
robotics

Article

Sim-to-Real Quadrotor Landing via Sequential Deep
Q-Networks and Domain Randomization

Riccardo Polvara 1,*,† , Massimiliano Patacchiola 2,† , Marc Hanheide 1

and Gerhard Neumann 3,4

1 Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln LN6 7TS, UK;
mhanheide@lincoln.ac.uk

2 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK; mpatacch@ed.ac.uk
3 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; gerhard.neumann@kit.edu
4 Bosch Center for Artificial Intelligence, 72076 Tubingen, Germany
* Correspondence: rpolvara@lincoln.ac.uk
† These authors contributed equally to this work.

Received: 28 January 2020; Accepted: 22 February 2020; Published: 25 February 2020
����������
�������

Abstract: The autonomous landing of an Unmanned Aerial Vehicle (UAV) on a marker is one of the
most challenging problems in robotics. Many solutions have been proposed, with the best results
achieved via customized geometric features and external sensors. This paper discusses for the first
time the use of deep reinforcement learning as an end-to-end learning paradigm to find a policy
for UAVs autonomous landing. Our method is based on a divide-and-conquer paradigm that splits
a task into sequential sub-tasks, each one assigned to a Deep Q-Network (DQN), hence the name
Sequential Deep Q-Network (SDQN). Each DQN in an SDQN is activated by an internal trigger, and
it represents a component of a high-level control policy, which can navigate the UAV towards the
marker. Different technical solutions have been implemented, for example combining vanilla and
double DQNs, and the introduction of a partitioned buffer replay to address the problem of sample
efficiency. One of the main contributions of this work consists in showing how an SDQN trained in a
simulator via domain randomization, can effectively generalize to real-world scenarios of increasing
complexity. The performance of SDQNs is comparable with a state-of-the-art algorithm and human
pilots while being quantitatively better in noisy conditions.

Keywords: deep reinforcement learning; aerial vehicles; Sim-to-Real

1. Introduction

In the upcoming years, an increasing number of autonomous systems will pervade urban and
domestic environments. The next generation of Unmanned Aerial Vehicles (UAVs) will require
high-level controllers to move in unstructured environments and perform multiple tasks, such as
the delivery of packages and goods. In this scenario, it is necessary to use robust control policies
for landing pad identification and vertical descent. Existing work in the literature is mainly based
on the extraction of the geometric visual feature with the aid of external sensors for the landing pad
identification and vertical descent. In this work, we propose a new approach, which is based on
recent breakthroughs achieved with differentiable neural policies in the context of Deep Reinforcement
Learning (DRL) [1]. In contrast with existing state-of-the-art methods, the proposed solution only
requires low-resolution images acquired from a monocular camera which are given as input to a
sequence of Deep Q-Networks (DQNs), hence the name Sequential Deep Q-Networks (SDQNs). Each
DQN in an SDQN is activated by an internal learnable trigger (engaged by the DQN in the previous
stage), with the final output being a high-level command that directs the drone toward the marker.

Robotics 2020, 9, 8; doi:10.3390/robotics9010008 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0001-8318-7269
https://orcid.org/0000-0002-9500-6899
https://orcid.org/0000-0001-7728-1849
https://orcid.org/0000-0002-5483-4225
http://dx.doi.org/10.3390/robotics9010008
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/9/1/8?type=check_update&version=2

Robotics 2020, 9, 8 2 of 18

In reinforcement learning, exploring a vast environment with scarce feedback is a complex task due to
the problem of sparse rewards. Meaning that, since the agent does not have access to constant and
stable feedback, it becomes very difficult to adjust its internal control policy. Here, we propose a new
solution based on a divide-and-conquer strategy which splits a complex task into simpler ones, each
with its sub-goals. The final goal is achieved incrementally, by completing all the related sub-goals.

The most significant benefit of DRL compared to other techniques is that it does not require a
constantly supervised signal, meaning that the agent can autonomously infer the consequences of its
actions without human supervision. However, the use of DRL in autonomous UAV landing is not
straightforward. Previous applications in robotics have mainly focused on solving other problems
such as manipulation [2,3] and ground navigation [4–6]. The main obstacle for the use of DRL in
robotics is the huge amount of training steps required to obtain robust control policies. Recent work
has investigated this issue proposing to mix real experiences with those produced by a generative
model; this requires less interaction with the real environment and it speeds up learning [7,8]. Another
common trend is to train a simulated robot in a virtual environment and then transfer the knowledge
to the real world [9–11]. However, filling the gap between real and simulated experiences is everything
but simple. To reduce this gap, we built on top of our previous work [12], and we used domain
randomization (DR) [10] to improve the generalization capabilities of the DQNs via random sampling
of training environments. We show that, when the variability is large enough, the networks learn to
generalize well across a large variety of unseen scenarios, including real ones. Additionally, we adopt
a divide-and-conquer strategy to reduce a complex task in two simpler ones: landmark alignment
and vertical descent. Both of them solved by two specialized DQNs which are connected through an
internal learnable trigger. Moreover, the double DQN loss [13] was adopted to reduce the overestimation
problem [14] that commonly arises in complex environments. To solve the issue of sparse and delayed
reward, we introduce a new type of experience buffer replay called partitioned buffer replay. This buffer
is based on the idea of discriminating experiences based on the associated reward and it guarantees
enough significant transitions in the training mini-batch. An overview of the system and the learning
pipeline is provided in Figure 1.

Our contribution can be summarized as follows:

1. The present work is the first to address UAV autonomous landing using a deep reinforcement
learning approach with only visual inputs. The agent was trained exclusively with low-resolution
grayscale images, without the need for direct supervision, hand-crafted features, or dedicated
external sensors.

2. A divide-and-conquer approach is used to split a complex task in sequential ones, with separate
DQNs assigned to each one of them. Internal triggers are learned at training time to autonomously
switch between policies. We call this new type of networks: Sequential Deep Q-Networks (SDQNs).

3. A partitioned buffer replay is defined and implemented to speed up learning. This buffer stores
experiences in separate partitions based on their relevance. Note that this technique can be used
in other complex tasks.

4. Using SDQNs, the partitioned buffer replay, and domain randomization, a commercial UAV
has been trained entirely in simulation and tested in real and simulated environments. The
performances are similar to human pilots and a state-of-the-art algorithm but allow harvesting
the benefits of DRL such as training suitable features in different scenarios.

Robotics 2020, 9, 8 3 of 18

Figure 1. System overview and deployment. Training has been performed entirely on the simulator.
Three types of experiences have been collected and stored separately: correct landing (green), wrong
landing (red), standard flight (yellow). Proportional sampling has been used to generate a mini-batch
of experiences to train the Deep Q-Network. Testing performed in real environments.

2. Related Work

The existing methods used for autonomous landing can be broadly grouped into three classes:
sensor-fusion, infrastructure-supported, and vision-based.

The sensor-fusion methods rely on the use of multiple sensors, to gather enough data for robust
pose estimation. In a recent work [15], the camera and inertial measurement unit (IMU) data were
combined to reconstruct the terrain. Given the two-dimensional elevation map, it was possible to
find a secure surface area for landing. In [16], the authors studied the limitations of the IMU at low
frequencies and the inaccuracies of the Global Positioning System (GPS) on the horizontal plane.
They showed that combining the two signals was a good compromise for robust applications. In [17],
the GPS signal and the visual odometry were combined with model predictive control for landing on a
moving car at a speed of 15 m

h . Similar approaches have also been developed by teams taking part in
the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 competition [18,19].

Infrastructure-supported methods rely on the use of ground sensors to precisely estimate the
position and the trajectory of the drone. A system based on infra-red lights has been used in [20],
where a series of parallel infrared lamps are disposed in a runway. The optical filters mounted on
the UAV camera captured the infrared lights and the images were forwarded to a control system for
pose estimation. In [21], the authors obtained ground stereo-vision detection combining a Chan–Vese
approach supplemented with an extended Kalman filter.

Robotics 2020, 9, 8 4 of 18

The vision-based approaches analyze geometric features to find the ground pad. In [22],
a seven-stages vision algorithm identifies and tracks the international landing pattern in a cluttered
environment, reconstructing it when partially occluded. A recent work [23] used a computer vision
algorithm for detecting a moving target using only the on-board camera. The information was used to
precisely estimate the UAV pose. Similarly, [24,25] adopted image-based visual servo control to track
and land on a moving platform.

The aforementioned techniques have different limitations. Methods based on data integration
often use information gathered from expensive sensors that usually are not available in off-the-shelf
commercial platforms, or they rely on sensors that may be unavailable in specific conditions (e.g., the
GPS in indoor environments). The infrastructure-supported approaches allow for obtaining an accurate
estimation of the UAV pose. However, the use of external devices is not always possible because they
are not always available. Vision-based methods have the advantage of relying only on internal sensors,
in particular the cameras. The main limitation of these methods is that low-level features are often
viewpoint-dependent and subject to failure in ambiguous cases.

The solution proposed in this work relies only on a monocular camera mounted on the UAV,
without requiring any other device. Moreover, the use of DQNs as function approximators significantly
improves robustness against projective transformations and marker corruption as we show in the
experimental section (Section 5).

There are just a few works using DRL for the control of UAVs. In [26], the author compared
different variants of DQN in learning avoidance maneuvers while navigating in a cluttered
environment. A series of simulated experiments is presented in [27]. Here, the authors achieved
autonomous landing using a single neural network, but, differently from our work, they significantly
constrained the state space and designed a really specific reward function. In [28], the authors
successfully trained a UAV to perform autonomous landing while keeping a constant descending
speed. However, the method has access to a rich state representation (robot attitude, pixel distance
from the marker in the camera frame, altitude) and the reward function is handcrafted and not general
such as the one used in our work. A dedicated paragraph is reserved to [29] which is the most similar
work to the one presented here. Instead of the DQN architecture, the authors used Deep Deterministic
Policy Gradient (DDPG) [30], an actor–critic DRL algorithm that allows performing continuous control.
Differently from our work, in [29], the state space has been significantly reduced and represented as a
six-dimensional array combining the relative position (px, py, pz) and acceleration (ax, ay) of the UAV
to the landing pad, together with the pressure status. These values are obtained at training time using
the ground truth of the simulator, and an expensive motion capture system during the testing phase
with the real platform. Our work is instead based on low-resolution grayscale images as main and
only input data. This has two consequences. Our solution is more flexible and generic because it only
requires a low-cost onboard camera to be effective, without the need for a complex and expensive
motion capture system.

3. Problem Definition and Notation

In reinforcement learning, the goal of the agent is to maximize the discounted cumulative reward
called return R = ∑∞

k=0 γkrt+k+1, where rt is the reward at current timestep t, while k represents future
timesteps and γ is the discount factor. Given the current state, the agent can select an action from the
action-set A = {a1, ..., aL} using an internal policy π = P(a|s). The action brings the agent to a new
state st+1 in accordance with the environmental transition model T(st+1|st, at). In the particular case
faced here, the transition model is not given (model free scenario). The prediction of the cumulative
reward can be obtained through an action-value function Qπ(s, a) adjusted during the learning phase
in order to approximate Q∗(s, a), the optimal action-value function. In this work, the state is given
by the image acquired by a downward-looking camera mounted on the UAV and the Convolutional
Neural Network (CNN) introduced in [1] is used to approximate the Q-function. The CNN takes
as input four 84× 84 grayscale images which are processed by three convolutional layers and two

Robotics 2020, 9, 8 5 of 18

fully connected layers. Rectified linear units are used as activation functions. The first convolution
has 32 kernels of 8× 8 with a stride of 2, the second layer has 64 kernels of 4× 4 with strides of 2,
and the third layer convolves 64 kernels of 3× 3 with a stride of 1. The fourth layer is a fully connected
layer of 512 units followed by the output layer that has a unit for each valid action (backward, right,
forward, left, stop, descent, land). Each action is represented by a three-dimensional vector ∈ [−1, 1]m

s ,
expressed in the robot frame that allows moving the drone with a specific velocity on the three axes.
A graphical representation of the network is presented in Figure 2.

Figure 2. The convolutional network used to approximate the Q-function. It receives in input four gray
scale 84× 84 images, and outputs seven actions.

In this work, the landing problem is divided into landmark alignment and vertical descent.
The reason behind this choice is better justified in the next section (Section 4); here, we introduce the
notation and the loss functions used at training time. The landmark alignment requires an exploration
of the horizontal xy-plane at a fixed altitude of 20 m, where the UAV has to horizontally shift in order
to align its body frame with the marker. In the vertical descent phase, the vehicle has to reduce the
distance from the marker using vertical movements. Moreover, the drone has to shift on the xy-plane
in order to keep the marker centered. We now describe both phases in more detail.

3.1. Landmark Alignment

In this phase, the reasonable assumption of a flight at fixed-altitude was made. The horizontal
alignment with the landmark is obtained through shifts in the xy-plane. To adjust θ, the parameters of
the DQN, the following loss function was minimized

Li(θi) = E(s,a,r,s′)∼U(D)

[(
Yi −Q(s, a; θi)

)2
]

, (1)

with D = {e1, ..., eT} being a data-set of experiences et = (st, at, rt, st+1) which are uniformly sampled.
The network Q(s, a; θi) is used to estimate actions at run-time, whereas Yi is defined as

Yi = r + γ max
a′

Q(s′, a′; θ−i), (2)

Robotics 2020, 9, 8 6 of 18

with the network Q(s′, a′; θ−i) used to generate the target and constantly updated. The parameters θ−

of the target network are updated every C steps and synchronized with θ. Following standard practice,
the experiences in the data-set D are collected in a preliminary phase using a random policy.

3.2. Vertical Descent

This phase is a form of Blind Cliff-walk [31], where the agent has to take the right action to
progress through a sequence of N states and finally get a positive or a negative reward. The intrinsic
structure of the problem makes it extremely difficult to obtain a positive reward because the target-zone
is only a small portion of the state space. As a consequence, the buffer replay does not contain enough
positive experiences, leading to unstable control policy. To solve this issue, we introduced a new form
of buffer replay called partitioned buffer replay. This new type of buffer discriminates between rewards
and guarantees a fair sampling between positive, negative and neutral experiences. Additional details
about the partitioned buffer replay are provided in Section 4.2.

Another issue connected with the reward sparsity is the utility overestimation. During our
preliminary studies, this problem was observed to be affecting the vertical descent phase. The Q-max
value (the highest utility returned by the Q-network) rapidly increased, overshooting the maximum
possible utility of 1.0. The overestimation was associated with all the actions but the trigger. This is
because the trigger leads to a terminal state; therefore, its utility is updated without using the max
operator, which was found to be the responsibility of the overestimation in deep Q-learning. In our
case, the overestimated utilities of the four horizontal movements (grown up to 2.0 after 105 frames)
were higher than the non-overestimated utility associated with the trigger (stably converged to 1.0).
As a result, the drone moved on top of the marker but it did not engage the trigger. A solution to the
overestimation has been recently proposed and has been called double DQN [13]. The target estimated
through double DQN is defined as follows:

Yd
i = r + γ Q(s′, argmax

a′
Q(s′, a′; θi); θ−i). (3)

Note that the max operator in Equation (2) uses the same values both to select and to evaluate
an action; therefore, it is more likely to select overestimated values, whereas, in Equation (3), the
divergence is mitigated using argmax over Q at the next time step, resulting in faster convergence and
increased stability.

3.3. Vehicle Characteristics

The platform used in this work is the Parrot Bebop 2 (produced by Parrot Drones SAS, Paris,
France), a commercial off the shelf quadcopter. Regarding its dynamics, the UAV can be seen as a
rigid body with 6 degrees of freedom (DOF) able to generate the necessary forces and moments for
moving [32]. The equations of motion are expressed in the body-fixed reference frame B [33]{

mV̇ + Ω×mV = F

JΩ̇ + Ω× JΩ = Γb
(4)

where V = [vx, vy, yz]T and Ω = [wx, wy, wz]T represent the linear and angular velocities of the UAV
in B. F is the translational force combining gravity, thrust and other components, while J ∈ R3×3 is the
inertial matrix subject to F and torque vector Γb. The orientation of the UAV in the air is given by a
rotation matrix R from B to the inertial reference frame I :

R = RψRθ Rφ =

cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ

 , (5)

Robotics 2020, 9, 8 7 of 18

where η = [φ, θ, ψ]T is the vector of Euler angles and s and c are abbreviations for sin(·) and cos(·).
Given the transformation from the body frame B to the inertial frame I , the gravitational force and the
translational dynamics in I are {

ξ̇ = v

mv̇ = RFb −mgei
3

(6)

where g is the gravitational acceleration, Fb is the resulting force in B, ξ = [x, y, z]T and v = [ẋ, ẏ, ż]T

are the position and velocity in I . The body frame follows a right-handed z-up convention such that
the positive x-axis is oriented along the forward direction of travel.

4. Proposed Method

4.1. Sequential Deep Q-Networks (SDQN)

The main issues in applying DRL to robotics are related to the large size of the state and action
spaces and to reward sparsity which often makes it difficult to learn a policy. In robotics, the agent
needs to explore relevant portions of the environment and to perform different actions in order to
receive useful feedback. In most cases, the environment is large and the reward infrequent; therefore,
learning becomes difficult. In order to overcome these issues, we propose a simple method which
consists of splitting the main task into sub-tasks, such that both state and action spaces are reduced.
A similar approach has been described in hierarchical reinforcement learning [34] where a set of
sub-policies, called options, are available to the agent in specific states. The options control the agent in
sub-regions of a core Markov Decision Process (MDP) called semi-MDPs. In an MDP, at each time step
t, the agent receives the state st, performs an action at sampled from the action space A, and receives
a reward rt given by a reward function R(st, at). In the present work, the core MDP is divided into
multiple isolated instances, with each instance being a proper MDP. The auxiliary MDPs are therefore
connected in an ordered sequence thanks to shared states and specific actions, called triggers, which
allow switching from one MDP to the following one. When calling the trigger in a shared state, the
agent receives a reward which is equal to the maximal reward of the core MDP. The design of the
individual auxiliary MDPs requires some knowledge about the overall task and, for this reason, is left
to the designer. The advantage of reinterpreting semi-MDPs as MDPs is that it allows using standard
Q-learning to train the agent. If we divide the state space S and the action space A in J partitions, we
can associate a specialized Q-function to each sub-task

Q(S ,A) =
{

Q1(S1,A1), ..., QJ(SJ ,AJ)
}

; with S =
J⋃

i=1

Si, A =
J⋃

i=1

Ai. (7)

Since the Q-functions are executed sequentially, one after the other, we call the overall function Q(S ,A)
a Sequential Q-function, and, when this is parameterized by a deep neural network, we call it a Sequential
Deep Q-Network (SDQN). The transition from one Q-function to the other is managed by a particular
action â called trigger and a state ŝ called the transition state. More formally, we define a trigger â as an
additional action allocated to each one of the J − 1 partitions

Ai ∪ âi ∀Ai ∈ A with i 6= J. (8)

When the trigger âi is engaged in its transition state ŝi, the agent gets maximal reward and the next
function in the sequence is called; otherwise, it gets a minimal reward and the episode terminates:

R(ŝi, âi) = max R(S ,A), R(s, âi) = min R(S ,A). (9)

Robotics 2020, 9, 8 8 of 18

In the particular case of autonomous drone landing, we propose to divide the task into landmark
alignment and vertical descent, as shown in the flowchart of Figure 3. The alignment requires an
exploration of the horizontal xy-plane at a fixed altitude of 20 m, where the UAV has to shift in order
to align its body frame with the marker. In the vertical descent phase, the vehicle has to reduce the
distance from the marker using vertical movements. Moreover, the drone can laterally shift to keep the
marker centered. Splitting the overall task into two gives more flexibility while keeping the problem of
exploring a large state space still tractable. As proof of this, we trained a single DQN to perform both
alignment and descending. Given the size of the combined state spaces, the network did not converge
to a stable policy. The accumulated reward is reported in Section 5 and marked as standard DQN [1].

Figure 3. Flowchart representing the marker alignment and vertical descent phases.

Here, it is fundamental to clarify a crucial point. In a simulated environment, it may be possible
to use the distance between the UAV and the marker to produce constant feedback. However, this is a
form of privileged information that can be expensive to obtain in the real word without specialized
hardware for precise distance estimation, like the one used in [29]. This is the main reason why this
information has not been used in our experiments. We wanted the method to be flexible, such that it
would be possible to train in the simulator and fine-tune in the real world giving just minimal feedback
to the system (e.g., sparse rewards). An algorithm that works in the worst conditions will likely work
in more favorable conditions, whereas the opposite is not guaranteed.

4.2. Partitioned Buffer Replay

Tasks with a sparse and time-delayed reward make it difficult for the agent to get constant positive
feedback. As a consequence, the buffer replay can be unbalanced, leading neutral transition (those
associated with a non-relevant reward) to be sampled with a higher probability than positive and
negative ones.

In our case, the vertical descent is affected by the problem of reward sparsity which causes an
underestimation of the utilities associated with the triggers. In [35], it has been shown that dividing
the experiences into two groups based on a priority value can alleviate the problem. The method we
propose in this work is an extension of K groups. A different approach has been taken in [31], where
experiences are sampled using a weight proportional to the temporal difference error, with important
transitions sampled more frequently. The main drawback of this approach is the introduction of
another layer of complexity which is not justified where a clear distinction between positive and
negative rewards occurs. Moreover, this method requires O(log N) to update the priorities, whereas
in our case the update is done in constant time. This issue does not significantly affect performances
on the standard benchmarks, but it has a relevant effect on robotics applications, where there is a high
cost in obtaining experiences.

Following the same notation introduced before, the buffer replay D is defined as D = {e1, ..., eT}
and an experience as e = (s, a, r, s′). At each iteration i, we uniformly sample from it a batch where s is
the current state, a the action performed, r the reward received and s′ the new state. The scope of this
buffer replay is mainly to randomize samples, breaking the correlation, and reducing the variance [36].
In order to create a partitioned buffer replay, the reward spaceR is divided into K partitions

Robotics 2020, 9, 8 9 of 18

R = R1 ∪ ...∪RK, (10)

associating with each partitionRk a different dataset Dk

Dk = {(e1, ..., eN) : r1, .., rN ∈ Rk} with e = (s, a, r, s′). (11)

Experiences are iteratively sampled from each one of the K partition with a certain fraction
ρ ∈ {ρ1, ..., ρK} and stored in the training batch. In our particular case, there are three partitions, each
one associated with a different reward: D+ containing positive experiences (r = +1), D− containing
negative experiences (r = −1), andD∼ for neutral experiences (r = −0.01). The fraction of experiences
associated with each one of the partitions is defined as ρ+, ρ−, and ρ∼. When using a partitioned buffer
replay, there is a substantial increase in the available number of positive and negative experiences.
In order to clarify the advantages of using a partitioned buffer replay, we provide here a concrete
example, comparing it to a standard buffer replay [1]. We implemented a standard buffer replay of
size 2× 104 and we accumulated 8.4× 104 transitions with a random agent in a basic environment
(see Section 5). The total number of positive experiences accumulated in the buffer is only 343 and the
number of negative experiences 2191. The remaining 17,466 experiences, corresponding to 87.3% of
the total, are neutral (low relevance). As a consequence, at training time, the mini-batch of experiences
sampled from the standard buffer would not contain enough significant experiences to effectively train
the policy. On the other hand, our partitioned buffer replay stores experiences in a distinguishable
way in different partitions based on the associated reward. If we accumulate the same amount of
experiences (8.4× 104) with a random agent using a partitioned buffer replay (size 2× 104 for neutral
partition, and size 104 for positive and negative partitions), the total number of positive experiences
collected is 1352 and the number of negative experiences 9270, which are significantly higher than the
standard counterpart. At training time, we can sample experiences from all the partitions of the buffer
and guarantee that positive and negative experiences (the most significant) are always present within
the mini-batch.

4.3. Training through Domain Randomization

The biggest challenge in robot learning is the gap between the design in a simulated environment
and the deployment in the real world. Domain transfer techniques have been recently identified as a
solution for reducing this gap, with one of the most effective approaches being Domain Randomization
(DR) [10]. This method consists of randomizing the visual and physical properties of the simulator
during the training phase. Here, DR is adopted to train the control policy of the UAV in simple
simulated environments and then test it in complex unseen environments (both simulated and real).
The remarkable property of this approach is that if the variability is significant enough, models trained
in simulation generalize to the real world with no additional training. This can be achieved by changing
environmental properties (e.g., visual textures and physics parameters) at training time.

4.4. Suitability of the Method to Robotics Applications

Here, we would like to briefly discuss possible applications of the method we have described.
SDQNs are able to effectively and flexibly tackle sequential problems; for this reason, they can be
used in all those robotics applications where there is a large state space with a clear distinction in
separable sub-spaces. Note that this assumption is rather common in robotics; for instance, problems
that fall into this category are: goal-oriented navigation (not only aerial), automation of assembly
lines, manipulation with pick-and-place. In all these cases, it is possible to easily find sub-tasks
that can be isolated and assigned to a separate policy. Another advantage of SDQNs stands in their
modular design, and each sub-policy is in fact an independent block which can be used in other
applications as part of a different policy. Moreover, each one of these blocks can be rapidly (re)trained
in simulation or fine-tuned on a new problem, without the need to intervene on the overall policy.

Robotics 2020, 9, 8 10 of 18

This considerably shortens the deployment time while simplifying system debugging and updating,
with obvious advantages for commercial applications. The possibility of using domain randomization
is another advantage of our method when it comes to real-world robotics scenarios. Often, it is not
possible to use data from the final application to improve the performance of the robot before the
deployment in a specific use case. For instance, the navigation in a disaster site is more challenging
than navigation in a standard environment where the robot can be easily trained. However, data
from disaster sites are difficult to obtain beforehand. Using domain randomization, it is possible to
fine-tune the policy on a large variety of simulated disaster sites and then deploy a robust policy in the
real world.

5. Experiments

In this section, the methodology and the results obtained by SDQN in the two phases are presented.
In both training and testing, the same environment (Gazebo 7.7.×, ROS Kinetic) and drone (Parrot
BeBop 2, produced by Parrot Drones SAS, Paris, France) were used. The marker used in the experiments
is the same adopted in the MBZIRC competition, consisting of a black cross within a black circle on
a white background, which can be considered the current standard. To understand the impact of
environmental variability on the results, we designed two experimental conditions with two different
SDQNs. The first was trained using only a single uniform asphalt texture (SDQN), while the second
was trained with seven different groups of textures using domain randomization (SDQN-DR). The
textures are: asphalt, brick, grass, pavement, sand, snow, and soil (Figure 4h). Both SDQN and
SDQN-DR use the same neural networks as sequential components (Figure 2).

Figure 4. Real environments: (a) laboratory, (b) small hall, (c) large hall, (d) mezzanine. Photo-realistic
environments: (e) warehouse, (f) disaster site, (g) power-plant. (h) Textures: pavement, brick, grass,
asphalt, sand, snow, soil. (i) Marker and corrupted marker.

Robotics 2020, 9, 8 11 of 18

5.1. Methods

During the marker alignment phase, the UAV flies at a fixed altitude of 20 m which is kept for the
duration of the episode. This expedient reduces the state space to explore and keeps the marker within
the camera field of view. Taking inspiration from the no-operation introduced in [1], each action is
repeated for 2 s and then interrupted, leading to an approximate shift of 1 m. This choice has been taken
to increase the variance between two consecutive observations, stabilizing the learning. The frames
from the camera are acquired between two actions (at a frequency of 0.5 Hz) when the vehicle is
stationary. The training environment is represented by a uniform texture of size 100 m× 100 m with
the landmark positioned in the center. The environment contains a flying and a target zone (Figure 5a).
At the beginning of each episode, the drone is spawned at 20 m of altitude inside the perimeter of
the larger bounding box (15 m× 15 m× 20 m) with a random position and orientation. A positive
reward of 1.0 is given when the drone activates the trigger in the target zone, and a negative reward
of −1.0 is given if the drone activates the trigger outside the target-zone. A negative cost of living of
−0.01 is applied in all the other cases. A time limit of 40 s (20 steps) is used to stop the episode and
start a new one. In the SDQN-DR condition, domain randomization is used to change the ground
texture every 50 episodes and to randomly sample between the 71 textures available in the training
set. The target and policy networks are synchronized every C = 10,000 frames following the original
approach [1]. The agent has five possible actions available: forward, backward, left, right, trigger.
The additional action move-down was used during vertical descent. The action selected is repeated for
2 s; then, the drone is left stationary and a new action is sampled. The buffer replay was filled before
the training phase with 4× 105 frames using a random policy. The SDQN and SDQN-DR were trained
for 6.5× 105 frames. An ε-greedy policy was used, with ε decayed linearly from 1 to 0.1 over the first
5× 105 frames and fixed at 0.1 thereafter.

(a) (b)
Figure 5. Flying-zone (red) and target-zone (green) for landmark alignment (a) and vertical descent (b).

In the vertical descent phase, to encourage the UAV to descend above the marker, during the
ε-greedy selection, the action was sampled from a non-uniform distribution with move-down having
a probability φ and the other N actions having a probability 1−φ

N . Exploring-start was adopted to
generate the UAV at different altitudes and to ensure a wider exploration of the state space. We used
the partitioned buffer replay described in Section 4.2. Compared with the marker alignment phase,
the state-space for the vertical descent is much larger and more expensive to explore. For this reason,
we decided to sub-sample uniformly only 20 textures among the 71 available within the training set.
In the vertical descent, the target and the policy networks are synchronized every C = 30, 000 frames

Robotics 2020, 9, 8 12 of 18

following the recommendations in [13]. For the partitioned buffer replay, it was chosen ρ+ = 0.25,
ρ− = 0.25, and ρ∼ = 0.5. At the beginning of each episode, the drone is spawned with a random
orientation inside a bounding box of size 3 m× 3 m× 20 m, which corresponds to the target area of the
landmark alignment phase. Given this large dimension, a time limit of 80 s (40 steps) is used to stop
the episode and start a new one. A positive reward of 1.0 was given only when the drone entered in a
target-zone of size 1.5 m× 1.5 m× 1.5 m, centred on the marker (Figure 5b). If the drone descended
above 1.5 m outside the target-zone, a negative reward of −1.0 was given. A cost of living of −0.01
was applied at each time step. Before the training, the buffer replay was filled using a random policy
with 106 neutral experiences, 5× 105 negative experiences and 5× 105 positive experiences.

For both phases, the discount factor γ was set to 0.99. As an optimizer, we used the RMSProp
algorithm with a batch size of 32. The SDQN was implemented in Tensorflow. The simulations were
performed on a workstation Intel i7 with 8 cores (produced by Intel Corporation, Santa Clara, CA,
USA). processor, 32 GB of RAM, and the NVIDIA Quadro K2200 (produced by Nvidia Corporation,
Santa Clara, CA, USA) as the graphical processing unit. On this hardware, the training took 5.2 days to
complete for the marker alignment phase and 7.6 for the vertical descent one, with the physic engine
running 5× real-time. In addition to the hardware already mentioned, a separate machine was used to
collect preliminary experiences. This machine is a multi-core workstation with 32 GB of RAM and a
GPU NVIDIA Tesla K-40 (produced by Nvidia Corporation, Santa Clara, CA, USA).

A comparison with human subjects has also been performed. The data were collected with the
help of 10 volunteers (6 males and 4 females, average age 27) who used the same control actions
available to the other agents. After an initial training phase to familiarize themselves with the task,
the real test started. The objective was to move the UAV above the marker and then engage the trigger
when inside the target-zone. All the candidates were supplied with only low-resolution gray-scale
images as those used in input for the networks. The frame rate between two consecutive images
was kept fixed at 0.5 Hz. The same expiration rate adopted in the training phase was applied to each
episode to better compare the results with the other methods. Five trials were performed for each one
of the environments in the test set (randomly sampled). A landing attempt was declared as failed
when the time limit expired or when the subject engaged the trigger outside the target-zone.

5.2. Results

First, we analyze the training statistics of SDQN, SDQN-DR, and standard DQN. Those are
summarized in Figure 6-bottom for marker alignment, and Figure 7-bottom for the vertical descent. In
both figures, the cumulated reward for SDQN (blue curve) and SDQN-DR (red curve) increased stably
without any anomaly, meaning that the agents learned how to successfully accomplish the task on the
training environments. The reward curve for the standard DQN [1] condition (green) did not increase
significantly and the resulting policy was unable to engage the trigger inside the target-zone.

In the test phase, we compared the performance of various methods: SDQN, SDQN-DR, a random
agent, a state-of-the-art AR-tracker algorithm [37], and human pilots. We performed a series of
four tests for both marker alignment and vertical descent. Those tests and the results obtained are
summarized here:

1. Uniform. The first test was performed on 21 unknown uniform textures belonging to the same
categories as the training set. For the marker alignment phase, SDQN-DR has an accuracy of 91%,
while SDQN obtains a lower score (39%). The human performance is 90%, the AR-tracker has a
score of 95%, and the random agent of 4%. In the vertical descent phase, SDQN-DR achieved an
accuracy of 89%, 44% for SDQN, 91% for humans, and 98% for the AR-tracker. Table 1 reports
a comparison between our method (SDQN-DR) and human pilots. For the human subjects,
the average time required to accomplish the task was 24 s (marker alignment) and 46 s (vertical
descent), whereas for the SDQN-DR was only 12 s and 38 s. The humans were significantly
slower but more accurate than the artificial agents. This result highlights a difference in strategy

Robotics 2020, 9, 8 13 of 18

between humans and artificial agents, therefore the performance of the two groups must be
compared carefully.

Table 1. Comparison of our method (SDQN-DR) and humans for: success rate (SR, percentage), average
time (T, seconds), average distance when trigger is engaged (∆X and ∆Y, meters). Best results are
in bold.

Marker Alignment Vertical Descent
Method SR T ∆X ∆Y SR T ∆X ∆Y
Humans 90% 24s 0.47(0.35)m 0.49(0.37)m 91% 46s 0.22(0.17)m 0.23(0.18)m
SDQN-DR [ours] 91% 12s 0.80(0.40)m 0.78(0.41)m 89% 38s 0.28(0.18)m 0.28(0.18)m

Note that in our method the trade-off between accuracy and speed can be tuned by the
cost-of-living (neutral reward), with higher values pushing the agent to complete the task faster
(but with a lower accuracy).

2. Corrupted. The second test was performed on the same 21 unknown textures but using a
marker which has been corrupted through a semi-transparent dust-like layer (Figure 4i). In this
condition, we observed a significant drop in the AR-tracker performances from 94% to 0% (marker
alignment) and from 98% to 0% (vertical descent). This result can be explained by the fact that the
underlying template matching algorithm failed in identifying the corrupted marker. Under the
same condition, the SDQN-DR performed well, with a limited drop in performance from 91% to
81% (marker alignment) and from 89% to 51% (vertical descent), showing to be more robust to
marker corruption.

3. Mixed. The third test was done randomly sampling 25 textures from the test set and mixing them
in a mosaic-like composition. In the marker alignment phase, SDQN-DR had a success rate of
84%, SDQN 9%, human pilots 88% and the AR-tracker 82%. In addition, for the vertical descent,
we registered worst performances for all the agents (SDQN-DR = 82%, SDQN = 40%, Humans =
92%, Random = 1%, AR-tracker = 82%).

4. Photo-Realistic. The fourth and last test has been done on three photo-realistic environments:
warehouse, disaster site, and a power-plant (Figure 4e,g). In addition, here we observed a
generic drop in performance for marker alignment (SDQN-DR = 57%, SDQN = 5%, Human =
81%, Random = 3%, AR-tracker = 84%) and vertical descent (SDQN-DR = 81%, SDQN = 17%,
Human = 88%, Random = 1%, AR-tracker = 91%), showing how completing the task in a complex
environment is more difficult for all agents.

The previous results are reported in Table 2 to facilitate the comparison between methods.
Additionally, we report a comparison on every texture in Figure 6-top for marker alignment, and
Figure 7-top for vertical descent. Note that, our method (SDQN-DR) reports the best score overall (78%
marker alignment, 75% vertical descent), substantially outperforming a state-of-the-art AR-Tracker [37]
(65% marker alignment, 68% vertical descent) as showed in Table 2.

Table 2. Success rate (percentage) at test time on marker alignment and vertical descent for: random
agent, AR-Tracker, Sequential Deep Q-Network without domain randomization (SDQN), Sequential
Deep Q-Network with domain randomization (SDQN-DR). Test performed on: uniform texture, marker
corrupted, mixed textures, photo-realistic environments. Average total performance indicated as TOT.
Best results are highlighted in bold.

Marker Alignment Vertical Descent
Method Uniform Corrupted Mixed Photo-Real. TOT Uniform Corrupted Mixed Photo-Real. TOT
Random agent 4% 4% 4% 4% 4% 1% 1% 1% 1% 1%
AR-Tracker [37] 95% 0% 82% 84% 65% 98% 0% 82% 91% 68%
SDQN [ours] 39% 27% 9% 8% 21% 44% 18% 40% 17% 30%
SDQN-DR [ours] 91% 81% 84% 57% 78% 89% 51% 82% 81% 75%

Robotics 2020, 9, 8 14 of 18

Figure 6. Results for the marker alignment phase. Top: success rate in different textures and conditions.
Bottom: accumulated average reward per episode for Sequential Deep Q-Network (SDQN, blue line),
Sequential Deep Q-Network with domain randomization (SDQN-DR, red line), and standard Deep
Q-Network [1] (DQN, green).

Figure 7. Results for the vertical descent phase. Top: success rate in different textures and conditions.
Bottom: accumulated average reward per episode for Sequenital Deep Q-Network (SDQN, blue line),
Sequential Deep Q-Network with domain randomization (SDQN-DR, red line), and standard Deep
Q-Networks [1] (DQN, green line).

Robotics 2020, 9, 8 15 of 18

6. Real World Implementation

Training and testing only in the simulator is not enough to assess the quality of a method.
Simulated data usually have poor fidelity and the components that make a real experiments difficult,
such as the physics and the environmental conditions (light, winds etc) usually not being modeled in a
proper way. For these reasons, we performed a series of tests in real environments. However, before
testing the proposed approach in the real world, a few additional tests have been performed to collect
accurate statistics regarding the robustness against variations in altitudes and drift injection. In the first
test, SDQN-DR was tested for marker alignment on the same environments but at different altitudes
(respectively, 20 m, 15 m, and 10 m). The accuracy increased at 15 m (95%) and 10 m (93%), with respect
to the accuracy at the training altitude of 20 m (91%). This can be explained by the fact that at lower
altitudes the marker is more visible and the state space smaller. In the second test, we measured
the performance of our method against noise injection in the action-space, we modified the action
repetition time (and as consequence the vehicle shift) from the value used during training (2 s) to
three additional values: 1 s, 0.5 s, 0.25 s. The results confirmed that the network was able to generalize
effectively achieving results above 80% in most of the conditions (Table 3). SDQN-DR was also tested
against different drift values, modeled as noise in the velocity space. The drift consisted of a scalar
sampled from a uniform distribution in the range [−a, a] (m

s) and accumulated for a time of 5 s. Four
conditions with a different value of a have been tested (0.0, 0.1, 0.2, 0.3). In addition, in this case, the
results showed that the SDQN-DR was able to effectively generalize, even though the training was
performed without drift.

Table 3. Success rate (percentage) of Sequential Deep Q-Network with domain randomization
(SDQN-DR) against noise injection in action space and drift.

Action-Space Robustness

Parameters/Phase ∆t = 2.0 ∆t = 1.0 ∆t = 0.5 ∆t = 0.25

Marker alignment 91% 91% 89% 47%
Vertical descent 89% 78% 82% 42%

Drift Robustness

Parameters/Phase a = 0.0 a = 0.1 a = 0.2 a = 0.3

Marker alignment 91% 79% 72% 68%
Vertical descent 89% 82% 82% 82%

Finally, we measured the performance of the agent in the real world. In this test, additional factors
other than motion drift played an important role—for instance, the high number of unknown objects
and features present in the camera image, the noise caused by natural light and motion blur. All of
these factors added a considerable domain shift compared to the training phase. The effect of lighting
conditions has not been directly quantified, but it has been qualitatively identified. In particular,
we noticed two sources of interference, the first given by smooth surfaces (e.g., glass, pavement, tables,
etc), and the second given by the presence of shadows (not present at training time due to the use
of a uniform light). Both of those effects introduced artifacts into the raw image acquired by the
camera, sometimes affecting the correct identification of the landmark. The vertical descent tests were
performed in four environments: laboratory, small hall, large hall and mezzanine (Figure 4a–d). A total
of 40 flights were equally distributed in the four environments. The flight attempts regarding the
marker alignment were possible only in one of those environments (mezzanine, Figure 4d) which was
the only space that allowed the UAV to safely reach an altitude of at least 15 m. In this case, a total of
10 flights was performed.

The experiments on the marker alignment phase were successful 50% of the times, whereas, in the
vertical descent, the system obtained an overall success rate of 62%. Remarkably, even when the drone

Robotics 2020, 9, 8 16 of 18

was not able to land, the flight was interrupted due to the expiration time (a maximum of 40 steps
allowed) and not even once the drone landed outside the pad. This kind of policy spontaneously
emerged because landing outside the pad was penalized by a negative reward at training time in the
simulator. A snapshot of the experiments is reported in Figure 8.

Figure 8. Snapshots of the descending phase with the utility distribution over all the actions. Descent
has a negative utility (red bar) when the drone is not centred on the marker.

7. Discussion and Conclusions

In this work, DRL was used for the first time to implement a system for autonomous landing a
UAV on a fixed pad relying solely on raw visual inputs. The entire system is based on a Sequential
Deep Q-Network, composed of two DQNs that control the UAV in two phases: landmark alignment
and vertical descent. Using domain randomization, the DQNs were trained only in simulation using
simple uniform textures and later tested in complex environments, both simulated and real. The overall
performances are comparable with a state-of-the-art AR-tracker algorithm and human pilots. More
precisely, the system is faster than humans in reaching the pad and more robust to marker corruption
than the AR-tracker. The most remarkable outcome is that the networks were able to generalize to
real environments despite the training was performed only in simulation and with a limited subset of
textures. One of the limitations of this approach is the possible mismatch between performances at
training and test time when there is a considerable domain shift in the two phases due to different
environmental conditions (e.g., different lighting and drift). In future work, we aim at improving
the results taking into account these factors during the simulated training phase so to improve the
performances in the real world. In conclusion, the promising results reported in this paper show
that raw visual inputs can be successfully combined with deep reinforcement learning for solving
challenging robotics tasks such as the landing of a UAV.

Author Contributions: R.P. and M.P. conceived and designed the Sequential Deep Q-Network method, realized
the experiments, analyzed the data, and wrote the article. R.P. designed and implemented the controller of the
drone (both real and simulated). M.P. defined and implemented the partitioned buffer replay and the reinforcement
learning stack. M.H. and G.N. provided supervision, guidance, and the funding to sustain the project. All authors
have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from EPSRC under grant agreement
EP/R02572X/1 (National Center for Nuclear Robotics).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature
2015, 518, 529–533. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Robotics 2020, 9, 8 17 of 18

2. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. In Proceedings of the 2017 IEEE international conference on robotics and
automation (ICRA), Singapore, Singapore, 29 May–3 June 2017; pp. 3389–3396.

3. Andrychowicz, O.M.; Baker, B.; Chociej, M.; Jozefowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert,
M.; Powell, G.; Ray, A.; et.al. Learning dexterous in-hand manipulation. Int. J. Rob. Res. 2020, 39, 3–20.
[CrossRef]

4. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots
for mapless navigation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 31–36.

5. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation
in indoor scenes using deep reinforcement learning. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, Singapore, 29 May–3 June 2017; pp. 3357–3364.

6. Kahn, G.; Villaflor, A.; Ding, B.; Abbeel, P.; Levine, S. Self-supervised deep reinforcement learning with
generalized computation graphs for robot navigation. In Proceedings of the 2018 IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1–8.

7. Ha, D.; Schmidhuber, J. Recurrent world models facilitate policy evolution. In Proceedings of the Advances
in Neural Information Processing Systems, Montréal, Canada, 2–8 December 2018; pp. 2450–2462.

8. Thabet, M.; Patacchiola, M.; Cangelosi, A. Sample-efficient Deep Reinforcement Learning with Imaginary
Rollouts for Human-Robot Interaction. arXiv 2019, arXiv:1908.05546 .

9. Zhang, F.; Leitner, J.; Milford, M.; Corke, P. Modular deep q networks for sim-to-real transfer of visuo-motor
policies. arXiv 2016, arXiv:1610.06781 .

10. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 23–30.

11. Tobin, J.; Biewald, L.; Duan, R.; Andrychowicz, M.; Handa, A.; Kumar, V.; McGrew, B.; Ray, A.; Schneider,
J.; Welinder, P.; et al. Domain randomization and generative models for robotic grasping. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 3482–3489.

12. Polvara, R.; Patacchiola, M.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R.; Cangelosi, A. Toward End-to-End
Control for UAV Autonomous Landing via Deep Reinforcement Learning. In Proceedings of the 2018
International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018;
pp. 115–123. [CrossRef]

13. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings
of the Thirtieth AAAI conference on artificial intelligence, Phoenix, AZ, USA, 12–17 February 2016;
pp. 2094–2100.

14. Thrun, S.; Schwartz, A. Issues in using function approximation for reinforcement learning. In Proceedings of
the 1993 Connectionist Models Summer School, 1st ed.; Psychology Press: London, UK, 1993.

15. Forster, C.; Faessler, M.; Fontana, F.; Werlberger, M.; Scaramuzza, D. Continuous on-board
monocular-vision-based elevation mapping applied to autonomous landing of micro aerial vehicles.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 26–30 May 2015; pp. 111–118.

16. Sukkarieh, S.; Nebot, E.M.; Durrant-Whyte, H.F. A high integrity IMU/GPS navigation loop for
autonomous land vehicle applications. IEEE Trans. Robo. Autom. 1999, 15, 572–578. [CrossRef]

17. Baca, T.; Stepan, P.; Saska, M. Autonomous landing on a moving car with unmanned aerial vehicle.
In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France, 6–8 September
2017; pp. 1–6.

18. Beul, M.; Houben, S.; Nieuwenhuisen, M.; Behnke, S. Fast autonomous landing on a moving target at
MBZIRC. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France, 6–8
September 2017, pp. 1–6.

19. Bähnemann, R.; Pantic, M.; Popović, M.; Schindler, D.; Tranzatto, M.; Kamel, M.; Grimm, M.; Widauer, J.;
Siegwart, R.; Nieto, J. The ETH-MAV Team in the MBZ International Robotics Challenge. J. Field Rob. 2009,
36, 78–103. [CrossRef]

http://dx.doi.org/10.1177/0278364919887447
http://dx.doi.org/10.1109/ICUAS.2018.8453449
http://dx.doi.org/10.1109/70.768189
http://dx.doi.org/10.1002/rob.21824

Robotics 2020, 9, 8 18 of 18

20. Gui, Y.; Guo, P.; Zhang, H.; Lei, Z.; Zhou, X.; Du, J.; Yu, Q. Airborne vision-based navigation method for
uav accuracy landing using infrared lamps. J. Intell. Rob. Syst. 2013, 72, 197. [CrossRef]

21. Tang, D.; Hu, T.; Shen, L.; Zhang, D.; Kong, W.; Low, K.H. Ground stereo vision-based navigation for
autonomous take-off and landing of uavs: a chan-vese model approach. Int. J. Adv. Rob. Syst. 2016, 13, 67.
[CrossRef]

22. Lin, S.; Garratt, M.A.; Lambert, A.J. Monocular vision-based real-time target recognition and tracking for
autonomously landing an UAV in a cluttered shipboard environment. Autono. Robots 2017, 41, 881–901.
[CrossRef]

23. Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; Davide, S. Vision-based Autonomous Quadrotor
Landing on a Moving Platform. In Proceedings of the 2017 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 200–207.

24. Serra, P.; Cunha, R.; Hamel, T.; Cabecinhas, D.; Silvestre, C. Landing of a Quadrotor on a Moving Target
Using Dynamic Image-Based Visual Servo Control. IEEE Trans. Rob. 2016, 32, 1524–1535. [CrossRef]

25. Lee, D.; Ryan, T.; Kim, H.J. Autonomous landing of a VTOL UAV on a moving platform using image-based
visual servoing. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 971–976.

26. Kersandt, K. Deep Teinforcement Learning as Control Method for Autonomous Uavs. Master’s Thesis,
Universitat Politècnica de Catalunya, Catalonia, Spain, February 2017.

27. Xu, Y.; Liu, Z.; Wang, X. Monocular Vision based Autonomous Landing of Quadrotor through Deep
Reinforcement Learning. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan,
China, 25–27 July 2018 ; pp. 10014–10019, [CrossRef]

28. Lee, S.; Shim, T.; Kim, S.; Park, J.; Hong, K.; Bang, H. Vision-Based Autonomous Landing of a Multi-Copter
Unmanned Aerial Vehicle using Reinforcement Learning. In Proceedings of the 2018 International
Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 108–114.
[CrossRef]

29. Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; De La Puente, P.; Campoy, P. A deep reinforcement
learning strategy for UAV autonomous landing on a moving platform. J. Intell. Rob. Syst. 2019, 93, 351–366.
[CrossRef]

30. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

31. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952 .
32. Nonami, K.; Kendoul, F.; Suzuki, S.; Wang, W.; Nakazawa, D. Autonomous Flying Robots: Unmanned Aerial

Vehicles and Micro Aerial Vehicles, 1st ed.; Springer: Berlin, Germany, 2010.
33. Goldstein, H. Classical Mechanics, 2nd ed.; World Student Series; Addison-Wesley: Reading, MA, USA;

Menlo Park, CA, USA; Amsterdam, The Netherland, 1980.
34. Barto, A.G.; Mahadevan, S. Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst.

2003, 13, 341–379. [CrossRef]
35. Narasimhan, K.; Kulkarni, T.; Barzilay, R. Language understanding for text-based games using deep

reinforcement learning. arXiv 2015, arXiv:1506.08941 .
36. WawrzyńSki, P.; Tanwani, A.K. Autonomous reinforcement learning with experience replay. Neural Netw.

2013, 41, 156–167. [CrossRef] [PubMed]
37. Polvara, R.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R. Towards autonomous landing on a moving vessel

through fiducial markers. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR),
Paris, France, 6–8 September 2017; pp. 1–6. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10846-013-9819-5
http://dx.doi.org/10.5772/62027
http://dx.doi.org/10.1007/s10514-016-9564-2
http://dx.doi.org/10.1109/TRO.2016.2604495
http://dx.doi.org/10.23919/ChiCC.2018.8482830
http://dx.doi.org/10.1109/ICUAS.2018.8453315
http://dx.doi.org/10.1007/s10846-018-0891-8
http://dx.doi.org/10.1023/A:1025696116075
http://dx.doi.org/10.1016/j.neunet.2012.11.007
http://www.ncbi.nlm.nih.gov/pubmed/23237972
http://dx.doi.org/10.1109/ECMR.2017.8098671
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Definition and Notation
	Landmark Alignment
	Vertical Descent
	Vehicle Characteristics

	Proposed Method
	Sequential Deep Q-Networks (SDQN)
	Partitioned Buffer Replay
	Training through Domain Randomization
	Suitability of the Method to Robotics Applications

	Experiments
	Methods
	Results

	Real World Implementation
	Discussion and Conclusions
	References

