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ABSTRACT: As the dominant radionuclide by mass in many radioactive wastes, the control of
uranium mobility in contaminated environments is of high concern. U speciation can be
governed by microbial interactions, whereby metal-reducing bacteria are able to reduce soluble
U(VI) to insoluble U(IV), providing a method for removal of U from contaminated
groundwater. Although microbial U(VI) reduction is widely reported, the mechanism(s) for the
transformation of U(VI) to relatively insoluble U(IV) phases are poorly understood. By
combining a suite of analyses, including luminescence, U M4-edge high-energy resolved
fluorescence detection−X-ray absorption near-edge structure (XANES), and U L3-edge
XANES/extended X-ray absorption fine structure, we show that the microbial reduction of U(VI) by the model Fe(III)-reducing
bacterium, Shewanella oneidensis MR1, proceeds via a single electron transfer to form a pentavalent U(V) intermediate which
disproportionates to form U(VI) and U(IV). Furthermore, we have identified significant U(V) present in post reduction solid
phases, implying that U(V) may be stabilized for up to 120.5 h.

■ INTRODUCTION

Highly soluble U(VI), as uranyl(VI), is a significant
contaminant in soils and sediments associated with uranium
mining, processing, and storage in nuclear sites worldwide.
Reduction of mobile U(VI) to poorly soluble U(IV) can be
achieved via enzymatic electron transfer mediated by anaerobic
metal-reducing bacteria. This metabolism will contribute to a
decrease in U mobility in the cases of “natural attenuation”,
and can be further enhanced via electron donor injections,
which have been proposed as a bioremediation technique for
U-contaminated land and water.1 In field-scale tests at the Rifle
Field Research Site, Colorado, the potential for U(VI) removal
from contaminated groundwater by indigenous Fe(III)-
reducing bacteria was assessed over a 3 month period. Here,
“biostimulation”, promoted by the injection of the electron
donor acetate, resulted in soluble U dropping to below levels
prescribed by the Environmental Protection Agency within 50
days.2 Here, a marked increase in numbers of Geobacter
species, a subsurface metal-reducing bacterium known to
respire U(VI), accompanied reduction and precipitation of
U(IV).2−5 However, subsequent re-oxidation processes lead to
remobilization of the U, highlighting that the longevity of
bioreduced end-points require optimization.
A series of c-type cytochromes traverse the outer compart-

ments of the Gram-negative Geobacter cell and terminate at the
surface of the outer membrane where metals, including U(VI),
are reduced.6 In addition, conductive pili, which extend from
the cell surface reportedly play a role in metal reduction.7,8

These reactions can also be accelerated by the addition of
extracellular electron shuttles including humic acids.7,8

Fluorescence spectroscopy, density functional theory, and U
L3-edge X-ray absorption spectroscopy (XAS) have all
suggested that the reduction mechanism is via single electron
transfer forming an intermediary uranyl(V) state which then
disproportionates to more stable U(IV) and uranyl(VI) in
Geobacter sulfurreducens.9−11 Furthermore, uranyl(V/VI) mi-
croparticles have been identified in a multispecies biofilm
through the combined use of confocal laser scanning
microscopy and fluorescence spectroscopy.12 Other well-
studied model metal-reducing bacterial species are found in
the genus Shewanella, and here the electron transfer proteins
are again well characterized. A combination of outer
membrane-associated c-type cytochromes and extracellular
electron shuttles govern U(VI) reduction.13−16 However, to
date, no published studies have provided direct unequivocal
analytical evidence of the pentavalent U(V) intermediate in the
enzymatic reduction of U(VI) by Shewanella, or indeed any
other metal-reducing bacterium.
Pu(V), as plutonyl(V), has been identified as a significant

environmental species in water17,18 and more recently has been
identified as a meta-stable intermediate in the reduction of
plutonyl(VI) to form Pu(IV)O2 nanoparticles.19 While other
actinyl(V) species, specifically [Np(V)O2]

+ and [Pu(V)O2]
+,

are expected to be environmentally significant,9,20,21 the
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uranyl(V) cation is relatively unstable with respect to
disproportionation.22 Recent advances in ligand synthesis
have permitted the isolation and characterization of several
uranyl(V) compounds,22−30 and in aqueous media, uranyl(V)
is reported as a transient species with some stabilization
afforded by, for example, complexation with CO3

2− spe-
cies.31−34 While uranyl(V) triscarbonate solutions have been
reported to be stable in carbonate (>0.8 M as Na2CO3)
solutions in the pH range 10.5−12.0 for up to two
weeks,32,33,35,36 uranyl(V) has recently been stabilized in
aqueous conditions at circumneutral pH over month time-
scales, via a polydentate amino-carboxylate ligand.37 In the
natural environment, U(V) exists in the mixed valence mineral
wyartite and in the mixed oxidation state U-oxides U3O8 and
U4O9, where U(V) is incorporated in a nonuranyl-like
coordination.38,39 Recent work also suggests that U(V) phases
can show enhanced stability in the presence of iron-bearing
phases typically by the incorporation of U(V) into the mineral
lattice in a uranate-like coordination.40−48 This suggests that a
single electron transfer pathway to uranyl(VI) in iron-rich
environments may lead to the formation and stabilization of
U(V) in the resultant iron-bearing mineral phases.
Despite its potential environmental relevance, the role of

U(V) in the microbial reduction of U(VI) is still poorly
understood in organisms outside the Geobacter genus. Even
with Geobacter species, only a restricted number of analyses
have inferred the presence of U(V); they have been conducted
using extended X-ray absorption fine structure (EXAFS)9 and
fluorescence spectroscopy.10 Here, we build on this past work
to define the mechanism of U(VI) bioreduction using cultures
of the model metal-reducing bacterium Shewanella oneidensis
MR1. Through the application of luminescence spectroscopy,
U M4-edge HERFD−XANES (high-energy resolved fluores-
cence detection−X-ray absorption near-edge structure, also
called high-energy resolution XANES, HR-XANES49,50), and
U L3-edge XANES/EXAFS, we demonstrate unequivocally
that enzymatic reduction of U(VI) by S. oneidensis MR1
proceeds via a U(V) intermediate state, and our study is the
first to provide direct analytical evidence for U(V) via the U
M4-edge HERFD−XANES technique. Furthermore, during a
5-day bioreduction experiment, up to 60% U(V) was identified
in cell suspensions between 2.5 and 4.5 h. Interestingly, U M4-
edge HERFD−XANES analyses identified approximately 20−
30% U(V) as a persistent species at the 120.5 h bioreduction
end-point, and further U L3-edge EXAFS analysis for this end-
point sample, suggest that it was present as uranyl(V). These
multitechnique observations drawing upon the state of the art
U M4-edge HERFD−XANES analysis approach, confirm that
U(V) is a key intermediate during the bioreduction of U(VI)
by organisms outside the Geobacter genus. They also suggest
that U(V) may persist as a long-lived intermediate for up to
120.5 h in addition to well characterized U(IV) bioreduction
end products such as uraninite.51,52

■ EXPERIMENTAL METHODS
Microbial Culture Preparation. S. oneidensis MR1 was

obtained from the University of Manchester Geomicrobiology
group culture collection. Starter cultures were grown aerobi-
cally in tryptic soy broth (Oxoid CM0876) overnight (30 °C,
100 rpm) before transfer to an anaerobic Shewanella minimal
medium.14,53 The bacteria were grown to mid-exponential
growth in the Shewanella minimal medium which contains
lactate (10 mM) as the electron donor and fumarate (10 mM)

as the electron acceptor for 24 h (30 °C).14,53 Late log phase
cultures were collected by centrifugation and washed three
times in anaerobic NaHCO3 (30 mM) buffer solution (pH 7).
An aliquot of the final washed cell suspension was added to a
sterile solution of 3 mM (714 ppm) U(VI) (as UO2

2+ in 0.001
M HCl) in NaHCO3 (30 mM, pH 7) and was supplied with
lactate (10 mM) as an electron donor. Experiments were
sampled periodically over 5 days. The following samples were
collected for further analysis; cell suspensions were sampled
directly and included the whole reaction mixture; sub-aliquots
were also centrifuged (16,160g, 5 min) and the resultant
supernatant (U(aq)) and precipitate, (U(ppt)), samples analyzed.
The total U and uranyl(VI) concentrations in the supernatant
were determined by inductively coupled plasma mass−
spectrometry (ICP−MS) analysis of the acidified (2%
HNO3) supernatant using an Agilent 7500CX (ICP−MS),
and by luminescence spectroscopy of the frozen supernatant,
respectively. Cell suspensions were measured using U L3-edge
XAS at 2.5 and 4.5 h. At 4.5 h, we also analyzed the cell
suspension and a cell pellet using U M4-edge HERFD−
XANES. Finally, cell pellets made at 120.5 h were measured
using both U L3-edge XAS and U M4-edge HERFD−XANES.

Spectroscopic Analyses. All samples were handled under
anaerobic conditions throughout, and for X-ray absorption
spectroscopy/luminescence spectroscopy samples were har-
vested and frozen immediately in liquid N2 and stored at −80
°C under an Ar atmosphere prior to analysis. Aqueous
geochemical samples were prepared at 30 min time points for
luminescence spectroscopy, hourly time points for ICPMS
analysis for total aqueous U, and XAS samples were prepared
at approximately 2.5, 4.5, and 120.5 h.
Steady-state emission spectra were recorded on an

Edinburgh Instruments FP920 phosphorescence lifetime
spectrometer equipped with a finger dewar liquid N2 cryostat,
a 450 W steady state xenon lamp (with single 300 mm focal
length excitation and emission monochromators in Czerny
Turner configuration), and a red sensitive photomultiplier in a
Peltier (air cooled) housing (Hamamatsu R928P) detector.10

Each scan was run in triplicate at −196 °C using an excitation
wavelength 405 nm, and identical parameters throughout. All
spectra were corrected for the excitation source and the
detector response using the correction files provided in
software.
U M4-edge HERFD−XANES measurements were per-

formed at the ACT station of the CAT-ACT beamline at the
Karlsruhe Research Accelerator (KARA), KIT lightsource.54,55

Again, samples were stored at −80 °C prior to analysis on the
beam line and during data acquisition, samples were analyzed
in a cooled cell under a He(l) flow. During data acquisition,
beam damage was assessed by measuring several short
HERFD−XANES over the white line, exposing the sample
and analyzing the white line intensity in order to assess any
evidence for the oxidation state drift. Throughout, we did not
see any evidence for beam damage effects. The resultant U M4-
edge HERFD−XANES spectra were normalized according to
their maxima, before analysis using Athena linear combination
fitting to further quantify the likely proportion of U(VI), (V),
and (IV) in the samples56 and the best results from linear
combination fitting had a R-factor < 0.02 (Figure S5, Table
S2).
U L3-edge XAS samples were prepared from cell suspensions

and/or centrifuged solid precipitates which had been stored at
−80 °C after harvesting for analysis. Samples were maintained
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at −80 °C during transport to Diamond Light Source, Harwell,
UK for XAS analysis on B18.57 U L3-edge spectra were
collected in a liquid N2 cryostat in either fluorescence or
transmission mode using a 36 element Ge detector, with in-line
yttrium foil reference for energy calibration. During data
acquisition, beam damage was assessed by measuring several
quick EXAFS spectra, exposing the sample and analyzing the
spectral features (peak height, position, and intensities) in
order to assess any evidence for oxidation state drift.
Throughout, we did not see any evidence for beam damage
effects. Software packages ATHENA and ARTEMIS were used
to analyze the EXAFS spectra56 (Supporting Information
Section S3).

■ RESULTS AND DISCUSSION
Aqueous Geochemistry and Luminescence Spectros-

copy. When supplied with U(VI) and electron donor
(lactate), washed cell suspensions of S. oneidensis MR1
removed up to 90% of the initial aqueous U(VI) from solution
after 24 h and 99.5% after 120 h, as shown by ICPMS and
luminescence spectrometry (Figure 1). The solution changed

from yellow to grey suggesting reduction of soluble U(VI). U
sorption to autoclaved cells was quantified in a control
experiment, after 2 and 4 h, 9 and 17% U was removed by
adsorption to the S. oneidensis MR1 cells, respectively (Figure
S1). Thermodynamic modeling, carried out using the
PHREEQC software package, and UV−vis spectroscopy of
the reaction medium suggested that under the conditions
employed, uranyl(VI) triscarbonate dominates solution (Table
S1, Figure S5).58,59 Luminescence spectroscopy of supernatant
samples yielded diagnostic, vibrationally resolved U(VI), as
uranyl(VI), emission spectra centered at 525 nm.10 As
emission intensity is directly proportional to the uranyl(VI)
concentration (provided that the uranyl(VI) speciation is
unchanged), luminescence spectroscopy was used semi-
quantitatively to assess the change in uranyl(VI) concen-
trations present in the supernatant.60,61 Over 24 h incubation,
the luminescence emission intensity showed a decreasing

trend, but with noticeable fluctuations within the first 5 h
which is consistent with a saw-tooth uranyl(VI) signal. The
significant difference in concentrations of aqueous U, as
determined by ICPMS, and aqueous uranyl(VI), as determined
by luminescence spectroscopy, also suggests the presence of a
significant fraction of nonuranyl(VI), nonluminescent (under
the conditions employed) U-containing species. These results
are likely due to a single electron transfer mechanism
generating transient, nonluminescent (under the conditions
employed) uranyl(V),62 followed by disproportionation to
luminescent uranyl(VI) and nonluminescent (under the
conditions employed) U(IV),63 as observed for Geobacter10

(Figure 1). The fluctuations in uranyl(VI) concentrations are
consistent with the previous literature suggesting a uranyl(V)
intermediate proceeding via a disproportionation mecha-
nism,9,10,37,41,64 and the saw-tooth pattern is not consistent
with U(IV) reoxidation which generally occurs on much longer
timescales (weeks−months).65−67

In the current work, this implies that enzymatic reduction
mediated by cells of S. oneidensis MR1 is occurring in a similar
way to the Geobacter system, and via the reduction of
uranyl(VI) to an intermediate U(V) species, which is not
emissive in the 450−600 nm window employed following a
405 nm excitation.10,62 The decrease and subsequent increase
in the uranyl(VI) signal steps are consistent with dynamic
uranyl(V) disproportionation to luminescent uranyl(VI) and
nonluminescent U(IV) species (Figures 1 and S4) and the
relevant literature.9,10 The clear fluctuations and difference in
total U versus uranyl(VI) assessed using luminescence
intensity were broadly reproducible over the first 120 h of
bioreduction and the kinetics are discussed in the Supporting
Information (Figure S4).

X-ray Absorption Spectroscopy: U M4-Edge HERFD−
XANES. U M4-edge analysis has recently been shown to be
highly diagnostic for U(VI), U(V), and U(IV) species in
complex systems.38,40,44,68 Here, U M4-edge HERFD−XANES
data were collected at 4.5 h (on the cell suspension and cell
pellet) and 120.5 h (cell pellet) to further explore the U-
oxidation state distribution in the bioreduction experiment.
For the 4.5 h cell pellet and cell suspension samples, the U M4-
edge HERFD−XANES spectra were intermediate between the
U(VI) and U(IV) standards (Table S2, Figure S6). We first
performed a linear combination fitting of the HERFD−
XANES spectra for all samples using only U(VI) and U(IV)
standards; however, this yielded unsatisfactory results (Figures
S6 and S7, Table S3). The linear combination fits for all
samples were improved using either a uranyl(V)30,69 or a
uranate(V)70,71 standard with the U(IV) and U(VI) standards
(Figures S6 and S7, Table S3). Our data confirmed U(V) as a
major reaction product in the reduction of U(VI) by S.
oneidensis MR1, although as fits using uranyl(V) only provided
marginally better fits than uranate(V), the exact geometry of
U(V) at 4.5 h remains inconclusive (Figure S7, Table S3).
Linear combination fits for the 4.5 h cell suspension showed
either 59% uranyl(V) or 36% uranate(V), with the remaining
uranium present as uranyl(VI), consistent with luminescence
data and literature.9 The 4.5 h cell pellet was fitted with either
71% uranyl(V) or 47% uranate(V) and 23−24% UO2, with the
remaining uranium present as uranyl(VI). This suggests that
U(V) can remain associated with the biomass during
bioreduction/disproportionation. Interestingly, the U(IV)
signal observed on solids was below the detection limit in
the cell suspension due to different contributions from the

Figure 1. Aqueous uranyl(VI) (grey) and total aqueous U (red).
Aqueous uranyl(VI) concentrations were determined by the
luminescence intensity at −196 °C (λex = 405 nm), and the total
aqueous U concentrations were determined by ICPMS. Both
measurements were recorded on the supernatant after centrifugation
(16,160g, 5 min). Luminescence intensity was normalized to the
initial U(aq) concentration and the error bars represent 1 standard
deviation on triplicate measurements.
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solution and the solid phase in these two samples (Figures 1
and 2, Table S3). For the 120.5 h sample, a cell pellet was

analyzed and the M4-edge HERFD−XANES showed clear
differences to the chemically precipitated U(IV)O2 standard.
Here, linear combination fitting between U(VI), (V), and (IV)
estimated approximately 26−28% U(V) and 72−74% U(IV)-
O2 was present in the sample for both uranyl(V) and
uranate(V) fits, respectively (Figures S6 and S7, Table S3).
Again, this suggests a significant fraction of U(V) in the cell
pellet over 120.5 h (Figure S7, Table S3). Typically, the
accuracy of oxidation state determination from XANES data is
±10−15%.72
X-ray Absorption Spectroscopy: U L3-Edge. U L3-edge

XANES and EXAFS data collected on cell suspensions from
cultures of S. oneidensis MR1 supplied with uranyl(VI) were
collected after 2.5 and 4.5 h, and on the cell pellet collected at
120.5 h. The edge position for the samples at 2.5 and 4.5 h

were in between the U(VI) and U(IV) standards, which
suggested that the cell suspensions contained a mixture of U-
oxidation states (Table S4, Figure S7). The structure is also
different from the U(VI) and U(IV) standards, which may be
due to the presence of other U species. By the 120.5 h end
point, the U L3-edge XANES matched the U(IV) standard,
suggesting that U(IV) dominated in the sample (Figure S6 and
Table S3). Unlike U M4-edge HERFD−XANES, U L3-edge
XANES cannot fully quantify the uranium oxidation state in
complex samples with mixed U(VI), (V), and (IV) oxidation
states.38,73 Specifically in the case of complex spectra of the
type expected in these bioreduction experiments, quantifying
U(VI), (V), and (IV) contributions with U L3-edge XANES is
challenging.38,73

Fitting of the U L3-edge EXAFS data was used to further
explore the speciation of U and the distribution of U(VI), (V),
and (IV) in the samples. Although EXAFS fitting does not
provide direct information regarding the oxidation state, the
fitting parameters obtained can be used to indirectly infer U-
oxidation states. Here, the characteristic presence and
extension of the uranyl UOax bond length from 1.8 Å for
uranyl(VI) to 1.9 Å for uranyl(V),9,22,32,35 and the lack of a U−
O, uranate(V), bond length at 2.1−2.2 Å40,44,74,75 were
particularly pertinent in fitting. Any attempts of fitting using
a uranate-like speciation proved unsuccessful. Overall the
EXAFS and associated Fourier transforms for the 2.5 and 4.5 h
cell suspension samples were remarkably consistent (Figure 3).
Informed by the relevant literature, the 2.5 h cell suspension
was fitted as uranyl triscarbonate species.9,10 Here, the best fit
was consistent with an average UOax bond length of 1.86 Å
(Table 1), supporting an approximately 40 ± 10%:60 ± 10%
contribution from uranyl(VI) (1.8 Å9,32,35,76) and uranyl(V)
(1.9 Å9,32,35,76). We note that this ratio should be treated as an
estimate as it will be affected by the number of species and
their relative Debye−Waller factors; although the Debye−
Waller factors for both uranyl(V/VI) species have been shown
to be very similar.32,35 Nonetheless, this suggests a significant
reduction from the uranyl(VI) species in this sample. The
dioxygenyl bond length is significantly longer than values for
uranyl(VI) (1.79−1.80 Å32,35,76), it is also significantly shorter
than U−O bond lengths in uranate(V/VI) complexes (2.11−
2.18 and 2.36−2.42 Å for uranate(V/VI), respec-
tively40,44,74,75), suggesting a mixed valence, uranyl(V/VI)

Figure 2. Normalized U M4-edge HERFD−XANES spectra for the
solid phase: U(IV)O2 standard (brown); U3O8 (2 U(V):1 U(VI))
standard (turquoise); 120.5 h end-point (yellow), 4.5 h cell
precipitate (purple), 4.5 h cell suspension (green), uranate(V)
standard (blue), uranyl(V) standard (red), and U(VI)O3 standard
(black) (std and ppt are used as abbreviations for standard and
precipitate, respectively).

Figure 3. U L3-edge EXAFS spectra for uranyl(VI) reduced by S. oneidensisMR1 after 2.5 h (cell suspension) (red), 4.5 h (cell suspension) (green)
and 120.5 h (precipitate, with uranyl(V) contribution) (yellow). Panel (A) k3-weighted EXAFS; panel (B) Fourier transform of k3-weighted
EXAFS. Black lines show experimental data and colored lines show the fits described in Table 1.
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system at 2.5 and 4.5 h. The equatorial shell was fitted as a split
shell with 2 O backscatterers at approximately 2.4 Å
(consistent with uranyl(VI) equatorial oxygen 2.42−2.45
Å9,32,35,76) and four O backscatterers at approximately 2.5 Å
(consistent with uranyl(V) equatorial oxygen 2.47−2.50
Å9,32,35) (Table 1). Additional features in the EXAFS and
Fourier transform were successfully modeled by inclusion of 3
C backscatterers at approximately 2.9 Å, and 3 O back-
scatterers at approximately 4.2 Å. Again, these are consistent
with contributions from uranyl(VI) and uranyl(V) triscarba-
nato species (U(VI, V)−C = 2.88−2.94 Å, and U(VI, V)−Odist
= 4.13−4.28 Å9,32,35,76) and support significant reduction to
uranyl(V) at 2.5 h. This is consistent with the luminescence
data which showed significant reduction in uranyl(VI)
luminescence at 2.5 h. For both the 2.5 and 4.5 h samples,
the EXAFS and Fourier transform data were similar (Figure 3)
and here, the 4.5 h sample could be fitted with essentially the
same coordination environment as the 2.5 h sample (Table 1).
The EXAFS fits for the data at 4.5 h were consistent with the
4.5 h U M4-edge HERFD−XANES LCF analysis using a
uranyl(V) standard showing approximately ∼60% U(V),
present as uranyl(V) (Figure 3). Interestingly, the geochemical
data and U M4-edge linear combination fitting results suggest
that up to 10% U(IV) may be present at 4.5 h (Figures 1 and
2). A fit containing 10% U(IV) contribution improved the
results, although the additional shell did not contribute
statistically to the fit and was thus not included. Overall,
EXAFS fitting for the 2.5 and 4.5 h cell suspensions showed
evidence for the extension of the dioxygenyl bond length in
uranyl(VI) (1.8 Å;9,32) to 1.86 Å. These fits are consistent with
approximately 40% uranyl(VI) and 60% uranyl(V) in the
samples, which agreed with the luminescence data (Figure 1),
the U M4-edge HERFD−XANES LCF using a uranyl(V)
standard(Figure 2), and with past work, where approximately
60% reduction to uranyl(V) was reported for bioreduction
with G. sulfurreducens at 4 h.9 This suggested uranyl(V) as a
transient bioreduction product in agreement with micro-

biological studies,9,10,12 and in contrast to recent work on
U(V) stabilization in Fe-oxides where uranate(V)-like
incorporation dominates.40,44

Finally, the 120.5 h cell pellet EXAFS data were first fitted
with 8 O backscatterers at 2.36 Å and 12 U backscatterers at
3.86 Å, consistent with crystalline uraninite and in agreement
with past work.51,52 However, because of unsatisfactory σ2

values in the U−O scattering paths (Table S2), and with the
new information suggesting a U(V) state in the end-point, we
further considered a contribution from U(V) in the U L3-edge
EXAFS fitting for the end-point sample again informed by the
relevant literature.9,32 The Fourier transform showed a feature
at ∼1.9 Å before the U(IV)−O shell in uraninite at 2.36 Å.
Here, we attempted a fit with approximately 20% of uranyl(V),
which statistically contributed to the fit (F-test 99.9%). The
resulting fit with a modest 0.4 axial UOax backscattering
contribution at 1.92 Å and with a reduced U−O contribution
of 7 O was consistent with an approximately 20% contribution
from uranyl(V) in the bioreduction end point (Tables 1, S4
and Figure 3). This estimate is consistent with the linear
combination fitting value of approximately 28% uranyl(V)
estimated with U M4-edge HERFD−XANES. Our interpreta-
tion of these data suggests, for the first time, the presence of a
long-lived 20−30% uranyl(V) intermediate associated with the
biomass/precipitate after 5-days of bioreduction.
Where most work on U(V) under environmentally relevant

conditions has addressed the role of Fe in stabilizing
U(V),40,41,44,78 the combined approach presented here
increases the understanding and importance of U(V) in
biological systems by demonstrating that S. oneidensis MR1
operates a one electron transfer mechanism for uranyl(VI)
bioreduction. In the supernatant, the difference in total U(aq),
as determined by ICPMS, and the uranyl(VI) concentrations,
as determined by luminescence spectroscopy, suggested that
up to ∼60% of the U was present as a nonuranyl(VI) species in
solution at 2.5 and 4.5 h. Here, further analysis of cell
suspensions, where the U signal is dominated by aqueous U,

Table 1. Fitting Parameters Obtained from U L3-Edge EXAFS Spectroscopya

sample scattering path N R (Å) σ2 (Å2) S02 R-factor αb

2.5 h UOax 2 1.86(1) 0.008(1) 1 0.014 99.9c

cell suspension U−Oeq 4 2.37(3) 0.012(7)
U−Oeq 2 2.48(1) 0.004(1)
U···C 3 2.93(2) 0.003(2)
U···Odist 3 4.22(2) 0.006(2)
(MS) U···Odist 6 4.21(2)* 0.006(2)*
(MS) U···Odist 3 4.21(2)* 0.006(2)*

4.5 h UOax 2 1.86(1) 0.008(2) 1 0.016 100.0c

cell suspension U−Oeq 4 2.36(3) 0.010(6)
U−Oeq 2 2.49(1) 0.003(1)
U· ·C 3 2.92(2) 0.005(2)
U·· Odist 3 4.23(1) 0.007(2)
(MS) U···Odist 6 4.21(2)* 0.007(2)*
(MS) U···Odist 3 4.21(2)* 0.007(2)*

120.5 h UOax 0.4 1.92(5) 0.008(5) 1 0.017 99.9d

cell pellet U−O 7 2.36(0) 0.012(1)
with U(V) U−U 12 3.86(1) 0.008(0)

U−Odist 24 4.44(0) 0.009(1)
aN, R, σ2, S02 and the R-factor refer to the coordination number, radial distance, Debye−Waller factor, amplitude correction factor, and the
goodness of fit, respectively. Uncertainty in interatomic distances is quoted in brackets for the last decimal place (Å). Spectra have been plotted in R
and k3 in Figure 3. * Parameters fixed during fitting. bF-test results; α > 0.95 statistically improves the fit with 2σ confidence.77 cF-test results for
adding the U−Odist feature and associated multiple scatterers at 4.2 Å. dF-test results for adding the U(V)Oax feature at 1.9 Å.
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using U M4-edge HERFD−XANES defined a significant
portion of the species as pentavalent U; although it was not
possible to distinguish between uranyl(V) and uranate(V)-like
speciation. In the U L3-edge EXAFS, the characteristic
extension of the UOax bond and the lack of a uranate U−
O bond are consistent with uranyl(V) after 2.5 and 4.5 h of
bioreduction, although this requires further investigation. In
agreement with previous findings, this work suggests that
biological uranyl(VI) reduction pathways preferentially reduce
via 1 electron transfer mechanisms. Given that S. oneidensis
MR1 reduces U(VI) via the Mtr extracellular pathway which
transfers one electron at a time, the results published here are
consistent with relevant literature.13,14,79,80 Also, this is similar
to the single electron transfer mechanisms observed in U(VI)
reduction pathways in iron-rich geological systems.40,44 The
presence of U(V) in both the cell suspension and the cell
precipitate suggests that the U(V) was not associated
exclusively with the cells, in agreement with similar Geobacter
systems.9,10 This suggests that the mechanism(s) of electron
transfer from S. oneidensis MR1 to U(VI) could involve
multiple (intracellular and extracellular) electron transfer
pathways, as supported by the relevant literature.13−16,81

Furthermore, we have established that U(V) can persist for
appreciable lifetimes (at least 120.5 h) under environmentally
relevant conditions in contrast to past studies, where it has
been considered transient (less than 24 h).9,10 The discovery of
a potentially persistent U(V) species in the endpoint sample
suggests that it could play a previously unrecognized role in the
remobilization of “bioreduced” U. In turn, this greatly
improves the mechanistic understanding of environmental U
speciation and it further broadens the field of stability for U(V)
at circumneutral pH. Indeed, U(V) behavior in environmental
conditions has not yet been fully explored, and thus further
work in more environmentally relevant settings are merited.
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