
Journal of Sol-Gel Science and Technology (2020) 94:356–374
https://doi.org/10.1007/s10971-020-05238-7

ORIGINAL PAPER: MODELING, COMPUTATIONAL TOOLS AND
THEORETICAL STUDIES OF SOL-GEL AND HYBRID MATERIALS

A phase-field study on polymerization-induced phase separation
occasioned by diffusion and capillary flow—a mechanism for the
formation of porous microstructures in membranes

Fei Wang 1
● Lorenz Ratke2 ● Haodong Zhang1

● Patrick Altschuh1
● Britta Nestler1,3

Received: 18 November 2019 / Accepted: 29 January 2020 / Published online: 14 February 2020
© The Author(s) 2020, corrected publication 2021

Abstract
The performance and the application of membranes, which are usually produced from polymer solutions, are strongly
determined by their porous microstructures. One important mechanism for producing the porous microstructures
of membranes is polymerization-induced phase separation (PIPS). Here, we scrutinize PIPS by employing a
Cahn–Hilliard–Navier–Stokes method coupling with the Flory–Huggins model. We focus on the formation of
membranes via diffusion as well as capillary flow. We report several morphological evolution characteristics of PIPS: (1) an
asynchronous effect, where the polymer-rich phase and the polymer-lean phase reach their equilibrium concentrations at
different times, (2) a center-to-center movement and collision-induced collision of polymer-rich particles, (3) transition of
network structures into polymer particles and rebuilding of network structures from polymer particles, (4) polymer ring
patterns. We expect that these findings would shed light on complex microstructures of membranes and provide guidance for
the fabrication of desired membranes.
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Highlights
● We model polymerization induced phase separation in membranes by considering diffusion and capillary flow.
● We find that the polymer-rich and polymer-lean phases reach the equilibrium state asynchronously.
● We observe several typical morphological transitions of polymerization induced phase separation, such as percolationto-

cluster, cluster-to-percolation, tiny droplets and polymer ring-patterns.

1 Introduction

Membranes have been applied in a wide range of areas,
such as microfiltration [1], ultrafiltration [2], fuel cells [3],
reverse osmosis [4], and gas separation [5]. These mem-
branes are mostly fabricated from polymer solutions, such
as resorcinol/formaldehyde (RF) [6], cellulose [7], and
poly-methacrylates-alcohols [8]. The functionality, relia-
bility, and durability of the membranes strongly depend
on the microstructural patterns. One underlying mechan-
ism for the formation of the microstructures in membranes
is phase separation [9], where the polymer solution
decomposes into two immiscible phases: one with a high-
polymer concentration and one with a low-polymer con-
centration. Shortly after the phase separation, the con-
centrated phase solidifies and transforms into membranes.
This process is frequently denoted by the general term
“gelation” [10].

The formation of membranes via phase separation has
been extensively observed in experiments [11–17] (see
Fig. 1). In order to provide additional insights into porous
microstructures of membranes, a number of numerical
models have been developed. For instance, dissipative
particle dynamics simulations are carried out to study the
structure and kinetics of membrane formation via thermally
induced phase separation [18]. Monte Carlo simulations
have been adopted to study phase separation dynamics in
the presence of block polymer [19]. Besides, the
Cahn–Hilliard model incorporating the Flory–Huggins
theory [20–22] is an alternative and widely used method to
investigate the phase separation forming membranes.

There are two aspects which have been seldom con-
templated in the models in literature. The first one is that
during the formation process of membranes, the degree of
polymerization generally increases with time. At the initial
stage, the free energy density of the polymer solution has a

Fig. 1 Microstructures of
membranes via phase separation.
a, b PVDF-Glycerol membrane
[11]. Reuse with permission,
© 2014 MDPI. c Poly(vinylidene
fluoride)/γ-butyrolactone
membrane [15]. Reuse with
permission, © 2015 Elsevier.
d Poly(vinylidene fluoride)/
triethylene glycol diacetate
membrane [16]. Reuse with
permission, © 2015 Springer

Journal of Sol-Gel Science and Technology (2020) 94:356–374 357



global minimum [23] and a miscibility gap does not exist.
Thus, the monomers are fully miscible with the solvent,
e.g., resorcinol can be dissolved in water to a large extent
and silicic acid is capable of forming a homogeneous
solution with alcohol and water. As the monomers react
with each other via a polycondensation reaction, oligomers
are formed. Because of the increase in the degree of poly-
merization, two local minima appear in the free energy
density [23] and these polymer chains are no longer mis-
cible with the solvent. This process is termed as
polymerization-induced phase separation (PIPS) [10]. PIPS
has been widely investigated in literature and is considered
to be one vital mechanism for the formation of membranes
[24]. Arising from the cross-linking reaction of monomers
leading to an increase in DP and the constant DP of the
solvent DP= 1, the entropy contributions from the polymer
and solvent are asymmetrical. The effect of this asymmetry
on the kinetics of the microstructural evolution has not yet
been fully revealed, though some literature have been
denoted to this topic [25]. We will elucidate that this
asymmetrical contribution leads to an asynchronous evo-
lution of the polymer-rich and the polymer-lean phase.

The second aspect is the capillarity effect which is usually
overlooked in previous models. The ligaments and the pores
of the membranes are typically in the scale from nanometers
to micrometers. At these length scales, capillary force
has been proved to be more significant than other forces,
i.e., gravity. In the present work, we present a
Cahn–Hilliard–Navier–Stokes model which includes the
time-dependent degree of polymerization as well as the
capillary effect. By considering a time-dependent phase dia-
gram and capillary flow, we report the following micro-
structural evolution characteristics. (1) The polymer-rich
phase and the polymer-lean phase asynchronously reach the
equilibrium state. (2) Capillary flow gives rise to a center-to-
center movement of the polymer-rich particles. (3) Capillary
flow leads to a broader range distribution of the polymer-rich
particles in comparison with the diffusion-controlled phase
separation. Tiny and relatively large particles occur when
capillary flow is present. (4) When pre-nucleation is con-
sidered, a polymer ring pattern appears. Our simulations are
performed both in 2D and 3D by considering upper as well as
lower critical temperature systems.

The rest of the paper is structured as follows: in Section 2,
we present the phase diagram based on the Flory–Huggins
theory. In Section 3, we depict the Cahn–Hilliard model
coupling with the Navier–Stokes equation. In section 4, we
show the simulation results in 2D and illustrate an asyn-
chronous kinetics for the polymer-rich and polymer-lean
phases. The size distribution of the particles with and without
capillary flow is compared. In Section 5, we demonstrate
three-dimensional microstructures of PIPS. We conclude the
paper in Section 6.

2 Phase diagrams and the Flory–Huggins
model

There is a paucity of thermodynamic databases for polymer
solutions forming membranes. Even though some thermo-
dynamic databases have been produced experimentally
[26], it is still a great challenge to obtain the dynamic-phase
diagram which depends on the degree of polymerization.
Hence, to study PIPS in the formation process of mem-
branes, we use the model of Flory and Huggins (FH) for a
polymer mixture with an average degree of polymerization
DP=N and a solvent. The basic equations can be found
almost everywhere in the literature on polymer solutions
[27–31]. The starting point is the free energy density of
mixing, which reads

f ðφÞ ¼ kBT
φ

N
lnφ þ ð1 � φÞlnð1 � φÞ þ χφð1 � φÞ

h i
;

ð1Þ

where kb is the Boltzmann constant and T denotes the
temperature. The first two terms in Eq. (1) represent the
entropy change of the solution due to mixing of the polymer
with volume concentration φ in the solvent. The last term is
the latent heat of mixing, characterized by the Flory parameter
χ ¼ ZΔϵ=kBT , in which Z is the coordination number, Δϵ is
the difference between the polymer–solvent interaction energy
ϵPS and the average interaction energy of the polymer-polymer
and solvent–solvent, Δϵ ¼ ϵPS � ðϵSS þ ϵPPÞ=2. These inter-
action energies are determined by the intermolecular potential.
If χ < 0, the solution of the polymer in the solvent is more
favorable compared with the situation, where χ > 0, which
means polymer–polymer and solvent–solvent combinations
are energetically favored over polymer–solvent. A polymer
solution with positive χ and sufficient high DPs gives rise to a
miscibility gap, leading to the decomposition of the solution
into two phases, as illustrated in Fig. 2. The reciprocal
dependence of χ on temperature results in a miscibility gap
with an upper critical solution temperature (UCST). This can
be seen by looking at the spinodal line, which is defined by
the zeros of the second derivative of the free mixing enthalpy
with respect to the volume concentration, yielding

1
φ

þ N

1 � φ
¼ 2χN: ð2Þ

The plot of 1=χ or T against the volume concentration with
varying degree of polymerization reveals the effect of DP on
the shape of the spinodal regions. The dependence of the
spinodal region as a function of degree of polymerization is
shown in Fig. 2a. Besides the spinodal, the phase equilibrium
concentration is defined by the binodal lines, which are
derived from a common tangent construction, namely,
μp :¼ ∂φf jφ¼φp

¼ ∂φf jφ¼φs
¼: μs and ðf � μpφÞjφ¼φp

¼
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ðf � μsφÞjφ¼φs
in which φp and φs are the equilibrium

polymer concentrations in the polymer-rich and polymer-
poor (solvent) phases and μs, μp are the chemical potentials.
The unknowns φp and φs are determined by the Newton
iteration method and the plot T versus φp and φs gives rise
to the binodal line. As an example, the binodal line for
N ¼ 10 is illustrated by the dashed curve in Fig. 2a.

The critical point of the miscibility gap only depends on
the degree of polymerization. This can be seen by calcu-
lating ∂χ=∂φ ¼ 0 leading to

φc ¼ 1

1 þ ffiffiffiffi
N

p ð3Þ

and the critical temperature (inverse of χ) varies like

Tc / 2Nffiffiffiffi
N

p þ 1
� �2 : ð4Þ

The above outlined Flory–Huggins model with an upper
critical point could in principle work for membranes. But it
might be useful to also discuss another FH-model, namely,
one with a lower critical point where the phase boundaries

are inverted. A phase diagram with a lower critical solution
temperature (LCST) is most easily described by a Flory
parameter χ that depends linearly on temperature [27]

χðTÞ ¼ χ1T ð5Þ
with χ1 being a constant. In literature, the Flory parameter is
mostly written in such a form χ ¼ Aþ B=T [32], with A
and B being constants. Equation (5) may be interpreted as a
binomial expansion of the expression χ ¼ A þ B=T with
only linear terms, so that Eq. (5) is consistent with previous
formulations. Such a behavior is for instance observed in
systems with hydrogen bonds [27–29]. The relation Eq. (5)
describes the polymer–solvent interaction being more
strongly dependent on temperature. Performing the same
analysis gives rise to the LCST spinodal regions, as shown
in Fig. 2b. One should notice that the binodal and spinodal
always meet at the critical point and that the binodals are
always broader than the spinodals. Hence, for a given
temperature and an initial low volume concentration, e.g.,
φ0 < 0:1, with an increase in DP, the system firstly touches
the binodal line and thereafter passes through the spinodal
line. It is also worth mentioning, that polycondensation
reactions can typically be described by a second order
kinetics and thus the average degree of polymerization

Fig. 2 Spinodal regions according to the Flory–Huggins theory for
systems with (a) an upper critical solution temperature (UCST) and b a
lower critical solution temperature (LCST). Blue: N ¼ 10; orange:
N ¼ 20; cyan: N ¼ 50, and red: N ¼ 1000. With an increase in the
average degree of polymerization (DP), the spinodal region shifts
leftwards and upwards for UCST and downwards for LCST. The
dashed curve in a is the binodal line for N ¼ 10. c, d Scheme of an

RF-solution with an evolving miscibility gap having an upper or a
lower critical point. The black circle corresponds to a time when the
state of the system is close to the binodal line. A quench in an UCST
system moves the state point into the two-phase region, whereas the
same quench in a LCST system leaves the state point in the single
phase region (Color figure online)
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depends linearly on time as N ¼ 1 þ kt [33, 34], with k
being a temperature dependent reaction rate constant.

Although, as mentioned above, dynamic-phase diagrams
are not really available for polymer solutions, one can make
the following qualitative prediction for some polymer solu-
tions. Figure 2c, d schematically show both systems and a
state point of a resorcinol-formaldehyde mixture indicated by
the black circle. If one would perform a sudden temperature
change in an UCST system, the state point would move into
the two-phase regime, whereas in the LCST system the state
point stays in the single phase regime. Experimentally, it is
exactly the latter what is observed for the RF-water system.
Whenever a solution, kept at a certain temperature (room
temperature or higher), is transferred to a fridge, it can stay
there without gelation for quite a while (weeks to months). If
the RF-water system exhibits an upper critical point, this
would not be possible, since a quench to a lower temperature
immediately leads to a phase separation and eventually to
gelation. Therefore, from an experimental point of view, the
RF-water system must be one with a lower critical point,
while this is not the case for silica-water-alcohol or
biopolymer-solvent systems. The following discussions will
consider both UCST and LCST phase diagrams.

3 Phase-field model with fluid flow

In a closed isothermal isobaric system, the microstructural
evolution of the polymer solution is such as to decrease
the free energy functional of the system, which is written
as [35]:

Fðφ;∇φÞ ¼
Z
V
½f ðφÞ þ κð∇φÞ2�dv; ð6Þ

in which V is the domain occupied by the system and κ, a
gradient energy coefficient, is determined by the interfacial
tension σ as κ ¼ σ= 2

R1
�1ðdφ=dxÞ2dx

�
. The interfacial

tension σ is related to the free energy density as σ ¼
2
R φp

φs

ffiffiffiffiffiffiffiffi
κΔf

p
dφ (see the derivation in [35]), where Δf ¼

f ðφÞ � f ðφsÞ þ μsφ � μsφs and the effect of the interac-
tion coefficient χ on the interfacial tension is incorporated in
the free energy density. The concentration evolution follows
the variational approach as [36]:

∂tφ ¼ ∇ � ½MðφÞ∇ðδF=δφÞ þ ξ�; ð7Þ

where MðφÞ denotes the mobility and is set as
MðφÞ ¼ D½vm=ðkbNATÞ�φð1 � φÞ. Here, D is the inter-
diffusivity, vm is the molar volume and NA is the Avogadro
constant. In general, the diffusivity D depends on φ, which
can be an interpolation of the self diffusivity of polymer Dp

and solvent Ds according to Darken’s equation (for more

details see [23]). For simplicity, we set a constant diffusivity
in the present work. The last term ξ in Eq. (7) represents
noise fluctuations. Aiming at a more realistic scrutiny on
the microstructural evolution, in which liquid phases are
involved, the contributions to the reduction of the free energy
are attributed not only to diffusion, but also to the fluid flow.
The mass flux generally is comprised by two synergistic
contributions: the diffusion arising from the chemical
potential gradient and the convection φu describing the mass
transport via the mean fluid velocity u. With the generalized
mass flux, J ¼ �MðφÞ∇ðδF=δφÞ þ φu, the mass con-
servation is rewritten as [37]:

∂tφ þ ∇ � ðuφÞ ¼ ∇ � ½MðφÞ∇ðδF=δφÞ þ ξ�: ð8Þ
In the classic Cahn–Hilliard model, the kinetic energy

arising from the capillary flow has not been taken into
account. However, many in-depth investigations [38–42]
have shown the importance and the necessity for the con-
sideration of convection. In this way, the decrease rate of the
free energy caused by convection is ðdF=dtÞconvection ¼R
VðδF=δφÞð∂tφÞconvectiondv, which is equivalent to
�R

V ðδF=δφÞðu � ∇φÞdv with the aid of the incompressible
condition ∇ � u ¼ 0. Thus, the soaring rate of the kinetic
energy

R
V fs � udv equates to the decline rate of the Gibbs

free energy and the capillary force fs is formulated as fs ¼
�φ∇ðδF=δφÞ [43]. This derivation does conform to Noe-
ther’s theorem where a stress tensor is yielded [40, 43–46]

Θ ¼ 2κ∇φ� ∇φ� ðκ∇φ � ∇φ þ f ÞI; ð9Þ

in which I is the identity matrix.
Furthermore, a generalized momentum balance equation

[43, 47] can also be obtained by including the capillary
force in the Navier–Stokes equation

ρ ðφÞð∂tu þ u � ∇uÞ ¼ � ∇p þ ∇ �
n
½κð∇φÞ2 þ f �I

� 2κ∇φ� ∇φ
o
þ ∇ � ηðφÞð∇u þ ∇uTÞ;

ð10Þ
where ρ, η and p are, respectively, the density, the viscosity,
and the pressure. The density and viscosity of the solutions
are interpolated over the individual species as:

ρðφÞ ¼ ρphðφÞ þ ρs½1 � hðφÞ�; ð11Þ

ηðφÞ ¼ ηphðφÞ þ ηs½1 � hðφÞ� ð12Þ

where ρp (ηp) and ρs (ηs) are the densities (viscosities) of the
polymer and solvent, respectively. hðφÞ is an interpolation
function such that hðφÞjφ¼φp

¼ 1 and hðφÞjφ¼φs
¼ 0.

Equation (8) coupling with Eq. (10) is named as the
phase-field model. A crucial feature of this model is that it
does obey the second law of thermodynamics as the sum of
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the free energy and the kinetic energy (Evðφ; uÞ) declines
with time, e.g., dEvðφ; uÞ=dt � 0 [37, 48]

Evðφ; uÞ ¼
Z
V
½f ðφÞ þ κð∇φÞ2�dv þ

Z
V
ρ
juj2
2

dv: ð13Þ

Equations (8) and (10) are non-dimensionalized by
choosing d0 and d20=D as the dimensionless factors for the
space and time, respectively, where d0 is the character-
istic length. The two evolution equations are solved by
the finite difference and explicit Euler methods on a
staggered mesh. Periodic boundary conditions are applied
in all dimensions. The parameters for the discretization
are Δx ¼ Δy ¼ Δz ¼ 1, Δt ¼ 0:001. The other physi-
cal parameters are χ ¼ 1:5, D ¼ 4 � 10�8 m2/s, vm ¼
1 � 10�5 m3/mol, σ ¼ 0:01 J/m2, kb ¼ 1:38� 10�23 m2

kg s−2 K�1, ρ ¼ 1� 104 g/m3, and η ¼ 1 � 10�3 Pa s.

4 Simulated 2D structures

In this section, we perform simulations on a 2D domain
with a size of 300 � 300. We consider a liquid mixture
initially with a polymer concentration of φ0 ¼ 0:06 at a
dimensionless temperature of kbT=ZΔϵ ¼ 1. This setup is
denoted by the blue circle in Fig. 3. A Gaussian distributed
noise is introduced to perturb the homogeneous liquid
phase, as shown in Fig. 4a, e. For N < 10, this con-
centration is outside the spinodal and the disturbed liquid
phase gets homogenized with time. Presently, DP is set to
be 10 at the beginning such that the perturbation can
induce spinodal decomposition immediately. Arising from
polymerization, DP increases with time following the
expression N ¼ 10 þ kt, where k ¼ 2 � 108 s�1.
Because of the rising in DP, the spinodal region shifts
downwards and leftwards (Fig. 2b). With time, the initial
concentration relatively moves into the interior of the
spinodal region with increasing driving force, which leads

to a typical self-similar worm-structure (Fig. 4b). This self-
similar structure has a rather narrow distributed polymer-
segment, which is a characteristic of the early stage of
spinodal decomposition. This feature is inherited to the
subsequent microstructures (Fig. 4c, d), which possess
quasi-homogeneous polymer droplets.

Per contra, with the presence of capillary flow, the
spinodal decomposition rate is significantly enhanced, as
shown in Fig. 4f. It is noted that the worm-like structure
also occurs in this case (not shown), but it has transformed
into droplets much earlier than in the simulations without
capillary flow. Moreover, the capillary flow provokes
directional movements of percolated polymeric droplets
(see Section 5 and [23] for more details), in contrast to the
stochastic Brownian motion. This directional motion,
which is not evident in Fig. 4a–d, prompts center-to-
center impingements for the polymeric droplets. As a
result, the size distribution of the droplets is more inho-
mogeneous than the diffusion-controlled case, as can be
seen in Fig. 4g, h. The fluid velocity field illustrating the
motion and collision of droplets during phase separation is
shown in Fig. 4i–l. It is noted that high-fluid velocities
occur at the positions where collisions take place. This
phenomenon is especially pronounced in Fig. 4k, where
the fluid velocity in the highlighted region is much higher
than the ones in other regions, as demonstrated by the
color bar. Because of this large contrast of the velocities,
fluid flow outside the highlighted region is not visible.
Strong flows are observed in regions of collision events
due to the negative curvature established at the neck when
two droplets tend to impinge. The strong flow in Fig. 4k
corresponds to a Péclet number around 10, which is at
least one magnitude higher than the ones in Fig. 4i, j, l.
Being ascribable to the large difference in the curvature
between the neck and other convex surface of the dro-
plets, a natural flow is induced to accelerate the collision
process. This phenomenon is the so-called collision-
induced collision. In comparison with the Brownian
motion flow estimated by the Stokes–Einstein equation
Ds ¼ kbT=ð6πηrÞ � 10�10 m2/s, this surface tension
directed flow is much stronger.

Figure 5a illustrates the maximum (cyan) and mini-
mum (orange) volume concentration as a function of
time, corresponding to Fig. 4a–d. The cyan and orange
dashed lines describe the time-dependent equilibrium
concentration in the polymer-rich and polymer-lean
phases, respectively. The dot-dashed lines show the
time-elapsed spinodal concentrations. As can be seen
from the solid lines, the polymer and the solvent phases
start to separate from each other evidently after t ¼ 37:5
ns, resulting in the formation of polymeric droplets
(Fig. 4c). A noteworthy feature is that when the con-
centration in the solvent phase (orange line) reaches the

Fig. 3 Spinodal regions based on the Flory–Huggins theory for a lower
critical point system with χ ¼ 1:5
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equilibrium value, the polymeric phase is still far from
equilibrium. In order to interpret this asynchronous
effect, we calculate the evolution rate of the polymer and
solvent phases as a function of time based on the data in
Fig. 5a and the results are shown in Fig. 5b. As we can
see, the absolute value of the evolution rate of the solvent
phase (orange line) increases and reaches a peak at the
time around t ¼ 37:5 ns. This time is the moment when
the solvent phase moves outside the spinodal region, as
indicated by the crossing point of the orange solid and
dot-dashed lines in Fig. 5a. Shortly after the time
t ¼ 37:5 ns, the evolution rate of the solvent phase
rapidly decreases and tends to zero. The evolution rate of
the polymer phase as a function of time (cyan line) fol-
lows a similar behavior as the solvent phase, but is much
greater than the latter one.

In order to understand these two different evolution rates,
we estimate the second derivative of the free energy density
d2f =dφ2 ¼ 1=½NðtÞφðtÞ� þ 1=½1 � φðtÞ� � 2χ by using
the concentration φðtÞ in Fig. 5a and the time evolution of
the DP: NðtÞ ¼ 10 þ kt. The motivation for this estima-
tion is that d2f

dφ2 is the thermodynamic driving force for the
phase transition. Supposing that φ0 is the initial con-
centration and δφ is the perturbation, the difference of the

free energy density between the perturbed and initial states
is

f ðφ0 ± δ φÞ � 2f ðφ0Þ �
1
2
d2f

dφ2
ðδφÞ2: ð14Þ

The value of d2f
dφ2 with time is displayed in Fig. 5c. At the

beginning stage, the values of d2f
dφ2 for the polymer (cyan)

and the solvent (orange) phases both are negative, so that
phase separation takes place in order to reduce the free
energy. For the polymer-rich phase, its concentration
gradually increases with time undergoing an “uphill”
diffusion process. The summit corresponds to the peak of
the free energy curve with the most negative of d2f

dφ2 (cyan
arrows in Fig. 5c, d) and the maximum growth rate of the
polymer phase in Fig. 5b.

Succeeding the cyan arrow near the cyan solid line in
Fig. 5b, the subsequent three black arrows denote several
abrupt increases in the maximal polymer concentration. The
microstructures just before and right after these three dis-
continuous points are displayed in Fig. 6a–f, respectively. A
heedful scrutiny of these microstructures shows that these
discontinuous points are due to the fact that the maximal
concentration shifts from one droplet to a different one, as
highlighted by the squares. For instance, the droplets with

Fig. 4 Polymerization-induced
phase separation with k ¼ 2 �
108 s�1 and φ0 ¼ 0:06. a, d
Pure diffusion-controlled
evolution. e–h Diffusion-
convection governed evolution.
i–l Fluid flow corresponding to
e–h. The legends in a–h and i–l
illustrate the distribution of the
concentration φ and the absolute
value of the convection velocity
juj, respectively
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the maximal concentration in Fig. 6a, b are distinct, which
leads to the first discontinuous point in Fig. 5b. The change
of the maximal concentration from one droplet to another
one is as a result of distinct Ostwald ripening rates, which
depend on the size and quantity of the neighboring droplets.
From 39.925 to 45.8 ns, the droplets owing the maximal
concentration are identical (Fig. 6b, c), so that at this stage,
the curve in Fig. 5b is smooth.

For the solvent-rich phase, its concentration evolves
towards the left spinodal point (orange arrow in Fig. 5d)
through “downhill” diffusion, so that in Fig. 5c, the solvent
phase (orange line) does not pass across a maximum
separation rate with a lowest negative of d2f

dφ2 before

achieving the left spinodal point. After going through the
spinodal point, d2f

dφ2 becomes positive and significantly
increases with a slight decrease in the concentration, arising
from the fact that the free energy curve is extremely com-
pact at the solvent side. Such a dramatic increase in d2f

dφ2

gives rise to a maximum evolution rate of the solvent phase,
as represented by the peak of the orange curve in Fig. 5b. It
is emphasized that this peak for the evolution rate of the
solvent phase differs from that of the polymer phase which
is engendered from a maximum negative of d2f

dφ2. As can be
seen in Fig. 5c, after the spinodal, d2f

dφ2 of the solvent phase is
remarkably larger than the one of the polymer phase. Due to
such a significant difference in the thermodynamic driving

Fig. 5 Time evolution of the volume concentration for the polymer
(cyan lines/arrows) and the solvent (orange lines/arrows) phases. a The
volume concentration φ of the polymer species in the polymer and
solvent phases (solid lines) as a function of time. The dashed and dot-
dashed lines represent the equilibrium and the spinodal concentrations,
respectively. b The evolution rate of the volume concentration dφ=dt
varying with time. The cyan arrow depicts the maximum separation
rate for the polymer phase. The black arrows illustrate three dis-
continuous points of the evolution rate. c The second derivative of the

free energy with respect to the volume concentration d2f =dφ2 chan-
ging with time. The orange arrow sketches the spinodal point where
d2f =dφ2 ¼ 0. The cyan arrow illustrates the least negative value of
d2f =dφ2 for the polymer phase. d The free energy density as a func-
tion of the volume concentration for N ¼ 10 according the
Flory–Huggins model. The inset is a magnification of the solvent side.
The orange arrow describes the left spinodal point. The cyan arrow
shows the highest free energy in the entire spinodal region (Color
figure online)

Fig. 6 The microstructures before and after the three discontinuous points in Fig. 5b
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force, the solvent phase attains the equilibrium value much
earlier than the polymer phase. This asynchronous effect is
clearly visible in Fig. 5b that when dφ=dt for the solvent
phase is completely zero, dφ=dt for the polymer phase is still
above the horizontal dashed line. Because the difference in
the driving force d2f

dφ2 for the polymer and the solvent phases
increases with DP, it is expected that the asynchronous
evolution is more pronounced with larger DPs. The analysis
for the evolution rates in Fig. 4e–h is skipped, since the
behaviors are quite similar except that both phases reach the
equilibrium concentration earlier than the one in Fig. 4a–d.

Figure 7a shows the radius (Rp) distribution of the
polymer particles for the microstructures in Fig. 4d, h both
at the time t ¼ 47:5 ns. In the case without convection, the
radius of the particles locates in a relatively narrow range
around Rp ¼ 3 nm. In contrast, with convection, the dis-
tribution is much broader and there are two peaks in the
histogram, one at Rp ¼ 3 nm and the other one at Rp ¼ 5 nm.
In addition, as a result of the motion and collision mechanism,
the number of the total polymer particles is significantly
reduced. In order to reveal more details about the effect of the
convection on the particle size distribution, we plot the particle
radius distribution with and without convection with the same
maximum volume concentration φm. As illustrated Fig. 7b, c,
φm ¼ 0:5, 0.6 and 0.69 are depicted by the blue, red, and
green histograms, respectively. In both cases with and without
convection, the range of the distribution is nearly the same.
Without convection, from φm ¼ 0:5 to φm ¼ 0:6, spinodal
decomposition is the dominating evolution mechanism, so that
an evident peak occurs at Rp � 2:6 nm in the red histogram.
Thereafter, Ostwald ripening plays a more important role than

the spinodal mechanism. As a consequence, particles with
Rp > 2:6 nm are gradually formed at the expense of small
particles with Rp < 1:5 nm. However, in the case with con-
vection, in the whole evolution range from φm ¼ 0:5 to
φm ¼ 0:68, spinodal is always the decisive mechanism for the
microstructural evolution. The peak at Rp � 2:6 nm con-
secutively rises up, which is a typical characteristic of the spi-
nodal decomposition. Although large particles with Rp > 3 nm
are observed, the underlying formation mechanism is caused by
convection-induced collision, rather than Oswald ripening in
Fig. 7b. This is evidenced as follows: (1) Small particles with
Rp 2 ð1:0; 2:2Þ nm are not obviously consumed from the red
to the green histograms in Fig. 7c. (2) The big particles with
Rp > 2:6 nm exhibit a smooth distribution in the green histo-
gram of Fig. 7b, since these large particles are transformed
continuously from the small ones by diffusion. However, in
Fig. 7c, the distribution of large particles with Rp > 2:6 nm is
relatively dispersed because of occasional collisions.

In order to further understand the microstructural evo-
lution with convection, we analyze the quantity N of the
polymer particles as a function of time in the time interval
t 2 ½30; 60� ns and the results are shown in Fig. 8. As
illustrated in Fig. 8j, the evolution is divided into three
stages. From 30 to 33 ns (violet region), the number of the
polymer particles rapidly increases with time. At this stage,
the concentration in the particles constantly increases with
time because of spinodal decomposition, leading to the
growth of the particles. The size of these particles is rela-
tively small (see Fig. 7c). A few large particles with
radius > 3 nm are obtained due to occasional collisions, as
highlighted by the white circles in Fig. 8b (before collision)

Fig. 7 Radius distribution of the polymer particles. a Distribution at
the same time t ¼ 47:5 ns. The red and blue histograms depict
Fig. 4d, h, respectively. b, c Distribution for the states with maximum
polymer concentrations φm ¼ 0:5 (blue), 0.6 (red), and 0.68 (green)

without and with convection, respectively. d–f Microstructures for b
without convection. g–i Microstructures for c with convection (Color
figure online)
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and Fig. 8c (after collision). In the second stage (cyan
region), the concentration in the polymer particles does not
increase significantly and the quantity of the particles is
reduced dramatically engendering from frequent collisions.
The particles before and after collisions are highlighted by
different colored circles in Fig. 8d, e, respectively. In the
third stage, collision still takes place, which results in a
further decrease in the total number of the particles, but the
impingement and clash events are not as often as that in the
second stage due to limited quantity. Hence, the large par-
ticles in the third stage mostly stem from the consecutive
collisions in the second stage. For instance, the large par-
ticles with a radius of around 5 nm in Fig. 7a are produced
as a consequence of the collision of two small particles with
a radius of about 3 nm shown in Fig. 7c. After the collision,

the volume of the large particles is slightly greater than the
summation of two small particles, since due to the poly-
merization, the large particle is still consuming the polymer
species in the matrix to increase its volume. After the third
stage, collision continues until gelation. It is noted that in
contrast to the Ostwald ripening mechanism for the for-
mation large particles in the case only with diffusion, col-
lision is the main reason for the generation of large particles
when convection is present. For the Ostwald ripening
mechanism, the mass flux is perceptually from the small
particle to the large one via diffusion. When convection
occurs, an additional flux uφ is added to the diffusion flux.
This convection flux sometimes works against the diffusion,
leading to the drift of the particles. More details are dis-
cussed in Fig. 13.

5 Three-dimensional studies

In this Section, we focus on phase separation in three-
dimensions with different initial concentrations for an UCSD
system. A dimensionless parameter C :¼ RgTd

2
0=ðρD2vmÞ is

introduced to characterize the intensity of the capillary flow.
The simulations are performed on a cubic domain with a size
of 400 � 400 � 400.

Figure 9 shows the spinodal lines for a series of DPs for
an UCSD system with a Flory parameter χ ¼ 1:5. The
horizontal dashed line represents the storage temperature of
the sample Tg ¼ 1:6 and the cyan circles along the dashed
line denote four different initial concentrations φ0 ¼ 0:05,
0.1, 0.2, and 0.3 for the simulations. For N ≲ 7 (red line),
the storage temperature is greater than the critical tem-
perature and the polymer solution remains a homogeneous
mixture. With an increase in DP, the polymer solution with
φ0 ¼ 0:3 firstly goes inside the spinodal region. The other

Fig. 8 The quantity N of the polymer particles as a function of time in
the time interval t 2 ½30; 60� ns when capillary flow is presented. a–c,
d–f, g–i The microstructures of the phase separation in the violet, cyan,
and gray regions in j, respectively. The microstructures at different
time steps which are highlighted by different colored symbols are
indicted by the corresponding colored symbols in a–i (Color figure
online)

Fig. 9 Spinodal regions based on the Flory–Huggins theory for an
upper critical point system. Distinct colored curves correspond to
different degrees of polymerization. The cyan dashed line is the
binodal line for N ¼ 20. The horizontal dashed line denotes the sto-
rage temperature Tg ¼ 1:6 and the circles represent the initial polymer
concentrations for the three-dimensional studies
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three polymer-solutions will also be inside the spinodal
region when DP is sufficient large. The cyan dashed line
depicts the binodal line for N ¼ 20.

Figure 10 illustrates the time evolution of the micro-
structures for three different setups: (1) only with diffusion,
(2) with diffusion and weak capillary flow (C ¼ 10), and
(3) with diffusion and strong capillary flow (C ¼ 1000). At
the beginning, the concentration is uniformly set as φ0 ¼
0:3 at a dimensionless temperature Tg ¼ 1:6 and with a DP
of N ¼ 1. A Gaussian distributed noise is imposed to the
homogeneous solution. The initial states of the three cases
(1)–(3) are shown in Fig. 10a, d, g. If DP is kept at N ¼ 1,
the noise will be smoothened out by diffusion and a
homogeneous polymer solution is achieved. However, due
to the polymerization, i.e., the increase of DP, the polymer
solution goes into the spinodal region, as depicted in Fig. 9.
Thereafter, the system decomposes into two separate

phases. The interface of the polymer-rich and the polymer-
poor phases is represented by the cyan color in Fig. 10; the
yellow surface is an isosurface standing inside the polymer-
rich phase. Here, the interface is defined by the condition
φp ¼ ðφmin

p þ φmax
p Þ=2, where φmin

p and φmax
p are,

respectively, the minimum and maximum concentrations in
the whole domain. The microstructure further evolves with
time and gets coarser (see Fig. 10c, f, i), caused by surface
area minimization. In the case (1) only with diffusion, a bi-
continuous cluster structure is formed. When a weak
capillary flow is considered (case (2)), the ligaments of the
bi-continuous cluster structure are thicker than the previous
one. In the case (3) with a stronger capillary flow, tiny
polymer-particles (cyan) as well as small pores (yellow)
both are observed besides polymer-ligaments.

Figure 10j illustrates the volume fraction of the polymer-
rich phase vp (solid line) and the permeability of the

Fig. 10 Time evolutions of PISD
with an initial concentration of
φ0 ¼ 0:3 for three different
setups: a–c only with diffusion
(C ¼ 0, case (1)), d–f with
diffusion and weak capillary
flow (C ¼ 10, case (2)), and g–i
with diffusion and strong
capillary flow (C ¼ 1000, case
(3)). The cyan surface denotes
the interface of the polymer-rich
and the polymer-poor phases.
The yellow one illustrates an
isosurface inside the polymer-
rich phase. j The volume
fraction of the polymer-rich
phase vp and the permeability K
as a function of time for the case
(3). The diagram is divided into
two stages: I and II. k Sketch of
the dynamic-phase diagram in
the stages I and II (Color figure
online)
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microstructure K (dashed line) as a function of time for the
case (3), corresponding to the microstructures in Fig. 10g–i.
The volume fraction increases (stage I), followed by a
decrease (stage II) with time. This observation is in contrast
to the conventional spinodal decomposition, where the
volume fraction monotonically converges to the equilibrium
value. The nonmonotonic temporal behavior of the volume
fraction can be explained by using the dynamic T-φ phase
digram, as sketched in Fig. 10k. The red circle depicts
the initial concentration φ ¼ φ0, while the cyan and orange
circles represent the equilibrium concentrations in the stages
I and II, respectively. The horizontal dashed line denotes the
storage temperature Tg. In the stage I, the equilibrium

volume fraction of the polymer-rich phase is given by v Ip ¼
φ0 �φI

s
φI
p �φI

s
> 0:5 according to the lever rule. The initial noise

gives rise to a volume fraction vp ¼ 0:5, which is fair for
both phases, as can be seen in Fig. 10j. In order to reach the
temporal equilibrium v Ip , vp has to increase in the stage I.
Due to the change of DP, the phase diagram shifts upward
and leftward, as drawn by the orange line in Fig. 10k. As a
consequence, the volume fraction tends to fulfill the fol-
lowing expression, v IIp ¼ φ0 �φII

s
φII
p �φII

s
in the stage II. Since the

shift of the equilibrium concentration in the polymer
side is greater than the one at the solvent side, i.e.,
φ II
p � φI

p >φI
s � φII

s , the volume fraction v IIp is less than

v Ip . Therefore, vp has to decrease in the stage II. Similar
nonmonotonic evolutions of the volume fraction (not
shown) are also observed in the cases (1) and (2).

The permeability of the microstructures is measured at
five different time steps, as shown by the square symbols in
Fig. 10j. For the permeability measurement, fluid flow
simulations are conducted by solving the Stokes equation
with the assumption of low Reynolds number, i.e.,
Re 	 1. By imposing a pressure gradient at the bound-
aries, the resulting velocity field in the pore space is used for
the calculation of the permeability by applying Darcy’s law
(see [49] for more details). In the stage I, more closed pores
are developed in the microstructure with time due to
capillary flow (see Fig. 10h). These closed pores reduce the
remaining flow paths inherently and therefore the perme-
ability decreases. In the stage II, the closed pores move in
space and interconnect with each other. As a result, the
amount of open-pores increases and the classical

Kozeny–Carman (K–C) equation [50] can be applied,

K ¼ að1� vpÞ3
v2pS

2
s

, where a is the K–C coefficient and Ss denotes

the specific surface area. Since vp and Ss both decrease with
time in the stage II, the permeability rises. As observed,
interrupting the process of phase separation at different
points in time results in varying patterns and, accordingly,
permeability is changing. Furthermore, two different types

Fig. 11 Isosurface of the
microstructures with different
initial concentrations
φ0 ¼ 0:05, φ0 ¼ 0:1, and
φ0 ¼ 0:2 at the same time
t ¼ 20 ns
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of porous structures, open- and closed-pores, can arise
which is of high importance for the selection of corre-
sponding applications. For instance, sound dampening
purposes are fulfilled with higher impact by closed-pore
structures, while it is crucial to have open-pored structures
for fluid-flow applications.

For the cases (1), (2), and (3), we have also performed
simulations with different initial concentrations φ0 ¼ 0:05,
φ0 ¼ 0:1, and φ0 ¼ 0:2. The microstructures at the same
time of t ¼ 20 ns are portrayed in Fig. 11. For φ0 ¼ 0:05
(Fig. 11a), PISD leads to the formation of a number of
polymer droplets in the case (1) and some droplets are
connected establishing a small cluster. With an increase in
C (Fig. 11b, c), a number of relatively large polymer dro-
plets appear and the amount of the connected droplets are
less than the ones in the case (1), as can be seen in the insets
of Fig. 11a–c. For an initial concentration φ0 ¼ 0:1, PISD
gives rise to the formation of a cluster structure in the case
(1), as shown in Fig. 11d. The cluster structure transforms
into a structure mixed with clusters and droplets in the case
(2) (Fig. 11e) and completely into a droplet-structure in the
case (3) (Fig. 11f). For an initial concentration φ0 ¼ 0:2,
cluster structures are also observed in the cases (1)
(Fig. 11g) and (2) (Fig. 11h). The microstructure in the
latter case is coarser than the one in the former case. Apart
from clusters, a number of very tiny droplets appear in the
case of a strong capillary flow, as shown in Fig. 11i. It is
noteworthy that tiny droplets are also observed in Fig. 11f.
We stress that the formation of the tiny droplets can only
be observed when the polymerization is coupled with
the capillary flow. The detailed reason is reported in the
following.

In order to figure out the reasons for the distinct micro-
structures in the cases (1), (2), and (3), a heedful look has
been taken to scrutinize the evolution process of PISD.
Figure 12a–d illustrates the microstructures at four different

time steps with an initial concentration φ0 ¼ 0:1 and
C ¼ 1000. The blue–yellow curves are the stream lines of
the capillary flow. Figure 12e–h corresponds to a subregion
in Fig. 12a–d. Figure 12i–l is sectional view of the micro-
structures in Fig. 12e–h. The red–blue arrows depict the
strength and the direction of the capillary flow. The value of
the flow velocity is given by the color legends at the right
side. By tracing these two droplets in Fig. 12i–l, it is
observed that the two droplets moves in a particular direc-
tion towards each other. In contrast to the random Brownian
motion, this kind of directional approach has also been
observed in other simulations with different initial con-
centrations in the presence of capillary flow. This direc-
tional movement is driven by the nonuniform concentration
around the surface of the polymer particles, which emanates
from the interactions between the particles. For instance,
when two particles are different in size in proximity, the
polymer solute is transfered from the small particle to the
big one passing through the solution due to the difference in
curvature (Ostwald ripening). The diffusion flux around the
particles is inhomogeneous since the length of the diffusion
path is distinct, i.e., the diffusion path through the gap
between the particles is shorter than the one outside the gap.
The inhomogeneity of diffusion flux engenders a con-
centration gradient around the particles. This concentration
gradient would be dispersed by diffusion, if there were no
convection. However, when convection is more pronounced
than diffusion, the established concentration gradient gives
rise to a thermodynamical driving force for the motion. In a
two-particle system, the concentration gradient as well as
the induced motion can be analytically solved in the bipolar
coordinate, as initially done by Golovin et al. [51] and
extended in our previous works [38, 47]. In a multiparticle
system, the concentration gradient can only be numerically
simulated rather than analytically computed. It is noted that
this directional motion is only significant when the particles

Fig. 12 Motion of droplets
driven by capillary flow. a–d
Microstructures and the stream
lines (blue–yellow) of the
capillary flow at four different
time steps. e–h Subregions from
a–d which trace the motion of
two droplets. The blue–yellow
lines are the stream lines of the
fluid flow. i–l Sectional views of
the motion illustrated in e–h.
The value of the fluid velocity is
depicted by the color legends at
the right side (Color figure
online)
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are in proximity where the interactions between them are of
relevance. In a dilute system where the particles are far from
each other, Brownian motion is a major effect in compar-
ison with the capillary-driven motion.

Figure 13 presents some details for a better under-
standing on the PISD microstructures. Figure 13a–c, d–f
illustrate two transition phenomena: “percolation-to-cluster”
(PTC) and “cluster-to-percolation” (CTP), respectively. In
the former case, clusters transform into discrete polymer
droplets. This transformation typically takes place at the
early stage of PISD for φ0 ¼ 0:05 and φ0 ¼ 0:1 either
with or without capillary flow. The initial concentration
noises lead to the formation of a cluster structure with a
volume fraction of 50%. Subsequently, the volume fraction
of the cluster structure has to decrease with time because of
the lever rule. The decrease of the volume fraction initiates

the PTC phenomenon. The droplet-structures in Fig. 11a, b,
e and at the time before Fig. 11d (not shown) are originated
from the PTC mechanism. After PTC, the resulting polymer
particles grow with time because of the two following
reasons. The first one is the Ostwald ripening mechanism
where the big particles increase their sizes at the expense of
the small particles. The second reason is that due to the
highly asymmetrical phase diagram (see Fig. 9), the
polymer-rich and the solvent-rich phases asynchronously
arrive at their equilibrium values. The solvent-rich phase
reaches the equilibrium earlier than the polymer-rich phase
and a chemical potential gradient between the two phases is
established. The resulting chemical potential is an additional
driving force for the growth of the polymer-rich particles.
When the growing particles are sufficient large, they get in
touch with each other, giving rise to CTP, as shown in
Fig. 13d–f. The CTP transition is only observed in the case
(1) (only diffusion) or case (2) (weak capillarity) for φ0 ¼
0:05 and φ0 ¼ 0:1, and has been directly captured in
experiments [52]. In the case (3) with a strong capillary
flow, the polymer particles arising from PTC move in space,
as discussed in Fig. 12, and coalesce into relatively large
particles. Thus, CTP is unlikely to occur in the case (3),
where convection is dominated.

Instead of PTC and CTP in the cases (1) and (2), it is
particularly noted that a strong capillary flow facilitates the
appearance of little bitty polymer droplets (Fig. 11f, i) or
pores (Fig. 10i) in the microstructures, which is manipulated
by two different mechanisms. The first one is based on the
Plateau–Rayleigh (PR) theory, as shown in Fig. 13g–i,
where a fluid jet subjected to perturbations can sponta-
neously decompose into several droplets in order to mini-
mize the surface area. According to the PR theory, a fluid jet
evolves into a droplet only for a long wavelength pertur-
bation, i.e., the perturbation wavelength is greater than the
perimeter of the jet. A long wavelength perturbation is more
prone to appear in a large scale simulation rather than in
small domain simulations. Thus, the revelation of the tiny
pore shown in Fig. 13g–i benefits from the present large
scale simulations [30, 31].

A second mechanism for the formation of tiny droplets is
pictured in Fig. 13j–l, where a small droplet spontaneously
appears in between the big droplets and grows with time.
The explanation for this phenomenon is as following:
Without capillary flow, diffusion is responsible for the mass
transfer from small droplets to large droplets according to
the mechanism of Ostwald ripening. The diffusion fluxes
are sketched by the black arrows in Fig. 13m, where the
mass flows from the droplet 1 to droplets 2–5. The diffusion
flux between droplets 1 and 2 is greater than the one
between droplets 1 and 3, since the larger curvature dif-
ference brings a larger diffusive flux. The difference in the
diffusion fluxes further leads to a concentration gradient in

Fig. 13 Some characteristic PISD microstructures: a percolation-to-
cluster (PCT) (a–c) and cluster-to-percolation (CTP) (d–f) transition
phenomena. These two transitions are observed in the simulation with
φ0 ¼ 0:05 and C ¼ 0. g–i The formation of a tiny pore based on the
Plateau–Rayleigh theory. This observation is taken from the simula-
tion with φ0 ¼ 0:3 and C ¼ 1000. j–l The appearance and the
growth of a tiny droplet due to the presence of capillary flow. This
phenomenon is taken from the simulation with φ0 ¼ 0:1 and C ¼
1000 and is in contrast to the Ostwald ripening mechanism, where
small droplets are always consumed by big droplets. m, n Sketches for
the reason why a small droplet can survive and grow when capillary
flow is present
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the matrix. Even though the radii of droplets 2 and 3 are
equal, a concentration gradient in the matrix can be estab-
lished if the distances between 1 and 2 and between 1 and 3
are different. The resulting concentration gradient subse-
quently induces a convection flux, as illustrated by the red
arrows in Fig. 13n. When the net flux at one spatial point in
the matrix is positive, a polymer nucleus appears. Because
of the increase of DP and the resulting asymmetrical phase
diagram, when the matrix has already reached the equili-
brium concentration, the newly formed polymer nucleus
is still far from the equilibrium, as aforesaid. As a con-
sequence, the new polymer nucleus grows with time caused
by the chemical potential difference between the polymer
nucleus and the matrix. This abnormal growth of tiny dro-
plets is in contrast to the quintessential Ostwald ripening
mechanism, where big droplets always consume little dro-
plets. The mechanism for the formation of the small pores in
Fig. 10i is the same as that of the small droplets. The dif-
ference is that in the former case, the pore is the minority
phase, whereas in the latter case, the polymer particle is the
minority phase.

As aforementioned, polymerization shifts upward and
leftward the spinodal region, which results in a decom-
position for the polymer solution with a concentration
initially outside the spinodal region. However, prior to
the spinodal decomposition, the system may pass through
the binodal region wherein the classic nucleation could
take place. In order to shed light on the effect of the classic
nucleation on the microstructural evolution, we have car-
ried out two simulations, one without pre-existing nuclei
and the other one with pre-existing nuclei. The time evo-
lution of these two simulations are shown in Fig. 14. In the
former case, polymerization gives rise to the phase
separation of the polymer solution. The positions for
the formation of the polymer-rich phase depend on the
random concentration noise imposed initially. In the latter
case, a number of polymer-rich nuclei (Fig. 14k, p) per-
vade the domain at the initial stage. Arising from the
polymerization, these nuclei grow with time caused by the
thermodynamical driving force of binodal decomposition,
as can be seen in Fig. 14l, q. With a further increase in
time, the system goes inside the spinodal region and the
polymer solution (dark blue phase) is energetically
unstable. It is observed that in this case with pre-existing
nuclei, the phase separation takes place symmetrically
around the growing polymer nuclei, which yields a ring
pattern, as shown in Fig. 14m, r. When the polymer nuclei
grow, these rings expand synchronously until they get in
touch with each other and thereafter transform into
droplet-structures by coalescence. The microstructures
right after the coalescence of the ring patterns and after a
certain long time are depicted in Fig. 14n, o, respectively.
As highlighted by the yellow square in Fig. 14s, the PISD

microstructure with pre-existing nuclei is more regular
than the one without pre-existing nuclei. Simulations with
capillary flow are also performed for the second case and
similar ring patterns are achieved. These polymer ring
patterns are attributed to PISD as well as the binodal
decomposition.

A typical distribution of the concentration around a pre-
existing nucleus at different time steps is shown in
Fig. 14u. The space position for the concentration is
sketched by the orange line in the inset. As shown by the
violet line, the growing nucleus perturbs the energetically
unstable liquid matrix, causing the occurrence of a high-
concentration region (X ≳ 15) in front of the nucleus.
Thereafter, there are two competing effects for the con-
centration evolution. One is a further increase in the
concentration in the high-concentration region, as depicted
by the green, blue, and orange lines. The driving force for
this evolution is spinodal decomposition. The other one is
the mass transport from the high-concentration region to
the low-concentration region between the ring and the
nucleus. The driving force for this evolution is binodal
decomposition. A consequent result of this evolution is
that the ring is pushed outward and the area of the low
concentration increases, which can be seen from a com-
parison for the concentration curves at times t ¼ 2:7 ns and
t ¼ 6:4 ns. With time, the ring impinges with other
neighboring rings and breaks into pieces of irregular parti-
cles (see, e.g., Fig. 14s). The spheroidization of these irre-
gular particles leads to an occupancy of the low-concentration
region by the relatively high-concentration irregular particles,
so that the low-concentration region shrinks with time, as
described by the blue and orange lines. Meanwhile, the
concentration in these irregular particles increases with time
arising from spinodal decomposition. This process is until
that the nucleus connects with these particles, forming an
irregular cluster structure (Fig. 14t), which is in contrast to the
structure with spherical particles in Fig. 14j.

The porosity as a function of time for these two cases
with and without pre-existing nuclei is illustrated in
Fig. 14v. At the same time, the porosity in the former case
(green line) is less than the one in the latter case (violet
line). There are two main reasons for this observation. (1)
Because of the supersaturated matrix, the pre-existing
nuclei grow with time. This gives rise to a higher volume
fraction of the polymer-rich phase and hence a lower
porosity. It is noteworthy that the initial setups with a
small amount of pre-existing nuclei do not have an evi-
dent impact on the porosity at the time t ¼ 0, as can be
seen in Fig. 14v. (2) The second reason is that phase
separation in the case with pre-existing nuclei occurs
earlier than the scenario with random noise. This is
explained as follows. The pre-existing nuclei grow with
time, perturbing the liquid matrix. The wavelength of this
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perturbation is greater than the critical wavelength of
spinodal decomposition. In this case, around all the
growing nuclei, phase separation occurs, as can be seen in
Fig. 14r. In contrast, the random noise contains pertur-
bations with wavelength less and greater than the critical
wavelength of spinodal decomposition. In this scenario,

different wavelengths compete with each other and
eventually, only those wavelengths greater than the cri-
tical one lead to phase separation. Such a competition
delays the spinodal decomposition, as can be seen from
the comparison between Fig. 14c, m. Due to the delay in
the phase separation, at the same time, the volume fraction

Fig. 14 Time evolution of the PISD microstructures without pre-
existing polymer nuclei (a–e) and with pre-existing polymer nuclei (k–o).
f–j and p–t are sectional views of a–e and k–o, respectively. In the
former case, the formation sites of the polymer-rich phase are deter-
mined by the random concentration noise imposed initially. In the
latter case, the pre-existing polymer-nuclei grow with time arising
from the thermodynamical driving force of binodal decomposition.

Thereafter, PISD takes place around the pre-existing polymer-nuclei
and a ring pattern is formed. With time, the polymer rings get in touch
with each other and transfer into a droplet-structure by coalescence.
u A typical concentration distribution at different time steps around a
pre-existing nucleus. The inset sketches the space position of the
concentration. v The time evolution of the porosity for the micro-
structures with and without pre-existing nuclei
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of the polymer-rich phase in the latter case is less than the
one in the former case.

6 Conclusion and outlook

In conclusion, we have investigated PIPS that is one
important mechanism for the formation of porous micro-
structures in membranes. Our work is based on the
Flory–Huggins theory, which takes the degree of poly-
merization into account for the free energy mixing. Since the
increase in the degree of polymerization with time, the free
energy and the phase digram become highly asymmetric.
When the solvent phase has already moved outside the spi-
nodal region and attained the equilibrium concentration, the
polymer phase is still inside the spinodal region. This
observation reveals different diffusion mechanisms for the
solvent and the polymer phases. That is, when the polymer
phase is governed by an abnormal diffusion mechanism with
negative d2f

dφ2, the solvent phase is controlled by a normal
diffusion with positive d2f

dφ2. Since the driving force for the
concentration evolution in the solvent phase after passing
through the spinodal point is much greater than the one in the
polymer phase, these two phases reach the equilibrium
concentration asynchronously, which leads to an asynchro-
nous evolution of the polymer and solvent phases. This
asynchronous effect gives rise to the morphological transition
from continuous networks into dispersed droplets.

By analyzing the size distribution of the polymer parti-
cles without and with convection, we found different
mechanisms for the formation of large particles. In the
former case, the microstructure is coarsened by Ostwald
ripening. In the latter scenario, convection-induced collision
is responsible for the appearance of large particles.

We presently consider the polymerization-induced demix-
ing and the system in the liquid state. These liquid structure
consequently solidifies into gels. A future work is to simulate

the gelation process for polymer droplets. As mentioned
above, the polymer-rich droplets emanating from binodal or
spinodal decomposition swim in the liquid solution and move
due to the coaction of Brownian and Marangoni mechanisms.
As a result of the motion, collision and coalescence, one
would obtain relatively large polymer particles with a lower
surface area. However, the evolution picture with the presence
of gelation is totally different. As demonstrated in Fig. 15a,
initially a polymer droplet arising from phase separation
contains oligomers of different degree of polymerization (here
we took as an example RF-oligomers indicated by the hexa-
gons for the resorcinol ring connected by methylene bridges).
Looking at the phase diagram, one typically expects a polymer
fraction inside the droplets of 50% or larger. Once the per-
colation threshold (equilibrium concentration in the droplets)
is reached, the polymer droplets undergo a gelation transition,
as sketched by the red chained polymer in Fig. 15b. These
gelatinizing droplets own solid-like properties, such as elasti-
city, which prevents from complete coalescence between
neighboring polymer droplets. They can build with other
solid-like particles a network on coalescence. During the
gelation process, which requires a diffusional rearrangement
of oligomers inside the droplets, also new polymer-rich dro-
plets are continuously produced from the matrix by spinodal
decomposition. These droplets drift in the matrix and impinge
with the solid-like particles simultaneously with gelation when
reaching the percolation threshold. This process of droplet
formations followed by movement and gelation iterates and by
this means the previously established solid-like networks are
reinforced. These networks store elastic energies, which shall
be considered in future works as well as the kinetics of the
gelation transition inside the droplets.

As previous works [20], we assume a constant viscosity
in our model for the hydrodynamic simulations. The change
of the viscosity with time is important for the phase
separation in polymer solutions, especially in the gelation
process, and will be addressed in the future.
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Fig. 15 Sketch of the gelation process inside a droplet emanating from
the phase separation. The gray hexagons inside a droplet schematically
depict the resorcinol rings connected at the 2-position via a methylene
bridges to oligomers of different degree of polymerization. After for-
mation of liquid like droplets, the oligomers rearrange and form
clusters inside the droplet since the percolation threshold is reached.
The red chain in the left picture schematically shows such a cluster in a
gelled droplet having then solid-like properties (Color figure online)
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