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Rabi oscillations in a superconducting nanowire circuit
Yannick Schön 1, Jan Nicolas Voss 1, Micha Wildermuth 1, Andre Schneider 1, Sebastian T. Skacel1, Martin P. Weides 1,2,
Jared H. Cole 3, Hannes Rotzinger1,4✉ and Alexey V. Ustinov 1,5,6

We investigate the circuit quantum electrodynamics of anharmonic superconducting nanowire oscillators. The sample circuit
consists of a capacitively shunted nanowire with a width of about 20 nm and a varying length up to 350 nm, capacitively coupled to
an on-chip resonator. By applying microwave pulses we observe Rabi oscillations, measure coherence times and the anharmonicity
of the circuit. Despite the very compact design, simple top-down fabrication and high degree of disorder in the oxidized (granular)
aluminum material used, we observe lifetimes in the microsecond range.
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INTRODUCTION
Quantum electrodynamics experiments with superconducting
circuits (cQED) usually feature one or more Josephson tunnel
junctions embedded in a circuit. Such circuits often feature a
nonlinear inductive response of the Josephson junction, leading to
discrete, non-equidistant, energy levels1,2. Alternative approaches
to the realization of nonlinear elements are, for example, explored
using hybrid quantum systems3,4.
In this paper, we report on a quantum circuit which employs a

superconducting nanowire as a nonlinear element. Using the
powerful cQED approach, material properties arising at the
nanometer scale are studied by directly observing measures like
inductance, nonlinearity, or coherence. We demonstrate that such
a simple circuit has a rather long (~μs) excited state lifetime.
As a material we use oxidized (granular) aluminum (AlOx)

5

which has recently been introduced into large impedance
quantum circuit applications6, due to its low loss properties at
microwave frequencies, also in the single photon regime7. AlOx

films consist of nanometer-sized aluminum grains (on average of
about 4 nm in diameter) embedded in an insulating aluminum
oxide matrix (see e.g. Supplementary Material in ref. 5). The inter-
grain tunnel barriers lead to a sheet resistance of up to few kΩ
which can be controlled during the film growth by adjusting the
oxygen partial pressure.
In general, a wire made from AlOx can be seen as a series of

conducting grains separated by insulating barriers. If the wire
width is comparable with the aluminum grain size, its super-
conducting properties resemble the behavior of a disordered
chain of Josephson weak links8. Throughout this paper, the
studied wires have a width w of about 20 nm.
The nanoscale structure gives rise to the main difference

between the nanowire and the Josephson junction. While the
lumped Josephson tunnel barrier of a traditional quantum circuit
has a sinusoidal current-phase relation, the phase drop along an
AlOx nanowire is distributed over many nanometers and has a
more linear current-phase relation involving hundreds of micro-
scopic Josephson weak links. Making use of this nonlinearity for a
new type of quantum device poses an intriguing challenge.
In terms of electric loss, nanowires can be advantageous since

an applied voltage drops over many junctions and thus the local

electric fields are substantially reduced compared to those in a
single junction. Therefore, two-level defects present in the vicinity
of the local barriers should couple only weakly to the electrical
field of such a circuit9,10. However, the influence of unpaired spins
in the nanoscale granular material11,12, e.g. due to the parity effect
in the grains, is still to be understood.
From the perspective of a nanowire, two regimes have to be

considered. A long and very thin wire with a high normal state
resistance (≫50 kΩ) undergoes a transition to an insulating state
at low temperatures (T < 1 K). Here, due to quantum fluctuations,
the superconducting phase is not well defined and, consequently,
the electric transport for excitations below the superconducting
gap is suppressed. This corresponds to the quantum phase slip
regime which has been investigated in the context of homo-
geneous wires13–16. The nanowires considered in this paper
instead have a lower normal state resistance and, due to the short
coherence length (ξ= (8 ± 0.4) nm≃w17), the superconducting
phase is well defined in the wire. This means that Cooper pairs can
tunnel coherently along the wire up to its critical current Ic.
Ignoring the local structure of the wire, this behavior is rather well
described by a mean field approach of the Kulik–Omelyanchuk
(KO) model17,18, which relates Ic to the wire’s superconducting gap
and normal state resistance.
The measurement of quantum coherence in such one-

dimensional systems constitutes an attractive goal. Transferring
this to the high resistance regime could allow for a distinction of
dissipative and dissipationless phase slips. Additionally this would
give access to intrinsic dynamics and their contributions to the
anharmonicity in disordered one-dimensional systems.

RESULTS AND DISCUSSION
Theory and design
An excitation of the capacitively shunted nanowire having the
energy E= ℏω01 leads to a current I ’ ffiffiffiffiffiffiffiffiffiffi

2E=L
p

, where L is the total
inductance of the circuit. The nonlinearity of the nanowire
depends on current I to the lowest order as ðI=IcÞ2 19. Therefore,
in order to operate the nanowire in a sufficiently anharmonic
qubit-like regime, it is useful to keep I as close to Ic as possible.
This can be achieved by two basic approaches: Either designing
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the circuit for a maximal I (low total L) or operating it with a
comparably large inductance L at a much smaller Ic (or a
combination of both). The first option aims at minimizing the
amount of high kinetic inductance material, for instance, by using
a conventional low kinetic inductance superconductor like
aluminum for the capacitive parts. This approach has the
advantage that the geometric requirements for the nanowire
are less stringent20,21. This, however, leads to a relatively large
electric field across the nanowire and thus to potentially increased
dielectric losses. We have chosen the second option and
fabricated the whole circuit containing a low Ic nanowire from a
material with a rather large kinetic inductance, thus sacrificing the
strength of nonlinearity. The circuit design approach is based on
the well known capacitively shunted Josephson junction (trans-
mon-like) qubit22, here with substantial differences due to the
added large additional kinetic inductance (in the order of a few
nH). The large impedance Z ¼ ffiffiffiffiffiffiffiffi

L=C
p ’ 1 kΩ of the circuit and the

vacuum impedance are thus mismatched to reduce the effects of
environmental noise.
The circuit is described by a Hamiltonian similar to the

capacitively shunted Josephson junction qubit22,23, namely HT ¼
4ECðn̂� ngÞ2 � EJ cos φ̂ with charging energy EC= e2∕2C and
Josephson coupling energy EJ=Φ0Ic∕2π. In a nanowire, the
current-phase relation is non-sinusoidal and has a form, which
we denote as I � f 0ðφÞ. While its exact form is unknown, from the
studies of superconducting weak links we anticipate it to be a
function shaped between sine and sawtooth form (see e.g. refs 24–26).
We assume orders of magnitude larger critical currents in the
capacitive part of the circuit and thus neglect the nonlinearity of
the kinetic inductance contribution there. We split the Josephson
coupling term in the Hamiltonian into a linear part and the
contribution of an effective junction (circuit design and diagram in
Supplementary Note and Fig. 1). Following the circuit quantiza-
tion27 approach, a Hamiltonian can be written as
H ¼ 4ECðn̂� ngÞ2 � ~EJf ðφ̂Þ þ ~ELφ̂

2. Here ~EJ ¼ 6EJE2L=ð6EJ þ 2ELÞ2
and ~EL ¼ 9E2J EL=ð6EJ þ 2ELÞ2. EL is the inductive energy
ðΦ0=2πÞ2=2L. This is valid in the limit of EL being small compared

to all other energy terms28. To achieve a sufficient nonlinearity of
the circuit, the wire has to be long enough as to ensure it
dominates the inductance of the system. It remains, however, to
be studied how the wire length influences the nonlinearity of the
current-phase relation.
The nanowire is capacitively shunted by two rectangular 60 ×

160 μm capacitor pads, with a distance of 10 μm (see Fig. 1). As
obtained by analytical calculation29 and simulation (ANSYS
Maxwell), the pads constitute a (22 ± 2) fF capacitance. The
studied three nanowire circuits have varied wire lengths of 50,
100, and 350 nm and are coupled to individual readout resonators
at 6.85, 6.10, and 4.99 GHz. For a summary of the sample
parameters see Table 1.

Measurements
Three anharmonic oscillators with varying wire length were
measured using a dispersive readout scheme30. Transition
frequencies f01 were determined spectroscopically by observing
the shift of the readout resonator’s frequency induced by the
second drive tone. The circuit’s inductance can be derived from its
normal conductive resistance as L= 0.18ℏR∕(kBTc), where Tc is
about 1.8 K5. With the capacitance C, a harmonic approximation
for the circuit’s frequency is f calc: ¼ 1=ð2π ffiffiffiffiffi

LC
p Þ. While this

estimate agrees with the measured transition frequency of sample
S1 (350 nm long wire), for samples S2 (50 nm) and S3 (100 nm) the
measured transition frequency is lower than the estimate. The
later two samples also exhibit higher room temperature wire
resistances and a higher wire to pad resistance ratio (Table 1).
A continuous microwave tone on resonance with a system’s

transition frequency results in Rabi oscillations between its ground
and excited states. These oscillations are recorded using pulsed
time-domain measurements. Figure 2a depicts the time evolution
of the circuit excitation in dependence of the drive amplitude,
measured in sample S2. Brighter colors correspond to the system
being excited. The microwave drive amplitude has been calibrated
after the room temperature part of the microwave setup (Fig. 1)
with a spectrum analyzer. This compensates for the nonlinearities
of the IQ mixers. In case of a single two-level transition coupled to

Fig. 1 Sample and setup. a Optical microscopy photograph of a granular aluminum oxide nanowire oscillator (orange border) capacitively
coupled to an aluminum resonator (circuit diagram in Supplementary Fig. 1). b Scanning electron microscope (SEM) picture of one nanowire
oscillator (colored in green). The large 60 × 160 μm2 pads constitute the capacitance. Incremental constrictions lead to the nanowire. c Colored
SEM closeup of the nanowire (blue) shunting the two capacitive pads. d Cryogenic microwave measurement setup.
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a radiative field, the oscillation frequency Ω is expected to depend
linearly on the coupling g, which is proportional to the driving
field amplitude. An additional small detuning Δ between the drive
and transition frequencies results in the form Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ Δ2
p

31.
The Rabi frequency Ω is extracted from damped sine fits and
displayed in Fig. 2b. In both depicted oscillators S1 (350 nm long
wire) and S2 (50 nm long wire), Ω fits to the two-level Rabi
behavior until it starts to deviate toward higher frequencies. This
deviation is expected in the presence of higher levels when Ω
exceeds the circuit’s anharmonicity, given by the difference
between the lowest energy level separations32,33. In this regime,
multi-photon transitions to higher levels occur with a higher rate,
thus reducing the power proportion driving the main transition.
Direct spectroscopy of multi-photon transitions to higher levels

requires increasing drive powers34. In the case of a small
anharmonicity, the resulting broadening of the fundamental
resonance line makes multi-photon resonances difficult to resolve
(Supplementary Note 2). However, by observing Rabi oscillations
with varied drive frequency, effects of higher transitions manifest
themselves in a distinct asymmetry (Fig. 3a). At frequencies above
the main transition, the Rabi oscillation frequency Ω increases as its
amplitude decreases as expected from off-resonant driving. Toward
lower frequencies however, Ω continues to decrease until the
oscillation breaks down. Also the oscillation amplitude increases and
the equilibrium excitation for long driving rises. These effects agree
with a system exhibiting a small but non-vanishing, negative
anharmonicity between 1 and 2MHz, allowing the drive to excite
the fundamental transition and transitions to higher levels.
The presented interpretation of the above described effects is

supported by numerical simulation of the Lindblad-GKS master
equation35,36, see Supplementary Note 3. The system H0 ¼

hðf 01 þ f s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2=ðϵ2 þ Δ2Þ
p

Þn̂� hf anðn̂2 � n̂Þ with the bosonic num-
ber operator n̂ describes an oscillator with frequency f01 and
anharmonicity fan. An additional asymmetry extending toward the
off-resonant regions in the measurement is accounted for by a
slight shift fs of the main transition in a region defined by a
parameter for the width ϵ and reduced with the detuning Δ of the
drive. This shift is expected due to an AC Stark effect37. In this
Lindbladian approach35,38, two decay channels with correspond-
ing rates are assumed to account for energy dissipation and
dephasing. Here we are specifically interested in the interplay
between finite anharmonicity and multi-photon (strong driving)
effects. Therefore a Floquet expansion39,40 is used to solve for the
time evolution in the strongly periodically driven system (see
Supplementary Note 3).
To reproduce the measurement performed on sample S2 by the

simulation shown in Fig. 3b, the main transition frequency and
excitation lifetime were taken from separate measurements
(Supplementary Notes 2 and 3). The region around the main
transition is well reproduced assuming the anharmonicity of
(1.5 ± 0.3) MHz.
Excitation decay times T1 were measured by applying a

microwave pulse tπ of half a Rabi period. Measurement of the
excitation after a varied delay yields an exponential decay
/ e�t=T1 . The T1 times, measured in all samples, range between
3.4 and 4 μs (Fig. 4a).

Fig. 2 Rabi oscillation power dependence. a Rabi oscillations
measured in sample S2 with varied drive amplitude. b The fitted
Rabi frequencies measured in S1 as well as S2 fit to the two-level
Rabi behavior until they deviate at frequencies exceeding the
anharmonicity. The values for the drive detuning Δ obtained from
the fit are Δfit

S1 ¼ ð0:5± 0:1ÞMHz and Δfit
S2 ¼ ð1:3 ± 0:1ÞMHz. Error-

bands include a variation of the number of points fitted between 6
and 16. Compared with spectroscopy the Rabis were driven with
ΔS1= (0.8 ± 0.5) MHz and ΔS2= (1.8 ± 1) MHz, respectively. In sample
S1, a smaller anharmonicity agrees with a lower normal state wire
resistance (Table 1). Fig. 3 Rabi oscillation frequency dependence. a Rabi oscillations

measured in S2 (50 nm long wire) in a span of 30 MHz around the
low-power transition frequency of 8.504 GHz. The distinct asymme-
try can be attributed to higher level excitations and a relative
anharmonicity between 1 and 2MHz. b Result of the numerical
Floquet matrix calculation of the density matrix master equation for
an anharmonic oscillator with 1.3 MHz anharmonicity. This agrees
with an estimation from Fig. 2.

Table 1. Properties of the sample circuits.

Sample lW (nm) RW (kΩ) fr (GHz) f01 (GHz) fcalc. (GHz) Lifetime (μs)

S1 350 <7 4.99 5.47 5.2 ± 0.3 3.4 ± 0.1 (0.8 ± 0.2 T2)

S2 50 7 ± 1 6.85 8.50 9.2 ± 0.4 4.0 ± 0.1

S3 100 10 ± 1 6.10 7.93 8.3 ± 0.4 3.4 ± 0.1

The wire length is denoted by lW. RW is the room temperature resistance of the wire estimated from the total circuit resistance. The readout resonator
frequencies fr and transition frequencies f01 are obtained from spectroscopy. fcalc. corresponds to the harmonic estimate of the circuits resonance. The lifetimes
are obtained by time-domain measurements.
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Excitation to a state on the equator of the Bloch sphere is
possible by applying a tπ∕2-pulse. Off-resonant driving and varying
the delay before applying the second tπ∕2-pulse results in Ramsey
fringes (Fig. 4b). The decay of the fringes corresponds to the
dephasing time T2. Our measurement performed in sample S1
yielded a T2 of 0.82 μs.
We estimated single-mode Purcell loss γP ¼ ðgr=ΔrÞ2κ (refs 41,42)

given by the coupling gr= (17 ± 2) MHz to the readout resonator,
its linewidth κ= (1.5 ± 0.2) MHz and the frequency detuning Δr=
(487 ± 1) MHz for sample S1. The obtained Purcell lifetime
limitation is (85 ± 14) μs≫ T1. The large circuit impedance favors
suppressing radiative loss. No direct correlation between transi-
tion frequency and lifetime has been observed. The contribution
of dielectric loss due to randomly distributed two-level systems,
which are always present in quantum circuits, can be more easily
resolved with higher anharmonicity, as well as temperature- or
strain-dependent studies42–44.
We expect that transitions to higher levels, which occur at

frequencies close to the fundamental transition, contribute
additional loss channels. This situation is facilitated by the finite
bandwidth of the short control pulses. A rectangular 100 ns long
π-pulse has a linewidth that can be estimated as 1/(2π·100 ns)=
1.6 MHz, thus being of the order of the observed anharmonicity.
Optimized pulse shapes can help decrease the rate of unintended
excitations45. Excitations of higher transitions lead to additional
frequency components modulating Ramsey fringes and thus make
a precise measurement of the pure dephasing challenging. Also,
charge noise due to a large charging energy e2∕2hC of (880 ± 80)
MHz adds to the dephasing in the circuits. This contribution can
be reduced together with a decrease of the total inductance by
concentrating the circuit’s inductance in the wire. A thus increased
anharmonicity would allow for a distinction of the higher level
contribution to the observed lifetimes and thus help anticipate the
feasible performance of optimized AlOx nanowire qubits.

CONCLUSION
In this work, we demonstrated multi-level quantum dynamics in
single-layer superconducting circuits. The anharmonic nature of
these nanowire oscillators originates from nonlinear properties of
the material they are made of, oxidized (granular) aluminum.
These nanowire quantum circuits feature a simple, scalable
fabrication process and are compact in design. The fabricated

samples showed energy relaxation times T1 of up to 4 μs and a
relatively small negative anharmonicity on the order of 1–2 MHz.
The measured characteristic Rabi patterns were replicated in
numerical simulations. We thus demonstrated that nonlinearity
and coherence times can be useful measures of the properties of
granular materials structured into nanometer size circuits.
In the future, larger anharmonicities seem feasible through

featuring nanowires with controllable smaller critical currents and
reduced spread. To reduce the contribution of the capacitive
paddles to the linear fraction of kinetic inductance, one can use
additional shunts made of pure aluminum. These improvements
would additionally enhance the circuit’s usability as qubit. Studying
of the system’s Hamiltonian in dependence of the nanowire’s
geometry and resistance would be facilitated by direct spectroscopy
of the level structure. This would shed further light on the physics of
the nonlinearity arising from the granular material in such systems.

METHODS
The disordered oxidized aluminum thin films are grown on a c-plane
sapphire substrate by sputter deposition. Details of the process can be
found in ref. 5 In addition, an in-situ resistance monitoring was used to
allow for a precise control over the final sheet resistance of the film (kΩ
range, 20 nm film thickness)46.
The nanowire circuits are defined in a single electron beam lithography step

using a bilayer resist stack of hydrogen silsesquioxane (HSQ) and poly-
methylmethacrylat (PMMA) on top of the AlOx thin film. This approach has the
advantage that the high-resolution HSQ resist can be lifted off after the pattern
transfer with an organic solvent. The pattern transfer into the AlOx thin film is
carried out using an anisotropic oxygen and argon/chlorine reactive ion
plasma. The aluminum resonators, feedline and backside metallization, are
deposited using optical lithography and the lift-off technique.
Due to the galvanic isolation of the nanowire circuits, we characterized the

DC resistance at room temperature using needle probes. This method poses
severe limitations on the DC measurement results since it is sensitive to the
contact resistance and position of the needles on the thin film sample. Special
care has to be taken to avoid scratches. Additionally, the wire resistance can be
altered by too high probe currents during the resistance measurement17.
Microwave spectroscopy of the circuits as well as pulsed time-domain

measurements are performed in a dilution cryostat at ~20mK (Fig. 1d).
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