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INVERSE ELECTROMAGNETIC OBSTACLE SCATTERING
PROBLEMS WITH MULTI-FREQUENCY SPARSE
BACKSCATTERING FAR FIELD DATA

TILO ARENS*, XIA JIf, AND XIAODONG LIU*

Abstract. This paper is dedicated to design a direct sampling method of inverse electromagnetic
scattering problems, which uses multi-frequency sparse backscattering far field data for reconstruct-
ing the boundary of perfectly conducting obstacles. We show that a smallest strip containing the
unknown object can be approximately determined by the multi-frequency backscattering far field
data at two opposite observation directions. The proof is based on the Kirchhoff approximation
and Fourier transform. Such a strip is then reconstructed by an indicator, which is the absolute
value of an integral of the product of the data and some properly chosen function over the frequency
interval. With the increase of the number of the backscattering data, the location and shape of the
underlying object can be reconstructed. Numerical examples are conducted to show the validity and
robustness of the proposed sampling method. The numerical examples also show that the concave
part of the underlying object can be well reconstructed, and the different connected components of
the underlying object can be well separated.

Keywords: Electromagnetic obstacle scattering, sparse backscattering data, uniqueness, direct
sampling methods.

AMS subject classifications: 35R30, 35P25, 7T8A46

1. Introduction. Scattering of electromagnetic waves plays an important role
in many fields of applied mathematics such as radar, medical imaging, nondestructive
testing and geophysical exploration. The inverse scattering problem considered in this
paper is concerned with the reconstruction of the boundary of an unknown object
from knowledge of the incident time-harmonic plane wave and of the far field pattern
associated with the scattered field. Many research papers have been dedicated to the
formulation and analysis of the overdetermined problem at a fixed frequency where
measurements are taken for all directions of incidence of plane waves and for all
observation directions. Mathematically, much is known for such full aperture data:
Uniqueness of solution for the inverse problem can then be established [4] and many
reconstruction algorithms have been proposed. We refer to the monograph [3] for the
well developed linear sampling method in inverse electromagnetic scattering problems
using full aperture data and to Chapter 5 of [14] for the Factorization method for
inverse scattering of electromagnetic waves by a penetrable object consisting of an
inhomogeneous medium.

However, in many applications it is difficult to conduct an experiment in which
measurements are taken simultaneously in all observation directions around an un-
known scatterer. Thus, limited aperture problems arise in many practical applica-
tions. Indeed, for the linear sampling method limited aperture data can present a
severe challenge, see Section 3.4 of [3]. Instead of developing methods using limited-
aperture data, an alternative approach is to recover the data that cannot be measured
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directly. Subsequently, methods using full aperture data can be employed. We refer
to [13,17] for some data retrieval techniques along these lines.

From the practical point of view, backscattering far field data, where the obser-
vation direction and the incident direct are opposite to each other, is of considerable
interest. To make the inverse scattering problem solvable, multiple frequencies have
to be used. The inverse backscattering problem has attracted and challenged mathe-
maticians in the last few years [6,8,9,16,19,21] .

In this work, we consider a backscattering obstacle problem with the multi-
frequency far field data at sparsely distributed observation directions. In particu-
lar, we are interested in what kind of information about the unknown object can be
determined by the multi-frequency backscattering far field data at two observation
directions. Research in this direction started on inverse source problems [23] and for
this linear class of problems one can even establish a factorization method that yields
a rigorous mathematical characterization of the convex hull of the source [7]. In fact,
the present work also is a generalization of the recent work on inverse electromagnetic
source scattering problem [12], where the multi-frequency far field data at sparsely
distributed directions are used. However, the inverse obstacle problem treated here
is nonlinear, making the generalization nontrivial and difficult. Our approach is to
consider the physical optics approximation at high frequency. We show that a partic-
ular strip containing the unknown objects can be approximately determined from the
multi-frequency backscattering far field data at two different observation directions.
Furthermore, a rough convex support of the underlying object can be well captured by
the multi-frequency backscattering far field data at three pairs of opposite observation
directions.

The second contribution of this paper is to introduce a direct sampling method
for the boundary reconstruction. The indictor is defined by an integral of the product
of the backscattering far field data and an exponential function over a finite frequency
band. This idea originates in the direct sampling method for inverse source scattering
problems [1,10,12]. We also refer to [11] for a corresponding study for the acoustic
obstacle reconstruction problem. Numerical examples show that the strip containing
the object can be reconstructed by the multi-frequency backscattering far field data
at two observation directions. With the increase of the observation directions, the
shape can further be reconstructed, even the concave part.

This paper is organized as follows. In the next section, we fix the notations and
formulate the direct electromagnetic obstacle scattering problem. We also precisely
formulate the inverse problem to be solved. In section 3, we recall the physical optics
approximation and use it to derive an approximation to the far field pattern valid at
high frequencies. We proceed to establish a uniqueness result for the inverse problem
in section 4. Section 5 is devoted to propose a direct sampling method and give an
explanation why this method works. Finally, in section 6, some numerical simula-
tions are presented to validate the effectiveness and robustness of the proposed direct
sampling method.

2. Inverse electromagnetic scattering from a perfect conductor. In this
section, we set the stage by presenting the time harmonic electromagnetic obstacle
scattering problem under consideration. Let us begin with the notations used through-
out this paper. Vectors are distinguished from scalars by the use of bold typeface. For
a vector a := (a1, az,a3)” € C3, where the superscript “T” denotes the transpose, we
define the Euclidean norm of a by |a| := v/a - &, where @ := (ay,a3,a3)" € C? and a;
is the complex conjugate of aj. Denote by S? := {x € R? : |x| = 1} the unit sphere
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in R3.

We consider electromagnetic wave propagation in a non-conductive isotropic ho-
mogeneous medium in R? with electric permittivity ¢ and magnetic permeability .
Define k := w,/ep to be the wave number at frequency w > 0. The incident field of
particular interest is the electromagnetic plane wave

Ei(x,d,p,k) = pe™9d Hi(x,d,p,k)=(dxp)e™d xecR3dpecS? (21)

where the unit vector d describes the direction of propagation, and the polarization
vector p must be orthogonal to the direction of propagation, so d - p = 0. Let
D be a bounded domain in R? with Lipschitz boundary 9D such that the exterior
D¢ := R3\D of D is connected. The scatterer D gives rise to a pair of scattered
electromagnetic fields (E°,H®) € Hjoc(curl, D¢) x Hjoc(curl, D) which satisfy the
time-harmonic Maxwell equations [15]

curl E° —ikH® =0, curlH® +4kE° =0 in D°. (2.2)
For a perfect conductor, we impose the perfect conducting boundary condition, i.e.,
vxE=0 on 0D, (2.3)

where v is the unit outward normal to 0D and E := E’ + E° is the total electric
field. The scattered fields (E®, H?®) are out-going. Mathematically, this means that
the scattered field (E®, H?) satisfies the Silver-Miiller radiation condition

‘ llim H xx—|x|E°)=0 (2.4)
X|—00
where the limit is attained uniformly in all directions %X := x/|x|. It is well known
that there exists a unique solution (E*, H®) € Hioc(curl, D¢) x Hjoc(curl, D¢) of the
scattering system (2.2)-(2.4) (see e.g., [18]).

It is also well known (see e.g., [4,18]) that every radiating solution of (2.2) has
an asymptotic behavior of the form

ik|x| 1
ES(x,d,p, k) = —— E®(%,d,p, k) + O () S (2.5)

~ 4nlx] PE

uniformly w.r.t. X. The vector field E®(%X,d, p, k) is known as the electric far field
pattern of the electric scattered field E®(x,d, p, k). It is an analytic function on the
unit sphere S? with respect to observation direction % and it is a tangential field, i.e.,
%-E>(%,d,p,k) = 0 for all * € S%. For the scattering of plane waves by a perfect
conductor D, the far field pattern is given by

E>(%,d,p, k) = ik x / [v(y) x H(y)] x e "V ds(y), %,d,p € S% (2.6)
oD

This equation follows from the Stratton-Chu representation formula.
Fixing two wave numbers 0 < kp,in < kmaz, we consider the the scattering system
(2.2)-(2.4) with

k€ K := [kmin, kmax] - (2.7)
This paper is concerned with the following inverse problem:
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IP: Find the location and shape of the obstacle D from the knowledge
of the electric far field pattern E>®(%,d, p, k), k € K, at finitely many
observation directions X for finitely many incident directions d with
corresponding polarizations p.
In particular, E*°(—d, d, p, k) denotes the backscattering electric far field pattern.
For some positive integer | € Z, define

O = {:t@l?:t@%"' 7i®l‘®j € Szaj =12 71}»

which is a subset of S? with finitely many directions. To each d € ©;, a polarization
p(d) is assigned. The inverse backscattering problem consists in the deter-
mination of D from E*(—d,d,p(d), k) for all d € ©, and all k in a bounded
band K. That is, roughly speaking, whether we can determine the location and shape
of the obstacle D by measuring the echoes produced by incident plane waves in the
directions d € O;.

3. Physical optics approximation. Consider the scattering of a plane wave
(2.1) with incident direction d by a perfectly conducting plane I' := {x € R® : x-v =
0} with normal vector v that contains the origin. In this case, the scattered field is
given explicitly by

ES(Xa d7 p, k) = _pseikx.ds7 HS(X’ da p, kj) = —(ds X ps)eikx-ds7

where d* =d—2(v-d) v and p* = p—2 (v-p) v. Indeed, straightforward calculations
show that

vx(d® xp’)=—-vx(dxp) and x-d=x-d°, xe€eTl,
and therefore
vx (E'+E)=0 and vx (H' +H®)=2vxH onT.

In the physical optics approximation, one assumes that the wavelength is significantly
smaller than the size of the obstacle. Thus, the boundary of the obstacle D locally may
be considered at each point x € 9D as a plane with normal v(x). The corresponding
approximated scattered fields will be denoted by (E},, H;,) with similar notation for
total fields, far field patterns, etc. Introducing the illuminated region dD_(d) :=
{x € dD|v(x) -d < 0} and the shadow region 9D (d) := {x € dD|v(x)-d > 0},
respectively, for a plane wave in the incident direction d, this leads to setting

[ 2vxH', ondD_(d);
v x Hpo = { 0, on 9D, (d).

From here on, throughout the paper, we will assume that k,,;,, > 0 is large
enough such that the physical optics approximation (Ep., Hpo) to (E, H) is accurate.
Inserting (3.1) into (2.6), with the help of the representation (2.1) of the plane waves,
we deduce that

EX (%, d,p, k)

o

= 2ik% x [v(y) x Hi(y)] x e "V ds(y)
aD_(d)

= 2ik % x [V(y) x (d x p)] x xe*d"0Vqs(y), %,d,peS% ke K. (3.2)
dD_(d)

(3.1)

The implies that the shadow region 9D, (d) gives no contribution to the far field
pattern E50(%,d, p, k). Thus, it is impossible to determine the shadow region 0D (d)
at high frequencies using the far field pattern EgS (%, d, p, k).
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4. Uniqueness. We consider the following generalized backscattering electrical
far field patterns over some band of frequencies

EX(%,d,p, k) and EX(-%,—d,p,k), ke K.

for one fixed observation direction X, one incident direction d and one polarization p.
In particular, this reduces to the classical backscattering data if X = —d.
For any fixed direction 6 € Oy, the B-strip hull of D is defined by

Sp(@) :={y €R*®| inf -0 <y-B6<supz-06}, (4.1)
zeD z€D

which is the smallest strip (region between two parallel hyper-planes) containing D
with normals +6.

illuminated

shadow

Fic. 4.1. The 8-strip Sp(0), illuminated part 9D _(6) and shadow region 0D (0).

THEOREM 4.1. For one fized incident direction d € S?, one fived polarization
p €S? and one fized observation direction X € S? such that

A%, d,p) =% x ([(d—%) x (dxp)] xX) #0, (4.2)
define
d-x
=g % (4.3)

Then the corresponding ¢-strip Sp (@) is uniquely determined by the generalized backscat-
tering electric far field patterns ESo(%,d, p, k) and EoS (=%, —d,p, k) for allk € K.

Proof. We recall the electric far field pattern representation in the physical optics
approximation (3.2) and observe that

Eg%(_fcv _dv P, k)

= —2ik% x [w(y) x (d x p)] x e * AR Vis(y) %x.dpeSkekK.
0D (d)

Combining this with (3.2), we deduce that

U*(%,d,p, k)



=E3(%,d,p )+E°°( ,—d,p, k)
= 26kX X / (d x p)] x % e*FARY g5(y)
D
= 26kX X < curl y[(d x p)e* @2 Y]d(y) x f{)
= —2k? A%, d p)/ ARV (y), %,d,peS’kek. (4.4)
D

For the two fixed directions X, d € ©;, we define
I, :={y e R*|(d—%) -y +a=0}

to be a hyperplane with normal ¢ given by (4.3). Then we have
U™ (%,d,p, k) = —2k*A(%,d, p) / x(a)e *da, %,d,peS* ke K. (4.5)
R

where

Ra) = /H x()ds(y) (4.6)

a

and x denotes the characteristic function of D. As D is compact, the right hand side
of (4.5) is an analytic function with respect to k for all k € R. Thus, by analyticity,
we can extend right hand side of (4.5) and hence the data U (%, d, p, k) analytically
to all k € R.

Applying the Fourier transform, the equality (4.5) implies that ¥ can be uniquely
determined by U (%,d, p, k) and A(%,d, p). Note that Sp(¢) defined by (4.1) satis-
fies

= (J (Ialx() # 0},

a€R

which implies that the strip Sp(¢) is uniquely determined by ¥, and thus by the
generalized backscattering data U (X, d, p, k) for all £k € K and three fixed directions
d, p, X € ©;. The proof is complete. O

The assumption A(X,d,p) # 0 implies that X # d, thus the unit vector ¢ given
in (4.3) is well defined. Actually, for the classical backscattering case, i.e., X = —d,
we have

AX,d,p) =% x ([(d—%) x (d x p)] xX) = —2p (4.7

by using the fact that d - p = 0. Clearly, A(%X,d,p) # 0 in this case. Furthermore,
as indicated in the following corollary, less data are needed to uniquely determine the
strip.

COROLLARY 4.2. For one fized incident direction d € S%, one fized polarization
p € S? satisfying p -d = 0, we choose a unit vector e € S? such that e -p # 0. Then
the d-strip Sp(d) is uniquely determined by the backscattering data e- E*(—d, d, p, k)
and e - E*(d,—d,p,k) for allk € K.



Note that to determine the ¢-strip Sp(¢), we actually used one pair of directions
(%,d) and (=%, —d). Define

dj*Xj

I i=1,2,3. (4.8)
d; — %]

¢j =
As a corollary of Theorem 4.1 we immediately have a uniqueness result for obstacle
support with at most three pairs of opposite observation directions.

COROLLARY 4.3. Let (%;,d;), j=1,2,3 be three pairs of directions such that the
assumption (4.2) holds and the corresponding three unit directions ¢; given by (4.8)
are linearly independent. Take p; such that p; -d; = 0. Then the smallest parallel
hexahedron containing the obstacle with normals £¢; can be uniquely determined by
the generalized backscattering data E>(X;,d;, pj, k) and E*(—%;, —d;,p;, k), j =1,
2,3, forallk € K.

5. A simple sampling method. We consider the following indicator

2

1 o
LR U™ (%,d,p, k)e”*d=2 24l zeR3, (5.1)
K

I(z) := Z I4(z) :== Z

deo, deo,

where U (%X,d,p, k) = E®(X,d,p, k) + E®(—%, —d, p, k). Of particular interest is
the backscattering case, i.e., X = —d. Then we can combine (4.4) and (4.7) to obtain

U*(-d d.p.) = akp [ HYdly),

Inserting this into (5.1) and interchanging the order of integration we observe that
Id(Z) _ '/ / e2ikd-yd(y)672ikd<zdk
KJD

2
//€2ikd~(y—z)dkd(y)
DJK

, zeR?, (5.2)
Id(Z + Oldl) = Id(Z)

2

It is obvious that

for any o € R and any vector d* satisfying d-d*+ = 0. We rewrite the representation

(5.2) in the form
/ / e2ikd-(y—z)dk d(y)
DJK

In particular, for z € R3\Sp(d), we find

621‘kd-(y7z)
| S
p 2d-(y —2)

2

I4(z) = , z€RS

2

Iq(z) = , z€R3\Sp(d),

where the numerator 2% (Y=2)| o := 2kmard-(y=2) _2tkmind-(y=2) j5 clearly bounded.

Thus it is expected that the indicator I4(z) decays like 1/|d - (y —2)|? as the sampling
point z moves away from the strip Sp(d).
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6. Numerical examples. In this section, we present a variety of numerical ex-
amples in three dimensions to illustrate the applicability, effectiveness and robustness
of our sampling methods with broadband sparse data.

The data for the numerical experiments were generated using the boundary ele-
ment library bempp (https://bempp.com [22,24]). The boundary integral equation
to be solved is derived as in [5,22] including a stabilization applied to the electric field
operator. We repeat the main points here for self-consistency of the paper. We use
the electric and magnetic potentials, defined for ¢ € H~/?(Div,dD) (see [2] for a
precise definition of this and other relevant trace spaces),

EP () =ik [ ®(cy)py)ds(y) - arad [ ®(xy) Divan ely) ds(y)
oD 1 oD

MP p(x) = curl /aD O(x,y) p(y)ds(y),

and the traces
1
vwE=Exuv, *yNE:%*ytcurlE on 0D.
i

Superscripts -* will be used to indicate whether these traces are taken from ouside
or inside 0D, respectively. If no superscript is given, a trace from outside 0D is
understood.

In this notation, the Stratton-Chu formula for a radiating electric field outside of
D is

E* = — MPy,E® — EPyyE®.

Applying the trace operators to the potentials and averaging defines the electromag-
netic boundary integral operators

1 1
€=5 (W EP+y EP),  H = (3 MP+y, MP).

From the jump relations we obtain the equations
1 1
WEP =, yWEP=—3T+H, ywMP=—3T+H, ywMP=—¢

for the exterior traces. Applying the trace operators to the Stratton-Chu formula
gives the exterior Calderon projector,

+ ’}/tES o ")/tES . _’__1 . _1 . H &
(B (B) e e obroacte (R 8)

A is also called the multitrace operator.

The two rows of the Calderon projector equation with yyE?® as the unknown
give the electric and magnetic field boundary integral equations (EFIE and MFIE),
respectively. We apply a regularizing operator R to the EFIE, which is the operator £
with k replaced by ik, and add both equations to obtain the combined field boundary
integral equation (CFIE)

1 1 )
<21'+’HR5) yWE° = — (R {QIJHH} +5> wE".
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Fic. 6.1. Obstacles used in the numerical experiments together with planes, on which the
indicator is plotted: (a) ellipsoid with planes x1 = 0, z2 = 0, 3 = 0, (b) two spheres with planes
zr3 = —1.5, x3 =0, z3 = 1.5, xzo2 = 0.

This is the boundary integral equation solved using bempp. The scattered field is
then obtained from Stratton-Chu as

E® = MP~,E! — EPyyE?*,

and the far fields are obtained from the corresponding asymptotic expansion.

We will consider two settings for scattering problems, one for a convex and one for
a non-convex obstacle. In the first setting, the obstacle is an ellipsoid centered at the
origin with half axis 1.0, 0.4 and 0.7, respectively. In the second setting, the obstacle
is made up of two perfectly conducting balls of radius 0.8 with center at (0,0, £1.5),
respectively. Both settings, together with the planes in which the indicator function
will be plotted subsequently, are displayed in Figure 6.1.

In both settings, incident plane waves as in (2.1) for wave number k € [10, 20] are
considered. This corresponds to wave lengths ranging from 0.6281 down to 0.3142.
For the evaluation of the indicator function Iq given in (5.1) we approximate the
integral by the composite trapezoidal rule with 40 uniformly spaced wave numbers in
this interval. From the point of view that high frequency asymptotics are the basis
of the derivation of our method, it is perhaps surprising that we use such moderately
sized wave numbers. However, the quality of the reconstructions is surprisingly good,
as we will show below.

The boundaries of both obstacles were discretized using a triangulation with mesh
size h = 0.05. This corresponds to 6136 elements for the ellipsoid and 16686 elements
for the two spheres. The boundary element spaces used for solving the integral equa-
tions are spanned by Rao-Wilton-Glisson basis functions [20] and have 9204 and 25029
degrees of freedom respectively. Using H-matrix compression, about 16 Gb of mem-
ory was required for solving the scattering problems for the ellipsoid and 38 Gb for
the two sphere obstacle. The linear systems were solved using GMRES which always
converged in 16-18 iterations independent of the incident direction and the wave
number.
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Fic. 6.2. Plot of I(x),
(b) z2 =0; (c) x1 = 0.
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Fic. 6.3. Plot of I(x),
(b) xz2 =0; (¢) xz1 =0.
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Fic. 6.4. Plot of I(x), ellipsoid obstacle, 40 incident directions in (x2,x3)-plane; (a) x3 = 0;
(b) xz2 =0; (¢) x1 =0.

For the plots of the indicator function, we only present the backscattering case.
Before computing the indicator function, random noise was added to the data. For
each scattering problem, the maximum amplitude of the corresponding far field pat-
tern was computed. The data for this scattering problem was then perturbed by a
uniformly distributed random complex vector of Euclidean norm at most 10% of this
maximum amplitude.
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Fic. 6.5. Plot of I(x), two spheres obstacle, 40 incident directions in (x1,x2)-plane; (a)
x3 =—1.5; (b) 23 =0; (¢) xz3 = 1.5; (d) z2 = 0.

In the first set of experiments, the directions of incidence lie in one of the co-
ordinate planes. Our theory makes no special assumption on the polarization other
than that in the definition of U°, the polarization for the opposite directions must
be identical. In fact, (5.2) shows that the indicator I4 is independent of the choice
of p. In the results presented here, p is chosen differently for each direction of inci-
dence. Other experiments which were conducted indeed show that there is no visible
difference in the indicator function when a different choice for p is made, for example
the normal of the plane in which the directions of incidence lie.

Results for the ellipsoid are displayed in Figures 6.2 — 6.4 and for the two sphere
obstacle in Figures 6.5 and 6.6. The boundary of the obstacle is always indicated as
a black line. In each case, 40 incident directions are used, distributed uniformly on
the unit circle in the particular coordinate plane. We have not included the plot for
the two spheres corresponding to Figure 6.4 as due to symmetry of the object and
the orientation of the planes on which the indicator function is plotted, this plot adds
nothing to what is displayed in Figure 6.6. In each case we observe highest values of
the indicator along relatively flat boundary parts that correspond with the boundary
of the convex hull of the obstacle. Also, the highest values of the indicator function
are located just outside the obstacle.

This effect is due to the superposition of the results for several directions. In
Figure 6.7 we show plots of I4(z), i.e. using just one direction d (and its opposite).
Here, the boundary of the strip between maximal values of I4(z) touches the obstacle.
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Fic. 6.6. Plot of I(x), two spheres obstacle, 40 incident directions in (x1,x3)-plane; (a)

z3 = —1.5; (b) 3 =0; (c) xz3 = 1.5; (d) 2 = 0.
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Fic. 6.7. Plot of I4(x), ellipsoid obstacle, 1 incident direction; (a) d = (1,0,0)T; (b) d =

(17170)T/\/§; (C) d= (07170)T'

The plots in Figure 6.7 also show that for different directions of incidence and ob-
servation the maximal values of the indicator function Iq can be quite of quite diverse
magnitude. This observation let us to experiment with variations of the indicator
function in which contributions for different directions are scaled differently and are

hence more balanced overall. Define

1
ZGR?’, pE{O,i,l}
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Fia. 6.10. The plot from Figure 6.4 (c) with different indicators.

The choice p = 0 corresponds to our original indicator. We compare the effect
of different scalings for the case of the ellipsoid obstacle in Figures 6.8 — 6.10. It
can be clearly seen that the plots of I and I' complement each other while /2
gives the best overall result. For the non-convex obstacle consisting of two spheres
we also obtain a much improved reconstruction of the complete boundary using 1'/2
compared to I°, as can be seen in Figure 6.11.
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Fic. 6.12. 80 wuniformly dis-
tributed points on the unit sphere used
as directions of incidence/observation

Fic. 6.13. Plot of Il/z(x), ellipsoid obstacle, 80 incident directions in uniformly distributed
over the unit sphere; (a) s =0; (b) z2 =0; (¢) x1 = 0.

Finally, we also computed backscattering data for both obstacles for a set of
80 incidence and observation directions that are distributed uniformly over the unit
sphere. These directions are indicated in Figure 6.12. Compared to 40 directions
on some circle in one plane, these 80 directions distributed on the unit sphere are
actually much more sparse. The reconstructions of the ellipsoid using the indicator
function I'/? displayed in Figure 6.13 are still acceptable even though a lot of points
with large values of the indicator function are located relatively far from the obstacle.
We are convinced that significantly better results are possible using more directions
of incidence and, in particular, by using data for higher frequencies.

This holds even more so for the two sphere obstacle. Here, as shown in Figure
6.14 (a), high values of the indicator function no longer produces a recognizable re-
construction of the obstacle. Surprisingly, from Figures 6.13 and 6.14, an interesting
observation that we cannot yet explain from our theory, is that the obstacle can be
well captured if we consider the low values of the indicator function. For a single
direction, the strip Sp(#) containing the obstacle is clearly identified, as shown in
Figure 6.14 (b). However, the complicated shape of the non convex obstacle leads to
significant areas with high indicator values away from the boundary of the obstacle.
This demonstrates the limits of the proposed method when data is only available for
a modest frequency range.
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(a) (b)
Fic. 6.14. Reconstruction for two spheres with 80 uniformly distributed directions; (a) I1/2
for all directions; (b) Iq for d ~ (0.960,—0.191,0.203) .

7. Conclusions. In this paper we make a first step for inverse electromagnetic
scattering problems with multi-frequency backscattering electric far field patterns
taken at sparse directions. In particular, we show that the smallest strip with normal
d containing the unknown object can be approximately reconstructed by the multiple
high frequency backscattering far field patterns taken at the observation directions
+d. This establishes the theoretical basis for determining the location and shape
of the object by backscattering far field data at sparse directions. One fast and
robust direct sampling method is also proposed to recover the unknown object. Some
numerical examples are designed to verify the effectiveness and robustness of the
proposed method. The reconstructions further show that even the concave part can
be well captured with an adequate number of observation directions.

For simplicity, we have focussed on the perfect conductor in this paper. To deal
with the nonlinearity of the inverse problem, we have considered the physical optics
approximation with high frequencies for the theoretical analysis. However, the nu-
merical reconstructions show that the proposed direct sampling method works very
well even for moderately sized frequencies. To fully explain this observation, new
tools and techniques have to be considered. We hope to deliver this in a forthcoming
paper.

Acknowledgement. The research of X. Ji is supported by the NNSF of China
under grants 91630313 and 11971468, and National Centre for Mathematics and Inter-
disciplinary Sciences, CAS. The research of X. Liu is supported by the NNSF of China
under grant 11971471, and the Youth Innovation Promotion Association, CAS. The
research of T. Arens was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — Project-ID 258734477 — SFB 1173.

REFERENCES

[1] A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency
sparse data, Inverse Problems 36, (2020), 025009.

[2] A. Buffa, M. Costable and D. Sheen, On traces for H(curl,2) in Lipschitz domains, J. Math.
Anal. Appl. 276 (2002), 845-867.

[3] F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic

15



Scattering, CBMS-NSF Regional Conference Series in Applied Mathematics, 80. Society
for Industrial and Applied Mathematics (STAM), Philadelphia, PA, 2011.

[4] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed.,
Appl. Math. Sci. 93, Springer, New York, 2013.

[5] H. Contopanagos, B. Dembart, M. Epton, J.J. Ottusch, V. Rokhlin, J.L. Visher and S.M.
Wandzura, Well-conditioned boundary integral equations for three-dimensional electro-
magnetic scattering, IEEE Trans. Antennas Propag., 50 (12) (2002), pp. 1824-1830.

[6] G. Eskin and J. Ralston, The inverse backscattering problem in three dimensions, Comm. Math.
Phys. 124, 1989, 169-215.

[7] R. Griesmaier and C. Schmiedecke, A factorization method for multi-frequency inverse source
problems with sparse far field measurements, SIAM J. Imag. Sci., 10, (2017), 2119-2139.

[8] H. Haddar, S. Kusiak and J. Sylvester, The Convex Back-Scattering Support, SIAM J. Appl.
Math., 66(2), (2005), 591-615.

[9] P. Hahner and R. Kress, Uniqueness for a linearized, inverse obstacle problem using backscat-
tering data, Mathematical and numerical aspects of wave propagation (Santiago de Com-
postela, 2000), 488-493, STAM, Philadelphia, PA, 2000.

[10] X. Ji and X. Liu, Inverse elastic scattering problems with phaseless far field data, Special Issue
in Memory of Professor Armin Lechleiter, Inverse Problems 35 (2019), 114004.

[11] X. Ji and X. Liu, Inverse acoustic obstacle problems with sparse multi-frequency backscattering
data, arXiv:1906.02008, 2019.

[12] X. Ji and X. Liu, Inverse electromagnetic source scattering problems with multi-frequency
sparse phased and phaseless far field data, STAM J. Sci. Comput. 41(6), 2019, B1368—
B1388.

[13] X. Ji, X. Liu, Y. Xi, Direct sampling methods for inverse elastic scattering problems, Inverse
Problems 34 (2018), 035008.

[14] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University
Press, 2008.

[15] A. Kirsch, Andreas and F. Hettlich, The mathematical theory of time-harmonic Maxwell’s
equations. Expansion-, integral-, and variational methods. Applied Mathematical Sciences,
190. Springer, Cham, 2015.

[16] J. Li, H. Liu and Y. Wang, Recovering an electromagnetic obstacle by a few phaseless backscat-
tering measurements, Inverse Problems 33, 2017, 035011.

[17] X. Liu and J. Sun, Data recovery in inverse scattering: from limited-aperture to full-aperture,
J. Comput. Phys. 386(1), 2019, 350-364.

[18] P. Monk, Finite Element Methods for Mazwell’s Equations, Numerical Mathematics and Sci-
entific Computation, Oxford University Press, New York, 2003.

[19] Z. Nazarchuk, M. Shahin, R. Hryniv and A. Synyavskyy, A method of inverse scattering problem
solution for penetrable objects using back-scattering data, 2015 XXth IEEE International
Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave
Theory (DIPED) , 23-26.

[20] S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary
shape IEEE Trans. Antennas and Propagation, 30 (3) (1982), pp. 409-418.

[21] J. Shin, Inverse obstacle backscattering problems with phaseless data, Euro. Jnl of Applied
Mathematics 27, 2016, 111-130.

[22] M.W. Scroggs, T. Betcke, E. Burman, W. Smigaj, and E. van’t Wout. Software frameworks for
integral equations in electromagnetic scattering based on Calderén identities. Computers
and Mathematics with Applications, 74:2897-2914, 2017.

[23] J. Sylvester and J. Kelly, A scattering support for broadband sparse far field measurements,
Inverse Problems 21, (2005), 759-771.

[24] W. Smigaj, S. Arridge, T. Betcke, J. Phillips, and M. Schweiger. Solving boundary integral
problems with BEM++. ACM Transactions on Mathematical Software, 41(2):6:1-6:40,
2015.

16



