KIT | KIT-Bibliothek | Impressum | Datenschutz

Expected Information Maximization: Using the I-Projection for Mixture Density Estimation

Becker, Philipp; Arenz, Oleg; Neumann, Gerhard

Abstract (englisch):

Modelling highly multi-modal data is a challenging problem in machine learning.
Most algorithms are based on maximizing the likelihood, which corresponds
to the M(oment)-projection of the data distribution to the model distribution.
The M-projection forces the model to average over modes it cannot represent.
In contrast, the I(nformation)-projection ignores such modes in the data and concentrates on the modes the model can represent.
Such behavior is appealing whenever we deal with highly multi-modal data where modelling single modes correctly is more important than covering all the modes.
Despite this advantage, the I-projection is rarely used in practice due to the lack of algorithms that can efficiently optimize it based on data.
In this work, we present a new algorithm called Expected Information Maximization (EIM) for computing the I-projection solely based on samples for general latent variable models, where we focus on Gaussian mixtures models and Gaussian mixtures of experts.
Our approach applies a variational upper bound to the I-projection objective which decomposes the original objective into single objectives for each mixture component as well as for the coefficients, allowing an efficient optimization. ... mehr

Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2020
Sprache Englisch
Identifikator KITopen-ID: 1000118434
Erschienen in 8th International Conference on Learning Representations (ICLR 2020)
Veranstaltung 8th International Conference on Learning Representations (ICLR 2020), Online, 25.04.2020 – 30.04.2020
Bemerkung zur Veröffentlichung Die Veranstaltung fand wegen der Corona-Pandemie als Online-Event statt
Externe Relationen Siehe auch
Schlagwörter density estimation, information projection, mixture models, generative learning, multimodal modeling
Relationen in KITopen

Verlagsausgabe §
DOI: 10.5445/IR/1000118434
Veröffentlicht am 21.04.2020
Seitenaufrufe: 160
seit 20.04.2020
Downloads: 72
seit 03.05.2020
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page