KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Reinforcement Learning for Swarm Systems

Hüttenrauch, Maximilian; Adrian, Sosic; Neumann, Gerhard

Abstract:

Recently, deep reinforcement learning (RL) methods have been applied successfully to multi-agent scenarios. Typically, the observation vector for decentralized decision making is represented by a concatenation of the (local) information an agent gathers about other agents. However, concatenation scales poorly to swarm systems with a large number of homogeneous agents as it does not exploit the fundamental properties inherent to these systems: (i) the agents in the swarm are interchangeable and (ii) the exact number of agents in the swarm is irrelevant. Therefore, we propose a new state representation for deep multi-agent RL based on mean embeddings of distributions, where we treat the agents as samples and use the empirical mean embedding as input for a decentralized policy. We define different feature spaces of the mean embedding using histograms, radial basis functions and neural networks trained end-to-end. We evaluate the representation on two well-known problems from the swarm literature — rendezvous and pursuit evasion — in a globally and locally observable setup. For the local setup we furthermore introduce simple communication protocols. ... mehr

Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 1532-4435, 1533-7928
KITopen-ID: 1000118251
Erschienen in Journal of machine learning research
Verlag Journal of Machine Learning Research
Band 20
Heft 54
Seiten 1–31
Externe Relationen Abstract/Volltext
Schlagwörter deep reinforcement learning, swarm systems, mean embeddings, neural networks, multi-agent systems
Nachgewiesen in Web of Science
Scopus
Relationen in KITopen

Verlagsausgabe §
DOI: 10.5445/IR/1000118251
Veröffentlicht am 20.04.2020
Scopus
Zitationen: 159
Web of Science
Zitationen: 146
Seitenaufrufe: 183
seit 21.04.2020
Downloads: 96
seit 24.04.2020
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page