous Driving (AD) has grown tremendously over

the past decade. As a technology that holds great potential to significantly increase

security, efficiency and driver’s comfort and to reduce the number of casualties on the

road by up to 90 % [Mar17a] it is an inevitable step towards an upcoming revolution

in transportation. Although it is still hard to predict when fully self-driving cars will be

publicly available [Fro18], technological progress is being achieved at an increasingly rapid

pace. Primarily enabled through recent advances in Artificial Intelligence, computation

hardware and optical sensor technology, AD systems are continuously becoming more

robust and accurate.

However, perception accuracy of today’s Advanced Driver Assistance Systems (ADASs)

is limited by the range of on-board sensory and a vehicle’s line-of-sight (LOS). To be

able to safely navigate through complex urban environments, an intelligent vehicle might

additionally rely on external observations obtained by surrounding traffic participants,

which it constantly exchanges information with through Vehicle-to-Everything (V2X)

communication. This concept of combining sensor information across multiple agents to

improve perception quality is referred to as Cooperative Perception (CP) and has proven

beneficial to address the problem of limited perception and accuracy [CTYF19, HKS+19].

Its presence is particularly expedient during the market introduction and early adoption

phase of self-driving technology, when V2X-enabled cars will face mixed- or predominantly

human-controlled traffic.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

2 CHAPTER 1. INTRODUCTION

Cooperative Perception is holds enormous potential [GTW15] and research on related

topic is gaining momentum recently [CTYF19, TSG19, CM17, BMW19]. Most current

approaches, presented in chapter 3, rely on decentralized, ad-hoc communication and lack

a uniform, yet flexible format for representing relevant aspects of a traffic scene. This

entails a number of limitations, which are discussed in chapter 4. Moreover, to the best

of my knowledge, no holistic CP system has been presented, yet.

Primary goal of this thesis is to conceptualize, implement and evaluate a comprehensive,

end-to-end Cooperative Perception system using novel techniques. Emphasis is laid on

the design of a reliable and scalable software architecture and an appropriate schema to

model and exchange a shared environment state. Aspects covered in this context include,

among others, the suitability and performance of communication via cellular networks,

approaches to high-level fusion of time-delayed sensor data and the modeling of uncertain

environments.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 2

Background

This chapter introduces to essential topics and concepts in the context of this work and

provides the reader with background knowledge required to follow in later chapters.

2.1 Autonomous Driving

Academia and established industry leaders in automobile manufacturing are vigorously

pushing research on autonomous driving technologies alongside emerging start-up compa-

nies, who try to enter the new market. The challenge of self-driving cars is believed to be

solved within a few decades with high certainty [Fro18], although precise forecasts diverge.

However, most experts agree that the benefits are enormous. Such include decreased risk

of collisions and causalities, higher traffic efficiency, less occupied roads – leading to bet-

ter environmental sustainability – and enhanced driver comfort. New business models –

like robo-taxi- or car-sharing services – are likely to arise as transportation culture will

undergo a shift from individually owned cars towards a sharing economy and Mobility as

a Service concepts. Nonetheless, despite these advantages, AD is also accompanied by a

number of challenges. Most importantly, government regulations and an appropriate legal

framework are vital. Moreover, people are commonly concerned about the accompanying

loss of jobs and the cultural changes in general [SS14].

2.1.1 Current Status

With reference to self-driving cars, a distinction is usually made between five different

levels of autonomy [Kle18], presented in appendix section A.1.1. These levels are used to

uniformly describe vehicles’ capabilities and their degree of independence from a human

driver with regard to the task of driving. This subsection outlines the status quo in

autonomous driving research with regard to these five levels.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

4 CHAPTER 2. BACKGROUND

Many of the major car brands have level 2 vehicles in production today and some already

offer models with experimental level 3 technology [Fro18]. One of the most famous ex-

amples is Tesla’s AutoPilot1, which is able to follow a route on the highway towards a

given destination autonomously, while keeping and changing lanes on its own. Accord-

ing to [Fro18], “China is expected to lead North America and Europe by the number of

automated vehicles sold, whereas technology penetration wise, Europe is expected to lead

the market for autonomous driving globally [by 2025]“. By 2025, 2 million level 4 vehicles

could be sold in Europe, while the first level 5 vehicles could reach production readiness

by 2030 [McK19].

Market revenue for ADAS is expected to double by 2021 to reach $35 billion [McK19].

Accordingly, many OEMs, including General Motors and Volkswagen, invest in acquiring

AD start-up companies to extend their technological know-how to gain competitive ad-

vantages [Kor19b, Kor19a]. In addition, big players from the tech industry and disruptive

mobility suppliers push into the market with self-driving car fleets and shuttle services,

including Uber2, Lyft3 and Waymo4.

On the technological side, hardware manufacturers like Nvidia5 and Qualcomm6 invest in

research on AD- and V2X-specific chips and machine learning hardware. Moreover, online

education platforms like Coursera7 and Udacity8 offer specific courses on AD to target the

increasing demand for experts on these subjects. With Baidu Apollo9 and Autoware.AI10

there are even comprehensive, end-to-end AD platforms available as open-source software

to be used in simulation or installed on a real car.

2.1.2 Sensor Fusion

Additional sensors compared to non-autonomous cars are mainly required for two pur-

poses: perception and localization. The former refers to the vehicle acquiring a detailed

model of its surrounding, including type, position and speed of other traffic participants,

traffic light state and more. The latter means to accurately find the vehicle’s own po-

sition on a map. Current Level 2 vehicles already have a multitude of different sensors

1https://www.tesla.com/autpilot

2https://www.uber.com

3https://self-driving.lyft.com/

4https://www.waymo.com/

5https://developer.nvidia.com/drive

6https://www.qualcomm.com/invention/5g/cellular-v2x

7https://www.coursera.org/lecture/machine-learning/autonomous-driving-zYS8T

8https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013

9https://github.com/ApolloAuto/apollo

10https://gitlab.com/autowarefoundation/autoware.ai

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://www.tesla.com/autpilot
https://www.uber.com
https://self-driving.lyft.com/
https://www.waymo.com/
https://developer.nvidia.com/drive
https://www.qualcomm.com/invention/5g/cellular-v2x
https://www.coursera.org/lecture/machine-learning/autonomous-driving-zYS8T
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://github.com/ApolloAuto/apollo
https://gitlab.com/autowarefoundation/autoware.ai

2.1. AUTONOMOUS DRIVING 5

and [Fro18] predict that future Level 5 cars might even have between 28 and 32 different

sensors.

2.1.2.1 Sensors

For localization, mainly GPS (Global Positioning System) and IMU (Inertial Measure-

ment Unit) sensors are used. The latter usually consists of a combination of accelerometers

and gyroscopes and helps to locate the vehicle even when no GPS connection is available.

Occasionally, laser sensors (LiDAR) and radar technology are used in addition for more

accurate positioning. While some approaches tend to rely on detailed, high-definition

maps for even more precise positioning, others oppose the necessity of a car to know

its position at centimeter-level accuracy [FH19]. When using high-precision sensory, the

sole localization problem is often extended to Simultaneous Localization and Mapping

(SLAM).

For perception, most current approaches rely on (stereo) cameras, ultrasound sensors

and radar. Some manufacturers consider LiDAR crucial in addition, while others, e.g.

Tesla and Nissan [McK19], strictly oppose its use for perception or localization tasks.

Comma.ai11 even followed the approach of solely employing cameras for perception, ar-

guing that, given the human example, decent driving performance can be achieved with

only optical sensory.

2.1.2.2 Fusion

Sensor Fusion “is the combining of sensory data or data derived from sensory data

such that the resulting information is in some sense better than would be possible when

these sources were used individually“ [Elm02]. This also includes data normalization and

temporal alignment.

Chen et al. [CTYF19] differentiate between three levels (depicted in fig. 2.1) on which

sensor fusion can happen, whereas the data subject to a fusion process is increasingly

abstract at higher levels.

11https://comma.ai

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://comma.ai

6 CHAPTER 2. BACKGROUND

Low Level Fusion

Feature Level Fusion

High Level Fusion A
m
ount

of
D
ata

A
bs

tr
ac

tn
es

s

Figure 2.1: Levels of Sensor Fusion

� Low Level Fusion: Raw sensor data is subject to the fusion process. Input might

be LiDAR point clouds, RGB camera images, etc. Commonly used algorithms are

Kalman filters, Bayesian networks and, more recently, also Neural networks.

� Feature Level Fusion: Before fusing, certain features are extracted from the raw

data. For instance, if some component within the AD stack is responsible for lane

keeping, lane markings could be extracted from raw RGB images for this purpose,

e.g. using a Canny filter. Input might either be raw sensor data or the outputs from

a subsequent low-level fusion step.

� High Level Fusion: High-level fusion operates on the level of objects, which are

extracted from sensor data. In the context of Cooperative Perception, these objects

are usually other traffic participants with their respective properties. Input will

usually be the outputs of some form of preceding low- or feature-level fusion.

As explained in greater detail in later chapters, this work will mostly deal with high-

/object-level fusion.

2.1.3 Autonomous Driving Pipeline

As stated by [CML+18] and [FH19], there are two opposing sides from which the problem

of autonomously driving a car could be approached. The first one is a modular system,

in which a multitude of different components and sensors perform various kinds of tasks

to create a model of the environment and use it for planning and control. This is the most

widely used approach and subject of the majority of today’s research on AD. However,

especially recent advances in the field of deep-learning gave rise to a second paradigm:

end-to-end techniques. Such attempt to “train function approximators to map sensory

input to control commands“ [CML+18].

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

2.1. AUTONOMOUS DRIVING 7

Both strategies come with their own advantages and downsides, but since the modular

approach is more transparent and well understood, it is the only one to be subject of

further discussion.

Following a modular approach, the process from sensing the environment to controlling a

self-driving car can be categorized into steps of a pipeline, that is repeatedly run.

Localization Perception Prediction Planning Control

Figure 2.2: Autonomous Driving Pipeline

1. Localization: Often implemented as a combined Simultaneous Localization and

Mapping (SLAM) problem, goal is to determine the vehicle’s current position on a

map with high precision. Common algorithms and sensors used in this step were

described in section 2.1.2.

2. Perception: A crucial step towards AD is to perceive a vehicle’s current envi-

ronment, where perception is defined as the “process of maintaining an internal

description of the external environment“ [CD93]. That includes to recognize, clas-

sify and locate other traffic participants and their static and dynamic properties as

well as any other surrounding obstacles. In this thesis, the perception step is of

primary interest. Common algorithms and sensors used in this step were described

in section 2.1.2.

3. Prediction: Prediction builds on the outcome of the preceding perception step and

aims to estimate a future state θ̂t+1 of the vehicle’s surrounding environment, given

an observation θt at present time. For instance, the future trajectory of a nearby

car might be approximated. The problem of tracking objects over multiple frames

/ multiple repeated executions of the AD pipeline can also be considered part of the

prediction step.

4. Planning: Given the vehicle’s own current position as well as estimations for the

future state of all other nearby traffic participants, the planning step aims to find

an appropriate path that satisfies certain requirements and minimizes given cost

metrics. For instance, given a global target position, a collision-free trajectory

might be found that is physically feasible, compliant with traffic rules, minimizes

jerk (the accumulated magnitude of the acceleration change [PCY+16]), and max-

imizes the average distance to all obstacles. Planning can be divided into the

sub problems of (1) Routing, (2) Behavior Planning (e.g. choose an action

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

8 CHAPTER 2. BACKGROUND

a ∈ {“keep lane“,“change lane“,“stop“,“accelerate“, ...}) and (3) Motion Plan-

ning. (3) again, usually is solved in two steps, namely (3.1) Path Planning

and (3.2) Trajectory Planning. Problem (3.1) is considered PSPACE-complete

[PCY+16]. Commonly used algorithms include, but are not limited to A* and RRT*.

5. Control: Eventually, planning output needs to be translated into actual brake-

throttle- and steering commands to physically control the vehicle through its actu-

ators.

2.2 Vehicle-to-X Communication

Vehicle-to-X, or Vehicle-to-Everything, communication generally describes the Internet

Of Things (IoT) approach of having (autonomous) vehicles exchange information with

other actors in their local environment through messaging.

2.2.1 Application Types

A V2X communication system can have different constellations, depending on what par-

ticipants are involved.

Figure 2.3: Types of Vehicle-to-Everything Applications [5G 16]

� Vehicle-to-Vehicle (V2V): The ability of cars to communicate with each other.

This is among the most common instantiations of Vehicle-to-Everything communi-

cation.

� Vehicle-to-Infrastructure (V2I): The ability of cars to communicate with any

type of traffic infrastructure. Most commonly, vehicles bilaterally exchange informa-

tion with traffic lights to optimize traffic flow. Further examples include automated

fare collection or emergency vehicles path cleaning.

� Vehicle-to-Pedestrian (V2P): The ability of cars to indirectly communicate

with nearby pedestrians, mainly used to prevent collision. Pedestrians need to

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

2.2. VEHICLE-TO-X COMMUNICATION 9

be equipped with smartphones or wearable devices to participate in the communi-

cation.

� Vehicle-to-Network (V2N): The ability of cars to communicate with network

services over a macro cell, as opposed to communication to smaller RSUs in the

case of V2I [AzPA+19].

� Vehicle-to-Grid (V2G): The ability of cars to communicate with entities of the

electrical power grid. With this approach, “[...] plug-in electric vehicles, such as bat-

tery electric vehicles (BEV), plug-in hybrids (PHEV) or hydrogen fuel cell electric

vehicles (FCEV), communicate with the power grid to sell demand response ser-

vices by either returning electricity to the grid or by throttling their charging rate.“

[Wik19e]

� Vehicle-to-Cloud (V2C): The ability of cars to communicate with all kinds of

cloud services, e.g. to get real-time traffic information, find parking spots, receive

over-the-air software updates from its vendor or consume multi-media entertain-

ment.

Especially V2I and V2G patterns will likely emerge as “Smart Cities“ establish in the

near future. Even today, the first V2I solutions are already in place. For instance, the

U.S. city of Tampa, Florida has installed the Connected Vehicle Pilot system, in which

cars communicate with traffic lights and other RSUs to optimize traffic flow [Tam18].

Another use case for V2I today is ambulances communicating with traffic lights to enable

a green wave so they reach their destination quicker [Isr19]. Moreover, the German

Federal Highway Research Institute (Bundesanstalt für Straßenwesen) provides a central

Marketplace for Mobility Data (MDM)12 as a commercial web service to bring together

potential consumers and producers of different kinds of mobility- and traffic-related data.

Such include measurements from traffic and environment detectors, parking information,

information on road works, hazards and incident alerts, petrol station prices and more.

Given the above classification it is worth noting that, in a strict sense, V2V, V2I and V2P

only describe direct communication between the participants (e.g. car and car or car and

RSU). If there is an intermediary, like a cell tower, involved, proper terminology is to speak

of, for instance, Vehicle-to-Network-to-Vehicle (V2N2V) [5G 19b]. However, for the sake

of simplicity, terminology in this thesis will neglect the presence of an intermediary, i.e.

V2N2V (and similar) will be named just V2V.

This thesis mainly addresses V2V and V2I use cases.

12https://www.mdm-portal.de/?lang=en

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://www.mdm-portal.de/?lang=en

10 CHAPTER 2. BACKGROUND

2.2.2 Communication

There are two types of V2X communication technology depending on the underlying tech-

nology being used, namely Dedicated Short-Range Communications (DSRC) and Cellular-

V2X (C-V2X)-based approaches. Each of them imply different communication patterns.

Today, DSRC is more common. It usually relies on WiFi-based communication using

the IEEE 802.11p standard and implies Vehicular Ad-Hoc Networks (VANETs) as com-

munication topology. In the case of VANETs, vehicles and infrastructure devices (or

road-units (RSUs)) in range form pairwise connections among each other and build up

a peer-to-peer (P2P) network. Besides direct message exchange, VANETs usually also

support multi-hop communication to reach out to further distant actors beyond WiFi

range and line-of-sight. The European version of DSRC, standardized by CEN13, is also

referred to as ITS-G5 to avoid confusion.

In 2016, a first specification of C-V2X technology using Long Term Evolution (LTE)

networks was published by 3GPP14. Especially with the upcoming establishment of 5G

networks, whose characteristics are shown in section 2.5, C-V2X is becoming increasingly

attractive as dramatically improved latency and throughput allow for high-performance

applications. With C-V2X, both P2P-based- as well as centralized, wide-area communi-

cation are possible.

2.3 Cooperative Perception

2.3.1 Theory

Although perception accuracy and reliability have greatly improved over time, current

systems still fail to completely comprehend complex situations occasionally. This may

lead to incorrect decisions and potentially to collisions. Consequently, relying on local

sensors only is insufficient under certain circumstances, especially in situations with very

limited line-of-sight (LOS).

Using V2X communication, next generation vehicles might be able to extend their percep-

tion range vastly [CTYF19, HKS+19]. More precisely, they might be enabled to exchange

information about their own state in combination with sensor data or a higher-level local

environment model. Connected cars could become an additional, virtual sensor to each

other. Accordingly, cooperative (or collective) perception can be viewed as a sensor fusion

problem, whereas a “cooperative“ sensor network is characterized as such that “[...] uses

the information provided by two independent sensors to derive information that would not

13https://www.cen.eu

14https://www.3gpp.org

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://www.cen.eu
https://www.3gpp.org

2.3. COOPERATIVE PERCEPTION 11

be available from the single sensors.“ [Elm02]. The different fusion levels introduced in

section 2.1.2 apply analogously with respect to the data being shared among CP-enabled

vehicles (e.g. raw sensor measurements or high-level objects).

However, as already found by [GTW15], a drawback of CP – as with any other system

relying on the presence of a network – is the network effect: a CP system is only useful

once the number of participants exceeds a certain critical mass. Accordingly, for CP to

succeed, it is crucial to follow a rather aggressive market penetration strategy during its

introduction. Preferably, different OEMs would collaborate to build one unified system.

2.3.2 Use Cases

Cooperative Perception is expected to bring two essential improvements. First, vehicles’

field-of-view is extended virtually (Non Line-of-Sight Sensing [NLOS]). Second, con-

fidence for observations within an area, that is overlapped by the perception range of

two or more connected cars, can be improved through “voting“.

(a) Opposing traffic out of sight (b) Vehicle behind a curve

Figure 2.4: Exemplary Non Line-of-Sight Scenes [Qua17]

Figure 2.4 depicts two traffic situations in which CP can greatly help to improve safety.

In fig. 2.4a, the leftmost vehicle is about to overtake, but can not see the opposing traffic,

because its sight is restricted by the vehicle in front. However, since both other cars are

broadcasting their own state and their perceptions, it is virtually moved into range of

sight. Similarly, in fig. 2.4b, the blue car can only recognize the stopped car once it has

already passed the curve and might have to brake sharply without CP.

Since Cooperative Perception can be seen as a subset of V2X in general, all known benefits

with V2X systems can be incorporated into a CP system as well. Those include additional

safety through intent announcements and automated emergency brake lights as

well as traffic flow optimization through situation-aware signal phase timing [5G 19a].

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

12 CHAPTER 2. BACKGROUND

Figure 2.5: Architecture of Edge Computing [BSKH19]

2.4 Edge Computing

Edge computing is an architecture design pattern for distributed software applications

and schematically depicted in fig. 2.5. “In general, [it] [...] is the process of performing

computing tasks physically close to target devices, rather than in the cloud or on the device

itself“ [BSKH19]. Usually, one or more additional layers of computation devices (edge

nodes, edge gateways) are introduced as intermediate “hops“ between end-device and the

cloud. This is especially beneficial in IoT contexts, where devices are comparatively weak

in terms of computational capabilities, while the amounts of gathered data can quickly

become enormous. Accordingly, on the one hand, high load is taken from those low-

power devices and, on the other hand, latency between device and analytics server is kept

small. In the context of Cooperative Perception, low latency is especially crucial, so edge

computing appears to be a promising pattern.

Besides having stronger hardware (and therefore higher compute capacity) for data

processing tasks compared to the end-devices themselves and better latency compared

to using cloud infrastructure, edge computing comes with additional advantages. Through

a higher degree of distribution reliability, scalability and robustness can be improved.

Moreover, by employing edge servers, costs can be reduced and security can be increased,

especially when dealing with privacy-sensitive applications and data.

Recently, another term for a similar concept has established: fog computing. While

boundaries between edge- and fog computing are blurry, one could argue that fog nodes

could make up an additional layer of abstraction and are placed between edge- and cloud

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

2.5. 5G CELLULAR NETWORKS 13

nodes. In the example of a large IoT-enabled factory, edge nodes could exist within

the local area network of each shop floor, while one or more fog nodes are located in a

company-internal micro data center. Both of them would usually have the task to analyze

and process data from the previous step to pre-process, filter and summarize it before it

eventually gets send into the cloud.

In the context if this thesis, an additional layer of indirection is not considered necessarily

and, therefore, the terms are used interchangeably for the sake of simplicity.

2.5 5G Cellular Networks

5G stands for the fifth generation cellular network standard and is the successor of 4G,

or LTE. It may be operated on a variety of different spectrums, ranging from low-band

(˜600 Mhz) over mid-band (2.4 to 4.2 GHz) to millimeter waves in the high-band spectrum

ranging from 24 to 72 GHz. Which spectrum is used depends mainly on the carrier and has

direct influence on communication range and speed. While millimeter wave frequencies

will mainly be used in North America, Europe will rely on the low- and mid-range bands.

In networks based on the most widely used mid-band spectrum, average throughput

is between 100 and 400 Mbit
s

, while it can increase up to 2 Gbit
s

with millimeter waves

[Wik19a].

Typical round-trip times (RTT) were measured to range from 25-35 ms and might be

improved to 10-20 ms when employing an Edge Node (see section 2.4) close to a cell tower

[Wik19a]. Under lab conditions, even less than 1 ms latencies were observed.

Like 4G, 5G is based on network cells between which moving mobile clients are handed

over. Generally, network cells are smaller with 5G than with 4G, especially in densely

populated areas. Depending on which frequency band is used, cell towers may need to be

placed every few hundred meters to achieve full coverage.

2.6 Geo Tiling

Geo tiling, or hierarchical binning, is a strategy to represent, uniquely identify and index

geospatial data. The idea is to “store a geo-database such that data for a specific location

can be retrieved quickly, by dividing the data up by location, partitioning the world into

tiles“ [Ope18].

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

14 CHAPTER 2. BACKGROUND

2.6.1 QuadKeys

Figure 2.6: Geo Tiling with QuadKeys [Ope18]

One implementation of geo tiling is QuadKeys, proposed by [Sch18]. Its idea is to recur-

sively split the two-dimensional Mercator projection of the world map into four square

tiles. Assuming an earth circumference of 40 000 km, every tile would be approximately

20 000 km by 20 000 km in size at the first level. Each of these tiles is split into four tiles

again, while their size is halved in every iteration. Continuing this way, arbitrary precision

can be reached in theory.

As depicted in fig. 2.6, every tile is uniquely identifiable by a number (or a text string)

when enumerated recursively. The length of that string, and therefore the maximum

spatial precision, is only limited by the size of the data types used during its calculation.

When using 64-bit float variables, the maximum level is 54. At level 30, for instance,

ground resolution at the equator is already 3.7 cm2, while at level 54 it is 2.22*10-9 cm2.

In the course of this thesis, QuadKeys are used to uniquely and uniformly reference

geographical locations.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 3

Related Work

This chapter aims to provide the reader with an overview of current research and state-

of-the-art in the field of cellular V2X communication and cooperative perception.

In accordance with the multiple goals of this thesis introduced in chapter 1 and chapter 4,

related work can, in the broadest sense, be separated into three sections. On the one hand,

relevant publications about environment modeling, traffic scene representation

and message exchange formats for cooperative perception are examined in section 3.1.

Secondly, an overview of existing CP systems is presented and different approaches are

discussed in section 3.2. Finally, related work on cellular-based V2X is presented.

3.1 Environment Modeling & State Representation

An essential requirement for high-level CP is to have a uniform way to first model the

current environment state and second represent that model in form of exchangeable data

structures. It is worth noting that this is not necessarily required in the case of low-

or feature level CP (see section 2.1.2), where either raw sensor readings or only basic

information is shared.

An appropriate state representation should, at a minimum, include information about

position and dynamics of the sender vehicle and all other surrounding traffic participants.

For the former, the European Telecommunications Standards Institute (ETSI) has defined

a standard for so called Cooperative Awareness Messages (CAM) [Eur11], which is

used by Rauch et al. [RKD11]. It includes, among others, the sender vehicle’s type, its

dimensions, position, heading, speed and acceleration as well as respective confidences.

To share information about surrounding obstacles in addition, the simplest way is to send

object lists that include such. For this purpose, Rauch et al. [RKD11] defined the

Cooperative Perception Message (CPM) in 2011. Since 2017, the ETSI is working

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

16 CHAPTER 3. RELATED WORK

on a similar specification with the same name [Eur19]. It includes an object list of up

to 255 traffic participants [TSG19] with attributes similar to those included in CAMs.

However, none of both specifications is publicly accessible, yet. Therefore, they can not

serve as a basis for this thesis.

Despite pure object lists, another way to share the perception of one’s local environment

is to model it in the form of occupancy grids or driveable area maps [Pie13]. However,

to the best of my knowledge, no CP solution exists that relies on exchanging occupancy

grids.

Kohlhaas et al. [KBSZ14] first introduced the concept of semantic scene represen-

tation (or semantic state representation), which is further advanced by Wolf et al.

[WKW+18] to “combine low level attributes with high level relational knowledge in a gener-

ic way“. They explain several advantages of including semantic, relational information

among entities over exchanging plain object lists or occupancy grids. In [PAKZ18], seman-

tic modeling is picked up again and combined with the idea to use Probabilistic Entity

Relationship models for state representation under uncertainty. For none of these three

approaches did the authors share a complete meta-model or ontology for traffic scenes.

A few further approaches to modeling and state representation in the context of automated

driving are mentioned in appendix section A.2.1.

In summary, the previously mentioned takes on modeling and representation of road

scenes constitute great building blocks for a CP system. This work aims to combine some

of their conceptions to come up with a holistic way to (1) model a traffic scene by all

relevant aspects, (2) represent it in an appropriate format and (3) define in what form to

efficiently transfer it over the wire (or wirelessly).

3.2 Cooperative Perception

Different approaches to design a cooperative perception system have already been pub-

lished in the past, each of them placing a different focus.

An early take in the field of V2X communication and – in the broadest sense – also

cooperative perception was presented by Olaverri-Monreal et al. [OMGF+10]. Based on

VANETs, they propose a see-through system that allows a driver to virtually perceive the

road in front of a large obstacle, e.g. a truck, blocking her sight. To achieve this, DSRC

is used to exchange raw camera images between connected participants. However, this

approach is somewhat special in a way that it define only an driver assistance system (or

ADAS) rather than a CP-system for driverless cars in the sense of this work.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

3.2. COOPERATIVE PERCEPTION 17

Secondly, as part of the Ko-PER research project1 the authors of [RKD11] propose a

system architecture based on track-to-track fusion, in which local- and global fusion

is performed in separate steps to solve the problem of correlated data. Communication

is based on IEEE 802.11p and utilizes CAMs and self-defined CPMs, for which they dis-

tinguish further between iCPMs (infrastructure) and vCPMs (vehicle), depending on the

type of sender. Primary objective of their studies is to get detailed insights about latency

and transmission range in CP scenarios. Eventually, the system is evaluated in both a

laboratory and a real-world setup involving two cars. While their findings are essential for

understanding performance-relevant parameters in V2X setups, the evaluation might have

been conducted for more realistic scenarios with many traffic participants in addition.

Complementing their previous work in the field of CP, the authors of [RKRD12] inten-

sively study methods for temporal and spatial alignment of cooperative perception

messages. A motion model is used to predict observations to current time on the receiver

side. In addition, they compare two types of possible transformations to accurately esti-

mate an object’s spatial position as combination of local- and received observations. While

[RKD11] is concerned with communication aspects, [RKRD12] mainly addresses fusion.

Findings from both works are well qualified to be incorporated into a more comprehensive

solution.

While the above studies focus on techniques and parameters within the process of CP

itself, [LKC+13] investigates the impact of CP on motion planning tasks. It is suggest-

ed to use local observations for short-term navigation and combined, global observations

for longer-term planning. Therefor, a cost map is continuously re-constructed, that ad-

ditionally includes weights corresponding to the underlying observations’ reliability of

perception (ROP). Instead of IEEE 802.11p, their connected vehicles use convention-

al WiFi (802.11n) for P2P communication. Their custom state model does not include

any additional information except the probability (confidence) for the quadruple state

X ∈ {χcorrect, χopposite, χoffroad, χroadobst} of a certain location being driveable or not. As

a result of evaluating planning quality with respect to trajectory smoothness and accu-

mulated cost they found CP to be beneficial.

Another evidence for the positive effect of CP on path planning is given by the authors’

subsequent publication [KCQ+13]. This complementary work mainly addresses the prob-

lems of vehicle identification, delay compensation and merging occupancy grid

maps, which are used as an environment model. In contrast to previously mentioned

systems, most of which either use high- or feature level fusion, [KCQ+13] is based on

low-level fusion, i.e. raw sensor observations (LiDAR and camera) are exchanged.

The system design proposed by Calvo et al. [CM17] is the most comprehensive one in this

1http://ko-fas.de/41-0-Ko-PER---Kooperative-Perzeption.html

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

http://ko-fas.de/41-0-Ko-PER---Kooperative-Perzeption.html

18 CHAPTER 3. RELATED WORK

collection, as it presents a 3+1 level CP architecture to be used as an obstacle avoidance

framework. DSRC-based V2V communication with IEEE 802.11p is used to exchange

participants’ immediate local surrounding. Long-range, cellular, LTE-based V2I com-

munication facilitates the exchange of more global observations to be used for high-level

tasks like traffic re-routing. In addition, their concept also includes I2I communication

between RSUs. In comparison to previously mentioned approaches, which mostly cover

certain CP-related aspect, the present paper focuses on conceptually outlining a system

architecture. However, neither an environment model nor a concrete state representa-

tion or message format are presented and it is not made clear what kinds of information

are exchanged at all.

[CTYF19] is the most recent publication in the field of CP and relies on low-level fu-

sion of 3D LiDAR point clouds. After motivating their approach and outlining several

accompanying challenges, the author present their DSRC-based system design. Since

raw sensor data is sent, the design does not include the specification of an environment

model. Instead, particular emphasis is laid on (1) the fusion of point clouds, (2) deep-

learning-based object detection and (3) optimization of network utilization, i.a.

by determining a certain region of interest (ROI) for every frame. As a consequence

of their evaluation, the authors find that the effective sensing area can successfully be

expanded with CP to capture previously unknown obstacles.

One of the most comprehensive and closely related projects is Ko-HAF [HKS+19], spon-

sored by the German Federal Ministry of Education and Research. As a holistic, V2V

solution it comprises, among others, message- and format specification and the definition

and implementation of an overall system architecture. As a “standard for the exchange

of information between vehicle sensor and back-end solutions“ they present SENSORIS

as an extension to the Sensor Data Ingestion Interface (SDII) format specification by

HERE Maps2. The presented system architecture involves their so called Safety Server

as a central software component to be responsible for data consolidation, fusion and

redistribution. Participant vehicles communicate with it via cellular (LTE) network and

exchange binary serialized messages via HTTP and MQTT. However, while structurally

and technically very similar, their approach is not meant to be used for CP in the sense

of this work. Instead of aspiring high-precision collaborative awareness and understand-

ing of dynamic traffic scenes for driverless cars, they rather attempt to collaboratively

build and update a global, “learning“ map for ADAS. In other words, they aim for

collaborative SLAM, to some extent. Accordingly, the system’s focus is on exchanging

static road information – especially road signs and lane topology and markings – on the

2https://developer.here.com/olp/documentation/sdii-data-spec/topics/introduction.ht

ml

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://developer.here.com/olp/documentation/sdii-data-spec/topics/introduction.html
https://developer.here.com/olp/documentation/sdii-data-spec/topics/introduction.html

3.3. CELLULAR V2X COMMUNICATION 19

one hand and traffic events and incidents (like construction zones, congestions, stopped

cars, etc.) with temporal validity on the other. It is not designed for high dynamicity

and does not support to exchange information about surrounding traffic participants.

3.3 Cellular V2X Communication

With respect to cellular V2X communication – as opposed to DSRC-based solutions –

recent standards are being developed by 3GPP most notably with the publication of

[3GP19].

In addition, [Qua18] conducted comprehensive experiments to measure the performance

of LTE and 5G networks with respect to Cooperative Perception and found 5G to be well

suited for these use cases.

This is complemented by the results of [5G 16], whose authors found cellular, 5G-based

communication to be superior over DSRC / ITS-G5 for CP tasks.

3.4 Summary

Great research has already been contributed to the fields of traffic scene modeling, environ-

ment state representation for autonomous driving, cooperative perception and (cellular-)

vehicle-to-everything communication. However, several limitations exist with current ap-

proaches, that are discussed in greater detail in chapter 4. Most notably, the majority of

existing CP solutions in literature rely on DSRC-based VANET communication topologies

and on-vehicle data fusion, though the rise of high-performance cellular networks allows

for entirely new concepts and system design patterns. Accordingly, this work builds up

on previous findings and investigates new possibilities enabled through technological ad-

vances to design a holistic, modern system.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

20 CHAPTER 3. RELATED WORK

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 4

Problem Analysis

This chapter first outlines limitations of current approaches in the field of cooperative

perception and motivates this work’s contributions to overcome them. Second, goals and

conceptual requirements are presented as a guideline for later system design. Finally, it

is made clear which aspects are in or out of scope of this thesis.

4.1 Limitations of Prior Work

Existing work in the field of cooperative perception, as presented in chapter 3, faces several

limitations.

One of them is a lack of comprehensiveness. While the shown studies each focus on

certain aspects of a CP system, to the best of my knowledge, no solution was presented

that takes both a macro and micro perspective, i.e. that is holistic as well as concerned

with details about all individual aspects and parts. Also, not all previous projects provide

an actual implementation of their proposal or conduct realistic simulations.

Moreover, no standardized, uniform, yet expressive environment model and state

representation for traffic scenes exists in literature, yet. While the efforts taken by [Eur19]

to specify a standard for CPMs are promising, at this point, there is nothing like that

available to be used in CP systems. Current models are either incomplete, proprietary

and non-transparent or not suitable for interoperability between heterogeneous systems.

Another significant issue arises from limitations regarding scalability of VANET-based

cooperative perception systems.

One essential challenge is the limited throughput and range of DSRC networks, which

are usually based on IEEE 802.11p technology. [5G 18] found DSRC to be 90 % reliable

at 675 m distance between sender and receiver in line-of-sight scenarios and 375 m in

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

22 CHAPTER 4. PROBLEM ANALYSIS

non-line-of-sight situations. However, Mangel et al. [MMKH11] showed that reception

can significantly degrade under certain conditions. As a comparison, 5G showed 90 %

reliability at 1175 m and 875 m, respectively. Although a universally valid statement about

DSRC and 5G range and reliability can barely be made, since they heavily dependent on a

variety of different influence factors, it can still be concludes that 5G technology generally

yields better performance.

Measurements concerning maximum throughput with IEEE 802.11p range from 2.7 Mbit
s

to 11 Mbit
s

per channel [CBW+16, WDT+13]. Average latency in typical CP use cases was

measured by [RKD11] to range from 3 ms to 22 ms for small message sizes (∼ 1.3 kB).

Despite limited performance of DSRC, current CP systems face another problem, which

is related to network utilization with VANET topologies. Usually, clients in these

networks establish complete pair-wise P2P connections among each other. Consequently,

the number of connections is given as N = n(n−1)
2

according to Metcalfe’s law, as opposed

to N = n when using a topology that involves a central server instance.

Due to these restrictions, recent publications tend to favor upcoming 5G technology

[Bri19, 5G 16] over DSRC. For instance, [WL17] claims that “development of V2X services

in 5G makes much sense, and holds promises for the future“.

A more detailed comparison between DSRC and 5G is presented in section 5.2.

4.2 Traffic Volume Estimation

This paragraph is to be seen as an excursion as its findings are a prerequisite for following

sections. In order to formulate the scalability requirements for a cooperative perception

system in section 4.3, a quantification of common traffic volumes is required. More precise-

ly, this section aims to determine an average-case approximation of how many concurrent

vehicles will usually be situated within a certain geographical area. Focus is placed on

urban, inner-city scenarios.

4.2.1 Methodology & Results

An average-case value for the number of concurrent vehicles within 1 km2 of urban area

is to be determined. For its calculation, a heuristic two-step procedure is employed.

Although based on many assumptions, this rough approximation is sufficient for this

work’s purpose as there is no need for a very precise quantity.

The city of Berlin is used as an example, as suitable open data is available for it. Open-

StreetMap data files for Berlin1 serve as a basis to compute road network length and

1http://download.geofabrik.de/europe/germany/berlin.html

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

http://download.geofabrik.de/europe/germany/berlin.html

4.2. TRAFFIC VOLUME ESTIMATION 23

average number of street lanes. They were fed into a PostgreSQL2 database with the

PostGIS3 extension using osm2pgsql4 and queried using SQL.

4.2.1.1 Assumptions

The following assumptions are made.

1. Average inner-city driving speed is 24 km
h

[For08]

2. Vehicles keep a distance of s [m] = v [m
sec

] ∗ 1.8 [sec] = v [km
h

] ∗ 0.5 [h] [Wik19d]

3. An average vehicle’s length is 4.2 m

4. The area of Berlin Mitte is 21.25 km2 (see appendix section B.1)

5. The total length of the road network in Berlin Mitte is 159.13 km (see appendix

section B.1)

6. The average number of driving lanes in Berlin Mitte is 2.4 (see appendix sec-

tion B.1)

4.2.1.2 Step 1: Worst-case density at maximum utilization

First, a scenario is presumed in which the inner-city traffic network is at maximum uti-

lization, that is, all driveable roads are completely occupied.

Given that every car drives the assumed average speed and keeps its minimum safety

distance, the virtual length of every car is:

lvirt = 4.2 m + (24 km
h
∗ 3.6−1 ∗ 1.8) = 4.2 m + 12 m = 16.2 m = 0.0162 km

In addition, the total length of driveable lanes is:

lroad =
159.13 km

21.25 km2 ∗ 2.4 = 17.97 km
km2

Accordingly, the maximum possible amount of concurrent cars within an area of 1 km²

is:

Nmax =
17.97 km

0.0162 km
= 1109 [cars/km2]

2https://postgresql.org/

3http://postgis.net/

4https://github.com/openstreetmap/osm2pgsql

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://postgresql.org/
http://postgis.net/
https://github.com/openstreetmap/osm2pgsql

24 CHAPTER 4. PROBLEM ANALYSIS

4.2.1.3 Step 2: Normalization with estimated average load factor

While the previous value of 1109 concurrent connected cars per km2 is a worst-case as-

sumption, Berlin’s latest traffic census [Ver14] can be used as ground truth for estimating

an average load factor. Using this load factor, the maximum, worst-case assumption

can be scaled down to an estimated average value.

Figure 4.1: Traffic Census Map for Berlin Mitte [Ver14]

Figure 4.1 depicts an excerpt from the traffic census map, where the red rectangle marks

the 21.25 km2 area used in this evaluation. Red circles indicate five measuring points that

were randomly selected for calculation of the average utilization factor. For each of these

points a daily vehicle count is given as Ni in vehicles
24h

, alongside the number of driving lanes

mi at that location.

N1 = 32, 000; m1 = 6

N2 = 18, 000; m2 = 2

N3 = 16, 000; m3 = 2

N4 = 8, 000; m4 = 2

N5 = 24, 000; m5 = 4

Given the above assumptions for speed, vehicle length and safety distance, the time that

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

4.2. TRAFFIC VOLUME ESTIMATION 25

one vehicle takes to pass a measurement point can be calculated:

∆tpass =
0.0162 km

24 km
h

= 0.000 675 h = 2.43 s

Accordingly, the maximum number of vehicles that can potentially pass a measuring point

in 24 hours depend on the number of lanes at that measuring point and is given as:

Npot i =
24 h

0.000 675 cars/h
∗mi

For every point, its load- or utilization factor can be calculated as the fraction of actually

measured cars and maximum potential cars:

λi =
Ni

Npoti

For the above points it follows

Npot 1 = 213, 333; λ1 = 15%

Npot 2 = 71, 111; λ2 = 25.3%

Npot 3 = 71, 111; λ3 = 22.5%

Npot 4 = 71, 111; λ4 = 11.25%

Npot 5 = 142, 220; λ5 = 16.9%

and an average load factor of λavg = 18.19%.

It can be concluded that, given the average load factor, an optimistic estimate for the

average number of concurrent cars in Berlin Mitte might be given by:

Nnorm = Nmax ∗ λavg = 1109 cars/km2 ∗ 0.1819 = 202 cars/km2

.

4.2.2 Conclusion

Assuming that all cars were connected and participating in cooperative perception, Nnorm =

202 cars/km2 is the amount of vehicles the system should, at minimum, be able to han-

dle. For simplicity, this neglects the potential participation of pedestrians, cyclists, road

infrastructure, etc. in CP. A more pessimistic value is given by Nmax = 1109 cars/km2.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

26 CHAPTER 4. PROBLEM ANALYSIS

4.3 Goals & Requirements

Overall goal of this thesis is to propose, implement and evaluate a cooperative percep-

tion system, that facilitates the improvement of connected, autonomous vehicles’ average

perception quality. However, it is crucial that CP is always only used as extension for an

already working, reliably and secure AD system.

The presence of cooperative perception must under no circumstances be re-

quired for the proper functioning of a self-driving car.

The presented architecture is supposed to overcome previous systems’ limitations dis-

cussed in section 4.1 and be able to handle, at minimum, the average expected load

determined in section 4.2. Therefor, functional (F) and non-functional (NF) require-

ments are defined for both parts of this work, namely environment modeling on the one

hand and overall system architecture on the other.

4.3.1 Environment Modeling & State Representation

One milestone of this work is to propose a suitable meta model for traffic scenes alongside

an appropriate representation format, both of which are expected to fulfill the following

requirements.

F-M1: Expressiveness. The model should be expressive enough to capture all relevant

aspects about a traffic scene, that are necessary to re-construct it with sufficient

precision.

F-M2: Openness. The model should be open to include information on different levels

of abstraction and allow for extension.

NF-M1: Universality. The model should be universal in such that it is independent of

type (e.g. vehicle, pedestrian, RSUs, ...) and sensory of its observer and the

involved fusion algorithms.

NF-M2: Perspicuity. The model should be globally valid and understandable, with-

out requiring additional information about the observer, e.g. its local reference

coordinate frame.

NF-M3: Compactness. The model should be efficient in terms of size.

4.3.2 Cooperative Perception System

The second major concern of this work is to propose an end-to-end solution for a co-

operative perception system architecture and implementation, that fulfills the following

requirements.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

4.4. SCOPE 27

F-C1: Holism. The system should enable for end-to-end cooperative perception, in-

cluding message exchange and sensor fusion, for different network patterns, in-

cluding V2V, V2I and V2P.

NF-C1: Range. The system should enable for communication over at least 600 m in

NLOS scenarios.

NF-C2: Scalability. The system should be able to handle at least 202 concurrent network

participants per km2 (see section 4.2) at an update frequency of 10 Hz (considered

sufficient by [RKD11, TSG19])

NF-C3: Efficiency. The system should aim for low latency and low on-vehicle computa-

tion load.

NF-C4: Reliability. The system should avoid to have a single-point-of-failure.

4.4 Scope

As stated in section 4.3, it is within the scope of this thesis to design a comprehensive

proposal, functioning implementation and realistic simulation of cooperative perception.

However, the following is explicitly out of scope:

� The implementation does not have the extent, quality and resilience of a production-

ready, well-tested system.

� While the proposed meta model allows for easy extension it is not complete in a sense

that all potentially relevant classes, entities, attributes and relations are specified

and implemented.

� Any aspects related to security, authentication, data integrity and extensive valida-

tion are disregarded.

� This thesis does conduct experiments or low-level investigations about 5G-, LTE- or

DSRC network characteristics. Existing publications are used for reference instead.

� While a working proof-of-concept system is presented that fulfills the stated require-

ments (see section 4.3), elaborate (performance-related) optimizations of particular

aspects (e.g. fusion, message generation, compression, ...) are out of scope.

� For the sake of simplicity, only two-dimensional environments are assumed. That

is, vertically overlapping road scenes (e.g. with highway bridges) are not supported.

However, the system could be extended to do so.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

28 CHAPTER 4. PROBLEM ANALYSIS

� Since detailed, realistic, 3D simulations are used for evaluation, no additional real-

world experiments are conducted.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 5

Concept & Design

This chapter is thematically divided into four sections, for each of which a high-level con-

cept or architecture is proposed, that aims to fulfill the requirements stated in section 4.3.

Various design options are discussed and the proposed system’s novelty in comparison to

previous approaches is outlined conclusively.

Throughout this chapter, requirements from section 4.3 are referenced with the prefixes

F- and NF-, respectively.

5.1 Environment Modeling & State Representation

As stated in section 4.3, a major goal of this thesis is to propose a common way to

model and represent dynamic traffic scenes with the purpose of that model being used for

cooperative perception. The following sections present challenges, requirements, design

decisions and eventually a holistic concept.

In section 5.1.1, the decision for using high-level fusion is motivated and an overview of

which information to be included in the proposed model is outlined. In section 5.1.2,

modeling principles to be respected during the design phase are presented. Then, a

basic structure / framework is proposed in section 5.1.3, before section 5.1.4 introduces

probabilistic entity-relationship models as a way to uniformly incorporate rich semantics

and a notion of uncertainty into the model. Eventually, section 5.1.5 unveils the final,

comprehensive meta model to be used throughout the course of this work.

5.1.1 Object-Level Representation & Fusion

As explained in section 2.1.2, different levels of abstraction exist for sensor fusion. With

regard to cooperative perception systems both low- and high-level fusion approaches are

featured in literature. Chen et al. [CTYF19] favor the exchange of raw data over object-

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

30 CHAPTER 5. CONCEPT & DESIGN

level information and argue that the latter requires a common reference object shared

between two vehicles. As will be seen in later sections, this problem does not apply in the

context of this work. Instead, high-level fusion is accompanied by benefits that heavily

outweigh those of low-level fusion and is the only approach that allows to fulfill this work’s

requirements. Table 5.1 presents a detailed comparison of these two principles with regard

to benefits and drawbacks. For each advantage the table states which requirement it helps

to fulfill, respectively.

Advantages Disadvantages

Significantly smaller data volumes, laten-

cy and network utilization (NF-M3)

Need for a common, shared model

Significantly lower computational load at

observer vehicles (NF-C3)

Potential need for schema versioning

Independent of sensor type, characteris-

tics and calibration (NF-M1, NF-M2)

Support for different levels of abstrac-

tion (e.g. to include semantic informa-

tion about pair-wise relations among traf-

fic participants) (F-M1, F-M2)

Allows for inference without further pro-

cessing (NF-M2, NF-M3)

Table 5.1: Advantages of High-Level Fusion over Low-Level Fusion for Cooperative Per-

ception. Requirements are referenced, whose fulfillment the respective advantage enables

for.

When using a high-level object model, the most essential part to be defined is the in-

formation the model is supposed to include. [PAKZ18] states that “a traffic scene is

described by the entities, their attributes and the relations among the entities“. Following

this definition and in order for the model to be as expressive (F-M1) as possible, the

model is meant to include:

� State and topology of the immediate static environment and road

� State, static- and dynamic properties for both the ego vehicle itself and all sur-

rounding traffic participants

� Relations among any kinds of entities within the ego vehicle’s immediate surrounding

(e.g. vehicle-vehicle-, or vehicle-traffic-light relations)

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.1. ENVIRONMENT MODELING & STATE REPRESENTATION 31

Figure 5.1: Illustration of a Graph of Semantic Relations between Traffic Participants

[PAKZ18]

Especially the inclusion of semantic information – originally proposed by [KBSZ14] – is

novel compared to all previously presented CP systems. Figure 5.1 depicts a minimal

example of such relations.

5.1.2 Principles of Dynamic World Modeling

Modeling road traffic requires the ability to capture and integrate perceptual information

of highly dynamic environments properly – a problem for which [CD93] states five essential

principles.

P1:
[
Entities

]
in the world model should be expressed as a set of properties.

P2: Observation and model should be expressed in a common coordinate system.

P3: Observation and model should be expressed in a common vocabulary.

P4: Properties should include an explicit representation of uncertainty.

P5: Primitives should be accompanied by a confidence factor.

These principles are picked up again for the concrete model specification presented later

and are referenced using their respective P prefixes throughout the course of following

sections.

[CD93] also presents a “general framework for dynamic world modeling“, depicted in

fig. 5.2 (left). It illustrates the high-level process to transform heterogeneous types of

observations into a unified model using a common vocabulary. The process includes a

Match-Update-Predict cycle, the purpose of which is to enhance observations with evidence

derived from previous observations and a prediction model. Although especially the Match

step is quite essential for a real-world system, it is neglected in this thesis for the sake

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

32 CHAPTER 5. CONCEPT & DESIGN

Observation

Transformation

Match

Update

Predict

Model

– – –+ + +

Common Vocabulary

Observation

Transformation

Model

– – –+ + +

Common Vocabulary

Figure 5.2: General Framework for Dynamic World Modeling [CD93] (left: original, right:

simplified version used in this thesis)

of focusing on the higher-level system architecture. Instead, a simplified version of the

process (right) is applied.

5.1.3 Discrete Environment Model with Occupancy Tiles

When attempting to model one’s neighboring traffic environment, a mental distinction can

be made into modeling the road network – including lane topology, traffic lights, sidewalks,

etc. – and modeling static and dynamic obstacles, like other vehicles, pedestrians or trees.

Both aspects are needed for a complete representation, as it is neither sufficient to only

know the course of the road nor to only be aware of obstacles. Moreover, it is not

sufficient to solely know an obstacle’s position, but instead one is usually interested in

more advanced properties, too. This work aims to combine all of these aspects in a shared

model to enable them for being perceived cooperatively. Accordingly, the idea of [RKD11]

to share an object list is combined with the concept of [LKC+13] to share a discretized

driveability map, also known as occupancy grid.

The very base of the proposed model is made up of cells of an occupancy grid with

fixed dimensions. Such can be constructed by any observer (vehicle, RSU, etc.) and

derived from any kind of perceptual sensor data. This simplification as a lowest common

denominator facilitates universality (NF-M1). However, these basic information can be

enriched with more complex features easily to support expressiveness (F-M1). This is

achieved through the use of a graph-based meta model, as explained in section 5.1.4.

To work towards the perspicuity requirement (NF-M2) and to follow the principle of

using a common coordinate system (P2), every cell is identified by a QuadKey. As a

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.1. ENVIRONMENT MODELING & STATE REPRESENTATION 33

consequence, referring to a cell’s position in the world is independent from local, per-

vehicle coordinates systems and from the GNSS / GPS coordinate frames alike. This

prevents network participants from a multitude of expensive transformation operations.

Following this concept, the entire world map is recursively split into QuadTiles (see sec-

tion 2.6) of a certain precision level (e.g. level 24, corresponding to square tiles of ∼
2.39 m2). The precision level should be chosen in a way that it is fine-grained enough to

distinguish between single pedestrians or even road signs. However, at the same time, it

must not be too exact in order to save bandwidth and computation load.

Every cell of the occupancy grid – one of which is observed locally by every connected

participant – then corresponds to a certain QuadTile. Besides its occupancy state, every

tile can be augmented with information like the corresponding occupant actor, its relation

to the overall road topology, etc.

Figure 5.3 illustrates the proposed occupancy tile concept. The blue grid is within the

observation range of the turquoise vehicle and inherently part of larger tiles. Each cell’s

(= each tile’s) state is determined through local sensor fusion involving different types of

in-vehicle sensors and can be augmented with additional information. Eventually, that

grid, entailing all relevant information, is shared with other CP participants.

5.1.4 Probabilistic Entity Relationship Model for Cooperative Perception

In the simplest case, each observed cell of the previously introduced occupancy grid holds

only information on whether it is occupied or not. However, this small amount of informa-

tion is usually insufficient to extensively describe a road scene. In addition, object-level

static- (e.g. type, color and extent) and dynamic (e.g. velocity- and acceleration) in-

formation are desirable, e.g. about the respective occupying obstacle. This is in line

with the requirements to support expressiveness (F-M1) and openness (F-M2) and can

be taken even one step further. To do so, [KBSZ14, PAKZ18] motivate the idea to also

include high-level semantic information about the relationships between different entities

in a scene to reduce complexity and help generalization.

Up to this point, it is coarsely specified what to incorporate into the model: static and

dynamic properties of each entity within the scene on different levels of abstraction –

including semantics – using occupancy tiles as base- or root entities. The second step is to

specify how to represent these. Previous requirements imply a structure in which entities

have attributes (or properties, see principle P1) and relations of various types among

different entities can exist. Additionally, in order to appropriately meet the inherently

uncertain nature of a partially observable environment using imperfect sensory and to

comply with principles P4 and P5, some notion of confidence needs to be incorporated

into the model. Some way is needed to probabilistically model an observer’s belief in the

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

34 CHAPTER 5. CONCEPT & DESIGN

Figure 5.3: Illustration of an Occupancy Grid using QuadTiles

truthfulness of a particular property value or the existence of a certain relation between

entities.

These needs lead to the introduction of probabilistic entity relationship models

(PER models). Such are already used by [PAKZ18] for traffic scene representation

and can be seen as an extension to regular entity relationship models (ER models).

With ER models, an entity can either have an attribute or be relate to another enti-

ty. Both entity-attribute combinations and entity-entity relations can be represented as

〈subject, predicate, object〉 triples r with:

r ∈ {〈s, p, o〉|s ∈ E , p ∈ (A ∪R), o ∈ (E ∪ L)} (5.1)

E is the set of all entities, A is the set of all attributes, R is the set of all entity-entity

relations and L denotes a literal, i.e. a number, boolean value or string.

With PER models, as opposed to conventional ER models, every triple is now extended

by an additional confidence parameter and thus becomes a quadruple r as part of the

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.1. ENVIRONMENT MODELING & STATE REPRESENTATION 35

set of all potential quadruples M:

r ∈M with (5.2)

M := {〈s, p, o, α〉|s ∈ E , p ∈ (A ∪R), o ∈ (E ∪ L), α ∈ [0, 1] ⊂ R+}

With regard to this newly introduced confidence parameter α, [PAKZ18] distinguishes

between attribute- and structure uncertainty, where the first describes sensor noise and

the latter reflects uncertainty in the relational data. This is analogous to principles P4 and

P5, which suggest to model uncertainty for properties on the one hand and a confidence

factor for entities on the other. However, this distinction is not considered useful in the

context of this work and thus both probabilities are subsumed under a single notion of

confidence.

An exemplary excerpt from an instantiated PER model, that could have been constructed

based on observations of some ego vehicle, might look like this:

〈obstacle 25, isOfType,“small car“, 0.921〉
〈obstacle 25, hasVelocity, (0.65, 0.42, 0), 0.448〉
〈obstacle 25, isStoppedAt, traffic light 190, 0.995〉

In the example, obstacle 25 and traffic light 190 are entities, which were perceived,

identified and tracked by an intelligent vehicle’s sensory. isOfType and hasVelocity are

attribute relations with attribute literals (string and three-dimensional numeric vector)

and isStoppedAt stands for an entity-entity relation.

Such relations can be separated into seven classes: inclusion, possession, attachment,

attribution, antonym, synonym and case [Sto93]. Three of those are considered relevant

for modeling in AD contexts [PAKZ18]:

� Inclusion: Indicates structural- or spatial inclusion or class inheritance.

Example: 〈cross walk 12, isPartOf, lane 30, α〉

� Attachment: Indicates structural- or spatial connection or intersection.

Example: 〈car 1250, drivesOn, lane 30, α〉

� Case: Indicates interaction or dependence between entities or association of at-

tributes and entities.

Examples: {〈car 1250, isStoppedAt, traffic light 190, α〉, 〈bicycle 370, hasColor,

“yellow“, α〉}

While relations from any of these classes are represented equally in a PER model, the

distinction can help to achieve a clean meta model or database design.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

36 CHAPTER 5. CONCEPT & DESIGN

Using quadruples, a PER model is representable as a graph and thus can quite easily

be searched, transformed and extended by inserting new relations. Also, the PER can –

under certain conditions – be efficiently represented as a tensor [PAKZ18].

The graphical representation also allows for different types of inference. New facts about

the local world could be inferred when used in combination with first-order logic. Also,

situations might easily be compared in terms of similarity, which can be used for case-

based reasoning. Nickel et al. [NMTG16] present a multitude of further techniques to

perform relational machine-learning on knowledge graphs, which might prove promising

in AD contexts as well and are worth to be considered in future work.

5.1.5 Final Model

The complete model proposed as part of this thesis is presented in fig. 5.5. It aims to be

sufficiently comprehensive and includes all aspects needed for an in-depth evaluation of

cooperative perception.

In the illustration, blue boxes denote entities, orange boxes stand for uncertain entity-

entity relations and green circles are uncertain attributes (or entity-literal relations). Gray

boxes are special in a way that they can not be subject to instantiation, but rather define

the meta model’s static structure as a class hierarchy. Filled blue boxes are not of a

special meaning, except that they will usually occur particularly frequently.

In an instantiation of this model, quadruples include entities (blue) as subject or as subject

and object and relations (orange) or attributes (green) as predicate.

It is worth noting that, in contrast to most prior work in this field, the occupancy state of a

cell is modeled ternary instead of binary. An additional bit is used to distinguish between

a cell being free or occupied or just unknown. This distinction adds valuable information

for the participants of CP network, as an unknown (or unseen, covered, beyond-LOS) state

can simply be substituted during the fusion step. In a situation where two vehicles are

driving in line (depicted in fig. 5.4), the rear car might observe the cells occupied by the

leader as actually occupied. However, there is no chance it can see through the leader car

and thus all cells in front of it need to be communicated as being unknown, as opposed

to either free or occupied.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.1. ENVIRONMENT MODELING & STATE REPRESENTATION 37

Figure 5.4: Blocked Line-of-Sight Scenario

In addition, the presented model is rich in a way that ...

� ... it defines a large variety of different entities and relations.

� ... it allows to exhaustively specify a cell’s occupancy state.

� ... features different levels of abstraction (low-level attributes, high-level semantic

relations).

� ... incorporates class hierarchies as known from object-oriented programming (e.g.

〈V ehicle, isA,DynamicObstacle〉).

A minimal instantiation of this model has to include an OccupancyGrid instance with an

observer (observedBy) element (e.g. a Vehicle) and 1..n GridCells. How many cells a

grid exactly consists of (grid size) can be configured and depends on its observer’s sensor

range. Each cell has to have at least its state and positionHash (as a QuadKey) defined.

The ternary state can be represented using two bits. Its positionHash fits into 64 bits

when using a QuadKey’s integer representation (see section 2.6.1) and the confidence α

would usually be implemented as a 32-bit float. Accordingly, one cell could be modeled

compact (NF-M3) using 98 bits in an optimal, minimalist case.

5.1.6 Summary

In the previous sections a comprehensive, yet not complete model for dynamic traffic

scenes was presented with a focus on cooperative perception use cases (see fig. 5.5). It

enables to describe a scene by combining low-level attributes with high-level relational

knowledge. It fulfills the requirements stated in section 4.3 and follows the modeling

principles introduced in section 5.1.2.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

38 CHAPTER 5. CONCEPT & DESIGN

O
c
c
u
p
a
n
c
y
G
rid

G
rid

C
e
ll

h
a
sC

e
ll

<e
n
u
m
>

{
u
n
k
n
o
w
n,fre

e,o
ccu

p
ie
d}

s
ta
te

D
y
n
a
m
icO

b
sta

cle

O
b
s
ta
c
le

isA

V
e
h
icle

Pe
d
e
stria

n

M
o
to
rV
e
h
icle

isA

isA

E
g
o
V
e
h
ic
le

isA

S
ta
ticO

b
sta

cle

R
o
a
d
E
le
m
e
n
t

isA

Tra
ffi
c
S
ig
n

Tra
ffi
c
L
ig
h
ts

La
n
e

isA

La
n
e
S
e
g
m
e
n
t

h
a
sS
e
g
m
e
n
t

isLo
ca
te
d
O
n

Tra
ffi
cR

u
le
In
d
ica

to
r

isA

a
p
p
lie
sTo

co
n
ta
in
s

E
le
m
e
n
t

isA

<str>
p
o
s
itio

n
H
a
s
h

<
(V
e
cto

r3
D,V

e
cto

r3
D)>

b
o
u
n
d
in
g
B
o
x

<V
e
cto

r3
D>

p
o
s
itio

n

<V
e
cto

r3
D>

v
e
lo
c
ity

<V
e
cto

r3
D>

a
c
c
e
le
ra
tio

n

<e
n
u
m
>

c
o
lo
r

<n
u
m
b
e
r>

ID

o
b
se
rv
e
d
B
y

Tra
je
cto

ry

W
a
y
p
o
in
t

in
clu

d
e
s

h
a
sPa

stTra
je
cto

ry
h
a
sFu

tu
re
Tra

je
cto

ry

<n
u
m
b
e
r>

tim
e
s
ta
m
p

<V
e
cto

r3
D>

a
c
c
e
le
ra
tio

n
<V
e
cto

r3
D>

p
o
s
itio

n
<V
e
cto

r3
D>

v
e
lo
c
ity

<e
n
u
m
>

ty
p
e

<e
n
u
m
>

v
a
lu
e

<e
n
u
m
>

s
ta
te

<e
n
u
m
>

ty
p
e<n
u
m
b
e
r>

la
te
ra
lS
iz
e

<V
e
cto

r3
D>

c
e
n
te
rS

ta
rt

<V
e
cto

r3
D>

c
e
n
te
rE
n
d

<n
u
m
b
e
r>

c
u
rv
a
tu
re

h
a
sP
re
d
e
ce
sso

r
h
a
sS
u
cce

sso
r

<e
n
u
m
>

ty
p
e

C
yclist

F
igu

re
5.5:

C
om

p
reh

en
sive

P
E

R
M

o
d
el

for
T

raffi
c

S
cen

es

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.2. CELLULAR COMMUNICATION 39

As a result, it is capable to uniformly and universally model road scenarios at a high

degree of expressiveness, while embracing a notion of uncertainty or confidence and in-

formation on different abstraction levels. Key concepts used include geo tiling based

on QuadKeys for spatially referencing cells of an occupancy grid and probabilistic

entity relationship models as a structural framework.

However, future work in cooperation with expert groups is desirable to further extend the

meta model.

5.2 Cellular Communication

Various downsides of DSRC-based ad-hoc networks for cooperative perception use cases

were already discussed in section 4.1. They include issues arising from limited throughput

and comparatively short range of IEEE 802.11p and similar technologies. Furthermore,

P2P topologies usually imply a large communication overhead and result in high compu-

tational load for each participant. To overcome these limitations, an alternative approach

is proposed that builds on 5G networks and a client-server topology.

This section briefly outlines key benefits and implications of 5G technology for V2X

communication and motivates the decision for its use in the present CP system.

5.2.1 5G Usage Scenarios & Advantages

5G is a promising cellular network technology with the potential to overcome some of the

limitation of DSRC discussed in section 4.1. Its characteristics, especially with regard to

data throughput and latency, were introduced in section 2.5. In addition, [5G 16] presents

a detailed, technical discussion of 5G vs. DSRC for V2X, while a higher-level comparison

with respect to key implications for CP is presented in table 5.2.

Moreover, ETSI identified three different main usage scenarios for 5G [Eur], all of which

require different key capabilities, as shown in fig. 5.6. The different usage scenarios are:

� Enhanced Mobile Broadband (eMBB) to be used for high-definition, low-

latency multimedia content and mobile games on end-user devices and smartphones.

� Massive Machine-type Communications (mMTC) for the Internet of Things,

which is characterized by low-power devices and low data rates.

� Ultra-reliable and Low Latency Communications (URLLC) for safety- and

mission-critical applications, like autonomous driving.

Cooperative perception is a usage scenario that corresponds to the latter, as it especially

requires low latency and high throughput. Accordingly, an appropriately capable 5G

network infrastructure is essential for the proposed CP system to work.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

40 CHAPTER 5. CONCEPT & DESIGN

Figure 5.6: Key Capability Requirements for 5G in different Scenarios [Eur]

5.2.2 Vehicle-to-Network-to-Everything Communication Topology

Most prior work on V2X employs ad-hoc networks (VANETs) between participants, many

of which imply a peer-to-peer network topology. That is, every participant connects to

every other participant, following Metcalfe’s Law. Downsides of such approaches were

briefly outlined in section 4.1 and mainly refer to scalability and communication overhead.

In order to unburden participant vehicles (or pedestrian smartphones, RSUs, etc.), this

work proposes the use of a client-server architecture. Every client connects to a cen-

tral server instance, that is responsible for its current geographical area. It performs all

computation tasks (mainly high-level sensor data fusion) and is responsible for collecting

and broadcasting their messages. While the server node has to be very strong in terms

of computational capacity, every client now only has to maintain one bi-directional con-

nection and process (e.g. fuse) messages from one sender. Figure 5.7 illustrates both

patterns in a scenario of n = 4 vehicles. The pattern of V2X now becomes, strictly speak-

ing, V2N2X, as an intermediate network is involved. However, for the sake of simplicity,

the term V2X will still be used to describe this new pattern.

Although 5GAA specify multiple transmission modes for 5G [5G 16] – including direct

communication between network clients (V2V in the narrow sense of the word) – this

thesis focuses on V2N-based communication to best counter the previously mentioned

drawbacks.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.2. CELLULAR COMMUNICATION 41

Figure 5.7: VANET vs. Client-Server Communication Topology

5.2.3 Summary

In contrast to most prior work, the CP system developed in the context of this thesis does

not rely on DSRC-based VANETs, but on cellular 5G communication with centralized

server instances instead. Motivation for this decision was given in previous sections and

is additionally summarized in table 5.2.

VANETs + DSRC Client-Server + C-V2X

+ Works anywhere – Requires network infrastructure and -

coverage

+ Free of charge – Implies variable costs (e.g. data plan)

+ Network is solely dedicated for V2X – Potentially shared network, e.g. with

end-user smartphones

– Superlinear communication effort + Linear communication effort

– Linear computation effort for CP + Constant communication effort for CP

– 2.7-11 Mbps throughput [CBW+16,

WDT+13]

+ > 65 Mbps throughput [Kav19, Wik19a]

+ 3-22 ms latency [RKD11] – 10-20 ms latency (with Edge Node)

[Wik19a, Qua18]

– ∼ 300 m NLOS range [5G 18] + ∼ 800 m NLOS range (direct communi-

cation) [5G 18] (→ NF-C1)

– P2P topology + P2P (“direct communication“) or V2N

topologies

Table 5.2: Comparison of DSRC-based VANETs and 5G-based Client-Server V2X Net-

works

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

42 CHAPTER 5. CONCEPT & DESIGN

In conclusion, 5G is a highly promising technology for cooperative perception and V2X

communication in general. However, since it is a crucial requirement for the functioning of

cellular V2X networks, their adoption will heavily depend on the market introduction of

5G. At the time of writing, 5G is still in its infancy. However, its expansion is being driven

forward vigorously. For instance, German network operators are required to provide 5G

coverage to 98 % of all households by 2022 [Deu19]. The authors of [CCS18], in turn,

consider the market introduction of V2X applications an enabler for the establishment

of 5G technology for mission-critical (URLCC, see section 5.2.1) usage scenarios and

estimate them to take off from 2025 on. However, they put the usage of 4G Advanced, or

4.5G, as a fallback mechanism in perspective.

5.3 System Architecture

In section 5.1, a comprehensive environment model and a uniform representation format

were developed before the use of 5G cellular networks was motivated in section 5.2. In

this section, the overall software architecture and all of its components are elaborated.

While fundamental structures, patterns and interactions are specified, concrete techno-

logical choices are deferred to chapter 6, as the purpose of a software architecture is to

“facilitate development, deployment and operation in a way that leaves as many options

open as possible, for as long as possible“ [Mar17b].

5.3.1 Central Fusion Nodes

As mentioned earlier, most existing cooperative perception solutions base on VANETs

between their participants. Downsides of this concept with respect to both communication

technology and network topology were presented in section 4.1. Only Ko-HAF [HKS+19]

constitutes an exception in that the proposed system utilizes cellular networks and involves

a central server instance, the Safety Server.

Following their approach with the goal to overcome the limitations of P2P ad-hoc net-

works, this system’s architecture will fundamentally base on a central server compo-

nent at its core, also called fusion node in the following. Instead of P2P connections, the

proposed system’s topology follows a client-server communication pattern, potentially

involving multiple servers. These will act as data brokers that are responsible for (1)

data collection, (2) fusion and (3) redistribution (or broadcasting). Each of these

steps is discussed in the following sections.

The approach to have multiple servers is essentially different from Ko-HAF and all other

presented designs and results from the advanced requirements for computation perfor-

mance due to higher frequency and accuracy. While the goal of Ko-HAF is to maintain

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.3. SYSTEM ARCHITECTURE 43

an always-up-to-date traffic map including static information and incidents, the amount

of information exchanged per time is much higher with the present CP system, in which

traffic situations are continuously being described and shared in high detail. In Ko-HAF,

the amount of data transmitted per kilometer is 14-33 kB [HKS+19], while the data rate

required for CP is potentially orders of magnitude higher (see chapter 7). Therefore, one

central, global server instance is not sufficient to handle the system’s high load. Also, one

of the previously stated requirements is to avoid a single point of failure (NF-C4).

5.3.2 Geographical Partitioning

To meet the demand for high scalability (NF-C2) and reliability (NF-C4), including the

avoidance of a single point-of-failure at system level, the concept of geographical parti-

tioning, or geo distribution, is introduced. It is schematically depicted in fig. A.1 in

appendix section A.3.1 and mainly enabled through the use of geo tiling (see section 2.6)

and QuadKeys. While QuadKeys are already incorporated into the model to represent

cells of an occupancy grid (see section 5.1), they also make up an essential part of the

system architecture. Instead of having one global fusion node, e.g. per city, per district

or per country, the concept is to have one fusion node per tile. A tile, in the sense

of QuadKeys, could be of arbitrary size. For instance, a common setup could be to use

level 16 tiles for geo distribution. That is, one fusion node would be deployed every ∼
611 m2. All network participants within that area – and potentially those of all adjacent

tiles – connect to this server instance and send and receive their data to and from it.

When entering one of the adjacent tiles, the cars’ connection would be updated to use

the node corresponding to the new tile. Accordingly, a fusion node only has to handle

a quite limited number of vehicles (pedestrians, etc.). With this technique, the density

of deployed nodes might be adapted according to the expected average traffic density

within that area. Usually, the number of fusion nodes per area will be higher in densely

populated, urban areas than on the countryside. Section 4.2 presented a rough estimation

for a typical, average amount of concurrent vehicles within an area and can be used as a

guideline for deploying nodes. An in-depth evaluation of the fusion nodes’ performance

is conducted in chapter 7. Its results can help to choose an appropriate configuration for

a system’s λ3 parameter (see below).

Overall, tiles of three different levels (λ) are used throughout the system.

� Type 1 (typically λ1 ∈ [22, 24] ⊂ Z): Tiles used for cells of observed occupancy

grids (blue cells in fig. 5.3).

� Type 2 (typically λ2 ∈ [17, 20] ⊂ Z): Tiles used for a participant’s range of interest,

i.e. while a vehicle sends only its own occupancy grid, it receives data for a wider

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

44 CHAPTER 5. CONCEPT & DESIGN

range to extend its perception (orange cells in fig. 5.3).

� Type 3 (typically λ3 ∈ [14, 16] ⊂ Z): Tiles used for geo distribution, i.e. one fusion

node (or server, broker) per each of these tiles (green cell in fig. 5.3).

The aforementioned occupancy grids (set of all blue cells in fig. 5.3) conclude the concept

of geographical partitioning. An occupancy grid does not correspond to tiles of a specific

level, because its center position is continuous and its size depends on the observers’ sensor

range. The occupancy grid’s size is larger than type 1 tiles (i.e. larger than its contained

cells), but usually smaller than type 2 cells, because otherwise CP would be useless.

Example: A vehicle’s perceptual sensors have a total range of 100 m and the occupancy

cells (type 1 tiles) are configured to λ1 = 24 (∼ 2.4 m2). Accordingly, the grid size

will be �grid =
⌊

100 m
2.4 m

⌋
= 41 cells. Of course, the vehicle is interested in observations

beyond its 100 m range, so it receives data from all its adjacent type 2 tiles, which are

configured with λ2 = 19 (∼ 76.4 m2) in this example. Its range of sight has expanded to

�virt = 3 ∗ 76.4 m = 229.2 m. The size of type 3 tiles is set to λ3 = 16 (∼ 611.5 m2), i.e.

the vehicle will connect to a new fusion node every 612 meters. Each of these nodes is

responsible for managing data for 419−16 = 43 = 64 type 2 tiles (or 424−16 = 48 = 65536

type 1 tiles).

5.3.3 Messaging & Further Considerations

Up to this point, a high-level system architecture was proposed and the concept of geo-

graphical partitioning was introduced as a solution to horizontal scalability. Complement-

ing previous design decisions, this section formulates the exact communication pattern

between clients (vehicles, pedestrians, etc.) and the fusion node from an application-

layer perspective. In addition, further considerations regarding the messaging protocol

are made.

In essence, two different patterns for communication in a client-server architecture can

be thought of. First, there is the request-response (req/res) pattern, according to which

a client explicitly “asks“ the server for certain information and potentially receives an

“answer“ to its request. This type of communication is unidirectional and most used

throughout today’s web. The second pattern is publish-subscribe (pub/sub). Compared

to req/res, it inverts the control flow to some extent. Instead of having the client (re-

peatedly) asking for new data, the server keeps providing such “automatically“ and just

as it appears after the client had initially expressed its interest once. Depending on the

concrete implementation, this type of communication can be uni- or bidirectional. Both

patterns come with their respective advantages and downsides and are each suitable for

certain use cases.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.3. SYSTEM ARCHITECTURE 45

Figure 5.8: Software Architecture Schema

The system proposed in the context of Ko-HAF [HKS+19] utilizes both: req/res to send

and receive static- and meta information and pub/sub to exchange time-critical data. For

CP use cases, most information is time-critical. Assuming observations are continuously

produced and fused at a fixed rate of 10 Hz for each observer, data needs to be distributed

among the network as quickly as possible. Given these conditions, pub/sub shows to

be the more suitable communication pattern, as it inherently supports these types of

data streaming use cases and avoids additional overhead from repeatedly establishing

new connections. As a consequence, communication between OBU and server is chosen

to follow a publish-subscribe pattern with periodic push in the proposed system.

The choice for a concrete pub/sub technology is deferred to chapter 6. However, since

pub/sub systems are usually characterized by involving a separate message broker, such

is already considered an integral system component. Figure 5.8 schematically illustrates

the overall architecture for the proposed cooperative perception system.

Another important aspect to be agreed upon is the representation format of data on

the wire, or, in this case, on a wireless connection. Although section 5.1.4 defined the

environment model to be represented in form of a PER graph, no details have been

provided on how to present that graph as a data structure. Since bandwidth is limited

and latency must be kept low, a compact (NF-M3, NF-C3, cf. section 4.3) serialization

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

46 CHAPTER 5. CONCEPT & DESIGN

Figure 5.9: UML Component Diagram – System Architecture

format should be used. While the choice for a concrete technology is done in chapter 6,

a binary serialization format might be favored over more verbose, text-based formats

like XML or JSON.

5.3.4 Components Overview

After a high-level system architecture and respective communication patterns were elab-

orated, this section aims to provide an overview of all involved software components.

Figure 5.9 schematically depicts respective relations among them. Each of these parts

either already exists as third-party software or is implemented in the course of chapter 6.

C1: Simulation Server. An integral part of this work is to integrate, test and evaluate

the proposed solution with a simulator. Although the choice for a particular sim-

ulator is deferred to chapter 6, it was early agreed on employing a photo-realistic

3D simulator with a programmable interface. All existing solutions follow a client-

server model, i.e. the simulation is executed on a central software component which

is controlled by one or more clients through an API. The environment, weather,

physics, traffic, sensory and more are simulated on this central server and usually it

is also responsible for 3D rendering of the scenes. Naturally, this component is only

required for research purposes and would be omitted in a real-world deployment of

the system.

C2: Simulation Client. This component lives within the OBU subsystem, i.e. is part

of the collection of software that runs on-board of vehicles and other connected traffic

participants. It belongs to the simulation infrastructure and is the counter-part of

the previously mentioned simulation server, whose API it consumes. This client

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.3. SYSTEM ARCHITECTURE 47

acts as an intermediary between simulation environment and the actual CP system

and is responsible for receiving and converting sensor- and meta data and sending

control commands. It might be implemented as a separate software component

or integrated into the on-board software suite as a module and is supposed to be

implemented in a way that it abstracts from an actual underlying perception system.

In other words, it simulates a real in-vehicle perception system and therefore is also

responsible for low-level sensor fusion. Ideally, the interface, including inputs and

outputs, is so generic that the fact of it being part of a simulation is transparent

from the outside. This component would be best realized following the Bridge and

Facade design patterns (cf. [Eri13]).

C3: Talky Client. As a core part of the actual CP system on the vehicle side, this

component fulfills a variety of tasks. First, it is responsible for reading locally

fused sensor data from the simulation client and building an occupancy grid from

it. After being augmented with additional meta information about the observer

and context, the grid is eventually embedded into an instance of the previously

mentioned PER model, then serialized and sent to the currently responsible message

broker. Simultaneously, the Talky client listens for new incoming messages from

that broker, i.e. new cooperative perception messages originating from surrounding

network participants, that were aggregated and fused at the server. These messages

are then deserialized into a PER model instance again to reconstruct the shared

scene representation and then, once again, fused with the latest local observation.

Details on how the fusion process exactly looks like are presented in section 5.4.

In a real-world use case, the resulting fused scene representation would eventually

be input to the planning module within the AD pipeline (cf. section 2.1.3) to help

control the car more reliably. In this work, it is instead fed into the evaluation

system directly to get insights about CP performance and more.

C4: Message Broker. The message broker is the first component to “sit“ on the server-

side of the system, i.e. “on the other side“ of the intermediary 5G connection or, in

other words, on the RSU subsystem (or server subsystem) in the above schema.

It should be physically close to both the cell tower and the edge node (see below) to

achieve low latency. In pub/sub systems a message broker is commonly employed

in the middle between multiple applications that communicate among each other

via messaging. In essence, it is responsible for maintaining layer 4 network con-

nections with all connected devices and receiving and properly forwarding messages

according to pre-defined policies. It abstracts from low-level, messaging-related

tasks, including authentication and authorization, from business applications. Sev-

eral implementations already exist, however, which one to use usually depends on

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

48 CHAPTER 5. CONCEPT & DESIGN

which pub/sub protocol is chosen. Examples include, but are not limited to different

AMQP1- and MQTT2 brokers and are discussed in greater detail in chapter 6.

C5: Talky Edge Node. Also referred to as fusion node, this component implements

the concept of an edge server in the sense of edge computing (cf. section 2.4) and

is the second core part of the presented CP system besides the above mentioned

Talky client. It is the central server instance that is deployed once per type 3 tile

()or geo partition). Its core responsibilities include to aggregate every connected

participant’s state representation (via the message broker) and fuse all of them to

a single, combined state representation, which is eventually published back to all

connected Talky clients again, following a periodic push pattern. As all PER models

produced within the corresponding type 3 tile at a rate of 5-20 Hz are gathered here,

this component has to be highly available, reliable, performant and equipped with

a fast network connection.

C6: Talky Cloud Node. This component is part of a further level of abstraction on

top of the previously presented edge node. Although it is optional and was not

implemented as part of this thesis, it might be desirable in a real-world scenario.

Similar to what the authors of [CM17] presented as third level of their multi-level

cooperative perception scheme, the cloud node might be used for high-level tasks

like navigation, traffic reporting or further analyses based on aggregated data from

a multitude of different type 3 tiles. It could also be used as a central data lake

for persistence. As the name suggests, this component would usually be deployed

as one or few instances on the cloud and is another integral part of a typical edge

computing architecture.

5.3.5 Summary

Unlike most previous takes on cooperative perception, the proposed system implements

a client-server architecture with central fusion nodes to decrease network utilization and

relieve the computational load on individual vehicles. To help scalability and reliability,

the novel concept of geo partitioning using QuadKeys is introduced and in accordance

with requirement NF-C4 (see section 4.3) the system also allows for redundancy, i.e.

multiple fusion nodes per type 3 tile, to avoid a single point-of-failure at the partition

level. Communication between network participants happens on a publish-subscribe basis

with the central fusion node implementing periodic push.

1http://www.amqp.org

2http://mqtt.org

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.4. FUSION 49

5.4 Fusion

In addition to a model specification (section 5.1) and a communication- (section 5.2) and

overall system architecture (section 5.3), a concept on how to perform high-level sensor

data fusion is required. Although this part is not a central aspect in this work and might

be elaborated in much greater detail and with more advanced methods in future research,

basic considerations are still being discussed and an elementary concept is proposed. For

the sake of clarity it is worth emphasizing that this section only concerns with the high-

level fusion performed on client (C3) and edge node (C5), as opposed to low-level sensor

fusion within the on-board perception module or, in this case, the simulation client (C1).

5.4.1 Goals

Essentially, the goals of fusion in a cooperative perception system are (1) to supplement

or impute missing data and (2) to increase the confidence for existing data. The

latter also includes to resolve conflicts and contradictory observations. (1) is essential

for virtually perceiving a scene beyond the observer’s own line of sight. (2) helps to

increase accuracy and overcome sensor noise. Figure 5.10a and fig. 5.10b depict simplified

examples, respectively, in which the occupancy state of cells are subject to fusion.

A B C D

E F G

I J K L

M N O P

A B C D

E F G

I J K L

M N O P

A B C D

E F G

I J K L

M N O P

+ =
H H H

(a) Schematic Example for Supplementation through Fusion

A
100
%

C
80 %

D
100
%

F
100
%

G
100
%

H
100
%

I
100
%

E
60 %

A
100
%

C
100%

D
100
%

F
100
%

G
100
%

H
100
%

I
100
%

E
80 %

B
100
%

B
100
%

A
100
%

C
90%

D
100
%

F
100
%

G
100
%

H
100
%

I
100
%

E
40 %

B
100
%

+ =
(b) Schematic Example for Conflict Resolution through Fusion

In fig. 5.10a, vehicle X observes the occupancy grid on the left and vehicle Y the one on

the right. Green cells are considered free, red cells are considered occupied and for gray

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

50 CHAPTER 5. CONCEPT & DESIGN

cells no state could be determined, e.g. due to sensor noise or because they were out of

sight. Vehicle X failed to estimate the state for cell H, while vehicle Y measured it to be

occupied. Accordingly, the fused grid includes cell H with a state of being occupied.

While confidences were omitted for the sake of simplicity in the first example, fig. 5.10b

includes them in addition. In this scenario, attention is to be placed on cells C and E.

While vehicle X is only 80 % confident about the state of cell C, vehicle Y is perfectly

sure about it being free. Accordingly, the resulting state has an average confidence of 90

%. Moreover, a conflict exists for cell E. Vehicle X is 60 % confident, that it is occupied,

while vehicle Y is 80 % confident of it being free under the open world assumption. When

neglecting all other factors (like time), the average confidence for each cell’s state might

be used during the fusion to get a result of cell E being free with a confidence of 40 %.

Please be aware that these examples are drastically simplified.

5.4.2 Problem Statement

Complementing the previous section, which informally stated the goals of fusion in the

context of CP and provided two illustrative examples, a more formal problem definition

is presented in the following.

As already mentioned in section 2.1.2, Elmenreich et al. define the problem of sensor

fusion as “the combining of sensory data or data derived from sensory data such that the

resulting information is in some sense better than would be possible when these sources

were used individually“ [Elm02].

More formally, for every type 3 tile with n participants (e.g. vehicles), let M loc
i (t), i ∈ [0..n]

denote the model instance that was obtained by vehicle i at time t and assume the

participant with i = 0 is the ego vehicle, whose perspective is taken in the following.

As explained in section 5.1.4, the model M is essentially a set of quadruples r, which

correspond to probabilistic relations of a graph. That is:

M loc
i (t) := {ri,0(t) .. ri,m(t)} ⊆ M

M was defined in eq. (5.2) and denotes the set of all possible quadruples.

The goal of fusion is, given every participants local model M loc
i , to get a global, augmented

model M glob that involves all other participants’ relevant observations as well.

Given M loc
0 (t0) and {M loc

i (t) | i ∈ [1, n], t < t0}
we look for a function ϕ to compute M glob(t0)

s.t. ψ(M glob(t0)) > ψ(M loc
0 (t0))

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.4. FUSION 51

ψ denotes the evaluation or scoring function that compares the latent true environment

state M∗ to the observed one.

A more detailed description of how this augmented model is gained through fusion is

given in section 5.4.6.

5.4.3 Scope

Before introducing the high-level fusion concept, the scope of fusion needs to be set. In

principle, all attributes and relations in the model (see section 5.1.5) can be subject

to fusion. To fuse attributes means to “merge“ or aggregate multiple values for the same

attribute, as demonstrated for the state attribute in fig. 5.10b. To fuse relations means to

reason about their existence between two given entities. Naturally, this requires some kind

of tracking and matching to uniquely identify entities across multiple observers, which is

a non-trivial problem and subject to current research.

Attributes and relations might be categorized into classes, for each of which a separate

fusion mechanism applies. For instance, when fusing cell occupancy states, a potential

fusion technique might be to take a weighted average for the binary truthfulness of every

possible state and determine the argmax subsequently. Similarly, when attempting to

merge different values for an attribute that describes a spatial position, one might use

the weighted average Euclidean distance during fusion. However, one might also come

up with more advanced mechanisms. For the sake of simplicity, only the fusion of cell

occupancy states is implemented in this work. However, the given framework can easily

be extended to support more fusion subjects and mechanisms. The exact procedure of

fusing cell states is presented in section 5.4.5.

5.4.4 Open- & Closed World Assumption

As explained in the previous section, all attributes and relations of the model can be fused

in principle. However, different fusion mechanisms and functions need to be implemented

for different types of attributes (e.g. numerical vs. categorical or temporal vs. spatial).

Moreover, a major distinction has to be made for what to assume as an attribute’s domain.

Depending on the type or category of attribute, either the Open World Assumption

(OWA) or the Closed World Assumption (CWA) is appropriate. The fusion result

is fundamentally influenced depending on which one is used.

Taking a CWA means that – generally speaking – a logical statement, that is not known

to be true, is considered false. Contrary to that, the OWA “allows“ to have incomplete

knowledge and does not consider negation as failure [Wik19c].

With respect to high-level fusion for CP, OWA vs. CWA plays an essential role when

deciding what kind of fusion mechanism to use for different attribute classes. More pre-

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

52 CHAPTER 5. CONCEPT & DESIGN

cisely, it influences the way how confidences for entity-attribute or entity-entity relations

are interpreted.

Generally, one could distinguish between attributes, whose domain is known and such,

whose domain is not known. For the former, one could apply either CWA or OWA,

while for the latter, the OWA has to be taken as a basis. For instance, while the domain

for a ternary occupancy state is completely known (free, occupied and unknown), the

number of possible “attribute“ values (i.e. entities as objects in a quadruple) is infinite

for an entity-entity relation between different road participants. During the fusion, it is

unknown how many potential vehicles, pedestrians and other traffic participants are in a

scene and could potentially occupy a certain cell or not, so only the OWA is appropriate.

5.4.4.1 Example

Assume the observations from two different observers for the same situation are present

and their estimations of the occupancy state of a certain cell shall be fused. According to

the previous model definition, both observers report exactly one quadruple for this cell’s

state each. Observer A reports r1,A = 〈celli, hasState, free, 0.9〉 and observer B reports

r1,B = 〈celli, hasState, occupied, 0.8〉. Taking the CWA, the reported confidences may be

interpreted as probabilities and since all possible states are known, the trivial assumption

could be made that the two remaining unknown state values equally share the remaining

probability mass. As a consequence, the following quadruples could be inferred:

r2,A = 〈celli, hasState, occupied, 0.05〉
r3,A = 〈celli, hasState, unknown, 0.05〉

r2,B = 〈celli, hasState, free, 0.1〉
r3,B = 〈celli, hasState, unknown, 0.1〉

Applying a simple arithmetic average over the confidences of all observations for each

possible state yields:

r1,fused = 〈celli, hasState, free, α1〉
r2,fused = 〈celli, hasState, occupied, α2〉
r3,fused = 〈celli, hasState, unknown, α3〉
with α1 = 0.5, α2 = 0.425, α3 = 0.075

Taking the OWA, confidences can not be interpreted as probabilities, as the potential

number of values is infinite. Instead, the trivial fusion approach from above would yield

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.4. FUSION 53

these confidences when assuming an open world:

α1 = 0.45, α2 = 0.4, α3 = 0

As mentioned earlier, only the fusion of occupancy states is implemented in this thesis,

for which the open-world assumption is used consistently.

5.4.5 Mechanism: Time-Decayed Weighted Average

This section describes how multiple observations for a single discrete, categorical attribute

are fused. For convenience, continuous attributes are disregarded and the focus is placed

solely on the fusion of cells’ occupancy states. This attribute’s domain is discrete and

finite (ternary). For instance, the statement that a cells is free is either true or false and an

additional notion of uncertainty is incorporated by passing along a confidence value. The

confidence value represents either attribute- or structure uncertainty (cf. section 5.1.4).

Despite this confidence, a fusion function also needs to respect the observation’s temporal

delay, i.e. its “age“. In a cooperative perception system, the presence of a transmission

lag is inevitable and mainly arises from network latency. Accordingly, an observation is

always outdated already when being fused. This degree of “outdatedness“ is referred to as

“reliability of perception“ by [LKC+13], whose authors suggest to exponentially decrease

it with increasing transmission lag. The description of a scene that is a few milliseconds

old might still be quite accurate, but as it gets older – potentially several seconds – the

scene has most likely changed too much to still rely on that state representation.

The fusion function ϕ is defined as a mapping from a set of model instances drawn from

M (cf. section 5.1.4) – i.e. collections of semantic quadruples from n observers over

multiple time steps – and corresponding discrete temporal delays ∆t = tnow − tobs to a

new model instance.

ϕ :Mn × Nn →M (5.3)

For illustration purposes, let S(t) be an aggregated set of tuples of model instances and

corresponding temporal delays at time t from all present observers and all relevant past

time steps.

S(t) =
n⋃
i=0

t⋃
u=t−δtmax

〈M loc
i (u), t− ti〉 (5.4)

n denotes the number of observers and δtmax is a user-defined parameter that specifies

the maximum age of observations to include during fusion. Consequently, the set S(t)

consists of all present observations (= PER model instances) from all present observers

within the last t− δtmax time steps. A fused model instance at time t is then given as:

M glob(t) = ϕ(S(t)) (5.5)

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

54 CHAPTER 5. CONCEPT & DESIGN

Evaluating ϕ involves to evaluate the respective “sub-“functions responsible for fusing

the values of all certain entity-attribute (〈e, a〉) or entity-entity (〈e1, e2〉) combinations.

Moreover, the following function is defined to determine a temporal decay factor for

every observation to weigh it by its degree of “outdatedness“, just as proposed above.

decay(ti) = e−λ∗∆t = e−λ∗(tnow−ti) (5.6)

with λ > 0

In this thesis, the above function is used globally throughout the entire fusion procedure

to incorporate transmission lag.

For a 〈e, a〉-combination whose value domain is categorical and finite, the weighted

arithmetic mean can be used to aggregate (i.e. fuse) multiple evidences or observations.

This is the method of choice implemented in this work to fuse occupancy states. Further

fusion mechanisms for other types of 〈e, a〉- or 〈e1, e2〉 combinations are considered out of

scope. In search to fill the placeholders θ1 an θ2 of a 〈e, a, θ1, θ2〉-tuple, one could follow

a two-step procedure to determine the aggregated confidence value and actual attribute

value.

maxconfe,a = max
v∈dom(〈e,a〉)

m∑
j=0

OWA(j, v) ∗ decay(tj)

maxvale,a = arg max
v∈dom(〈e,a〉)

m∑
j=0

OWA(j, v) ∗ decay(tj)

In the above equation, the function OWA is defined as

OWA(i, v) =

αi v ∈ ri
0 else

and responsible for returning either the i -th quadruple’s confidence, if the quadruple’s

attribute value (e.g. free in the case of a state attribute) equals v or zero otherwise.

Moreover, m is the number of observations to be included in the current fusion round.

Sticking to the previous notation, αi is the confidence value (fourth component) of a

relation quadruple, which again in part of a model instance M .

The fused quadruple for this specific 〈e, a〉-combination would be:

ri,fused = 〈e, a,maxvale,a,maxconfe,a〉

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

5.4. FUSION 55

5.4.6 Architecture: Doubly Updated Merging

While the previous section gave a thorough description of how a single entity-attribute

combination might be fused, this section returns back to a higher-level perspective and

examines the fusion process in its whole again.

The concept of doubly updated merging is introduced as a technique to address the fact

that an observation is delayed twice on its way through the CP system. First, as a local

observation M loc
i (t), it experiences a transmission lag ∆t1 while being transferred from

the on-board Talky client via the message broker to the fusion- / or edge node. After it

was fused at the server and became part of M glob(t+∆t1 +ε1) it is transmitted all the way

back to the client, which causes another delay ∆t2. While the server considered ∆t1 as a

decay factor during fusion, the client needs to incorporate ∆t2 in addition. Therefore, the

client performs another round of fusion, in which M glob(t + ∆t1 + ε1) and its latest local

M loc
i (t + ∆t1 + ε1 + ∆t2 + ε2) are merged into the final M final

i . This process is depicted

as a sequential schema in fig. 5.11.

Figure 5.11: UML Sequence Diagram – High-Level Fusion

Given the definition of relation quadruples r in eq. (5.2) and the definition of set S(t)

in eq. (5.4), all three different state representations (or model instances) produced in the

course of one iteration of doubly updated merging can be formally stated as follows.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

56 CHAPTER 5. CONCEPT & DESIGN

Local: M loc
i (t0) = {ri,0(t0) ... ri,m(t0)} ⊂ M (5.7)

Globally Fused: M glob(t1) = ϕ(S(t1)) (5.8)

Locally Double-Fused: M final
i (t2) = ϕ(M glob(t1) ∪ {M loc

i (t2)}) (5.9)

with δtmax > 0, t2 > t1 > t0

5.4.7 Summary

Previous sections presented a very basic concept of how to perform high-level sensor fusion

in a cooperative perception system, which is later implemented and evaluated in chapter 6

and chapter 7.

However, since fusion is not the core aspect of this thesis, the previously presented tech-

niques are only rudimentary and could be advanced significantly. Current limitations

include that fusion was only defined for one type of properties. Also, the above fusion

approach assumes that every time lag is precisely known, i.e. all involved devices’ clocks

are perfectly synchronized and additional delays (e.g. from sensor to controller) are disre-

garded. Elaborate methods to account for unknown time already exist in literature [JU05]

and could be applied as part of future work. Moreover, tracking and matching of entities

across multiple frames and multiple observers is not considered at all. Finally, while the

taken approach to simply decrease the influence of temporally “old“ observations is the

simplest, better performance might be achieved through imputation of missing data or

extrapolation of past measurements to current time [CTYF19].

5.5 Conclusion

Previous sections conceptualized the end-to-end design of a cooperative perception system

with regard to all relevant aspects. First, a modeling approach and an accompanying

representation format for dynamic traffic scenes was proposed. Subsequently, the use

of cellular communication and a client-server network topology was motivated before a

comprehensive distributed software architecture was proposed. Eventually, an elementary

concept for high-level sensor fusion to be integrated with the new model and system

architecture was presented. The proposed system design addresses all requirements stated

in section 4.3. Especially, it is holistic (F-C1) in such that covered aspects range from

message representation over communication, scalability and fault-tolerance throughout to

high-level sensor fusion. Chapter 6 explains how all of these concepts were implemented

in software.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 6

Implementation

The previous chapter addressed different aspects of a cooperative perception system con-

ceptually. First, a uniform, expressive and extensible way to model traffic scenes for co-

operative perception was proposed alongside an appropriate representation format for it.

Different characteristics and benefits of 5G cellular networks were discussed before a high-

level system architecture, involving a multitude of different modular software components,

was elaborated. Eventually, a concept was presented on how to combine observations from

different actors, while taking temporal delay and uncertainty into account.

The purpose of this chapter is to pick up the previously presented concepts and techniques

and explain how they were implemented in software. This includes a discussion about

various technological choices, the use of appropriate software design patterns and fun-

damental performance-related considerations. Figure 6.1 shows the component diagram

from section 5.3.4 again, but now includes implementation-specific technologies in addi-

tion. It serves as a guideline for this chapter, as the implementation of each individual

components is explained subsequently.

During the implementation process, design- and component principles presented in [Mar17b]

were followed with the purpose to develop clean, modular and maintainable software com-

ponents.

6.1 Meta Model, Representation- & Message Format

6.1.1 Object-Oriented Model

The meta model presented in section 5.1 is a probabilistic entity relationship model, i.e. es-

sentially an ER model that is extended to incorporate a notion of structural- and relational

uncertainty. As explained earlier, it can be viewed as a graph in which entities relate to

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

58 CHAPTER 6. IMPLEMENTATION

Figure 6.1: UML Component Diagram – Implementation

other entities or attributes with a certain probability or confidence. Accordingly, the graph

can also be represented as a collection of quadruples ri = 〈subject, predicate, object, α〉 with

α being the corresponding confidence factor.

In code, this graphical structure is implemented as a composition of pure object-oriented

classes. As Python was chosen as the primary programming language, the built-in Python

class system is employed. Each type of entity corresponds to a certain class, which in-

herits from an abstract Entity class. Relations (both entity-entity and entity-attribute)

are implemented as sub-classes of an abstract Relation class, which is attached to its

object as a class member and holds members for its object (either a literal attribute or

another entity) and the corresponding confidence. Deviating from the quadruple struc-

ture, an exception is introduced for convenience to additionally allow for the specification

of attributes without uncertainty as well. Such are simply implemented as ordinary class

members and should only be used to encode meta data, but not actual observations.

Listing 1 depicts a simplified example of this modeling schema.

Most of the entities, attributes and relations from the final model, presented in sec-

tion 5.1.5, were implemented according to the above class schema and encapsulated as a

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

6.1. META MODEL, REPRESENTATION- & MESSAGE FORMAT 59

re-usable Python library.

class PEREntity(ABC):

pass

class PERRelation(ABC):

def __init__(self):

self.obj: Union[PEREntity, Any] = None

self.confidence: float = 0.0

class OccupancyCell(PEREntity):

def __init__(self):

self.hash: int = 0

self.state: Union[PERRelation[OccupancyState], None] = None

class OccupancyState(Enum):

FREE = 1

OCCUPIED = 2

UNKNOWN = 3

Listing 1: Example Implementation of PER Entities and Relations

One might wonder why a cell’s hash attribute is declared as an integer data type, even

though QuadKeys (cf. section 2.6.1) are strings. This is due to the fact that the imple-

mentation takes advantage of an optimization in representing QuadKeys. In addition to

using ASCII encoding, where every character is one byte, QuadKeys can also be repre-

sented as integers for better space efficiency. In integer representation, the length of a key

is only limited by the underlying data type (usually 64 bits). The size complexity is then

given as O(1) compared to O(n) with strings (n being the precision level, or key length).

6.1.2 Serialization Format

The object-oriented schema presented in the previous section is used as a module through-

out all related Python code. However, instances of these classes only exist within the scope

of a certain process. In order to transfer these information across different programs, which

are potentially even written in different programming languages, a language-agnostic,

commonly understandable format is needed. In technical terms, objects must be serial-

ized, then transmitted and deserialized again afterwards. Multiple common serialization

formats exist, which differ in certain properties. Some are text-based and potentially also

human-readable, others are binary formats and only understandable by machines. While

text-based formats are generally more common and easier to work with, section 5.3.3

motivated the use of binary formats for performance- and efficiency-critical applications

like CP.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

60 CHAPTER 6. IMPLEMENTATION

Common binary serialization formats include Apache Thrift1, Cap’n’Proto2, Flatbuffers3

and Protocol Buffers4 (Protobuf). Most of them follow the principle of first defining a

static class (or message) schema, which is then compiled to language-specific code to be

used by different applications equally. During serialization, objects and attributes are

condensed to an efficient binary representation, which can usually be accessed as a byte

stream or -array subsequently. Since all of these formats are relatively similar, a detailed

comparison and evaluation is out of scope.

In a first iteration Cap’n’Proto was used. Reasons for this decision included the high

serialization performance claimed on the authors’ website and the framework’s novelty.

However, as this work progressed, it became clear that serialization was a major perfor-

mance bottleneck. In search of alternatives to Cap’n’Proto a brief evaluation5 revealed su-

perior performance of Protocol Buffers format in comparison. In a simplified example,

Protobuf was able to serialize 7490 messages/s on average, compared to 4129 messages/s

with Cap’n’Proto (see section C.1). Moreover, the average message size with Protobuf

appeared to be up to ∼ 47 % smaller for the same payload. The benchmarking was done

using the Go programming language, Google’s reference implementation of Protobuf for

Go and the most common third-party open-source Go implementation of Cap’n’Proto6.

The performance improvement of ∼ 25 % and potential size decrease of up to 47 % led to

the decision to refactor existing code and use Protocol Buffers for serialization over the

course of this work.

Listing 2 gives an example for a simplified message schema definition in Protobuf and

Cap’n’Proto, respectively.

6.2 Simulation Environment

Since the integration and evaluation with an autonomous driving simulator is one of

the core goals of this thesis, an appropriate simulator must be chosen. A commonly

used option is SUMO7 (Simulation of Urban Mobility). However, it focuses on traffic

simulation and is not particularly built for in-depth simulations of autonomous driving.

Instead, a variety of high-detail, photorealistic 3D simulators have established recently.

The most commonly used options are the following.

1https://thrift.apache.org/

2https://capnproto.org/

3https://google.github.io/flatbuffers/

4https://developers.google.com/protocol-buffers/

5https://github.com/n1try/talkycars-thesis/tree/master/src/evaluation/serialization

6https://github.com/capnproto/go-capnproto2

7https://sumo.dlr.de/

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://thrift.apache.org/
https://capnproto.org/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/
https://github.com/n1try/talkycars-thesis/tree/master/src/evaluation/serialization
https://github.com/capnproto/go-capnproto2
https://sumo.dlr.de/

6.2. SIMULATION ENVIRONMENT 61

syntax = "proto3";

enum OccupancyState {

FREE = 0;

OCCUPIED = 1;

UNKNOWN = 2;

}

message OccupancyStateRelation {

float confidence = 1;

OccupancyState object = 2;

}

message OccupancyCell {

uint64 hash = 1;

OccupancyStateRelation state = 2;

}

message OccupancyGrid {

repeated OccupancyCell cells = 1;

}

@0xc77abe9e219ad98d;

enum OccupancyState {

free @0;

occupied @1;

unknown @2;

}

struct OccupancyStateRelation {

confidence @0 :Float32;

object @1 :GridCellState;

}

struct OccupancyCell {

hash @0 :UInt64;

state @1 :OccupancyStateRelation;

}

struct OccupancyGrid {

cells @0 :List(OccupancyCell);

}

Listing 2: Exemplary schema definitions in Protocol Buffers (left) and Cap’n’Proto (right)

� AirSim by Microsoft [SDLK17] is an open-source (∼ 9,300 GitHub stars, MIT

license) 3D simulator for autonomous cars and drones based on the Unreal 4 game

engine8. It has inherent support for Reinforcement Learning, allows to connect

various kinds of external control devices and has a rich C++ and Python API

to program it. Supported sensors are RGB camera, IMU, GPS, magnetometer,

barometer, a custom distance sensor and LiDAR.

� Carla [DRC+17] is an independent open-source project (3,600 GitHub stars, MIT

license). The 3D simulator is based on Unreal 4, has C++ and Python APIs and

features a multitude of sensors, including RGB camera, depth camera, IMU, GPS

and LiDAR. In addition, is has multi-agent support, i.e. allows multiple Python- or

C++ clients to connect to the simulation server and also offers an integration with

the Autoware AV stack9.

� Carmaker10 by IPG Automotive GmbH is a proprietary 3D simulator featuring

various integrations with hardware platforms and tools and offers an proprietary

8https://www.unrealengine.com

9https://www.autoware.ai/

10https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://www.unrealengine.com
https://www.autoware.ai/
https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/

62 CHAPTER 6. IMPLEMENTATION

Figure 6.2: Client-Server Schema in CARLA [Car]

and a MATLAB programming interface.

� LGSVL11 by LG is the latest of these 3D simulator projects, as development started

in 2019. It is open-source (∼ 700 GitHub stars, custom license), written in C# and

based on the Unity game engine12, offers integrations with Autoware and Baidu’s

Apollo framework13 and a Python API. Supported sensors include RGB camera,

IMU, GPS, LiDAR, radar and CAN bus. While this project appears to be the most

ambitious and promising one, it is still in quite early development and therefore

partially unstable.

Mainly because of its extraordinarily rich and intuitive API, the large number of simulated

sensors, the inherent multi-agent support an a vibrant open-source community Carla

was chosen to be used as a simulation environment in this work. In addition to the

features mentioned above, it also includes seven pre-defined high-detail maps, each of

which represents a different scenario (e.g. urban or rural environments). Maps can be

exported in the OpenDrive format and thanks to an integration with the RoadRunner14

software suite, custom maps can be created and imported easily. In addition to vehicles

pedestrians and cyclists are supported as traffic participants as well and the open-source

community has provided automated controllers and navigation scripts for each of these

actor types. Figure 6.2 schematically outlines how a simulation running on a Carla server

is controlled by one or multiple user scripts.

The screenshot in fig. 6.3 depicts an exemplary rural scene in Carla, involving two vehicles.

It was recorded during an early development stage when the simulation client already

supported to compute and render the occupancy grid corresponding to an ego vehicle’s

observations. Green cells are considered free, red cells are occupied and the state of blue

11https://www.lgsvlsimulator.com

12https://unity3d.com

13https://github.com/ApolloAuto/apollo

14https://www.vectorzero.io/

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://www.lgsvlsimulator.com
https://unity3d.com
https://github.com/ApolloAuto/apollo
https://www.vectorzero.io/

6.3. SERVER-SIDE SOFTWARE COMPONENTS 63

cells is unknown, e.g. due to sensor noise or because they are out of sight.

Figure 6.3: Screenshot of an Exemplary Scene in Carla featuring two Vehicles and their

Occupancy Grids

6.3 Server-Side Software Components

The following two sections discuss the implementation or integration process and respec-

tive details of the software components outlined in section 5.3.4, starting with server-side

components. These constitute the central processing instance that all participants within

certain geographical area connect to and exchange information with.

6.3.1 Message Broker

A message broker’s responsibility as part of a publish-subscribe (or messaging-based)

software system is to maintain connections to all clients and receive and re-distribute

their messages according to certain rules. Usually this involves the notion of a queue,

topic or subject as a basic routing mechanism for messages. Producers publish messages

to a certain queue, which are then received by all consumers that had subscribed to that

queue upfront. Figure 6.4 depicts this mechanism schematically.

A variety of messaging solutions and corresponding brokers already exist. When attempt-

ing to evaluate such, one has to distinguish between protocol and implementation. While

the use of a messaging-based architecture has already been motivated in section 5.3.3,

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

64 CHAPTER 6. IMPLEMENTATION

Figure 6.4: Schema of Publish-Subscribe Communication with Topics [Col19]

a concrete protocol and a corresponding software implementation need to be chosen in

addition.

Publish-subscribe protocols for data streaming include AMQP, the Apache Kafka messag-

ing protocol15, MQTT, NATS16 and more. Without conducting an in-depth evaluation

of these alternatives, it can be concluded that each solution has various advantages and

drawbacks with respect to different use cases. However, MQTT is the de-facto stan-

dard protocol for IoT applications and most widely spread. Accordingly, it has already

proven effective and a variety of different proprietary and open-source implementations

exist. Major benefits of MQTT include its low footprint in terms of messaging overhead

and computational efficiency as well as the support for different quality of service (QoS)

levels. QoS essentially allows the user to define the reliability of delivery for a certain

message and has an impact on performance. Due to these benefits, MQTT is chosen as

the pub/sub messaging protocol to be used for the present CP system.

In addition to deciding for a protocol, a corresponding message broker implementation

needs to be picked. For MQTT, a variety of different implementations in different pro-

gramming languages and with varying feature sets exist. The most common ones are

Apache ActiveMQ17 (Java), HiveMQ18 (Java), Mosca19 (JavaScript), Eclipse Mosquitto20

(C) and RabbitMQ21 (Erlang). A basic performance comparison between different brokers

was conducted by [Müt19] and the results are depicted in fig. 6.5. Due to its good per-

formance and easy setup procedure, Mosquitto was chosen for this work. However, since

this thesis’ implementation only uses standard MQTT features anyway, the broker could

15https://kafka.apache.org/protocol

16https://nats.io

17http://activemq.apache.org/

18https://www.hivemq.com/

19http://www.mosca.io/

20https://mosquitto.org/

21http://rabbitmq.io/

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://kafka.apache.org/protocol
https://nats.io
http://activemq.apache.org/
https://www.hivemq.com/
http://www.mosca.io/
https://mosquitto.org/
http://rabbitmq.io/

6.3. SERVER-SIDE SOFTWARE COMPONENTS 65

Figure 6.5: Basic Performance Benchmark of Different MQTT Brokers [Müt19]

easily be switched by any other one, as it is a modular, stand-alone software component.

6.3.2 Talky Fusion Node

The second server-side component, which is deployed “on the edge“, is the fusion node.

While the message broker only acts as an intermediary, the fusion node is a core component

of the proposed CP system. It is responsible for the aggregation of all its connected

clients’ (vehicles, etc.) observations. It is realized as a stand-alone software component

and, in a first iteration, using the Python programming language. However, after some

initial evaluations it turned out that Python as a dynamically typed, interpreted language

was too slow to perform fusion for multiple clients at a reasonable update rate. As a

consequence, a second iteration re-implemented the fusion node in Go, which yielded a

performance improvement of up to two orders of magnitude. Due to a high degree of

modularity, encapsulation and separation of concerns (cf. [Mar17b]) the rewriting could

be done with comparatively low effort.

The program relies on third-party open-source libraries with MIT-, BSD-3- and EPL-1.0

licenses.

The fusion algorithm as a core part of this component is modelled after the formal defini-

tions described in section 5.4 and implemented to use multi-threading for parallelization,

facilitated by Goroutines22 and Go channels. Messages are received via MQTT from the

22https://tour.golang.org/concurrency/1

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://tour.golang.org/concurrency/1

66 CHAPTER 6. IMPLEMENTATION

message broker using a subscription to a single topic, which all incoming observations are

published to. Received messages are temporarily stored in an internal queue, from which

they are picked up during the next fusion iteration. In line with the principle of periodic

push, the fusion algorithm is executed at a configurable constant rate, e.g. 10 Hz. As

part of an iteration, it fetches all observations from the queue, which are not older than

a certain configurable threshold, e.g. one second. In a fusion procedure of O(n ∗m ∗ k)

time complexity (n ≈ |cells|,m ≈ |observers|, k ≈ |observations per observer|), the occu-

pancy grids are merged into a single one, which is subsequently split into type 2 tiles (see

section 5.3.2) and published to their respective MQTT topics periodically.

For instance, assume a vehicle is at position 120203233230313123011210, λ2 = 19 and

λ3 = 16. In that case, the current fusion node will be configured to be responsible for

1202032332303131 and the the vehicle will be subscribe to all of its surrounding level 19

tiles, including 1202032332303131230. For this tile, among others, it will receive fused

grids that were previously – ideally only few milliseconds ago – published by the fusion

node.

As mentioned earlier, the fusion node is implemented as a stand-alone software component

contained in a single executable file and can be executed as such without additional

dependencies. Required program arguments include the message broker’s address and

port and the type 3 QuadKey of the tile, which this node is supposed to be responsible

for. Further parameters, including the maximum observation age, the fusion rate, MQTT

topic and QoS and more can be specified via an additional configuration file.

6.3.3 Web Visualization

This component was not presented in section 5.3.4 as part of the system as it is only

used for development and debugging. Its purpose is to visually depict the output gener-

ated by the fusion node. Thanks to a uniform interface and a common message format

specification, this visualization component could be easily implemented as a light-weight,

stand-alone software component using Python. It subscribes to a desired MQTT topic to

receive fused PER model instances and relays these occupancy grids to a web-frontend via

a featured webserver using Websockets, where they are eventually displayed. The screen-

shot in fig. 6.6 depicts the respective visualization for a scene featuring two participant

vehicles within the 12020323332303131133 type 2 tile. Green cells are considered free,

red cells are occupied and blue cells are out of range or can not be observed for other

reasons.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

6.4. ON-BOARD CLIENT-SIDE SOFTWARE COMPONENTS 67

Figure 6.6: Screenshot of an Occupancy Grid’s Web Visualization

6.4 On-Board Client-Side Software Components

This section concerns with the implementation of all on-board software components, i.e.

modules, which are usually run on an observer device. Usually, such observers will be

vehicles, but might be road-side cameras, traffic lights or potentially even pedestrian

smartphones as well. All client-side software is implemented in Python and relies on

third-party open-source libraries with the following licenses: Apache 2, BSD-3, EPL,

LGPL, MIT, MPL.

6.4.1 Simulator Bridge

This first component to run on the client-side, i.e. usually on a vehicle, is specific to this

work, as it constitutes a software interface between CP system and simulation environ-

ment. In a real-world scenario, a similar component with (ideally) identical interfaces will

exist nevertheless. However, it would wrap different functions. Instead of performing API

calls to Carla and related data pre-processing it would rather communicate with either

the previous AD pipeline module or the vehicle’s sensory directly.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

68 CHAPTER 6. IMPLEMENTATION

Simulation

+ carla: Connection
+ config: SimConfig
...

+ run()
+ tick()
...

Scene

+ config: SceneConfig
+ map: Map
+ actors: []Actor
...

+ init()
+ tick()
...

EgoVehicle

+ config: EgoConfig
+ sensors: []Sensor
...

+ init()
+ tick()
...

TalkyClient

+ config: ClientConfig
+ om: ObservationManager
+ tr: ObservationTracker
+ bridge: MqttService
...

+ init()
...

Strategy

+ type: StrategyType

+ init()
+ spawn()
+ step()

1..11..1 0..*1..1 1..11..1

1..1

1..1

Figure 6.7: UML Class Diagram for Simulation Client

As Carla offers a rich Python API, this component is implemented in Python. As opposed

to constituting a stand-alone component, however, it is integrated into the Talky client

(see section 6.4.2) as a collection of encapsulated modules and classes. Following the

guidelines for good software architecture presented in [Mar17b] and utilizing appropriate

design patterns [Eri13], the implementation focuses on establishing a strict boundary

between simulation client and Talky client, to make both possibly reusable.

The simulator bridge (or simulation client) communicates to the simulation server via

a TCP socket connection and is responsible for performing multiple tasks in interaction

with the server:

� Offer an interface to control the simulation environment, i.e. frame rate, map,

weather conditions, other traffic participants, etc.

� Offer an interface to control an ego vehicle

� Receive and display rendered images from simulation server

� Receive sensor data (via a push mechanism, with a frequency synchronized to the

server’s tick rate) from the simulation server

� Pre-process sensor data

� Infer control commands according to a specified behavior or policy

Figure 6.7 depicts core sub-modules of the simulation client. In order to achieve a high

degree of modularity and keep clean code boundaries between simulation-related

code and the actual CP system, different abstractions are made.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

6.4. ON-BOARD CLIENT-SIDE SOFTWARE COMPONENTS 69

The Simulation class can be thought of as an entry point to the program. It maintains

connection and communication with the Carla server, displays the rendered images and

synchronizes client- and server tick rate. Every simulation is initialized with exactly one

Scene. It loads the map environment and spawns and controls all “non-player character“

(NPC) traffic participants, e.g. pedestrians. In addition, it holds references to one or

more EgoVehicles. Each of these represent a connected, intelligent car in the sense of

autonomous driving. An ego vehicle, in turn, has access to several sensors, whose data

it processes as well as actuators used to control the car. A given behavior, in form

of a Strategy instance, specifies how the car interacts with its environment and what

“decision“ it is supposed to take in which situation. Eventually, every ego vehicle holds

an instance of exactly one TalkyClient, which corresponds to the respective component

presented in section 5.3.4. All client-side cooperative perception tasks are performed inside

this component and it acts as a bridge to the server-side subsystem via an intermediate

MQTT connection with the message broker.

This modular structure enforces a strong separation of concerns and enables for dis-

tribution. That is, a certain scene might be hosted on one physical machine, while the

contained ego vehicles run on another, e.g. to simulate latency or to better distribute

computation load.

6.4.2 Talky Client

As mentioned before, this component is one of two core parts of the presented cooperative

perception system, together with the TalkyEdgeNode (see section 5.3.4). It is implemented

in Python and realized as one coherent application together with the simulation client.

However, a highly modular structure is followed, so that different parts of the application

are re-usable and can be executed separately. Responsibilities of this component include

to:

� ... compute the current occupancy grid’s structure every frame.

� ... perform object detection based on received sensor data to derive occupancy states

every frame.

� ... perform object tracking based on received sensor and derived occupancy states

every frame.

� ... construct a PER model instance every frame.

� ... communicate its local state representation with the server-side fusion at a fixed

rate.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

70 CHAPTER 6. IMPLEMENTATION

Particular emphasis is laid on the tasks of detecting and tracking an object in the following.

In order for a vehicle to construct an occupancy grid model or driveability map, detailed

information on all surrounding obstacles is needed. Such include dynamic obstacles, like

other traffic participants as well static obstacles, like curbstones, ground-mounted traffic

signs, buildings, etc. The first step is to recognize them, also referred to as detection in

the following, and a second step is to match and track them. That is, a detected object

in one iteration or frame needs to be associated with an instance of itself in subsequent

frames. Both problems are subject to current research and only covered in a very basic

manner here.

While Carla offers a variety of sensors, including camera and LiDAR, unfortunately, there

is no mechanism to directly retrieve all static and dynamic obstacles from the simulation23.

Thus, they need to be derived from actual sensor data. For the task of detecting an

obstacle, a basic heuristic is applied to perform ray casting on LiDAR sensor data.

LiDAR data usually exists in the form of point clouds, which are, essentially, collections

of 3-tuples of world coordinates. For every LiDAR ray, the respective coordinate refers

to the point in space where it was reflected, i.e. hit an obstacle. Rays that are not

reflected within the sensor’s spatial range do not have corresponding triples in the point

cloud. Given these data, the two-dimensional position of obstacles in Eucledian space –

and thus of occupied cells – can be derived easily. Occupancy cells that do not have a

LiDAR collision point falling into them are considered free. However, this indicator is only

necessary, but not sufficient for a cell to be considered free. As mentioned in section 5.1.5,

the state property is desired to be ternary rather than binary, i.e. distinguish between

a cell being occupied or free on the one hand or having an unknown state on the other.

Disregarding sensor noise, a cell within the observer’s perception range is unknown exactly

if no LiDAR ray has a chance to intersect or hit it. These are cells, which are hidden by

an obstacle placed between the cell and the sensor. All cells that lie “behind“ an obstacle,

i.e. a cell that contains a LiDAR point, can be considered unknown. On the contrary,

all cells “in front of“ that obstacle can assumed to be free, as the LiDAR ray was able to

pass them to eventually hit the target. To determine these cells, a ray casting algorithm

is used to check for a ray’s intersection with any of the “boxes“ corresponding to cells

between sensor and hit point. The estimation of a cell state can be summarized as follows,

given a ray with vector direction ~rj and magnitude dj:

state(celli) =


occupied if contains(cell boxi, 〈~rj, dj〉)

free if intersects(cell boxi, ~rj)

unknown else

23https://github.com/carla-simulator/carla/issues/1832

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://github.com/carla-simulator/carla/issues/1832

6.4. ON-BOARD CLIENT-SIDE SOFTWARE COMPONENTS 71

The implementation of contains() is trivial and for intersects() the ray casting algorithm

shown in section B.2 was ported to Python. After Python’s performance for this algorithm

turned out to be comparatively poor, it was re-implemented in Cython24. Cython is an

extension to the Python language and offers support to compile Python-like code to

native C code and include it as a module. For computation intense algorithms, this

usually improves performance dramatically. In the example of ray casting, the difference

in performance between a Python- and C++ implementation of the exact same algorithm

can be up to multiple orders of magnitude high [Nov17].

It is worth noting that, in a real-world system, object detection would usually be per-

formed by a dedicated pipeline step. Normally, the Talky client would be supplied with

already detected obstacles and their positions, which it can infer an occupancy grid from.

Thus, the OccupancyGridManager’s matching function would normally take an object

list as input, rather than a LiDAR point cloud. The current implementation could eas-

ily be adapted to support that by encapsulating the cell matching process in a further

sub-module.

The second low-level fusion-related task mentioned above is tracking, which usually

goes together with matching. However, for the sake of simplicity and in order to stay

within the defined scope, an actual matching mechanism was not implemented. Instead,

dynamic objects are identified by their IDs in the simulation. Cells are, trivially, identified

by their position, i.e. their QuadKey. Basic tracking is based on the suggestion by [CD93],

the authors of which stated that “[n]ewly observed segments enter the model with a low

confidence. Successive observations permit the confidence to increase, where as if the

segment is not observed in the succeeding cycles, it is considered as noise and removed

from the model. Once the system has become confident in a segment, the confidence factor

permits a segment to remain in existence for several cycles“. Accordingly, a hash map is

used to count the number of occurrences of a certain fact, e.g. the state of a specific cell or

the presence of a certain car, in subsequent frames. The confidence of the corresponding

relation is then set proportionally to its relative presence over the last few (e.g. 10) frames.

If it was not seen over a certain number of subsequent frames, it is removed from the hash

map and not “tracked“ anymore. This rudimentary type of tracking was realized as a

LinearObservationTracker sub-module and is the central source of confidence values as

fourth parameter in the previously defined model’s quadruples.

Communication with the server-side fusion node – via the message broker – is done inside

the SubscriptionManager sub-module. On the one hand it acts as an interface for

publishing an ego vehicle’s current state. On the other hand it maintains according

MQTT subscription for type 2- and type 3 tiles (see section 5.3.2), given the ego vehicle’s

24https://cython.org/

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://cython.org/

72 CHAPTER 6. IMPLEMENTATION

Figure 6.8: Screenshots of Carla Maps

current position. The component holds a reference to an instance of MqttBridge to handle

low-level communication. Given this separation, MQTT could be easily switched out by

a different publish-subscribe protocol.

6.5 Configurable Parameters

In complement to the previous sections, which provided an in-depth description of all

involved software components, this section aims to give an overview over relevant param-

eters, that can be configured by the system’s user. They can be categorized into three

different classes, depending on which part of the system they affect.

Each of these parameters can be set either through a configuration file or as a program

argument.

6.5.1 Simulation Parameters

The first set of parameters relates to the simulation.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

6.5. CONFIGURABLE PARAMETERS 73

Parameter Description

MAX FRAME RATE Upper bound for the frame rate which to

run the simulation at

SENSOR {i} POSITION Mounting position of the i-th sensor on the

vehicle

LIDAR PPS Number of points per second sent by Li-

DAR sensor

LIDAR CHANNELS Number of vertical LiDAR channels

LIDAR ROTATION FREQ Rotation frequency of the LiDAR sensor

LIDAR RANGE The LiDAR sensor’s range

Table 6.1: Simulation Parameters

6.5.2 Scene Parameters

The second type of parameters is used to specify details about the current simulation

scene.

Parameter Description

MAP Carla map or environment to run (see

fig. 6.8)

N NPCS Number of “non-intelligent“ vehicles

present in the scene

N PEDESTRIANS Number of pedestrians present in the scene

N EGOS Number of connected, intelligent ego vehi-

cles

SPAWN POINT {i} Spawn point on the map for the i-th vehicle

SPAWN POINT POLICY Alternatively: A policy for how to choose

spawn points

MAX SPEED Maximum vehicle speed in km
h

Table 6.2: Scene Parameters

6.5.3 Cooperative Perception Parameters

The last category of parameters refers to such that specify certain aspects of the CP

system itself.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

74 CHAPTER 6. IMPLEMENTATION

Parameter Description

TILE {i} LEVEL Tile levels to use for geo partitioning

MQTT QOS MQTT quality of service

OBSERVATION MAX AGE Maximum age (or “time-to-live“) for an

observation to be included in fusion

FUSION RATE Rate at which to perform fusion (server-

side)

OBSERVATION RATE Rate at which to publish observations

(client-side)

DECAY FACTOR Exponential factor for temporal decay

Table 6.3: Cooperative Perception Parameters

6.6 Open-Source Contributions

The present project heavily relies on third-party open-source libraries without which the

implementation would not have been possible in this form. Therefore, the efforts tak-

en by the community are highly appreciated. Moreover, code contributions to several

open-source projects have been made on the course of this thesis. Such include the Car-

la project25, buckhx/tiles26, a QuadKey implementation for Go, buckhx/QuadKey27,

a QuadKey implementation for Python (later n1try/pyquadkey228), ethlo/jquad29, a

QuadKey implementation for Java and johnnovak/raytriangle-test30, a benchmark of

ray casting in different programming languages.

6.7 Summary

This chapter discussed details about the concrete implementation of concepts and compo-

nents presented in chapter 5. The resulting software is subsequently evaluated in chapter 7

and constitutes an exemplary proposal for a novel, holistic cooperative perception system.

In order to use it in real-world scenarios, one would have to add thorough quality assurance

and testing as well as various performance optimizations. However, since the system is

built following a modular approach it is comparatively easy to re-use or replace certain

25https://github.com/carla-simulator/carla

26https://github.com/buckhx/tiles

27https://github.com/buckhx/QuadKey

28https://github.com/n1try/pyquadkey2

29https://github.com/ethlo/jquad

30https://github.com/johnnovak/raytriangle-test

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://github.com/carla-simulator/carla
https://github.com/buckhx/tiles
https://github.com/buckhx/QuadKey
https://github.com/n1try/pyquadkey2
https://github.com/ethlo/jquad
https://github.com/johnnovak/raytriangle-test

6.7. SUMMARY 75

parts, while keeping others. Accordingly, the simulation client, for instance, might be

switched out by a component interfacing with a real AD pipeline without too much effort.

As this implementation is published as an open-source project31, it can be used openly as

a based for further research.

31https://github.com/n1try/talkycars-thesis

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://github.com/n1try/talkycars-thesis

76 CHAPTER 6. IMPLEMENTATION

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 7

Evaluation

After a comprehensive proposal for a cooperative perception system, including a novel

modeling approach and an elaborate distributed software architecture, was presented in

the previous chapters, this chapter aims to evaluate the system with regard to different

aspects.

Section 4.3 presented a set of goals and requirements to be met by the proposed system.

While previous chapters already discussed how most of them are individually addressed,

a few demand for further investigation or empirical assessment. Accordingly, a two-fold

evaluation is conducted. The first part concerns with evaluating the proposed software

architecture in terms of performance, specifically with respect to the requirements of

scalability (NF-C2) and efficiency (NF-C3). The second part of the evaluation aims to as-

sess the system’s qualitative performance in cooperative perception tasks, motivated

by the overall goal of this thesis to facilitate the improvement of connected, autonomous

vehicles’ average perception quality (cf. section 4.3). Both parts are split into three sec-

tions each, that describe the respective goal and methodology, present the results and

eventually discuss them in a brief conclusion.

7.1 Performance Evaluation

Section 4.3 stated the non-functional requirement for the system to be able to handle 202

concurrent network participants at minimum and to aim for low latency and on-vehicle

load. The following evaluation thoroughly assesses the previously developed system with

respect to both criteria, i.e. system scalability and communication efficiency.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

78 CHAPTER 7. EVALUATION

7.1.1 Methodology

First, one or more metrics need to be determined with respect to which the evaluation

of the above criteria should be conducted. With regards to scalability, a precise quan-

tity is already given as a requirement. Namely, it refers to the number of concurrent

clients (i.e. vehicles, pedestrians, etc.) the system is expected to handle at minimum.

Assuming a fixed per-vehicle message publish rate – which is in accordance with the pre-

viously introduced periodic push principle – this translates to a minimum number of

observation messages (Q1), i.e. state representations, which the edge node must be

able to process at a time. While the concrete message rate is a parameter that can be

varied over the course of the evaluation, a hard minimum requirement of 202 concurrent

vehicles is given. That is, assuming the entire system to operate at 10 Hz (i.e. both client-

and server-side publish rate), the fusion node must reliably process 2020 observations per

second without dropping below that rate. In addition, average latency in milliseconds

(Q2) and average message size in kilobytes (Q3) per vehicle and per observation are

to be determined to cover the communication efficiency aspect. Latency, in this specific

context, refers to the average delay of a CP message until received by an ego vehicle and

can generally be thought of the average “outdatedness“ of a shared observation.

Message size (Q3) is constant per vehicle and can be determined trivially by inspecting

and aggregating the individual sizes of incoming messages at the fusion node without any

special setup. For better comparison, an additional boolean parameter WITH OCCUPANT is

introduced to denote whether or not an occupancy cell should include information about

its potential occupant in addition to its pure state.

Concerning latency (Q2), the primary interest is to get insights about how it is com-

posed. Instead of trying to estimate total latency as a function of traffic density / number

of network participants, the focus is rather on getting insights about which parts of the

fusion process are the most temporally critical ones to help later optimization of certain

system components and functions. Accordingly, the relative durations di∈[0..6] between

relevant instants tj∈[0..7] of the fusion process, schematically depicted in fig. 7.1, are to

be determined for a fixed parameter configuration. To help that, existing code is ex-

tended in various placed across Talky edge node and Talky client to add time measuring

functionality.

In order to gather (Q1), a minimalist sub-system of the entire CP software system is em-

ployed. It still follows a client-server architecture and has the message broker and fusion

node on one end and multiple (simulated) ego vehicles on the other. Since only quan-

titative measurements are of interest rather than the messages’ actual content, a newly

created message generator program is used to artificially simulate observations instead

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.1. PERFORMANCE EVALUATION 79

Figure 7.1: Timing Composition of Fusion Process

t = 1: An observation is obtained by local sensory and low-level fusion (including ray casting-

facilitated cell matching, etc., cf. section 6.4.2)

t = 2: The observation is encoded locally, i.e. represented as a PER model and serialized to

Protobuf format

t = 3: The observation is received remotely, i.e. at the fusion node

t = 4: The observation is decoded remotely, i.e. deserialized from Protobuf and converted to

process-local data structures

t = 5: The observation is remotely fused with other relevant observations from different ob-

servers, encoded to a PER model instance and serialized to Protobuf again

t = 6: The fused observation is received locally by the ego vehicle

t = 7: The fused observation is decoded locally

of employing an actual Carla simulation with real Talky clients. Otherwise it would be

infeasible to test with a large number of vehicles, due to exceedingly high computation

load. The newly developed, multi-threaded message generator is parameterized with (1)

the target size of the generated occupancy grid observations, (2) the number of concur-

rent clients to simulate and (3) a per-client frequency at which to push messages to the

backend (see table 7.2). Moreover, supplementary code is added to the fusion node to

track how often the Publish() method is called.

The test setup involves two physical machines, interconnected via a 1 Gbit
s

Ethernet net-

work. One machine (AMD Ryzen 1600 3.2 GHz 6-core CPU, 16 GB RAM, Ubuntu 18.04)

runs the backend part of the system, i.e. message broker and edge node, while the message

generator is run on the other (Intel i5-6600K 4.5 Ghz 4-core CPU, 16 GB RAM, Manjaro

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

80 CHAPTER 7. EVALUATION

Parameter Value

TILE 1 LEVEL 24

TILE 2 LEVEL 19

TILE 3 LEVEL (*) 15

MQTT QOS 1

DECAY FACTOR (*) 0.11

FUSION RATE (*) 10

OBSERVATION MAX AGE 3600

WITH OCCUPANT false

Table 7.1: Constant Parameters of the Performance Evaluation. See section 6.5 for de-

scriptions.

Paremeter Description Values

N EGOS Numbers of concurrent simulated clients ex-

changing CP messages

{25, 50, 75,

100, 200, 400,

800, 1600}
OBSERVATION RATE Frequency at which observations are periodical-

ly published to the network by each of its par-

ticipants

{1, 5, 10}

GRID RADIUS Occupancy grid radius in number of cells. With

λ1 = 24 these are approx. equal to a grid size

(i.e. observation range) of {52.8, 100.8} me-

ters

{11, 21}

Table 7.2: Variable Parameters of the Performance Evaluation

18.1).

Table 7.1 lists all fixed parameters used throughout the entire evaluation. Parameters

marked with a star (*) are mentioned for completeness, but should not have any influence

on the measured quantity. For the experiment, randomly generated occupancy grids lie

within the same type 3 tile are used in the observation messages.

Table 7.2 lists all variable, evaluation-specific parameters to be tested in order to get

insights about their respective impact on the final results. To test all combinations of

parameters for investigating (Q1), a grid search is conducted, i.e. a test is run for every

combination in the Cartesian space of parameter values. For (Q2) and (Q3) only a single

parameter set ϑ = {N EGOS = 6, OBSERVATION RATE = 10, GRID RADIUS = 11} is used

instead.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.1. PERFORMANCE EVALUATION 81

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

send_rate=10, grid_size=21 send_rate=10, grid_size=11 send_rate=5, grid_size=21
send_rate=5, grid_size=11 send_rate=1, grid_size=21 send_rate=1, grid_size=11

Ego Vehicles

F
us

io
n

R
a

te
 (

H
z)

Figure 7.2: Average Measured Fusion Rate

In summary, two steps are performed to gather the above metrics. First, to find (Q1),

multiple iterations – each according to one parameter set – are run using the minimal

system subset in the presented two-machine setup. Second, the entire CP system including

a Carla simulation instance is run in a single machine to obtain (Q2) and (Q3) for a fixed

parameter set.

7.1.2 Results

In accordance with the structure presented in the previous section, results are obtained

in two steps.

First, a set of experiments are conducted to get insights about the Talky edge node’s

maximum fusion rate (Q1), depending on three different parameters. Whilst most

parameters, including the edge node’s fusion rate, are fixed to a certain value (see ta-

ble 7.1), the number of concurrent network participants and their publishing frequency

and grid size are varied. Consecutively executing the evaluation with a total of 30 different

configurations yields the results depicted in fig. 7.2.

It can be seen that the maximum possible fusion rate heavily depends on both the incom-

ing message rate and the occupancy grids’ size. While the fusion node is able to maintain

a rate of 10 Hz for up to nearly 200 concurrent vehicles if their observation range is ∼
52.8 m (11 by 11 cells at λ1 = 24), it tends to drop below that threshold as observa-

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

82 CHAPTER 7. EVALUATION

GRID RADIUS = 11 GRID RADIUS = 21

WITH OCCUPANT = false 12 kB 46 kB

WITH OCCUPANT = true 32 kB 121 kB

Table 7.3: Average Measured Observation Message Sizes (occupied cells)

tion rate and grid size increase. Assuming a fusion rate of 10 Hz, the hard requirement

of being able to handle ∼ 200 concurrent vehicles can only be fulfilled with the smaller

observation range of GRID RADIUS=11, regardless of the client’s publish frequency. If the

client vehicles are expected to publish their environment observations from a range of ∼
100.8 m instead, the current Talky edge node implementation would not be able to keep

up at a fusion rate of 10 Hz at all. However, if the system’s fusion rate is lowered to,

for instance, 5 Hz – which can still be sufficient for cooperative perception [TSG19] – the

fusion node could fulfill the requirement for all test scenarios.

As an additional excursus, the MQTT broker’s performance is evaluated separately to

eliminate the possibility of it being a bottleneck to the system. Using the mqtt-bench1

benchmarking tool it was found that Mosquitto (version 1.6.8) is able to handle up to

8000 messages/s with a message size of 12 kB (approximately corresponding to 11x11-cell

grids, see table 7.3) and up to 4100 messages/s with a message size of 46 kB (21x21-cell

grids). This means that the broker only becomes a limiting factor with more than 800

or 410 concurrent vehicles respectively. The benchmark results can be found in appendix

section C.2.

In a second step, average message size latency are investigated. Results for the former

are depicted in table 7.3. The minimum achievable average message size (Q2) of a

Protobuf-serialized PER model instance was found to be 12 kB (46 kB) with a grid radius

of 11 cells (21 cells), corresponding to an observation range of ∼ 52.8 m (100.8 m). Such

minimalist model instances contain nothing but the observer information, the occupancy

grid and an estimated state value for each cell. When including additional information

about the occupant (vehicle, pedestrian, static obstacle, etc.) of a cell, the average mes-

sage size increases accordingly.

As a result of investigating how an observation’s total latency (Q3) is composed in the

present CP system, the duration values presented in table 7.4 were observed. Timings

shown in the table refer to those presented in fig. 7.1. As can be seen in the table, two sep-

arate, but related time series were measured for completeness. While the first includes an

entire round trip, the second excludes t = 0 and starts at instant t = 1, i.e. at the moment

a local observation is already present. With respect to the evaluation goal, this is more

1https://github.com/takanorig/mqtt-bench

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://github.com/takanorig/mqtt-bench

7.1. PERFORMANCE EVALUATION 83

Instant Time Offset (with lo-

cal perception)

Time Offset (without

local perception)

Duration (ti−1 → ti)

t=0 0 ms – –

t=1 260 ms 0 ms 260 ms

t=2 288 ms 28 ms 28 ms

t=3 341 ms 81 ms 53 ms (3 ms)

t=4 343 ms 83 ms 2 ms

t=5 501 ms 241 ms 58 ms (8 ms)

t=6 545 ms 285 ms 44 ms

t=7 549 ms 289 ms 4 ms

Table 7.4: Cooperative Perception Latency Composition

Duration is additionally normalized with the expected delay of µδt = 50 ms caused by periodic

push at 10 Hz

meaningful, as it only measures the actual CP process and disregards observer-specific

performance of local perception and low-level sensor fusion. In the present experiments,

a globally fused observation is on average 289 ms old when it arrives at a client again. In

other words, given the system runs at 10 Hz it takes 289 ms for a local observation to take

the journey from a vehicle over the message broker and Talky edge node back to a vehicle.

However, two key points must be kept in mind when interpreting these results. First, a

local area network (LAN) with Ethernet was used instead of cellular 5G. Second, some of

the depicted duration values include an “idle“ delay caused by the fact that the system

runs at a fixed rate (10 Hz in this case). For instance, when an observation is received at

the fusion node, it takes, on average µδt = 1
2
∗ 1 s

10
= 1

2
∗ 100 ms = 50 ms to get “picked

up“ by the fusion routine. After normalizing the duration values by this average delay

(denoted in brackets in table 7.4), it can be seen that receiving an observation locally

(t4 → t6=̂d5) takes longest, although receiving it remotely is much faster (t2 → t3=̂d2).

This might potentially be caused by a “queuing“ effect resulting from poor performance of

the client-side message processing, but demands for further investigation in future work.

Local encoding (model instantiation and Protobuf serialization) (t1 → t2=̂d1) makes up

another significant part of the total latency, but is still faster than with the previous ap-

proach of using Cap’n’Proto (cf. section 6.1.2). Overall, the average total delay of 289 ms

(189 ms normalized) can be considered acceptable, especially given that the current im-

plementation is rather a proof-of-concept than an optimized system solution. However,

further research is required to investigate latency in real-world scenarios and using actual

cellular networks.

A further discussion about the implication of any of these results is done in the next

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

84 CHAPTER 7. EVALUATION

section.

7.1.3 Discussion & Conclusion

With respect to scalability, it was shown that a single Talky fusion node is able to fulfill

the requirement of handling more than 202 concurrent clients with an observation range

of ∼ 50 m up to a fusion rate of 10 Hz. Given a 100 m observation range, the system would

at least be able to support 5 Hz. While the authors of [CM17] suggest to run their system

at 10 Hz, [TSG19] shows that certain optimizations can decrease the required message

rate for cooperative perception to 4.5 Hz without sacrificing perception quality. Hence,

the present prototype system’s performance can be considered acceptable, although there

is large room for optimizations. Such include the following.

� Algorithmic optimizations of the fusion routine: the current implementation has

superlinear complexity and might potentially be reworked to scale better. For in-

stance, Petrich et al. [PAKZ18] showed that a relational traffic scene representation

– like the present PER model – can be transformed to a tensor format, which

potentially enables for fusion to be represented as matrix operations. Such can be

run on a GPU in a highly optimized fashion and potentially boost performance by

orders of magnitude. Another potentially promising optimization is to extend the

current, naive fusion to probabilistic fusion, which is a concept that, to the best

of my knowledge, no previous work had covered, yet. The basic idea here is to

sample a smaller subset of all available observations using a particular probability

distribution, so that the entire spatial area is still best represented in the sample.

� Parameter optimization: for the sake of simplicity, only a very small set of different

parameters were tested in the previous evaluation. However, for real-world deploy-

ment, one would want to thoroughly determine optimal values for any of the

parameters presented in section 6.5. For instance, the authors of [GTW15] run their

CP system at only 1 Hz and with a communication range of 300 m (compared to

611 m or 1223 m in the present experiments). This holds potential to dramatically

improve performance.

� Message generation optimizations: [TSG19] presents a rich set of thought on how

to optimize the generation and publishing of CPMs. For instance, the authors

worked out sophisticated heuristics to determine when a message would contain

enough valuable information about the current to be published and when it is better

held back for another few time steps. In complement to that, [BM13] presents a way

to efficiently estimate the relevance of a CAM for its recipient, mainly based on

the sender and recipient’s trajectory.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.2. END-TO-END EVALUATION 85

With respect to communication efficiency, the present evaluation found that, given a per-

vehicle observation range of ∼ 50 m, the average message size ranges from 12 kB without

occupant information to 32 kB with such. Naively assuming an available bandwidth of

200 Mbit (cf. section 5.2.1), the network could handle ∼ 2080 or 780 messages per sec-

ond respectively. Without conducting a more elaborate estimation, this can generally

not be considered sufficient. Accordingly, the format of exchanged messages would have

to undergo further optimization in the future. Such optimizations might include server-

and client-side caching of de-facto constant properties of actors, e.g. the boundingBox

of a DynamicObstacle used within an observedBy relation of an OccupancyGrid (see

section 5.1.5). In addition, the cells of an occupancy grid can be represented more effi-

ciently by only transmitting the top-left and bottom-right cell’s hash, instead of all, since

that information is redundant. Moreover, the optimization methods (e.g. with regard

to message generation) mentioned above apply to improving communication efficiency

likewise.

As a result to investigating a CP iteration’s total latency and how it is composed, an

average “outdatedness“ of shared observations of ∼ 289 ms was found, when disregarding

the local measuring process. Future optimizations might minimize the idle delay caused

by the system running at a fixed rate and therefore further reduce the total delay to

189 ms. Whether or not this is a suitable delay for a CP system is discussed in the next

section 7.2.

7.2 End-to-end Evaluation

This part of the evaluation analyzes the proposed system’s cooperative perception per-

formance in and end-to-end fashion. Goal is to determine to what degree autonomous

connected cars can improve their perception quality through cooperatively sharing their

local belief about the environment. While the performance evaluation in section 7.1 ex-

amined certain characteristics of the system itself, in this part it is rather viewed as a

black box to measure its impact end to end.

Different approaches can be taken to measure overall CP performance. For instance, the

authors of [LKC+13] evaluate their system with regard to planning. More specifically,

they compare the smoothness or “jerk“ of an automated vehicle’s generated trajectories

with and without cooperation. Another way is presented in [CTYF19]. In this case, the

authors evaluate their low-level fusion-based system with regard to detection range and

confidence, i.e. they measure the percentage and distance of detected obstacles alongside

the average observation confidence with and without CP respectively. The approach taken

by the present work is similar to the latter one and focuses on perception / detection rather

than on planning. Given multiple automated, connected cars in a simulation, goal is to

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

86 CHAPTER 7. EVALUATION

observe the overall average perception quality improvement in terms of detection

accuracy and confidence. As a part of that, it is also investigated how this potential

improvement is impacted by the observer network’s density and different parameter

values for temporal decay.

7.2.1 Methodology

7.2.1.1 Idea & Structure

The present evaluation is structured into three closely related parts. First, the proposed

system’s general suitability (part 1) for cooperative perception tasks is assessed, i.e.

goal is to determine the extent to which perception quality can be improved through

cooperation. Subsequently, it is further investigated how this potential improvement is

affected by the number of connected, communicating vehicles (part 2) and by

different temporal decay factors (part 3) (see section 5.4.5). As mentioned earlier,

the evaluation is conducted in an end-to-end fashion in the sense that measurements

taken in multiple simulated scenarios are accumulated and viewed as a whole, rather than

looking into particular aspects of the system itself. The setup is as follows.

A variable number of ego vehicles are simulated in a pre-defined Carla environment. Each

of these comprises an instance of the client-side parts (cf. section 5.3.4) of the previously

developed CP system and is connected to a centrally deployed instance of the respective

server-side part, i.e. message broker and fusion node. Given pseudo-randomly gener-

ated start- and destination waypoints on the Carla map, the agents (ego vehicles)

automatically traverse their environment while facing pseudo-randomly placed static and

dynamic obstacles, such as other traffic participants. While doing so, their observations

in the form of PER model instances, each of which contains an occupancy grid and re-

spective cell state estimations, are recorded for later analyses. Multiple different scenarios

are consecutively tested, in each of which static obstacle positions and start- and desti-

nation points of dynamic obstacles and ego vehicles are varied. Every configuration is

run multiple times to later calculate an average score. The key point of this evaluation

is to “virtually“ run each set of experiments twice in addition: once with the Talky

fusion node turned on and off respectively, i.e. with the ego vehicles communicating

with each other or not. Subsequently, both result sets are compared to learn whether or

not CP improves perception quality.

For illustration purposes, fig. 7.3 schematically shows an exemplary Carla scene (Town01)

from a top-view perspective as it might be used in this part of the evaluation. It involves

three ego vehicles (green boxes) driving in a straight line, several stationary or moving

other vehicles (blue boxes) and several pedestrians (not shown).

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.2. END-TO-END EVALUATION 87

Figure 7.3: Schematic Top-View of an exemplary CARLA Simulation Environment used

for Evaluation (Town01). Green boxes indicate ego cars, blue boxes correspond to other,

non-“player“ vehicles.

7.2.1.2 Parameters

For all following tests, the fixed parameter values listed in table 7.5 are used. In addition

to these, three further parameters are involved, which are varied across the three different

test sets accordingly.

� N VEHICLES (p1): The number of (communicating) ego vehicles to be used in an

experiment. Fixed to p1 = 6 for parts 1 and 3, varied wihtin p1 ∈ {1, 3, 6} for part

2.

� DECAY FACTOR (p2): The factor to be used for decaying (“down-weighing“) older

observations during fusion. See λ in eq. (5.6). Fixed to p2 = 0.14 for parts 1 and 2

and varied within p2 ∈ {0.05, 0.08, 0.11, 0.14} for part 3.

� SEED (p3): Random seed used to initialize pseudo-randomness for reproducible start-

and destination point generation. Fixed to p3 = 4 for part 3 and varied within

p3 ∈ {4, 8, 16} for all other experiments.

In each of the following three experiments, every scene setup is run five times for every

parameter combination. That is, for the first part, k1 = |range(p3)| ∗ 5 = 15 tests are

instantiated. Analogously, k2 = |range(p1)|∗|range(p3)|∗5 = 45 and k3 = |range(p2)|∗5 =

20 runs are performed for parts 2 and 3 respectively.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

88 CHAPTER 7. EVALUATION

Parameter Unit Value

MAX FRAME RATE fps 30

LIDAR PPS pps 4000

LIDAR CHANNELS - 3

LIDAR ROTATION FREQ Hz 30

LIDAR RANGE m 48

MAP - Town01

N NPCS - 6

N PEDESTRIANS - 90

N STATIC - 75

Parameter Unit Value

SPAWN POINT POLICY - random

MAX SPEED km/h 25

TILE 1 LEVEL - 24

TILE 2 LEVEL - 19

TILE 3 LEVEL - 15

MQTT QOS - 1

OBSERVATION MAX AGE ms 2000

FUSION RATE Hz 10

OBSERVATION RATE Hz 10

Table 7.5: Constant Parameters of the Perception Evaluation. See section 6.5 for descrip-

tions.

7.2.1.3 Data Collection

As mentioned before, every ego vehicle records both its local (M loc
i in section 5.4.6) and –

in the case of CP being enabled – its received fused observations (M glob in section 5.4.6).

Observations are dumped to a file to be then used in a subsequent, offline (i.e. after the

simulation has finished) analysis. Offline analysis, as opposed to computing evaluation

scores online and in “real time“ during the simulation, is necessary out of performance

reasons, as these computations would dramatically slow down the simulation. Alongside

the ego vehicles themselves, an additional small program, the DataCollector, is run during

the simulation, that is responsible for retrieving the actual, true obstacle position from

the simulator. These are recorded to a file as well to be later used as ground truth

measurements for comparison in the analysis. An important thing to note is that, out of

technical reasons, only occupied cells are recorded, but not free ones. Accordingly, this

evaluation only considers true positives and false negatives with regard to occupied.

This means that it can be distinguished between an occupied cell being observed correctly

or not, while cells, that are free in the ground truth data, are not included in the score.

7.2.1.4 Data Analysis & Scoring

The actual data analyses are subsequently performed in a downstream step using a sep-

arate Python script, the DataEvaluator. It first reads in all observations from all ego

vehicles over all time steps of the simulation (i.e. the time it took for all ego vehicles to

reach their destination) plus the previously mentioned ground truth data collector for a

particular run.

Subsequently, the script essentially compares ground truth data to observations; once to

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.2. END-TO-END EVALUATION 89

those with CP enabled and again to the local ones only. Doing so, all cells (= type 1

tiles, cf. section 5.3.2) that are contained in the observer’s current type 2 tile as well as in

any of the neighboring type 2 tiles are considered. Figure A.2 in appendix section A.4.1

schematically depicts this in greater detail. However, as mentioned earlier, only the state

of an (occupied) occupancy cell will be considered, so an observation corresponds to a

true or estimated cell state.

As a result of those comparisons, two scoring metrics – recall (REC) and mean-squared

error (MSE) – are computed for the aggregated set of pairs of true and estimated cell

state for the entire run. The meaning and definition of REC and MSE with regard to the

current context is briefly explained in the following.

Let ~yi be a three-dimensional vector representing a cell’s ternary (free, occupied, unknown)

state confidence, on which only one entry can be non-zero at a time. For instance, a 30 %

confidence for a cell state being occupied could be expressed as ~̂yi = (0, 0.3, 0). Further,

let a distinction be made between the true state vector ~yi and its estimation (as part of

a vehicle’s observation) ~̂yi and let Y and Ŷ be the sets of all such true- and estimated

state vectors respectively. Then, the following definitions for total, accumulated recall

and MSE can be given.

MSE(Y, Ŷ) =
1

n

n∑
i=1

~yi · (~yi − ~̂yi)2 (7.1)

REC(Y, Ŷ) =
1

n

n∑
i=1

−sgn(~yi · (~yi − ŷi)− 1) (7.2)

Example: Assume a grid that consists of only two cells, the first of which is occupied

and the second is free. Moreover, consider two observers, each estimating the grid cells’

states for exactly one time step. In the example, ~̂yi,j denotes the j-th vehicle’s observation

of cell i, i.e.
~̂
Yi are all observations for cell i. The matrices’ first (second) columns are the

first (second) vehicle’s observations.

~y1 =

0

1

0

 , ~y2 =

1

0

0

 , Ŷ1 =

 0 0

0.8 0.6

0 0

 , Ŷ2 =

0.5 0

0 0

0 0.9



MSE(Y, Ŷ) =
1

4
(

0

1

0

 ·
 0

0.2

0


2

+ ... +

1

0

0

 ·
 1

0

−0.9


2

) =
1

4
(0.22 + ... + 12) = 36.25%

REC(Y, Ŷ) = ... =
1

4
(−sgn(0.2− 1)− ...− sgn(1− 1)) =

1

4
(1 + 1 + 1− 0) = 75%

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

90 CHAPTER 7. EVALUATION

7.2.1.5 Test Setup

As a test setup, the same physical machines as in section 7.1.1 are used. The first machine

runs the Carla simulator and all backend components, i.e. message broker and Talky

fusion node. For the configurations comprising only one or three ego vehicles, all client-

side components, i.e. simulation client and Talky client, are run on the second machine.

In the last configuration involving six ego cars, four of them are run on machine 2 and

the remaining two out of six on machine 1.

7.2.2 Results

It was mentioned before that the first step involves evaluating whether perception quality

can be improved through the proposed CP system. Therefor, different simulation scenes

were instantiated and repeatedly run for a total of 15 experiments. Given the recorded

data, CP was “virtually“ turned on and off during evaluation to measure the difference

with respect to MSE and recall. This yielded the results depicted in fig. 7.4.

It can be clearly seen that both scores are better with cooperative perception, i.e. with

the ego vehicles communicating and exchanging their environment state representations.

Looking at the different in arithmetic mean for recall and MSE in the above scenario, it

can be found that ∆�MSE = −27.13% and ∆�REC = 27.73%. In addition, when looking

at the average number of unknown cells, that could potentially have been observed, one

finds that ∆�unknown = −41.11%, i.e. ∼ 40 % more cells are “unveiled“ for each vehicle

over the course of the simulation with CP.

After an actual improvement in perception quality through CP could be observed, the fol-

lowing additional results were obtained from viewing that improvement in relation to two

parameters, the number of employed connected vehicles and the temporal decay factor.

Since the absolute recall and MSE values for two different configurations of N VEHICLES

can NOT be compared to each other for various reasons, only relative changes are consid-

ered in the following. In other words, given exemplary values of MSEn=6,CP (Y1, Ŷ1) = 50%

and MSEn=3,CP (Y2, Ŷ2) = 45% does NOT imply that six vehicles are 5 % better than three.

Conversely, one can instead draw such a conclusion when comparing relative differences

between with and without CP, e.g. ∆�MSE,n=6 = −10% and ∆�MSE,n=2 = −5%.

Figure 7.5 (left) shows the results for different configurations when varying the number

of employed connected vehicles, or observers, in general. First, it becomes clear that

there is no quality improvement at all between CP being turned on and off when using

only one vehicle. This is plausible, since the key point of cooperative perception is to

benefit from other traffic participant’s observations in addition to one’s own. Moreover,

no significant increase or decrease in MSE can be perceived when varying the number of

network participants between three and six. With regard to the temporal decay factor, a

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.2. END-TO-END EVALUATION 91

With CP

Without CP

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

(a) Average MSE for N VEHICLES = 6 (lower is better)

With CP

Without CP

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

(b) Average recall for N VEHICLES = 6 (higher is better)

With CP

Without CP

0 10 20 30 40 50 60 70 80 90

%

(c) Average percentage of unknown cells for N VEHICLES = 6 (lower is better)

Figure 7.4: Perception Evaluation Scores – Part 1

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

92 CHAPTER 7. EVALUATION

-30.00 %

-25.00 %

-20.00 %

-15.00 %

-10.00 %

-5.00 %

0.00 %
-0.04 %

-28.40 %
-27.13 %

1 3 6

(a) Average MSE change due to CP for different

N VEHICLES

-35.00 %

-34.50 %

-34.00 %

-33.50 %

-33.00 %

-32.50 %

-32.00 %

-31.50 %

-31.00 %

-32.46 %

-34.14 %

-33.52 %

-34.51 %

0.05 0.08 0.11 0.14

(b) Average MSE change due to CP for differ-

ent DECAY FACTOR

Figure 7.5: Perception Evaluation Scores – Part 2

value of 0.14, i.e. a comparatively “aggressive“ down-weighing of old observations, seems

to yield the best results. However, since the differences are only marginal, one might not

speak of a significant impact of DECAY FACTOR on the final score, at least in these brief

experiments.

7.2.3 Discussion & Conclusion

The previous evaluation clearly unveiled that the average, overall perception quality can

be improved through cooperation, specifically through the use of the presented CP system.

Similar to what Chen et al. [CTYF19] discovered for their CP system, it was found that

both a vehicle’s perception range or field of view as well as the average confidence for single

measurements can be increased. In the present experiments, an average improvement in

total, accumulated mean squared error of∼ 27% and a∼ 27% better recall were discovered

likewise. In addition, it was found that ∼ 41% more potentially observable cells were

actually observed, i.e. they were assigned a state estimation other than unknown. As a

result of briefly investigating the total MSE improvement as a function of the number of

connected vehicles and the decay factor used for fusion, no significant impact of neither

of both was found.

While the general suitability of the proposed system to increase overall end-to-end percep-

tion quality was experimentally shown, further evaluation with a greater range of different

scenarios and parameter settings is needed in order to gain more extensive insights about

conceptual strength and weaknesses and about limitation of the current prototype imple-

mentation. Presumptions are that the perception quality improvement gets even more

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

7.3. SUMMARY & CONCLUSION 93

significant in larger-scale scenarios and using a highly-optimized, low-latency implemen-

tation.

7.3 Summary & Conclusion

Previous sections aimed at evaluating the system proposed in the context of this work with

regard to two different aspects, namely software performance and end-to-end perception

quality.

First, the system’s performance was analyzed with respect to three different metrics.

These include the maximum number of concurrent network participant the network is

able to handle per area, the average message size sent over the network and the average

latency or delay of an observation on its pass through the system. Multiple analyses

revealed that the minimum requirements to these metrics, stated in section 4.3, can

be fulfilled by the current prototype implementation. However, there is large room for

optimizations to consider for a real-world deployment of the system.

Second and last, an end-to-end evaluation was conducted to measure the system’s general

suitability for cooperative perception tasks, i.e. whether it can help to increase overall

perception quality. Therefor, three different sets of experiments were conducted in a

simulation, all of which employed an entire instance of the proposed system. It was found

that overall perception quality can be improved by about 27% on average and thus the

system is capable of fulfilling its core purpose in principle. However, this is only known

to hold true for comparatively few vehicles driving in a relatively minimalist scenario.

Additional experiments are desirable to be conducted to gather further evidence.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

94 CHAPTER 7. EVALUATION

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Chapter 8

Conclusion & Future Work

This last chapter aims to conclude the present work. For this purpose, a summary of the

contents and results of previous chapters is given first, followed by an outlook on potential

future work to complement this thesis.

8.1 Summary

Overall goal of this work was to design and implement an end-to-end concept for a co-

operative perception system. Considered aspects range from environment modeling and

state representation over communication- and software architecture throughout to sensor

fusion and an in-depth evaluation.

After this goal was motivated in chapter 1 and required background knowledge and funda-

mentals were provided in chapter 2, chapter 3 presented the current state of the art in all

relevant research topics and differentiated the present approach from existing solutions.

Chapter 4 aimed to analyze current approaches and their individual limitations and pre-

sented a comprehensive set of goals, functional and non-functional requirements for a

novel cooperative perception system to address these limitations. It was observed that

current approaches usually lack comprehensiveness, standardization and universality as

well as scalability. The latter is usually imposed by the usage of dedicated short-range

communication in vehicular ad-hoc networks, which gave rise to employing fundamentally

different communication technologies and patterns.

Chapter 5 was about elaborating an end-to-end concept that is based on novel techniques

and aims to overcome previously described limitations. First, a comprehensive, extensible,

yet not complete model for dynamic traffic scenes was proposed. It combines low-level

attributes with high-level features and relational knowledge in a generic way and was

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

96 CHAPTER 8. CONCLUSION & FUTURE WORK

designed to fulfill previously stated requirements. Geo tiling, occupancy grids and proba-

bilistic entity relationship models were introduced as core building blocks. Second, major

communication technologies and topologies were discussed and a detailed comparison be-

tween DSRC-based VANETs and client-server architecture utilizing cellular networks was

conducted. Several advantages of the latter regarding latency, throughput and network

utilization were outlined. Third, a holistic system architecture was designed in form of

a distributed, messaging-based client-server software solution. Edge computing concepts

were incorporated to reduce latency and distribute load. Resilience and scalability are

facilitated by the novel approach of geographical partitioning. Eventually, a fundamental

concept on how to perform high-level sensor fusion in the context of cooperative percep-

tion was developed. In accordance with the previously presented system design, it involves

a centralized fusion node and employs the novel concept of doubly-updated merging.

Chapter 6 discussed details about the concrete implementation of the previously pre-

sented concepts. All involved software components were described and categorized into

server-side components, including message broker and fusion node and on-board, client-

side components, including Talky client and simulator bridge. The entire system was

implemented in a modular way with clear boundaries and strict interfaces with the goal

to enable for easy replacement of individual components, e.g. to use a different simula-

tion environment or messaging backend. Moreover, a multitude of technology choices were

made. Carla was chosen as a simulator, MQTT was picked as the central pub-sub messag-

ing protocol for communication among different components and Protobuf was chosen to

be employed as a highly efficient binary message format. Eventually, all relevant system

parameters and their respective purposes and effects were presented. They were classified

into simulation- scene and cooperative perception parameters.

In chapter 7 a two-fold evaluation was conducted to investigate software performance and

scalability as well as the system’s general suitability for cooperative perception tasks. It

was found that the system is able to scale sufficiently and can meet the requirements,

which were previously designed based on realistic assumptions and estimations of urban

traffic volumes. However, further optimization steps are still recommendable in order

to apply the system to real-world scenarios. With regard to qualitative performance,

the evaluation revealed a potential improvement in overall perception quality of 27 %.

through cooperative perception using the present system.

8.2 Outlook

As the proposed system constitutes a proof-of-concept implementation rather than aiming

to be a production-ready software solution, certain crucial features were considered out of

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

8.2. OUTLOOK 97

scope and several simplifying assumptions were taken to keep the focus. For instance, all

aspects related to security, authentication, data integrity and validation were disregarded.

Future research, development and optimization effort might complement the present work

at different levels, including the following.

� Model: As mentioned earlier, the current model, presented in section 5.1, was de-

signed to be easily extensible. However, it can not yet be considered complete, so

the specification of an exhaustive model, that covers all potentially relevant aspects,

is still required. Moreover, the current model only supports two-dimensional envi-

ronments for the sake of simplicity. Therefore, it would need to be extended in order

to support vertically unambiguous scene descriptions, e.g. as it is the case with a

highway bridge over a rural road.

� Timing: Section 5.4.7 and section 7.1.2 already insinuated that timing and syn-

chronization are crucial aspects in a CP system, though they were not thoroughly

covered in this work. To maintain data consistency and avoid system failures, the

problem of imperfectly accurate clocks must be addressed with more advanced tech-

niques, e.g. using designated hardware devices [RKD11] or appropriate algorithms

[JU05].

� Fusion: The proposed fusion algorithm is very fundamental and minimalist and

comes with certain limitations. They were briefly discussed in section 5.4. More

advanced techniques, like track-to-track fusion [RKD11], the combination with ex-

trapolation and prediction of missing or incomplete observations and the integration

with, for instance, Markov chain- or Bayesian network models would be desirable in

future work. Similarly, a more elaborate, perhaps adaptive way of temporal decay

might be added. Minor optimizations, like the use of Dubin curves for calculating

spatial distance as an alternative to plain Eucledian distance, can be thought of in

addition.

� Communication: A core point of the concept presented in this thesis is the reliance

on a client-server architecture with central fusion nodes. However, a lot of research

is going on about device-to-device 5G networks, which imply to revert back to

VANET-like communication topologies again. Such might be considered as a serious

alternative and are interesting to be put into direct comparison with the present

approach.

� Scalability: The evaluation conducted in section 7.1 pointed out that the current

system’s scalability is not entirely sufficient, yet. To some extent this is due to

its proof-of-concept character. However, there is still much room for improvements

even beyond that. A respective set of possible measures was already presented in

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

98 CHAPTER 8. CONCLUSION & FUTURE WORK

section 7.1.3. It includes (1) algorithmic optimizations, e.g. transitioning to a tensor

representation of observations [PAKZ18] to enable them for being processed with

GPU acceleration, (2) adaptive parameter optimization and (3) a more sophisticated

way of publishing observations, e.g. using relevance estimation [BM13] and caching.

� Evaluation: Not only the system itself, but also its evaluation might be further

improved in the context of future work. In addition to using a simulator, results

gained in real-world tests with real 5G networks and actual, realistic traffic scenes

are desirable. Moreover, an in-depth comparison of the present approach with al-

ternative system – e.g. such based on low-level fusion or using DSRC – would be of

great interest.

In conclusion, the proposed system is a modern end-to-end approach to cooperative per-

ception, involving an elaborate software architecture and a range of novel concepts and

techniques. It comes with a proof-of-concept implementation and a modular integration

with a state-of-the-art autonomous driving simulator. Experiments showed its suitability

to improve individual automated vehicles’ perception quality and hence its potential to

facilitate performance, reliability and security of autonomous driving in general. With

the help of certain suggested optimizations it might find its way to become a core part of

connected autonomous cars in the future. Most likely, cooperative perception solutions,

like the one developed here, will play a crucial role during the early market-introduction

phase of highly automated cars, which will find themselves having to operate among

heavily mixed traffic.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Bibliography

[3GP19] 3GPP: 3GPP Release 15 V1.0.0. Valbonne, France, 2019. – Forschungs-

bericht

[5G 16] 5G Automotive Association: The Case for Cellular V2X for Safety and

Cooperative Driving. Version: 2016. https://5gaa.org/wp-content/upl

oads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf. 2016. – Forschungs-

bericht

[5G 18] 5G Automotive Association: V2X Technology Benchmark Testing.

Version: 2018. https://www.qualcomm.com/media/documents/files/5g

aa-v2x-technology-benchmark-testing-dsrc-and-c-v2x.pdf. 2018. –

Forschungsbericht

[5G 19a] 5G Automotive Association: C-V2X Transforming road safety. 2019.

– Forschungsbericht. – 1 S.

[5G 19b] 5G Automotive Association: Cellular V2X Conclusions based on

Evaluation of Available Architectural Options. Munich, Germany, 2019.

– Forschungsbericht

[AzPA+19] Abou-zeid, Hatem ; Pervez, Farhan ; Adinoyi, Abdulkareem ; Aljlayl,

Mohammed ; Yanikomeroglu, Halim: Cellular V2X Transmission for

Connected and Autonomous Vehicles: Standardization, Applications, and

Enabling Technologies. In: IEEE Consumer Electronics Magazine (2019)

[BM13] Breu, Jakob ; Menth, Michael: Relevance estimation of cooperative aware-

ness messages in VANETs. In: 2013 IEEE 5th International Symposium on

Wireless Vehicular Communications (WiVeC), IEEE, jun 2013. – ISBN

978–1–4673–6339–6, 1–5

[BMW19] BMW Group: BMW Group erhöht die Verkehrssicherheit durch das

Teilen von anonymisierten Verkehrsdaten. https://www.press.bmwgroup

.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-d

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://5gaa.org/wp-content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf
https://5gaa.org/wp-content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf
https://www.qualcomm.com/media/documents/files/5gaa-v2x-technology-benchmark-testing-dsrc-and-c-v2x.pdf
https://www.qualcomm.com/media/documents/files/5gaa-v2x-technology-benchmark-testing-dsrc-and-c-v2x.pdf
https://www.press.bmwgroup.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-die-verkehrssicherheit-durch-das-teilen-von-anonymisierten-verkehrsdaten
https://www.press.bmwgroup.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-die-verkehrssicherheit-durch-das-teilen-von-anonymisierten-verkehrsdaten
https://www.press.bmwgroup.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-die-verkehrssicherheit-durch-das-teilen-von-anonymisierten-verkehrsdaten

100 BIBLIOGRAPHY

ie-verkehrssicherheit-durch-das-teilen-von-anonymisierten-ver

kehrsdaten. Version: 2019

[Bri19] Briegleb, Volker: V2X: Telekom und BMW gegen EU-Vorschrift für

vernetztes Fahren — heise online. https://www.heise.de/newsticker/

meldung/V2X-Telekom-und-BMW-gegen-EU-Vorschrift-fuer-vernetzte

s-Fahren-4400118.html. Version: 2019

[BSKH19] Bischoff, Maximilian ; Scheuermann, Johannes ; Kiesl, Christoph ;

Hatzky, Julian: The Edge is Near: An Introduction to Edge Computing! -

inovex-Blog. https://www.inovex.de/blog/edge-computing-introduct

ion/. Version: 2019

[Car] Carla Contributors: Getting started - CARLA Simulator. https://

carla.readthedocs.io/en/latest/getting_started/

[CBW+16] Chen, Qi ; Bellows, Brendan ; Wittie, Mike P. ; Patterson, Stacy ;

Yang, Qing: MOVESET: MOdular VEhicle SEnsor Technology. In: 2016

IEEE Vehicular Networking Conference (VNC), IEEE, dec 2016. – ISBN

978–1–5090–5197–7, 1–4

[CCS18] CCS Insight: Market Forecast: 5G Connections. 2018. – Forschungs-

bericht

[CD93] Crowley, James L. ; Demazeau, Yves: Principles and techniques for

sensor data fusion. In: Signal Processing 32 (1993), may, Nr. 1-2, 5–27. ht

tp://dx.doi.org/10.1016/0165-1684(93)90034-8. – DOI 10.1016/0165–

1684(93)90034–8. – ISSN 0165–1684

[CM17] Calvo, Jose Angel L. ; Mathar, Rudolf: A multi-level cooperative percep-

tion scheme for autonomous vehicles. In: 2017 15th International Conference

on ITS Telecommunications (ITST), IEEE, may 2017. – ISBN 978–1–5090–

5275–2, 1–5

[CML+18] Codevilla, Felipe ; Müller, Matthias ; López, Antonio ; Koltun,

Vladlen ; Dosovitskiy, Alexey: End-to-end Driving via Conditional Imi-

tation Learning. In: International Conference on Robotics and Automation

(ICRA), 2018

[Col19] Collison, Ginger: Publish-Subscribe - NATS Docs. https://docs.nats.

io/nats-concepts/pubsub. Version: 2019

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://www.press.bmwgroup.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-die-verkehrssicherheit-durch-das-teilen-von-anonymisierten-verkehrsdaten
https://www.press.bmwgroup.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-die-verkehrssicherheit-durch-das-teilen-von-anonymisierten-verkehrsdaten
https://www.press.bmwgroup.com/deutschland/article/detail/T0296690DE/bmw-group-erhoeht-die-verkehrssicherheit-durch-das-teilen-von-anonymisierten-verkehrsdaten
https://www.heise.de/newsticker/meldung/V2X-Telekom-und-BMW-gegen-EU-Vorschrift-fuer-vernetztes-Fahren-4400118.html
https://www.heise.de/newsticker/meldung/V2X-Telekom-und-BMW-gegen-EU-Vorschrift-fuer-vernetztes-Fahren-4400118.html
https://www.heise.de/newsticker/meldung/V2X-Telekom-und-BMW-gegen-EU-Vorschrift-fuer-vernetztes-Fahren-4400118.html
https://www.inovex.de/blog/edge-computing-introduction/
https://www.inovex.de/blog/edge-computing-introduction/
https://carla.readthedocs.io/en/latest/getting_started/
https://carla.readthedocs.io/en/latest/getting_started/
http://dx.doi.org/10.1016/0165-1684(93)90034-8
http://dx.doi.org/10.1016/0165-1684(93)90034-8
https://docs.nats.io/nats-concepts/pubsub
https://docs.nats.io/nats-concepts/pubsub

BIBLIOGRAPHY 101

[CTYF19] Chen, Qi ; Tang, Sihai ; Yang, Qing ; Fu, Song: Cooper: Cooperative

Perception for Connected Autonomous Vehicles based on 3D Point Clouds.

(2019), may. http://arxiv.org/abs/1905.05265

[Deu19] Deutsche Welle: 5G auction in Germany raises ¿6.5 billion from four

telcoms. https://www.dw.com/en/5g-auction-in-germany-raises-65-b

illion-from-four-telcoms/a-49168657. Version: 2019

[DG11] Dölger, Rainer ; Geißler, Torsten: DATEX II – The standard for ITS

on European Roads. 2011

[DRC+17] Dosovitskiy, Alexey ; Ros, German ; Codevilla, Felipe ; Lopez, An-

tonio ; Koltun, Vladlen: CARLA: An Open Urban Driving Simulator. In:

Proceedings of the 1st Annual Conference on Robot Learning, 2017, S. 1–16

[Elm02] Elmenreich, Wilfried: An Introduction to Sensor Fusion. (2002)

[Eri13] Eric Freeman, Elisabeth Freeman, Bert Bates, Kathy S.: Head

First Design Patterns. 2013. http://dx.doi.org/10.1093/carcin/bgt

051. http://dx.doi.org/10.1093/carcin/bgt051. – ISBN 0596007124

[Eur] European Telecommunications Standards Institute (ETSI): ET-

SI - Mobile Technologies - 5G. https://www.etsi.org/technologies/5g

?jjj=1575453573596

[Eur11] European Telecommunications Standards Institute (ET-

SI): ETSI TS 102 637-2. https://www.etsi.org/deliver/etsi_ts

/102600_102699/10263702/01.02.01_60/ts_10263702v010201p.pdf.

Version: 2011

[Eur19] European Telecommunications Standards Institute (ETSI): ET-

SI TR 103 562. Sophia Antipolis, 2019

[FH19] Friedman, Lex ; Hotz, George: George Hotz: Comma.ai, OpenPilot, and

Autonomous Vehicles — Artificial Intelligence (AI) Podcast. https://www.

youtube.com/watch?v=iwcYp-XT7UI. Version: 2019

[For08] Forbes: Durchschnittsgeschwindigkeit in europäischen Städten — Statista.

https://de.statista.com/statistik/daten/studie/37200/umfrage/

durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der

-welt-2009/. Version: 2008

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

http://arxiv.org/abs/1905.05265
https://www.dw.com/en/5g-auction-in-germany-raises-65-billion-from-four-telcoms/a-49168657
https://www.dw.com/en/5g-auction-in-germany-raises-65-billion-from-four-telcoms/a-49168657
http://dx.doi.org/10.1093/carcin/bgt051
http://dx.doi.org/10.1093/carcin/bgt051
http://dx.doi.org/10.1093/carcin/bgt051
https://www.etsi.org/technologies/5g?jjj=1575453573596
https://www.etsi.org/technologies/5g?jjj=1575453573596
https://www.etsi.org/deliver/etsi_ts/102600_102699/10263702/01.02.01_60/ts_10263702v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/102600_102699/10263702/01.02.01_60/ts_10263702v010201p.pdf
https://www.youtube.com/watch?v=iwcYp-XT7UI
https://www.youtube.com/watch?v=iwcYp-XT7UI
https://de.statista.com/statistik/daten/studie/37200/umfrage/durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der-welt-2009/
https://de.statista.com/statistik/daten/studie/37200/umfrage/durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der-welt-2009/
https://de.statista.com/statistik/daten/studie/37200/umfrage/durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der-welt-2009/

102 BIBLIOGRAPHY

[Fro18] Frost & Sulivan Consulting: Global Autonomous Driving

Market Outlook, 2018 / Frost & Sulivan Consulting. Version: 2018.

https://info.microsoft.com/rs/157-GQE-382/images/K24A-2018Fros

t%26Sullivan-GlobalAutonomousDrivingOutlook.pdf. Mountain View,

CA, 2018. – Forschungsbericht

[GTW15] Gunther, Hendrik-Jörn ; Trauer, Oliver ; Wolf, Lars: The potential

of collective perception in vehicular ad-hoc networks. In: 2015 14th Inter-

national Conference on ITS Telecommunications (ITST), IEEE, dec 2015.

– ISBN 978–1–4673–9382–9, 1–5

[HKS+19] Hohm, Andree ; Klejnowski, Lukas ; Skibinski, Sebastian ; Bengler,

Klaus ; Berger, Stefan ; Vetter, Johannes ; Krug, Sebastian: Ko-HAF

– Cooperative Highly Automated Driving. 2019. – Forschungsbericht. – 270

S.

[Isr19] Isreal Homeland Security: V2X Technology Successfully Tested on

Ambulances. https://i-hls.com/archives/88787. Version: 2019

[JU05] Julier, S.J. ; Uhlmann, J.K.: Fusion of time delayed measurements with

uncertain time delays. In: Proceedings of the 2005, American Control Con-

ference, 2005., IEEE, 2005. – ISBN 0–7803–9098–9, 4028–4033

[Kav19] Kavanagh, Sacha: How fast is 5G - 5G speeds and performance. https://

5g.co.uk/guides/how-fast-is-5g/. Version: 2019

[KBSZ14] Kohlhaas, Ralf ; Bittner, Thomas ; Schamm, Thomas ; Zollner,

J. M.: Semantic state space for high-level maneuver planning in structured

traffic scenes. In: 17th International IEEE Conference on Intelligent Trans-

portation Systems (ITSC), IEEE, oct 2014. – ISBN 978–1–4799–6078–1,

1060–1065

[KCQ+13] Kim, Seong-Woo ; Chong, Zhuang J. ; Qin, Baoxing ; Shen, Xiaotong

; Cheng, Zhuoqi ; Liu, Wei ; Ang, Marcelo H.: Cooperative perception

for autonomous vehicle control on the road: Motivation and experimental

results. In: 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems IEEE, 2013, S. 5059–5066

[Kle18] Klein, Lawrence: ITS Sensors and Architectures for Traffic Management

and Connected Vehicles, by Lawrence A. Klein, published by CRC Press (a

division of Taylor & Francis) in 2018. 2018. – ISBN 13:978–1–138–74737–1

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://info.microsoft.com/rs/157-GQE-382/images/K24A-2018 Frost %26 Sullivan - Global Autonomous Driving Outlook.pdf
https://info.microsoft.com/rs/157-GQE-382/images/K24A-2018 Frost %26 Sullivan - Global Autonomous Driving Outlook.pdf
https://i-hls.com/archives/88787
https://5g.co.uk/guides/how-fast-is-5g/
https://5g.co.uk/guides/how-fast-is-5g/

BIBLIOGRAPHY 103

[Kor19a] Korosec, Kirsten: GM Cruise raises $1.15B at a $19B valuation from

SoftBank and Honda — TechCrunch. https://techcrunch.com/2019/05/

07/gm-cruise-raises-1-5b-at-a-19b-valuation-from-softbank-and

-honda/. Version: 2019

[Kor19b] Korosec, Kirsten: VW invests $2.6 billion in self-driving startup Argo

AI as part of Ford alliance — TechCrunch. https://techcrunch.com

/2019/07/12/vw-invests-2-6-billion-in-self-driving-startup-a

rgo-ai-as-part-of-ford-alliance/?guccounter=1&guce_referrer_us

=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_cs=5E0bceEEm5c

JudSF-rbcJg. Version: 2019

[LKC+13] Liu, Wei ; Kim, Seong-Woo ; Chong, Zhuang J. ; Shen, XT ; Ang, Marce-

lo H.: Motion planning using cooperative perception on urban road. In: 2013

6th IEEE Conference on Robotics, Automation and Mechatronics (RAM)

IEEE, 2013, S. 130–137

[Mar17a] Markwalter, Brian: The Path to Driverless Cars [CTA Insights].

In: IEEE Consumer Electronics Magazine 6 (2017), apr, Nr. 2, 125–

126. http://dx.doi.org/10.1109/MCE.2016.2640625. – DOI 10.1109/M-

CE.2016.2640625

[Mar17b] Martin, Robert C.: Clean Architecture: A Craftsman’s Guide to

Software Structure and Design. 2017. http://dx.doi.org/10.1177/

1356389011400889. http://dx.doi.org/10.1177/1356389011400889. –

ISBN 978–0134494166

[McK19] McKinsey Center for Future Mobility: Autonomous Driving

— MCFM — McKinsey. https://www.mckinsey.com/features/mcki

nsey-center-for-future-mobility/overview/autonomous-driving.

Version: 2019

[Mey16] Meyer, M.D.: Transportation Planning Handbook. Wiley, 2016 https://

books.google.de/books?id=MKipDAAAQBAJ. – ISBN 9781118762400

[MMKH11] Mangel, Thomas ; Michl, Matthias ; Klemp, Oliver ; Hartenstein,

Hannes: Real-World Measurements of Non-Line-Of-Sight Reception Quality

for 5.9GHz IEEE 802.11p at Intersections. Version: 2011. http://dx.doi.o

rg/10.1007/978-3-642-19786-4_17. Springer, Berlin, Heidelberg, 2011. –

DOI 10.1007/978–3–642–19786–4 17, 189–202

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://techcrunch.com/2019/05/07/gm-cruise-raises-1-5b-at-a-19b-valuation-from-softbank-and-honda/
https://techcrunch.com/2019/05/07/gm-cruise-raises-1-5b-at-a-19b-valuation-from-softbank-and-honda/
https://techcrunch.com/2019/05/07/gm-cruise-raises-1-5b-at-a-19b-valuation-from-softbank-and-honda/
https://techcrunch.com/2019/07/12/vw-invests-2-6-billion-in-self-driving-startup-argo-ai-as-part-of-ford-alliance/?guccounter=1&guce_referrer_us=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_cs=5E0bceEEm5cJudSF-rbcJg
https://techcrunch.com/2019/07/12/vw-invests-2-6-billion-in-self-driving-startup-argo-ai-as-part-of-ford-alliance/?guccounter=1&guce_referrer_us=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_cs=5E0bceEEm5cJudSF-rbcJg
https://techcrunch.com/2019/07/12/vw-invests-2-6-billion-in-self-driving-startup-argo-ai-as-part-of-ford-alliance/?guccounter=1&guce_referrer_us=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_cs=5E0bceEEm5cJudSF-rbcJg
https://techcrunch.com/2019/07/12/vw-invests-2-6-billion-in-self-driving-startup-argo-ai-as-part-of-ford-alliance/?guccounter=1&guce_referrer_us=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_cs=5E0bceEEm5cJudSF-rbcJg
https://techcrunch.com/2019/07/12/vw-invests-2-6-billion-in-self-driving-startup-argo-ai-as-part-of-ford-alliance/?guccounter=1&guce_referrer_us=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_cs=5E0bceEEm5cJudSF-rbcJg
http://dx.doi.org/10.1109/MCE.2016.2640625
http://dx.doi.org/10.1177/1356389011400889
http://dx.doi.org/10.1177/1356389011400889
http://dx.doi.org/10.1177/1356389011400889
https://www.mckinsey.com/features/mckinsey-center-for-future-mobility/overview/autonomous-driving
https://www.mckinsey.com/features/mckinsey-center-for-future-mobility/overview/autonomous-driving
https://books.google.de/books?id=MKipDAAAQBAJ
https://books.google.de/books?id=MKipDAAAQBAJ
http://dx.doi.org/10.1007/978-3-642-19786-4_17
http://dx.doi.org/10.1007/978-3-642-19786-4_17

104 BIBLIOGRAPHY

[Müt19] Mütsch, Ferdinand: Basic benchmarks of 5 different MQTT bro-

kers. https://muetsch.io/basic-benchmarks-of-5-different-mqtt-b

rokers.html. Version: 2019

[NMTG16] Nickel, Maximilian ; Murphy, Kevin ; Tresp, Volker ; Gabrilovich,

Evgeniy: A review of relational machine learning for knowledge graphs. In:

Proceedings of the IEEE 104 (2016), jan, Nr. 1, 11–33. http://dx.doi.o

rg/10.1109/JPROC.2015.2483592. – DOI 10.1109/JPROC.2015.2483592.

– ISSN 00189219

[Nov17] Novak, John: raytriangle-test. https://github.com/johnnovak/raytria

ngle-test, 2017

[OMGF+10] Olaverri-Monreal, Cristina ; Gomes, Pedro ; Fernandes, Ricardo ;

Vieira, Fausto ; Ferreira, Michel: The See-Through System: A VANET-

enabled assistant for overtaking maneuvers. In: 2010 IEEE Intelligent Ve-

hicles Symposium, IEEE, jun 2010. – ISBN 978–1–4244–7866–8, 123–128

[Ope18] OpenStreetMap Wiki: QuadTiles. https://wiki.openstreetmap.org

/w/index.php?title=QuadTiles&oldid=1696307. Version: 2018

[PAKZ18] Petrich, Dominik ; Azarfar, Darius ; Kuhnt, Florian ; Zollner, J. M.:

The Fingerprint of a Traffic Situation: A Semantic Relationship Tensor for

Situation Description and Awareness. In: 2018 21st International Confer-

ence on Intelligent Transportation Systems (ITSC), IEEE, nov 2018. – ISBN

978–1–7281–0321–1, 429–435

[PCY+16] Paden, Brian ; Cap, Michal ; Yong, Sze Z. ; Yershov, Dmitry ; Fraz-

zoli, Emilio: A survey of motion planning and control techniques for self-

driving urban vehicles. In: IEEE Transactions on intelligent vehicles 1

(2016), Nr. 1, S. 33–55

[Pie13] Pieringer, Christian: Modellierung des Fahrzeugumfelds mit Occupancy

Grids. (2013), S. 329

[Qua17] Qualcomm Technologies Inc.: The Path to 5G. Version: 2017.

https://www.qualcomm.com/media/documents/files/accelerating-c

-v2x-commercialization.pdf. 2017. – Forschungsbericht

[Qua18] Qualcomm Technologies Inc.: C-V2X Trial in Japan. Version: 2018.

https://www.qualcomm.com/media/documents/files/c-v2x-trial-i

n-japan.pdf. Tokyo, Japan, 2018. – Forschungsbericht

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://muetsch.io/basic-benchmarks-of-5-different-mqtt-brokers.html
https://muetsch.io/basic-benchmarks-of-5-different-mqtt-brokers.html
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.1109/JPROC.2015.2483592
https://github.com/johnnovak/raytriangle-test
https://github.com/johnnovak/raytriangle-test
https://wiki.openstreetmap.org/w/index.php?title=QuadTiles&oldid=1696307
https://wiki.openstreetmap.org/w/index.php?title=QuadTiles&oldid=1696307
https://www.qualcomm.com/media/documents/files/accelerating-c-v2x-commercialization.pdf
https://www.qualcomm.com/media/documents/files/accelerating-c-v2x-commercialization.pdf
https://www.qualcomm.com/media/documents/files/c-v2x-trial-in-japan.pdf
https://www.qualcomm.com/media/documents/files/c-v2x-trial-in-japan.pdf

BIBLIOGRAPHY 105

[RKD11] Rauch, Andreas ; Klanner, Felix ; Dietmayer, Klaus: Analysis of V2X

communication parameters for the development of a fusion architecture for

cooperative perception systems. In: 2011 IEEE Intelligent Vehicles Sympo-

sium (IV), IEEE, jun 2011. – ISBN 978–1–4577–0890–9, 685–690

[RKRD12] Rauch, Andreas ; Klanner, Felix ; Rasshofer, Ralph ; Dietmayer,

Klaus: Car2X-based perception in a high-level fusion architecture for coop-

erative perception systems. In: 2012 IEEE Intelligent Vehicles Symposium,

IEEE, jun 2012. – ISBN 978–1–4673–2118–1, 270–275

[Sch18] Schwartz, Joe: Bing Maps Tile System - Bing Maps — Microsoft

Docs. https://docs.microsoft.com/en-us/bingmaps/articles/bing-m

aps-tile-system. Version: 2018

[SDLK17] Shah, Shital ; Dey, Debadeepta ; Lovett, Chris ; Kapoor, Ashish: Air-

Sim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles.

In: Field and Service Robotics, 2017

[SS14] Schoettle, Brandon ; Sivak, Michael: A survey of public opinion about

autonomous and self-driving vehicles in the US, the UK, and Australia /

University of Michigan, Ann Arbor, Transportation Research Institute. 2014.

– Forschungsbericht

[Sto93] Storey, Vede C.: Understanding semantic relationships. In: The

VLDB Journal (1993). http://dx.doi.org/10.1007/BF01263048. – DOI

10.1007/BF01263048. – ISSN 10668888

[SZ12] Stiller, Christoph ; Ziegler, Julius: 3D perception and planning for self-

driving and cooperative automobiles. In: International Multi-Conference on

Systems, Sygnals & Devices, IEEE, mar 2012. – ISBN 978–1–4673–1591–3,

1–7

[Tam18] Tampa Hillsborough Expressway Authority: THEA Connected Ve-

hicle Pilot - Program Overview 2018 November. https://www.youtube.co

m/watch?v=wz4WvdGD1Bg. Version: 2018

[TSG19] Thandavarayan, Gokulnath ; Sepulcre, Miguel ; Gozalvez, Javier:

Generation of Cooperative Perception Messages for Connected and Auto-

mated Vehicles. (2019), aug. https://arxiv.org/abs/1908.11151

[Ver14] Verkehrslenkung Berlin (VLB): Verkehrsstärkenkarte PKW /

Verkehrslenkung Berlin (VLB). Version: 2014. https://www.berlin.d

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
http://dx.doi.org/10.1007/BF01263048
https://www.youtube.com/watch?v=wz4WvdGD1Bg
https://www.youtube.com/watch?v=wz4WvdGD1Bg
https://arxiv.org/abs/1908.11151
https://www.berlin.de/senuvk/verkehr/lenkung/vlb/de/erhebungen.shtml
https://www.berlin.de/senuvk/verkehr/lenkung/vlb/de/erhebungen.shtml

106 BIBLIOGRAPHY

e/senuvk/verkehr/lenkung/vlb/de/erhebungen.shtml. Berlin, 2014. –

Forschungsbericht

[WCHW12] Wood, Stephen P. ; Chang, Jesse ; Healy, Thomas ; Wood, John: The

potential regulatory challenges of increasingly autonomous motor vehicles.

In: Santa Clara L. Rev. 52 (2012), S. 1423

[WDT+13] Wang, Yunpeng ; Duan, Xuting ; Tian, Daxin ; Lu, Guangquan ; Yu,

Haiyang: Throughput and Delay Limits of 802.11p and its Influence on

Highway Capacity. In: Procedia - Social and Behavioral Sciences 96 (2013),

nov, 2096–2104. http://dx.doi.org/10.1016/J.SBSPRO.2013.08.236. –

DOI 10.1016/J.SBSPRO.2013.08.236

[Wik19a] Wikipedia: 5G. https://en.wikipedia.org/w/index.php?title=5G&ol

did=929191112. Version: 2019

[Wik19b] Wikipedia: Datex II. https://en.wikipedia.org/w/index.php?title

=Datex_II&oldid=919193268. Version: 2019

[Wik19c] Wikipedia: Negation as failure. https://en.wikipedia.org/w/index.p

hp?title=Negation_as_failure&oldid=878307515. Version: 2019

[Wik19d] Wikipedia: Sicherheitsabstand. https://de.wikipedia.org/w/index.p

hp?title=Sicherheitsabstand&oldid=193799907. Version: 2019

[Wik19e] Wikipedia: Vehicle-to-grid. https://en.wikipedia.org/w/index.php?t

itle=Vehicle-to-grid&oldid=916597472. Version: 2019

[WKW+18] Wolf, Peter ; Kurzer, Karl ; Wingert, Tobias ; Kuhnt, Florian ; Zoll-

ner, J. M.: Adaptive Behavior Generation for Autonomous Driving using

Deep Reinforcement Learning with Compact Semantic States. In: 2018

IEEE Intelligent Vehicles Symposium (IV), IEEE, jun 2018. – ISBN 978–1–

5386–4452–2, 993–1000

[WL17] Wevers, Kees ; Lu, Meng: V2X Communication for ITS - from IEEE

802.11p Towards 5G. https://futurenetworks.ieee.org/tech-focus/m

arch-2017/v2x-communication-for-its. Version: 2017

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

https://www.berlin.de/senuvk/verkehr/lenkung/vlb/de/erhebungen.shtml
https://www.berlin.de/senuvk/verkehr/lenkung/vlb/de/erhebungen.shtml
http://dx.doi.org/10.1016/J.SBSPRO.2013.08.236
https://en.wikipedia.org/w/index.php?title=5G&oldid=929191112
https://en.wikipedia.org/w/index.php?title=5G&oldid=929191112
https://en.wikipedia.org/w/index.php?title=Datex_II&oldid=919193268
https://en.wikipedia.org/w/index.php?title=Datex_II&oldid=919193268
https://en.wikipedia.org/w/index.php?title=Negation_as_failure&oldid=878307515
https://en.wikipedia.org/w/index.php?title=Negation_as_failure&oldid=878307515
https://de.wikipedia.org/w/index.php?title=Sicherheitsabstand&oldid=193799907
https://de.wikipedia.org/w/index.php?title=Sicherheitsabstand&oldid=193799907
https://en.wikipedia.org/w/index.php?title=Vehicle-to-grid&oldid=916597472
https://en.wikipedia.org/w/index.php?title=Vehicle-to-grid&oldid=916597472
https://futurenetworks.ieee.org/tech-focus/march-2017/v2x-communication-for-its
https://futurenetworks.ieee.org/tech-focus/march-2017/v2x-communication-for-its

List of Tables

5.1 Comparison High-/Low Level Fusion . 30

5.2 Comparison of DSRC-based VANETs and 5G-based Client-Server V2X

Networks . 41

6.1 Simulation Parameters . 73

6.2 Scene Parameters . 73

6.3 Cooperative Perception Parameters . 74

7.1 Constant Parameters of the Performance Evaluation 80

7.2 Variable Parameters of the Performance Evaluation 80

7.3 Average Measured Observation Message Sizes 82

7.4 Cooperative Perception Latency Composition 83

7.5 Constant Parameters of the Perception Evaluation 88

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

108 LIST OF TABLES

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

List of Figures

2.1 Levels of Sensor Fusion . 6

2.2 Autonomous Driving Pipeline . 7

2.3 Types of Vehicle-to-Everything Applications 8

2.4 Exemplary Non Line-of-Sight Scenes . 11

2.5 Architecture of Edge Computing . 12

2.6 Geo Tiling with QuadKeys . 14

4.1 Traffic Census Map for Berlin Mitte . 24

5.1 Semantic Relations between Traffic Participants 31

5.2 General Framework for Dynamic World Modeling 32

5.3 Illustration of an Occupancy Grid using QuadTiles 34

5.4 Blocked Line-of-Sight Scenario . 37

5.5 Comprehensive PER Model for Traffic Scenes 38

5.6 Key Capability Requirements for 5G . 40

5.7 VANET vs. Client-Server Communication Topology 41

5.8 Software Architecture Schema . 45

5.9 UML Component Diagram – System Architecture 46

5.11 UML Sequence Diagram – High-Level Fusion 55

6.1 UML Component Diagram – Implementation 58

6.2 Client-Server Schema in CARLA . 62

6.3 Screenshot of an Exemplary Carla Scene 63

6.4 Schema of Publish-Subscribe Communication with Topics 64

6.5 Basic Performance Benchmark of Different MQTT Brokers 65

6.6 Screenshot of an Occupancy Grid’s Web Visualization 67

6.7 UML Class Diagram for Simulation Client 68

6.8 Screenshots of Carla Maps . 72

7.1 Timing Composition of Fusion Process . 79

7.2 Average Measured Fusion Rate . 81

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

110 LIST OF FIGURES

7.3 Top-View of the Simulation Environment used for Evaluation 87

7.4 Perception Evaluation Scores – Part 1 . 91

7.5 Perception Evaluation Scores – Part 2 . 92

A.1 Schematic Illustration of Geographical Sharding 113

A.2 Schematic Illustration of Evaluation-Relevant Cells 114

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Appendix A

Supplementary Texts

A.1 Background

A.1.1 Levels of Autonomy

� Level 0 (“Active driver“): No computer assistance of any kind. A car is com-

pletely controlled by its human driver.

� Level 1 (“Feet off“): Basic assistance, e.g. adaptive cruise control. While most

functions are controlled by the driver, the car might take responsibility of a single

task, e.g. accelerating and decelerating in certain scenarios.

� Level 2 (“Hands off“): Partial automation, e.g. cruise control and lane centering.

At this level, a car is able to take over multiple driving tasks in combination. While

the driver is still required to monitor the roadway, she is “disengaged from physically

operating the vehicle“ [Kle18] and may keep her hands of the steering wheel and

feet of the pedals. To ensure that a driver still pays full attention and is able to

intervene in case of system failures or critical situations, various methods of Driver

Monitoring are employed. Such include to visually observe a driver’s face using

cameras or to measure the force applied to the steering wheel.

� Level 3 (“Eyes off“): High degree of automation. At this level, a driver might

fully rely on a car’s self-driving under most conditions, delegating all safety-critical

function to the ADAS. Usually, it would maintain a comprehensive awareness of its

environment and is able to react on it. Although a driver still has to be present and

prepared to take occasional control, she is not required to constantly monitor the

traffic.

� Level 4 (“Attention off“): Full automation. This refers to a system that is able

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

112 APPENDIX A. SUPPLEMENTARY TEXTS

to “perform all safety-critical driving functions and monitor roadway conditions for

an entire trip.“ [Mey16] At this level, there is no necessity for a driver to actually

occupy the vehicle.

� Level 5 (“Passive passenger“): Full autonomy. The highest level of automation

describes a system that is capable of driving under any conditions, even extreme

ones. Its performance is expected to be at least human-like or even surpass human

driving capabilities.

With this classification, it is worth noting that only the highest level actually refers to

the term “autonomy“. [WCHW12] states that although this term is in more widespread

public use, speaking of “automation“ would be more accurate for levels 1 to 4. Only Level

5 cars are self-governing and may take independent decisions, e.g. selecting a destination

and an appropriate route, while cars of all other levels still have a human person in the

driver’s seat.

A.2 Related Work

A.2.1 Further Modeling and Representation Approaches

Another standard exists with DATEX II, specified by the European Committee for Stan-

dardization [DG11]. The XML-based format is meant for “exchanging traffic information

between traffic management centres, traffic service providers, traffic operators and media

partners“ [Wik19b], however, not particularly for cooperative perception. It defines a

way to describe traffic events, such as road works or congestions as well as information

on the current parking situation. However, it is not suitable to describe particular traffic

situations in high detail. The same holds true for the SENSORIS representation format

presented by [HKS+19], that was designed in a different way, but with the same purpose.

[SZ12] follows yet a different approach as the authors show a way to represent the current

local world state as the instantiation of a Markov Logic Network, in which weights

represent uncertainty about the true state of an observation. This representation is in-

herently graphical and by incorporating first-order logic, the underlying model also allows

for basic inference, in theory. A specification of what objects and relations to include to

comprehensively model a traffic scene is not provided.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

A.3. CONCEPT & DESIGN 113

A.3 Concept & Design

A.3.1 Geographical Sharding Schema

2@ 20 3@ 20

1@ 200@ 20

003@ 22 012@ 20 013@ 20 102@ 20 103@ 20

021@ 22 030@ 22 031@ 22 120@ 22 121@ 22

023@ 22 032@ 22 033@ 22 122@ 22 123@ 22

201@ 22 210@ 22 211@ 22 300@ 22 301@ 22

03013@
24

03102 @
24

03103 @
24

03031@
24

03033 @
24

03120 @
24

Figure A.1: Schematic Illustration of Geographical Sharding

Blue cells (= type 1 tiles) are part of the vehicle’s observed occupancy grid.

Orange cells (= type 2 tiles) are part of the vehicle’s range of interest.

Green cells (=type 3 tiles) are subject to geo distribution.

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

114 APPENDIX A. SUPPLEMENTARY TEXTS

A.4 Evaluation

A.4.1 Perception Evaluation Analyses

Figure A.2: Schematic Illustration of Evaluation-Relevant Cells

The blue vehicle is the ego vehicle in this example, while the green vehicles are other network

participants. The orange type 2 cells are those, which the ego is currently subscribed to (i.e. its

“neighborhood“) for receiving observations from the fusion node. At the same time, they are

the ones whose type 1 cells to include into the evaluation. Red rectangles depict obstacles and

green or gray rectangles around vehicles show their respective observation range, i.e. local grid

size.

Obstacle 4 is within the ego’s local observation range, while 2, 3 and 5 can only be recognized

through CP with the help of other cars. Obstacle 1 is out of range for the ego, regardless of CP

being turned on or off.

Without CP, the ego can detect 1
4 obstacles in potential range, while with CP it virtually detects

3
4 of them.

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Appendix B

Source Code

B.1 SQL Queries for Traffic Volume Estimation

B.1.1 Query: Geographic Area

/* Get area of specified bounding box im km^2 */

/* Output: 21.25240229871576 */

SELECT st_area(

st_transform(

st_makeenvelope(13.40666, 52.519444, 13.447532, 52.493904, 4326),

3857

)

) / (1000 * 1000) AS area;

B.1.2 Query: Total Road Length

/* Get total street length in km within given bounding box */

/* Output: 159.31409120764036 */

SELECT

sum(st_length(way)) / 1000 AS total_length

FROM planet_osm_line

WHERE

way && st_transform(

st_makeenvelope(13.40666, 52.519444, 13.447532, 52.493904, 4326),

3857

)

AND highway IN ('primary', 'secondary', 'tertiary', 'residential');

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

116 APPENDIX B. SOURCE CODE

B.1.3 Query: Average Number of Lanes

/* Get average number of lanes per way within given bounding box */

/* Output: 2.4029850746268657 */

SELECT

avg(to_number(lanes, '99'))

FROM planet_osm_line

WHERE

way && st_transform(

st_makeenvelope(13.40666, 52.519444, 13.447532, 52.493904, 4326),

3857

)

AND highway IN ('primary', 'secondary', 'tertiary', 'residential');

B.2 Ray Casting Intersection Algorithm

// ray_intersect.cu

// Source: https://gamedev.stackexchange.com/a/103714/130059

__device__ float rayBoxIntersect (float3 rpos, float3 rdir, float3 vmin, float3 vmax)

{

float t[10];

t[1] = (vmin.x - rpos.x)/rdir.x;

t[2] = (vmax.x - rpos.x)/rdir.x;

t[3] = (vmin.y - rpos.y)/rdir.y;

t[4] = (vmax.y - rpos.y)/rdir.y;

t[5] = (vmin.z - rpos.z)/rdir.z;

t[6] = (vmax.z - rpos.z)/rdir.z;

t[7] = fmax(fmax(fmin(t[1], t[2]), fmin(t[3], t[4])), fmin(t[5], t[6]));

t[8] = fmin(fmin(fmax(t[1], t[2]), fmax(t[3], t[4])), fmax(t[5], t[6]));

t[9] = (t[8] < 0 || t[7] > t[8]) ? NOHIT : t[7];

return t[9];

}

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

Appendix C

Evaluation Results

C.1 Serialization Benchmark

$ go test -bench=.

goos: linux

goarch: amd64

BenchmarkGob-12 5172 222607 ns/op

BenchmarkCapnp-12 4129 317576 ns/op

BenchmarkProto-12 7460 169135 ns/op

PASS

ok _/home/ferdinand/dev/talkycars-thesis/src/evaluation/serialization

CreateGob: 0.5322 ms/msg, 8.9372 KB/msg

CreateCapnp: 0.5907 ms/msg, 15.8170 KB/msg

CreateProto: 0.4396 ms/msg, 8.3755 KB/msg

C.2 MQTT Broker Benchmark

mqtt-bench 0.3.0 amd64-linux

mosquitto 1.6.8 amd64-linux

$COMMAND="mqtt-bench -action p -broker tcp://192.168.179.40:1883 -count 10000 -qos 1 \

-clients $CLIENTS -size $SIZE"

$SIZE=46000

$CLIENTS=1 eval $COMMAND

Result : broker=tcp://192.168.179.40:1883, clients=1, totalCount=10000,

duration=2202ms, throughput=4541.33messages/sec

$CLIENTS=10 eval $COMMAND

Result : broker=tcp://192.168.179.40:1883, clients=10, totalCount=100000,

TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous
Vehicles based on Cellular-V2X Communication

118 APPENDIX C. EVALUATION RESULTS

duration=17319ms, throughput=5774.01messages/sec

$CLIENTS=100 eval $COMMAND

Result : broker=tcp://192.168.179.40:1883, clients=100, totalCount=1000000,

duration=239050ms, throughput=4183.23messages/sec

$SIZE=12000

$CLIENTS=1 eval $COMMAND

Result : broker=tcp://192.168.179.40:1883, clients=1, totalCount=10000,

duration=1277ms, throughput=7830.85messages/sec

$CLIENTS=10 eval $COMMAND

Result : broker=tcp://192.168.179.40:1883, clients=10, totalCount=100000,

duration=10275ms, throughput=9732.36messages/sec

$CLIENTS=100 eval $COMMAND

Result : broker=tcp://192.168.179.40:1883, clients=100, totalCount=1000000,

duration=114590ms, throughput=8726.76messages/sec

Institute for Information Processing Technology - ITIV

Karlsruhe Institute of Technology - KIT

	Introduction
	Motivation

	Background
	Autonomous Driving
	Current Status
	Sensor Fusion
	Autonomous Driving Pipeline

	Vehicle-to-X Communication
	Application Types
	Communication

	Cooperative Perception
	Theory
	Use Cases

	Edge Computing
	5G Cellular Networks
	Geo Tiling
	QuadKeys

	Related Work
	Environment Modeling & State Representation
	Cooperative Perception
	Cellular V2X Communication
	Summary

	Problem Analysis
	Limitations of Prior Work
	Traffic Volume Estimation
	Methodology & Results
	Conclusion

	Goals & Requirements
	Environment Modeling & State Representation
	Cooperative Perception System

	Scope

	Concept & Design
	Environment Modeling & State Representation
	Object-Level Representation & Fusion
	Principles of Dynamic World Modeling
	Discrete Environment Model with Occupancy Tiles
	Probabilistic Entity Relationship Model for Cooperative Perception
	Final Model
	Summary

	Cellular Communication
	5G Usage Scenarios & Advantages
	Vehicle-to-Network-to-Everything Communication Topology
	Summary

	System Architecture
	Central Fusion Nodes
	Geographical Partitioning
	Messaging & Further Considerations
	Components Overview
	Summary

	Fusion
	Goals
	Problem Statement
	Scope
	Open- & Closed World Assumption
	Mechanism: Time-Decayed Weighted Average
	Architecture: Doubly Updated Merging
	Summary

	Conclusion

	Implementation
	Meta Model, Representation- & Message Format
	Object-Oriented Model
	Serialization Format

	Simulation Environment
	Server-Side Software Components
	Message Broker
	Talky Fusion Node
	Web Visualization

	On-Board Client-Side Software Components
	Simulator Bridge
	Talky Client

	Configurable Parameters
	Simulation Parameters
	Scene Parameters
	Cooperative Perception Parameters

	Open-Source Contributions
	Summary

	Evaluation
	Performance Evaluation
	Methodology
	Results
	Discussion & Conclusion

	End-to-end Evaluation
	Methodology
	Results
	Discussion & Conclusion

	Summary & Conclusion

	Conclusion & Future Work
	Summary
	Outlook

	Appendix Supplementary Texts
	Background
	Levels of Autonomy

	Related Work
	Further Modeling and Representation Approaches

	Concept & Design
	Geographical Sharding Schema

	Evaluation
	Perception Evaluation Analyses

	Appendix Source Code
	SQL Queries for Traffic Volume Estimation
	Query: Geographic Area
	Query: Total Road Length
	Query: Average Number of Lanes

	Ray Casting Intersection Algorithm

	Appendix Evaluation Results
	Serialization Benchmark
	MQTT Broker Benchmark

