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1 | INTRODUCTION AND

MOTIVATION

Dogan Keles

| Wolf Fichtner

Abstract

The forecasting of prices for electricity balancing reserve power can essentially
improve the trading positions of market participants in competitive auctions.
Having identified a lack of literature related to forecasting balancing reserve
prices, we deploy approaches originating from econometrics and artificial
intelligence and set up a forecasting framework based on autoregressive and
exogenous factors. We use SARIMAX models as well as neural networks with
different structures and forecast based on a rolling one-step forecast with
reestimation of the models. It turns out that the naive forecast performs rea-
sonably well but is outperformed by the more advanced models. In addition,
neural network approaches outperform the econometric approach in terms of
forecast quality, whereas for the further use of the generated models the
econometric approach has advantages in terms of explaining price drivers. For
the present application, more advanced configurations of the neural networks

are not able to further improve the forecasting performance.

KEYWORDS

artificial neural network, balancing reserve, econometrics, electricity price, time series
forecasting

distinguished in continental Europe. The different quality
requirements lead to market segments for primary (fre-
quency containment reserve, FCR), secondary (automatic

Transmission system operators (TSOs) have responsibility
for a secure electricity system operation, which includes
ensuring a stable grid frequency of 50 hertz within their
designated control areas. This is achieved by continu-
ously balancing power feed-in and withdrawal.

To balance frequency perturbations, balancing
reserve capacity is deployed by the TSOs. Balancing
reserve capacity is characterized by a short reaction time
and the ability to increase or decrease the power feed-in
quickly upon request. Depending on the response and
the activation time, three different qualities are

frequency restoration reserve, aFRR), and tertiary (man-
ual frequency restoration reserve, mFRR) balancing
reserve power, in which FCR has, at 30 seconds, the
shortest activation time. In the past, mainly conventional
generation such as nuclear, coal and gas power plants,
but also hydropower, were the only providing technolo-
gies of balancing reserve power. In recent years, new
technologies entered the market and, by today, renew-
able energies such as biomass, photovoltaics and wind
power, but also battery storage, are technically capable of

providing  balancing reserve. = Because  market
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liberalization TSOs are not allowed to own generation
capacity, they procure positive and negative reserve
capacities meeting different quality requirements through
public tenders. These markets for balancing reserve coex-
ist alongside derivative and spot markets for electricity,
enabling additional return opportunities for generators
by meeting the respective requirements.

The auctions for FCR take place on a weekly basis
each Tuesday at 3 p.m. and are dedicated to the provision
of FCR in both a positive and negative direction for the
following week. Market participants place a capacity
price bid and are compensated according to pay-as-bid
pricing.

This paper focuses on forecasting the prices of the
largest European FCR market, in which the TSOs of the
control zones of Austria, Belgium, France, Germany, the
Netherlands, and Switzerland jointly' procure roughly
1.4 gigawatts of FCR capacity for the upcoming week in
an auction. Providers of FCR are compensated for capac-
ity reservation based on the reserve power price, whereas
delivered energy itself is not a matter of compensation.”
Therefore, market players require appropriate forecasts
of the week-ahead FCR power prices to be successful in
the related auctions.

An individual supplier faces the tradeoff between the
profit from selling FCR and the opportunity costs of the
alternative use of flexible capacity, like bidding on the
day ahead or the intraday market. Additionally, if the
supplier decides to provide FCR, the technical unit has to
be online for the entire week of provision. In the case of
a power plant with minimum load requirements, the pro-
vider risks costs induced by negative contribution mar-
gins. Therefore, in order to prepare an adequate offer for
the FCR tender and the other market segments, high-
quality price forecasts are inevitable.

However, forecasting of FCR power prices has hardly
been addressed in the forecasting literature (see Sec-
tion 2). For this reason, we develop and introduce ade-
quate forecasting models based on seasonal integrated
autoregressive moving average (ARMA) models with
exogenous regressors (SARIMAX) as explanatory vari-
ables and compare their results with methods from a sec-
ond model family, the neural-network-based models.
From the latter, we set up an experiment design to
develop high-performing neural networks. The goal of
this study is to find not only well-performing forecast

"Note that France joined the procurement union in 2017 and
subsequently provides more than a third of the required FCR. However,
the market entry of France is considered in the model building, as the
structural change may have introduced correlations and dynamics,
which data from before 2017 do not contain.

2This is due to the fact that activation is hardly predictable and the
delivered energy amount has an expected value of zero.

methods but also their appropriate configuration in terms
of hyperparameters and training strategies.

We find that both neural networks and SARIMAX
models are capable of forecasting FCR prices reasonably
well. For the neural networks, the simple network struc-
tures outperform the more sophisticated ones. The
applied overfitting and ensembling techniques lead to sig-
nificantly better forecast results and provide a solution to
the problem of training data scarcity.

The main contributions and novelty of this paper are
as follows:

1 Application and comparison of statistical and neural
network models to price forecasting in reserve power
markets that increasingly gain more importance in the
energy transition era.

2 Description and discussion of training strategies for
forecasting reserve power prices with neural networks
on a scarce data basis.

3 Definition and discussion of appropriate target vari-
able in the case of FCR prices in a market that is
designed as a pay-as-bid auction.

4 Discussion on suitability and performance of simple
and more sophisticated network structures for the
mentioned market prices.

In this context, the paper is structured as follows. In Sec-
tion 2, we review different approaches to forecast short-
term electricity market prices in the literature. In Sec-
tion 3, we deploy forecasting approaches considering
autoregressive processes and exogenous drivers: precisely,
a SARIMAX approach and artificial neural network
models (ANN). Hereby, we consider feedforward units
and set up an experiment design which deploys different
model structures and training strategies. Finally, in Sec-
tion 4, we apply the approaches to the stated forecasting
problem and compare the performances. In Section 5, we
conclude the findings and provide an outlook on future
developments.

2 | RELATED LITERATURE

Among the first looking into the issue of reserve pricing
and costs from a market perspective are Kirsch and
Singh (1995). They provide an overview over the cost
components of reserve power: opportunity costs of fore-
gone sales, costs of uneconomic operation, potential
startup and shutdown costs, costs resulting from frequent
load changes and costs caused by efficiency losses. In
addition, as applies for pricing electricity in the wholesale
market, on the one hand the short-term marginal costs
have to be considered. These are mainly determined by
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fuel and operation costs and can be increased due to par-
tial load operation and decreased efficiency. On the other
hand, the capital costs and other fixed costs need to be
recovered by contribution margins generated in the mar-
ket in the long term.

Weron (2014) finds that the actual modeling and fore-
casting of prices from balancing reserve and ancillary ser-
vices markets has been comparatively rare in the
literature. Exceptions include Olsson and Soder (2008),
who model real-time balancing reserve power market
prices in the Nordic market by using combined SARIMA
and discrete Markov process models. They conclude that
the developed model combination is suitable to use for
the generation of real-time balancing power price scenar-
ios. Kleboe, Eriksrud, and Fleten (2013) benchmark
time-series-based forecasting models, and Dimoulkas,
Amelin, and Hesamzadeh (2016) apply a hidden Markov
model to forecast balancing reserve market prices for the
Nordic market. They argue that activation of the
balancing reserve occurs randomly and an activation-
based price is therefore hardly predictable. Unfortu-
nately, unlike the tenders considered in the present
paper, the considered market design in the Nordic mar-
ket is based on payments for reserve activation and not
for the provision of reserve power.

Just and Weber (2008) consider an equilibrium
model with two alternative competitive markets: the
secondary balancing reserve power and an hourly elec-
tricity spot market. They valuate the provision of
balancing reserve by quantifying the opportunity to spot
market sales and deduce a development of capacity
prices for secondary balancing reserve power for the
German case. However, they do not apply the equilib-
rium model to forecast prices and do not include FCR
in their investigations.

Finally, Wang, Zareipour, and Rosehart (2014) inves-
tigate the application of established stochastic approaches
for modeling the behavior of operating reserve and regu-
lation prices in the North American electricity markets,
which, like the Nordics, are based on activation rather
than provision of balancing reserve power. The investi-
gated models are descriptive and not designed for gener-
ating short-term forecasts. The authors point out that
reserve and regulation prices are characterized by higher
volatility, lower mean, more frequent price spikes, and a
more skewed distribution compared to electric energy
prices. Thus modeling reserve power prices is potentially
more challenging.

In contrast to forecasting reserve market prices, fore-
casting of electricity spot market prices is a field that has
been pervasively studied (Weron, 2014). For example,
Kiesel and Paraschiv (2017) and Bublitz, Keles, and
Fichtner (2017) mention fundamental price drivers such

as load, fuel prices, unavailable generation capacity, and
renewable energies' feed-in as suitable exogenous regres-
sors to forecast electricity prices.

ANN forecasting of hourly day-ahead -electricity
prices and a comparison to econometric benchmarks was
first applied by Catalao, Mariano, Mendes, and
Ferreira (2007), who find a good forecasting performance
of ANN on the Spanish and the Californian market.
Lago, Ridder, and Schutter (2018) study the Belgian day-
ahead electricity market and consider a large set of possi-
ble forecasting models, concluding a significant domi-
nance of machine learning over the statistical models in
terms of forecasting accuracy. Ugurlu, Oksuz, and
Tas (2018) and Oksuz and Ugurlu (2019) forecast the
Turkish day-ahead and intraday market electricity prices
with different neural networks configurations, including
feedforward, gated recurrent unit (GRU) and long short-
term-memory (LSTM) model designs. The authors con-
clude a significant dominance of GRU model designs and
state an improvement with increasingly sophisticated
network structures. Giovanelli, Sierla, Ichise, and
Vyatkin (2018) forecast the hourly day-ahead balancing
prices of the Finnish market and compare neural net-
works in various parameter configurations with support
vector regression and autoregressive integrated moving
average (ARIMA) models. They find that the amount of
training data is a key impact on the forecasting perfor-
mance of the models, whereas different training strate-
gies, algorithms, and activation functions performed
similarly well.

The methodological approach of comparing models
originating from econometrics with machine learning
models has been applied to several scopes in the litera-
ture. Chatfield (1996) and Adya and Collopy (1998) pro-
vide a theoretical foundation for the need to consider
both econometric models and machine learning
approaches such as neural networks in forecasting. They
conclude that the model setup requires a careful choice
of external regressors with regard to out-of-sample-fit in
order to respect model uncertainty (Chatfield, 1996) and
that well-designed ANN models have the potential to out-
perform econometric approaches in forecasting applica-
tions (Adya & Collopy, 1998). Early studies deploying
both econometric and ANN models include applications
in forecasting electricity demand (Liu et al., 1991), con-
sumer expenditure (Church & Curram, 1996), retail sales
(Alon, Qi, & Sadowski, 2001), foreign exchange rates
(Qi & Zhang, 2001; Yao & Tan, 2000), gross domestic
product (GDP) growth (Tkacz, 2001), stock returns
(Olson & Mossman, 2003; Qi & Zhang, 2001), and infla-
tion rates (Binner, Bissoondeeal, Elger, Gazely, &
Mullineux, 2005). The studies confirm the conclusion
regarding the forecasting potential of well-designed
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neural networks drawn by Adya and Collopy and suggest
the adaption of the study design to FCR price forecasting.

However, for all mentioned studies the data basis for
training the model is comprehensive. In particular, the
studies on electricity prices rest on hourly data of several
years and the neural networks thus have plenty of obser-
vations to learn from. Further, spot market prices are typ-
ically well explainable by fundamental factors (see,
e.g., Bublitz et al, 2017; Kiesel & Paraschiv, 2017;
Weron, 2014). Conversely, a challenge in forecasting
balancing reserve market prices lies in the fact that they
are hardly explainable by fundamental drivers (Kraft,
Keles, & Fichtner, 2018; Ocker, Ehrhart, & Belica, 2018).
However, Ocker and Ehrhart (2017) find evidence for col-
lusion among market participants and serial correlation
in the auction results of the secondary reserve market.
Another key challenge in this paper is based on a rela-
tively sparse database, consisting of weekly data from the
years 2017 and 2018. To cope with the data scarcity, we
deploy ensembling and overfitting strategies (see Sec-
tion 3) that, to the best knowledge of the authors, have
not been deployed in electricity price forecasting before.

We are well aware that commercial providers offer
forecasts for the considered FCR market. Unfortunately,
however, these commercial providers publish neither
their methodologies in detail nor historic forecast time
series as a benchmark. In the next section, we will there-
fore follow Weron (2014), who classifies short-term price
forecasting models into time series analysis approaches
and artificial intelligence or machine learning
approaches. We will set up and deploy forecasting models
for the FCR price based on both time series analysis
(SARIMAX) and ANN.

3 | METHODOLOGY

The literature review in the previous section displayed a
lack of scientific publications in the field of FCR price
forecasting and suggested the application of, on the one
hand, approaches coming from time series analysis, and,
on the other hand, approaches coming from machine
learning. To obtain a benchmark that is neither time
series based nor machine learning based, a naive fore-
cast’ is taken as a benchmark. Preliminary analyses
showed that for FCR prices the naive forecast outper-
forms linear regression and can well compete with a
SARIMA approach (Kraft, Rominger, Mohiuddin, &
Keles, 2019). In Section 3.1, owing to the pay-as-bid auc-
tion design, first the dependent variable is defined and its

*The naive forecast equals the expectation of having the same price as
in the last auction.

time series is analyzed briefly. In Section 3.2, the exoge-
nous variables required for the forecasting approaches
are introduced and their preprocessing is explained. Sec-
tions 3.3 finally presents the setup and training of the
SARIMAX and ANN models.

3.1 | Definition of dependent variable and
time series analysis

As FCR tenders are pay-as-bid auctions, there is no uni-
form settlement price but each market participant
receives its price bid as remuneration. Prior to setting up
a highly sophisticated forecasting model, it is necessary
to define a suitable dependent variable. Analysis of the
FCR market results from 2014 to 2018:Q3 (Figure 1)
shows the range of accepted bids as well as the capacity-
weighted average price in each auction. From the rela-
tively low gap between the capacity-weighted average
price and the respective marginal price (except for single
spikes), we conclude that the capacity-weighted average
is a suitable target variable for the forecast. The main
errors induced by using the capacity-weighted average
instead of the maximum price, for example, arise in
periods with price spikes. However, considering that a
risk-neutral trader would not speculate on the height of
price spikes, the capacity-weighted average remains the
favorable forecast target.

The time series contains seasonality, mainly induced
by a strong price increase over the Christmas holidays
and a moderate price increase in early summer of each
year. In general, the time series shows a decreasing trend.
To check the time series for stationarity, it was tested
with Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit
root tests (Kwiatkowski, Phillips, Schmidt, & Shin, 1992).
The nondifferenced time series rejects the stationarity
null hypothesis at 1% significance; the series of first dif-
ferences (shown in Figure 2) does not reject the
stationarity null hypothesis. The econometric models will
therefore be estimated with a SARIMAX approach with
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FIGURE 1 FCR price development from 2014 to 2018:Q3
(own illustration based on data from regelleistung.net, 2019)
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FIGURE 2 First differences of capacity-weighted average of
accepted FCR bids from 2014 to 2018:Q3 (own illustration based on
data from regelleistung.net, 2019)

the undifferentiated time series of capacity-weighted
averages as dependent variable y. The SARIMAX
approach allows us to endogenously model the first dif-
ferences Ay of the time series in order to derive forecasts
regarding the forecast target. The autocorrelation func-
tion (ACF) of the differenced time series indicates a sig-
nificant correlation with lag 1, lag 2, lag 50, and lag
52 (see Figure 3). Thus, for model training and predic-
tion, Ay; _ 1, Ay, _ 2, Ay, _ 50, and Ay, _ 5, are supplied as
the respective lags.

For the ANN models, the dependent variable is
defined as the first difference Ay of the capacity-weighted
price time series, corresponding to the difference between
the price of the current and the price of the previous auc-
tion. In order to return to the desired FCR price predic-
tion, the predicted difference is added to the FCR price of
the previous auction. This procedure complies intuitively
with the SARIMAX model, which likewise intends to
estimate the first differences instead of the actual forecast
target, and is therefore considered a suitable comparative
approach.

Table 1 summarizes the statistical properties of mean,
median, standard deviation, skewness, and kurtosis for
the times series of the differences of FCR prices in the
period of investigation 2017* to 2018:Q3 with a total
number of 88 observations.

3.2 | Identification and pre-processing of
exogenous variables

As there is no explicit literature on exogenous regressors
with regard to balancing reserve prices, several regressors
that are commonly used in models for other electricity
prices (see, e.g., Bublitz et al, 2017; Kiesel &

“As France joined the joint auction at the start of 2017, data from before
that date may not include all interdependencies and lead to a wrong
model fitting.

Lag

FIGURE 3 Autocorrelation function (ACF) of differenced
time series (own illustration based on data from regelleistung.
net, 2019) [Colour figure can be viewed at wileyonlinelibrary.com]

Paraschiv, 2017) are considered as exogenous regressors
in this study. Representing, among others, opportunity
costs for reserve provision and a scarcity in the market,
the following possible predictors are identified:

« price range and skewness of FCR bids in previous auc-
tion (regelleistung.net, 2019);

« average electricity price of week-ahead future
German-Austrian (DE-AT)’ and French (FR) market
area (EEX, 2019);

« average day-ahead electricity spot market price in DE-
AT and FR (EEX, 2019);

« average load forecast and realized load for DE-AT and
FR (ENTSO-E, 2019);

« number of German public holidays in a week (ENTSO-
E, 2019);

« planned unavailable capacity in DE-AT and FR
(ENTSO-E, 2019).

Note that exogenous factors like wind and photovoltaic
power feed-in are not considered, as the auction for FCR
procurement takes place 1 week ahead and the volatile
renewable feed-in is hardly predictable at these time-
scales. However, the future price includes the effect of
the expected wind and photovoltaic power feed-in in the
respective week due to the merit-order effect. We thus
implicitly consider for volatile renewable energy sources
to some extent.

For the selection of predictors from the list above, the
corrected Akaike information criterion (AIC; Hyndman &

>As the DE-AT future product was split up into DE and AT future
products, the volume-weighted average of DE-AT and DE futures is
taken for 2018.
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TABLE 1  Descriptive statistics of the differences of FCR prices
Variable n Mean Median SD Skewness Kurtosis
Differences, FCR price 88 -8.13 9.62 178.58 1.91 15.38

Athanasopoulos, 2013) of a linear regression model®
applied to 2017 data is used. Other popular information
criteria for model selection contain the regular AIC and
the Bayesian information criterion (BIC). By penalizing
the number of parameters, the corrected AIC accounts
for and adjusts the tendency of the AIC to prefer models
with too many parameters when sample sizes are rela-
tively low. Due to the relatively low sample size, the AIC
was not considered in predictor selection. By penalizing
the number of parameters, the corrected AIC accounts
for and adjusts the tendency of the AIC to prefer models
with too many parameters when sample sizes are rela-
tively low. Among all predictor combinations, the set of
exogenous predictors containing the FCR price range, the
future price DE-AT, the future price FR, the load in DE-
AT, the load in FR and the planned unavailable capacity
in DE achieved the lowest corrected AIC, corresponding
to the best fit in the linear regression on the 2017 data. A
selection based on the BIC leads to a similar parameter
set as the ranks of the models sorted by BIC are compara-
ble to the ranks sorted by the corrected AIC. For exam-
ple, the best model in terms of BIC chooses the load
forecast in FR instead of the realized load in FR and drops
the future price of FR. For the scope of the paper to con-
figure and compare the SARIMAX and ANN forecasts,
we consider the choice of regressors according to the
corrected AIC to be suitable. As French nuclear power
plants contribute a significant share to the FCR provi-
sion, the planned unavailable capacity in FR is added to
the predictor set chosen by the corrected AIC. Although
the chosen predictor set x may not be the best for all
models, all forecasting approaches are deployed in the
following with the same selected set for reasons of consis-
tency and comparability.”

®Linear regression models the differences of the FCR price time series
(dependent variable = Ay) with the different sets of exogenous
variables. The regression was chosen over a simple correlation analysis
as the latter might not respect interdependencies between the
independent variables. In particular, load and electricity prices are
highly correlated and should thus not be handled independently.

"The predictor set containing the planned unavailable capacity in
France instead of the planned unavailable capacity in Germany was the
eighth best (of 16,383) behind variations of the highly correlated load
and load forecast in Germany and in France. The corrected AIC
penalizes adding a predictor to the set; thus the predictor set finally
used was not among the favorites of corrected AIC. Nevertheless, as
mentioned above, we consider the unavailable capacity in France a
relevant predictor variable and included it in the investigation.

The preprocessing consists of a validity check of the
raw data, the calculation of descriptives to be used in the
modeling (e.g. weighted average, range or skewness), and
finally a normalization. Normalization has been dis-
cussed at many points in the context of time series fore-
casting and neural networks (see, e.g., Kaastra &
Boyd, 1996; Keles, Scelle, Paraschiv, & Fichtner, 2016).
For ANN, it is particularly important to choose the nor-
malization range according to the intended activation
function of the neurons. As having a common value
range of all target and predictor variables leads to a more
stable functioning of the related fitting algorithms and
does not change the results, we normalize the data
between zero and one by subtracting the minimum value
and dividing by the range of values.

3.3 | Setup and training of models

For training and forecasting with the SARIMAX and
ANN models, a cross-validation approach called rolling
one-step forecast with model reestimation is set up (see,
e.g., Arlot & Celisse, 2010). In this approach, models are
fitted with training data in order to predict the value of
the single next step. In the reference training strategy the
training data set is extended by one step for each forecast
step, which is also referred to as an expanding window.
In our case, the initial training data set consists of the
52 observations from 2017. As can be seen in Figure 4,
the training data set for week 1 of 2018 consists of all
2017 data, the training data set for week 2 of 2018 con-
sists of the 2017 data plus week 1 of 2018, and so on. In
this way, the best information available to the trader at
the forecasting time is used in the forecast. As a conse-
quence, there is no single model but as many models as
forecasting steps for each approach presented in the fol-
lowing paragraphs.

As the analysis of the price time series in Section 3.1
revealed different price characteristics over time, in addi-
tion to the expanding window, a rolling window of size
10 is considered in the experimental design for training
the ANN. The rationale behind having a rolling window
is to make the networks more adaptive to changing
dependencies over time and to focus on the recent obser-
vations, not distorting the network learning from nonre-
levant information from the past. However, the rolling
window obviously bears the risk of further enhancing the
data scarcity problem and leading to worse prediction
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results as well as less robust models. In this way, the
strength of more sophisticated network structures cannot
be exploited in the same way that is possible with a larger
training data set.

3.3.1 | SARIMAX model

The setup of a SARIMA(p,d,q) (P,D,Q),,, model consists of
defining the optimal values for the hyperparameters
(Brockwell & Davis, 2016):

« p: trend autoregression order;

« d: trend difference order;

« g: trend moving average order;

« P:seasonal autoregression order;

« D: seasonal difference order;

« (Q: seasonal moving average order;

« m: time steps for a single seasonal period.

In addition, to apply a SARIMAX model we include the
exogenous predictor variables x presented in Section 3.2
with the same order as the trend autoregression order.®
As mentioned in Section 3.1, the KPSS test suggests a dif-
ference order d = 1. The ACF of the differenced time
series indicates a significant correlation with lag 1, lag
2, lag 50 and lag 52 (see Figure 3). Therefore, the SAR-
IMAX model is set up with the trend autoregression
order p = 2 to consider lags 1 and 2; lags 50 and 52 are
considered by the seasonal hyperparameters. For the
remaining hyerparameters, a parameter grid search is
performed to fit the optimal model of SARIMAX class to
the training data by deploying a variation of the
Hyndman-Khandakar algorithm. It deploys and com-
bines iterative unit root tests, minimization of the AICc
and maximum-likelihood estimation to obtain the opti-
mal model order. The training of the models is a side
effect of the used algorithm and based on maximum-
likelihood estimation. For further details, see Hyndman
and Khandakar (2008).

SWith p = 2 leading to x; _ ; and x; _ , as model input.

3.3.2 | Artificial neural networks

Whereas the econometric approach fits the model to the
training data by assuming linear relationships between
inputs and outputs, ANN are capable of training
nonlinear relationships of the input data to explain the
variations in the dependent variable. In the following
paragraphs the configuration and training of the ANN
are presented, which comprises the description of the
important hyperparameters—neurons per hidden layer,
number of hidden layers, which training data to select,
and which training hyperparameters to apply—and their
variations in the experiment design. In a first step, the
ANN are set up by defining the network structure and
units. In a second step, training strategies are defined to
specify the way the training data are processed through
the networks. However, there are infinite possible combi-
nations of network configurations as well as training
strategies.

In the following, we present a reference model config-
uration and an experimental design with variations in
the number of hidden layers and number of neurons per
layer. As the application of forecasting FCR prices offers
- compared to other applications of neural networks such
as picture classification or language processing - few
training data, in this paper multilayer perceptron
feedforward models are deployed. In the working pro-
cess, further advanced model developments such as
recurrent network structures with GRU as neurons were
also assessed but yielded no improvement. Therefore,
they are not presented in the following. For the sake of
completeness, the hyperparameters and training configu-
rations and results of the GRU forecasts are provided in
Tables A and B in the Appendix.

As a reference, a feedforward model with one hidden
layer and 10 neurons using a rectifier activation function,
often referred to as rectified linear units (ReLU),’ is

“Rectifier activation functions have become very well known in deep
learning recently, outperforming the more known logistic and
hyperbolic tangent activation functions (see, e.g., Glorot, Bordes, &
Bengio, 2011; LeCun, Bengio, & Hinton, 2015; Ramachandran,
Barret, & Quoc, 2017).
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configured. The choice of the number of neurons per hid-
den layer is important in the setup of a network. Gener-
ally, there is no optimal model configuration algorithm,
but there are many rules-of-thumb. One of them suggests
a number below the half of input nodes and approxi-
mately two thirds of the sum of input and output nodes.
Although this is only a rule-of-thumb and the choice is
problem specific, we conclude 10 to be a reasonable num-
ber of neurons per hidden layer for the reference model.
To gain insight into the sensitivity of the number of neu-
rons per layer, in the experimental design the design vari-
able is varied with levels 10 and 20.

The second hyperparameter choice in the model con-
figuration is the number of hidden layers. For the refer-
ence model, one hidden layer is chosen. Originating from
the structure, deeper networks are more adaptive to the
training data and thus able to learn more complex rela-
tionships. A drawback of deep networks, especially those
that are trained with relatively few data, is the risk of
overfitting. To investigate the dependency of the predic-
tion on the amount of layers, a second configuration with
two hidden layers is deployed.

As important as the configuration of the model struc-
ture is the definition of the training strategy. In this
paper, the term training strategy comprises the selection
of training data to be available and the way these are
processed in the training process, defined by the training
hyperparameters. To provide the networks with the same
input data as the SARIMAX approach, for each predic-
tion a lookback of two steps into the data is implemented,
containing the values of the dependent variable and their
lags of 50 and 52 as well as seven exogenous variables,
leading to 22 input nodes.

The last stage before training and evaluating the net-
works is the definition of the training hyperparameters.
As applies for the network configuration, the training is
subject to the tradeoff between utilizing all information
that is contained in the training data and overfitting the
model to the training data. Training the models requires
the setting of the hyperparameters number of batches,
number of epochs, and iterations per epoch, defining the
way the training data set is split into training batches and
how the training in terms of weight optimization is exe-
cuted. As our models face relatively small data sets, bat-
ching the training data is not necessary (number of
batches = 1).

For the other hyperparameters, number of epochs = 30
(representing the number of training sequences), and iter-
ations per epoch = 20 (representing the number of itera-
tions optimizing the tensor weights per sequence) lead to
favorable training results for the reference model config-
uration with the expanding window training data out-
lined above. As shown in Figure 5, the choice of
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FIGURE 5 Exemplary training history of the reference
feedforward network with training hyperparameter set “fit”
(number of batches = 1, number of epochs = 30, iterations per
epoch = 20). The black line depicts the loss of model training, and
the gray line depicts the loss of a random 10% validation split
extracted from the training data

hyperparameters yields a desirable training fit and avoids
overfitting. Hereby, due to the rolling one-step forecast
with model reestimation setup, we consider it suitable to
take a 10% validation split randomly selected from the
training data and do not apply a hold-out-sample valida-
tion. The validation split is only conducted for the hyper-
parameter selection. After the hyperparameters are
selected, owing to data scarcity the validation split is
dropped for model training. The training of the ANN is
thus conducted with the entire training data set to
account for all relevant information.

Since the model training starts with random weights
and is therefore indeterministic, an ensemble of networks
is deployed for each configuration. Ensembling is a com-
mon technique similarly proposed by Hyndman and
Athanasopoulos (2013). For applications with rich data-
bases (see Section 2 for examples) for model training and
validation, ensembling is not very important as model
training mostly converges to a single model. However, in
our case with a scarce training data basis, ensembling
allows us to obtain robust forecasts from numerous inde-
terministic models. For the reference training hyper-
parameters, we run the fitting process 50 times to obtain
50 independent ANN of each model structure for each
forecasting step. The prediction values of these are then
averaged to obtain a single representative prediction
value for the respective forecast step. As a measure of
robustness, the standard deviation of the different fore-
casts within the ensemble is reported in Section 4.
Although different hyperparameters could yield better
training results, they also bear the risk of overfitting
the data.

An alternative training strategy consists of intention-
ally overfitting the training data to some extent and com-
pensating the overfit by increasing the ensemble size. To
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FIGURE 6 Exemplary training history of the reference
feedforward network with training hyperparameter set “overfit”
(number of batches = 1, number of epochs = 50, iterations per
epoch = 30). The black line depicts the loss of model training, and
the gray line depicts the loss of a random 10% validation split
extracted from the training data

examine the performance of this strategy compared to
the reference “fit” hyperparameter set, a second set of
training hyperparameters “overfit” is implemented.
Increasing the number of epochs to 50 and the iterations
per epoch to 30 leads to a slight overfit for the reference
model configuration. As the exemplary training history
in Figure 6 shows, the performance of the model on the
validation data becomes worse as the model fit increases
with advancing training. However, equipped with an
ensemble size of 100, these intentionally overfit models
might, on average, perform better than the fit models as
the overfitting residuals balance each other out.

In the end, the presented experiment design with four
factors and two levels each leads to 16 different model
configurations. Table 2 summarizes the factors and their
levels in the network configuration and training process.
In the following, the abbreviation for a combination of a
network configuration and a training strategy is built by
combing the entries of Table 2—for example,
“FF1_10_E_F” for the reference with one hidden layer,
10 neurons per hidden layer, an expanding training win-
dow, and the training hyperparameters “fit.”

The training and evaluation of the ANN models are
implemented in keras,'® a common machine learning
library available for Python and R. On a machine with a
2.50 GHz 64-bit processor (central processing unit, CPU)
and 16 GB RAM, depending on the model configuration
and training strategy, the training and evaluation of one
setup takes between 2 and 6 hours for the 37 forecasting
steps. However, the training time could be significantly
reduced by the use of parallelization and a graphics
processing unit (GPU) for the computations.

1°For more information on keras see https://keras.io/.

4 | RESULTS

The results consist of the out-of-sample performance of
the presented model framework. The forecasted time
series for a selection of approaches in comparison to the
real time series of FCR prices of the testing period
(01/2018-09/2018) are presented in Figure 7. The selec-
tion consists of the naive forecast, the SARIMAX
approach, as well as ANN approaches “FF1_10_E_F,”
“FF1_20_E_F,” “FF1_10_E_Ov,” “FF1_20_E_F,”
“FF2_10_E_F,” and “FF2_10_E_Ov.” Due to conciseness,
the plots for the complete set of examined configurations
of the ANN experiment design have been moved to
Figure A in the Appendix.

A first graphical comparison of the developed fore-
casts (Figure 7) indicates that both the econometric and
ANN approaches are able to forecast the level of the FCR
price quite well. For the SARIMAX approach, both the
point forecast and the 95% confidence intervals are pro-
vided. The latter indicate the robustness of the estimated
model for each forecast step. It can be observed that for
all time steps the prediction target (dashed line) lies
within the confidence interval, complying with a desir-
able robustness. As there is no mathematical equivalent
for confidence intervals in the ANN approaches, the
robustness of the models is determined with the standard
deviation of the point forecasts obtained from ensembling
for each forecast step (provided by Table 3). An artefact
confidence interval for the ANN approaches could be
constructed from the residuals’ distribution of sufficiently
large ensembles (e.g. 1,000 networks instead of 50). The
residuals would then represent an empirical distribution,
whose 2.5% and 97.5% quantiles could be interpreted as
the confidence interval. However, computational limita-
tions do not allow us to generate ensembles of size 1,000
for each forecasting step and all model designs. We can-
not build a reliable distribution for the residuals based on
an ensemble of size 50. Without a reliable distribution,
no confidence interval in a mathematical sense can be
derived and the construction of confidence intervals for
ANN is excluded.

The good fit also counts for the naive approach, so
that the benefit of the more sophisticated models does
not become clear at the first inspection of the results. A
second view reveals that the deviation between the fore-
casted values and the real test data is especially smaller
when the overall price level and in particular the price
variations decrease. For the high price levels (first parts
of the price curve), it is observable that the ANN
approaches perform better and almost approach the real
price curve. These differences become more visible if the
residuals—that is, the single forecast errors—are directly
analyzed. Figure 8 shows that, compared to the naive and


https://keras.io/

10 WI L EY KRAFT ET AL.
TABLE 2  Experimental design for neural networks
Factor Level reference Level variation
Network configuration
Number of hidden layers FF1 (1 hidden layer) FF2 (2 hidden layers)
Number of neurons per hidden layer 10 20

Training strategy
Training data

Training hyperparameters

number of batches = 1,
number epochs = 30,
iterations per epoch = 20,

ensemble size = 50

E (expanding window)
F (fit):

R (rolling window)

Ov (overfit):

number of batches = 1,
number epochs = 50,
iterations per epoch = 30,

ensemble size = 100

Note. A design consists of a combination of the hyperparameters’ number of hidden layers, number of neurons per hidden layer and the
training strategy defined by the training data and the training hyperparameters
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the SARIMAX approach, the errors of the ANN
approaches are particularly lower for the first part of the
test period (until April), when real FCR prices have a
strong decline and are exposed to more fluctuations. The
residuals indicate a serial correlation that was also
reported in more detail in the preliminary works of Kraft
et al. (2019). Generally, the residuals of well-fitted SAR-
IMAX models should be independent and identically dis-
tributed. In the rolling one-step forecast with model
reestimation setup deployed in this paper, each forecast-
ing step reestimates the model, which leads to distinct
SARIMAX models for each forecasting step.

Further investigations address the structure of the
SARIMAX residuals to check for conditional

heteroskedasticity. Figure 8 therefore exemplarily pro-
vides the residuals of the SARIMAX model estimated
for the last forecasting step. It can be observed that the
residuals are not perfectly homoskedastic. Although no
substantial autocorrelation is observable, the volatility
of the time series appears to be heterogeneous over
time. The residuals in 2017 are larger compared to
those in 2018 and, in particular, the year change from
2017 to 2018 produces two data points with a larger
volatility compared to the rest of the time series. To
address the suspected heteroskedasticity of the SAR-
IMAX residuals, a SARIMAX-generalized auto-
regressive conditional heteroskedasticity (GARCH)
approach was tested. However, the limited data basis
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TABLE 3
percentage error (MAPE), directional accuracy (DAC), and mean

Root mean square error (RMSE), mean absolute

standard deviation (o) of the model forecasts

Design RMSE MAPE DAC c
Naive 158.16 5.24% 91.70% n/a
SARIMAX 136.82 5.18% 75.00% 140.03
FF1_10_E_F 86.38 2.78% 100.00% 127.81
FF1_20_E F 94.13 3.27% 91.70% 125.75
FF1_10_E_Ov 72.16 1.97% 97.20% 108.05
FF1_20_E_Ov 72.71 2.89% 97.20% 120.78
FF1_10_R_F 185.71 6.32% 66.70% 183.35
FF1_20_R_F 190.94 6.52% 75.00% 175.02
FF1_10_R_Ov 194.97 6.43% 72.20% 178.68
FF1_20_R Ov 194.05 6.80% 72.20% 167.71
FF2_10_E_F 101.42 3.94% 80.60% 147.43
FF2 20_E_F 119.77 4.75% 77.80% 134.81
FF2_10_E_Ov 104.07 3.45% 86.10% 147.30
FF2_20_E_Ov 114.96 4.79% 80.60% 128.12
FF2_10_R_F 181.49 6.22% 69.40% 158.77
FF2 _20_R_F 189.05 6.23% 72.20% 131.80
FF2_10_R_Ov 192.37 5.74% 80.60% 142.14
FF2_20_R_Ov 184.20 6.02% 77.80% 120.63

Note. For ANN the reported o is calculated as the empirical stan-
dard deviation of residuals, whereas for SARIMAX ¢ is the mean
theoretical o of the 37 forecast models. The simplest design
FF1_10_E_F reaches 100% of DAC, but is dominated by
FF1_10_E Ov and FF1 20 _E Ov in terms of RMSE. The best
design by RMSE and MAPE is FF1_10_E_Ov. These three designs
are indicated in bold font. The more sophisticated designs and the
designs with a rolling training window have a similar performance
to the SARIMAX and naive forecast. All designs involving
ensembling show a moderate standard deviation, indicating robust
model training and the need for ensembling

(residuals contain only 52-88 observations for the dif-
ferent forecasting steps) impedes the deployment of
GARCH models, as the estimation does not converge.
Related literature suggests sample sizes of at least
500 (respectively 700) are required to obtain good
results for GARCH volatility estimation (Hwang &
Valls Pereira, 2006; Ng & Lam, 2006). Unfortunately,
in our case the data basis is too scarce to apply
GARCH and we are restricted to the chosen SARIMAX
approach as econometric comparative to the ANN.

The naive approach is performing similarly well
(respectively even better) in periods when prices remain
more or less constant over time. However, this is quite
obvious, as this approach applies the last week's real
value to the current week's forecast. In periods with

500~

n
o
S

o

SARIMAX Residuals [EUR/MW]
b
3

-500-

2018-01 2018-07

Time

2017-01 2017-07

FIGURE 8 Exemplary residuals time series of the SARIMAX
model for the last forecasting step. It can be observed that the
residuals do not contain substantial autocorrelation and that the
volatility of the residuals is increased at the year change from 2017
to 2018

hardly any changes, the approach will therefore produce
desirable results.

However, we are more interested in approaches that
can also capture periods when prices undergo price
changes, as future FCR prices might change much more
frequently and in a more pronounced way. The market is
more and more opened for new players and technologies,
such as battery storage, that will bring much more
dynamics into the market. In this respect, the ANN
approaches are able to capture price dynamics, which
obviously cannot be covered by the naive approach.
Moreover, in the case of FCR prices, ANN approaches
cover the dynamics in volatile periods significantly better
than the applied SARIMAX approach.

Interestingly, Figure 8 demonstrates that SARIMAX
errors are more frequently fluctuating around
0 EUR/MW, while those of the ANN forecasts remain in
the positive or negative scale longer. As Figure B in the
Appendix indicates, the fluctuations around 0 EUR/MW
also apply to the ANN configurations with a rolling train-
ing window, and for some forecasting steps a rolling win-
dow training strategy can yield a better forecast than an
expanding window approach. This indicates that, by
including seasonal factors or limiting the training data to
a rolling window, the performance of the ANN
approaches can be improved for some time periods. How-
ever, determining such factors based on the short period,
for which weekly FCR prices are available, leads to over-
fitting for other periods, and therefore does not improve
the overall forecasting performance itself. The concerns
regarding the impeded exploitation of strengths of the
ANN approach that are discussed in Section 3.3 prove
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right. As the rolling window training strategies cannot
exploit the entirety of training data provided to the
expanding window training, the overall forecasting per-
formance decreases. Training with an expanding window
is therefore preferable to the rolling window approach. In
particular, if the network structures become more sophis-
ticated, the model requires as many training data points
as possible to be performant.

The residuals of the ANN approaches are distributed
relatively symmetrical around zero, as can be seen in the
illustration of error histograms in Figure C in the Appen-
dix. However, to derive further insights regarding the dis-
tribution of the residuals, the number of forecasting steps
is too small.

Whereas Figures 7 and 9 enable a qualitative discus-
sion, Table 3 presents the quantitative performance and
robustness measures. The performance measures again
indicate that having a mean absolute prediction error
(MAPE) below 7% all proposed models perform reason-
ably well. With regard to the root mean square errors
(RMSE) and the MAPE, the feedforward ANN with an
expanding training window all outperform the naive fore-
cast and the SARIMAX models. The directional accuracy
(DAC) confirms these observations. Whereas the best
model in terms of RMSE and MAPE fails to predict the
direction of change once (97.2% accuracy), the model
design FF1_10_E_F reaches 100% accuracy in the consid-
ered forecasting steps.

Surprisingly, adding a second layer to the networks
does not improve the forecasting. The dominating
designs for the prediction task are the ANN with one

Jul

hidden layer and an expanding training window. With an
RMSE of 72.16 and a MAPE of 1.97%, the configuration
with 10 neurons per layer and the “overfit” training
(FF1_10_E_Ov) yields the best results. Increasing the
number of neurons to 20 (FF1_20_E_Ov) or changing the
training strategy to “fit” (FF1_10_E_F) leads to slightly
worse results. Interestingly, the FF1_20_E_Ov design
dominates the FF1_10_E_F design in terms of RMSE but
is outperformed in terms of MAPE, meaning the resid-
uals are on average larger but have smaller large resid-
uals, which is penalized more strongly in the RMSE
measure.

The design variable neurons per layer reveals an inter-
esting, yet intuitive, pattern. Apart from the best-
performing design with one hidden layer, expanding win-
dow and overfit training, the forecasts of the networks
with 20 neurons per layer are more robust than the com-
parable networks with only 10 neurons. However, except
for two cases with rolling window, the performance in
terms of RMSE and MAPE is better for the configurations
with only 10 neurons per hidden layer. The increased
number of neurons leads to more convergence in the
weight optimization and thus to more stable results, yet
the convergence may be prone to overtraining of the rela-
tionships in the training data compared to the simpler
configurations with only 10 neurons.

The last variable in the experimental design are the
training hyperparameters, for which the two sets “fit”
and “overfit” are distinguished. For the simple networks
(one hidden layer, 10 or 20 neurons), the strategy to over-
fit and build a larger ensemble yields a massive
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FIGURE 10 Results of Diebold-
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improvement in forecasting performance. Regarding
robustness, there is a slight increase (decrease in mean
standard deviation of model forecasts) in the overfit train-
ing configurations.'' Increasing the ensemble size from
50 to 100 has a smoothing effect on the ANN forecasts
and results in an increased forecasting performance. This
observation goes hand in hand with the residuals illus-
trated in Figure 9, where the overfit designs produce
smoother residuals compared to their respective fit
design. The observation holds for the more sophisticated
networks in terms of robustness, whereas both fit and
overfit designs provide sufficiently robust forecasts. As
was observed for the number of neurons per hidden
layer, the models in the overfit configurations tend to
converge more strongly as more weight optimizations are
conducted in the training process, which turns out to be
slightly more robust. However, the overfit does not

"'The standard deviation amongst the 50 predictions of each model for
each type is calculated for each step and then averaged over all
prediction steps. In the presentation of results, it was considered that
the ensemble size of the “overfit” designs is twice that of the “fit”
designs. However, repeatedly sampling 50 observations from the overfit
ensembles shows that the ensemble size is not decisive for the
robustness measure. However, the forecasting performance decreases
with reduction of the ensemble size in the overfit training strategy,
particularly strong in configurations with rolling training windows.
2As mentioned earlier, a further sophistication of model configurations
with recurrent structures and gated-recurrent units did not yield
improvements compared to the networks presented in this paper. This
is in line with the results for the configurations with two hidden layers
compared to the one with one hidden layer and the tendency to
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necessarily yield a better performance. The RMSE and
MAPE show no clear tendency towards the “fit” or “over-
fit” training as both perform similarly well.'"> Generally,
the standard deviation of the forecasts within the ensem-
bles indicates the necessity to build ensembles as the
training results in different networks. Conversely, for the
SARIMAX approach, only one model is calculated for
each forecasting step. The average standard deviation of
all SARIMAX models is 140.03. However, this robustness
measure is hardly comparable to the standard deviation
of the ANN described above. While for the ANN we
report an empirical standard deviation of residuals, the o
of SARIMAX is the mean theoretical standard deviation
of the 37 forecast models.

To verify the statistical significance of the results,
Figure 10 presents the results of a one-sided Diebold-
Mariano test. The test compares two time series of resid-
uals and indicates whether one is significantly lower than
the other—that is, whether one forecast model is signifi-
cantly better than the other (Diebold & Mariano, 1995).
We find that the results reported in Table 3 mostly prove
significant. The designs with expanding training window
are significantly better than those trained with rolling
training window on at least 5% significance level. The
best three models in terms of MAPE and RMSE
(FF_10_E_F, FF_10_E_Ov, FF_20_E_Ov) are better than
the SARIMAX approach at the 1% significance level.

overtraining for the more sophisticated configurations in the results
presented. For more details, see the Annex.
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However, the SARIMAX and naive approach compete
well with the forecast performance of the ANN with
rolling training window. The best ANN design in terms
of MAPE and RMSE (FF_10_E_Ov) dominates all but the
second-best design in terms of RMSE (FF_20_E_Ov) at
5% significance level.

To conclude, the variety of models examined in this
paper offers another approach to forecasting. A solution
to ally the strengths of the model classes and configura-
tions and to balance out the shortfalls can consist of com-
bining the different approaches. However, to build the
best combination of approaches for each forecasting step,
one must be aware of the strengths and weaknesses of
the approaches and build a subjective market expecta-
tion. For this task, human experience is inevitable.

Finally, it is worth mentioning that the goal of this
paper is to investigate approaches and configure a suit-
able model framework to forecast FCR prices. The pre-
sentation of the results focuses rather on the comparison
of the different approaches than on the detailed discus-
sion of single models and their coefficients’ interpreta-
tion, as our goal was not to uncover the influence of the
explaining variables, but to determine the performing
modeling approaches and model configurations for FCR
price forecasting. However, to gain more insights regard-
ing the interdependencies and predictive power of the
single exogenous variables, a detailed investigation of
exemplary models from the considered approaches is an
interesting direction for future research.

5 | CONCLUSION AND OUTLOOK

In this paper, we investigated approaches to forecast the
price of FCR, the fastest balancing reserve that is jointly
procured in weekly auctions by TSOs in Austria, Bel-
gium, France, Germany, the Netherlands, and Switzer-
land. As this research scope was not formerly discussed
in literature, several approaches were deployed, consider-
ing autoregressive and exogenous variables. Such a model
framework has, to our knowledge, not been formerly set
up or discussed.

The exogenous factors with most explanatory power
are identified as the price range of the previous auction,
the future prices of the German-Austrian and the French
market area, the load in the German-Austrian and the
French market area and the planned unavailable capacity
in Germany and France. The models based on auto-
regressive and exogenous factors are suitable to forecast
prices. Within the developed models, ANN with expan-
ding training window yield desirable results and clearly
outperform the naive forecast and the SARIMAX
approach. Simple models equipped with a slight overfit

and a larger ensemble size outperform the simple models
that were trained aspiring to the best fit and lead to the
best and most robust forecast results in the case of fore-
casting FCR prices. With an increase in model complex-
ity, the positive effect of the slight overfitting strategy
vanishes. Furthermore, the overall forecasting perfor-
mance is not improved by more sophisticated models, as
these might overtrain the relationships in the training
data.

In the interpretation of these results, one must always
bear in mind that econometrics and artificial intelligence
approaches are only capable of drawing conclusions from
data of the past. Thus changed bidding behavior by mar-
ket participants or technological changes in FCR market
are hardly predictable by these kinds of forecasting
models. Based on assumptions (e.g., market diffusion of
battery storages, market exit of conventional power
plants) we could consider forecasts for the long-term
FCR price development. However, this is not in the scope
of this paper and needs to be addressed by future
research. The main contributions of this paper are the
application and comparison of statistical and neural net-
work models to FCR price forecasting. This comprises
the definition of an appropriate target variable as well as
the discussion of modeling techniques and training strat-
egies for forecasting on a scarce data basis. Finally, a dis-
cussion on the suitability and performance of simple and
more sophisticated network structures for FCR price fore-
casting completes the contributions.

In the ongoing research, the models will be used as a
basis for the formulation and optimization of bidding
strategies in the European balancing reserve market. In
this context, the application of SARIMAX models has the
advantage that the models are open to an interpretation
of the estimated coefficients, whereas the ANN
approaches tend to be black boxes that yield the best
results, especially in times of increased FCR price volatil-
ity, but lack interpretability. The reestimation and num-
ber of models complicate a fundamental model
interpretation, as model lags, parameters and coefficients
vary between the models. However, the goal in this paper
is to make the forecast as accurate as possible, and
reestimation increases the quality of the forecast.

Finally, the market design for FCR is in an ongoing
process of change. On the one hand, the involved TSOs
changed the product duration from 1 week to 1 day
beginning July 2019 and intend to move to 4-hour
products in the near future. This makes the consider-
ation of forecast-based exogenous factors like wind and
solar generation possible and necessary in price forma-
tion and therefore needs to be included in future stud-
ies of FCR prices. In the course of these changes, the
pricing rule changed from pay-as-bid to uniform
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pricing. However, the approaches developed in this
study are well suited and extendable to cope with these
changes and to produce reliable forecasts of FCR prices
in a modified market design.
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APPENDIX A

Here, supplementary illustrations of the results are presented as well as the hyperparameters, training strategies, and
results of the network structures with GRU that were mentioned but not reported in Sections 3 and 4.

Figure A shows the histograms of residuals of FCR price forecasts in the test period. Figures B and C show the
FCR price forecasts and residuals in the test period that were not shown in Figures 7 and 9 but reported in
Table 3.

Tables A and B show the experimental design deployed for the GRU neural networks and the forecasting
results. Hereby, one design consists of the combination of the hyperparameters number of hidden layers, number of
neurons per hidden layer, and the training strategy defined by the training data and the training hyperparameters
that are provided in Table A. Table B provides, analogously to Table 3, the performance indicators RMSE, MAPE,
and DAC, and the robustness measure ¢ of the model forecasts for the GRU networks. Regarding forecasting per-
formance, no improvement to the feedforward networks can be observed. However, regarding robustness, the stan-
dard deviations are generally smaller, which indicates model training is converging more strongly compared to the
feedforward networks. To conclude, in our case the models with GRU lead to more robust forecasts around less
accurate estimates.
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TABLE A  Experimental design for GRU neural networks

Factor

Network configuration
Number of hidden layers

Number of neurons per hidden layer

Training strategy

Training data

Training hyperparameters

Level reference

GRU1 (1 hidden layer)
10

E (expanding window)

F (fit):

number of batches = 1,
number of epochs = 30,
iterations per epoch = 20,

ensemble size = 50

Level variation

GRU2 (2 hidden layers)
20

R (rolling window)

Ov (Overfit):

number of batches = 1,
number epochs = 50,
iterations per epoch = 30,

ensemble size = 100

TABLE B  Root mean square error (RMSE), mean absolute percentage error (MAPE), directional accuracy (DAC), and mean standard

deviation (o) of the model forecasts with GRU networks

Design
GRU1_10_E_F
GRU1_20_E_F
GRU1_10_E_Ov
GRU1_20_E Ov
GRU1_10_R_F
GRU1_20_R_F
GRU1_10_R_Ov
GRU1_20_R_Ov
GRU2_10_E_F
GRU2_20_E_F
GRU2_10_E_Ov
GRU2_20_E_Ov
GRU2_10_R_F
GRU2_20_R_F
GRU2_10_R_Ov
GRU2_20_R_Ov

RMSE
124.47
190.71
142.55
174.25
166.00
205.11
197.59
220.20
151.74
174.61
216.30
205.19
196.78
224.23
217.63
224.86

MAPE
4.65%
5.49%
4.81%
6.03%
7.99%
10.24%
9.35%
10.57%
5.10%
5.66%
9.52%
6.71%
8.52%
10.05%
9.68%
10.12%

DAC

91.70%
86.10%
88.90%
83.30%
86.10%
77.80%
80.60%
77.80%
88.90%
86.10%
80.60%
77.80%
80.60%
77.80%
77.80%
77.80%

c
50.58
170.09
68.92
69.37
62.56
57.60
74.79
99.65
44.48
70.13
80.16
195.88
55.06
55.64
79.12
83.73

Note. No improvement compared to the feedforward networks is achieved. The standard deviations are generally smaller, which indicates a

more robust model training, but RMSE, MAPE, and DAC indicated no better forecasting performance.
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