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Abstract
We address the problem of determining convergent upper bounds in continuous non-
convex global minimization of box-constrained problems with equality constraints.
These upper bounds are important for the termination of spatial branch-and-bound
algorithms. Our method is based on the theorem of Miranda which helps to ensure the
existence of feasible points in certain boxes. Then, the computation of upper bounds at
the objective function over those boxes yields an upper bound for the globally minimal
value. A proof of convergence is given under mild assumptions. An extension of our
approach to problems including inequality constraints is possible.
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1 Introduction

In this article we propose a method to determine convergent valid upper bounds for
the globally optimal value v∗ of nonconvex minimization problems of the form

P(B) : min
x∈Rn

f (x) s.t. h j (x) = 0, j ∈ J , x ∈ B, (1)
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where all functions f and h j , j ∈ J = {1, . . . , m}, with m ∈ N and m ≤ n, are at
least continuously differentiable on some open set containing the box B. As usual in
continuous optimization we are mainly interested in the case m < n. Yet, our results
also hold for m = n. We do not assume any convexity properties for P(B) so that, in
particular, the functions h j , j ∈ J , are not necessarily linear.

Inequalities of the form gi (x) ≤ 0, i ∈ I , may be treated by introducing slack
variables yi , i ∈ I , and rewriting the constraints by

gi (x) + y2i = 0

where appropriate box constraints for the slack variables can be determined using
interval arithmetic [33], for instance. We point out that in general in nonlinear pro-
gramming this approach is known to have some drawbacks which will be discussed
in the setting of spatial branch-and-bound algorithms in Sect. 6.

The box B is defined by

B = {
x ∈ R

n|¯b ≤ x ≤ b̄
}

with ¯b, b̄ ∈ R
n , ¯b < b̄, and all inequalities meant componentwise. We assume all

feasible points to strictly satisfy the box constraints. Although this is in contrast to
standard literature assumptions in global optimization, in practice usually this should
be fulfilled. Otherwise, it can be achieved by introducing additional, slightly larger box
constraints and handling the original box constraints as standard inequality constraints,
for example by using the aforementioned slack variable approach.

Additionally, we make the following assumption:

Assumption 1.1 For any globally minimal point x∗ of P(B) the gradients ∇h j (x∗)
of all functions h j , j ∈ J , are linearly independent.

Assumption 1.1 means that each globally minimal point satisfies the Linear Inde-
pendence Constraint Qualification (LICQ). Note that this assumption is mild in the
sense that it has been proven to generically hold everywhere in the feasible set M(B)

[17]. The latter means, in particular, that in case of its violation it may be expected
to hold at least under small perturbations of the problem data. Let us remark that in
nonlinear optimization the assumption of LICQ even in all locally minimal points is
standard for convergence proofs. This means, in particular, that common upper bound-
ing procedures in spatial branch-and-bound methods which rely on the local solution
of NLP subproblems implicitly use this or related assumptions as well. In this sense,
Assumption 1.1 is not restrictive.

For a problem of type P(B) and some predefined tolerance ε > 0 a typical aim in
global optimization is to determine an ε-optimal feasible point x∗ ∈ M(B), that is,
in addition to feasibility it satisfies f (x∗) ≤ f (x) + ε for all x ∈ M(B). One of the
state-of-the-art approaches to globally solve problems of type P(B) in this sense is to
apply spatial branch-and-bound algorithms. In suchmethods, the problem is iteratively
branched into subproblems of the form

min
x∈Rn

f (x) s.t. x ∈ M(X)
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with M(X) = {
x ∈ X

∣∣h j (x) = 0, j ∈ J
}
and X a sub-box of B. Then, for those

subproblems upper and lower bounds are constructed to approximate the globally
minimal value v∗ and exclude boxes from the search space.

The application of spatial branch-and-bound algorithms in global optimization
goes back to Falk in [12]. Since then, various extensions, improvements and
related methods have been proposed, such as branch-and-reduce [37,38], symbolic
branch-and-bound [41,42], branch-and-contract [46] or branch-and-cut [44]. Several
state-of-the-art global optimization solvers are based on implementations of branch-
and-bound algorithms, see for example BARON [39], COUENNE [8], ANTIGONE
[30] and LINDOGLOBAL [25]. For extensive reviews on deterministic global opti-
mization we refer to [13,14] and [16]. The latter in particular covers convergence
results.

Typically, within a spatial branch-and-bound algorithm, lower bounds are obtained
by special bounding procedures. We will discuss some of them in Sect. 2. Upper
bounds, on the contrary, can be obtained by evaluating the objective function f at fea-
sible points of P(B), either directly or indirectly by applying local solvers. However,
as the problem P(B) is in general nonconvex, finding a feasible point may be as diffi-
cult as solving the problem itself. Therefore, there is no guarantee for the occurrence
of feasible points within current branch-and-bound algorithms [21]. This is crucial,
though, since a branch-and-bound algorithm requires convergent valid upper bounds in
the termination criterion. To cope with this, in the literature sometimes it is suggested
to accept ε f -feasible solutions [13], but [21] shows that instead of upper bounds this
may generate arbitrarily bad lower bounds. We shall discuss this issue in more detail
in Sect. 2.2.

Several upper bound generation techniques proposed in literature suffer from the
abovementioned theoretical drawbacks, although they provide sufficiently good upper
bounds on average for practical applications. As we will discuss more thoroughly in
Sect. 2, this also holds for the most common approach to obtain an upper bound by
solving the nonconvex problem P(B) locally as proposed in [6]. In fact, we are not
aware of any proof of convergence for upper bounds to the true globally minimal value
v∗ for this or similar approaches.

In this article, we address this issue and propose a method to determine convergent
valid upper bounds for the true globally minimal value v∗. Thus, our research focuses
on the theoretical convergence proof. In practice, the proposed method may be used to
complement existing upper bounding procedures to ensure convergence. We remark
that, regarding upper bounds, by the brief term convergent we will mean convergence
to the optimal value v∗ throughout this paper.

To theoretically ensure termination of a spatial branch-and-bound algorithm, it is
essential to either determine a specific feasible point or, at least, to verify the existence
of such a point in some sub-box X of B. In the latter case, an upper bound for the
objective function on X may be used as a valid upper bound for v∗. In this paper,
we propose a method to calculate convergent valid upper bounds for v∗ based on this
approach.

At least in the absence of rounding errors, by using our upper bounding procedure
within a standard branch-and-bound algorithm with convergent lower bounding pro-
cedure, it should be possible to obtain a global optimization method that terminates
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after a finite number of iterations, since the overall lower bound as well as the overall
upper bound converge to the globally minimal value. Note that, even without round-
ing errors, this does not hold for other mentioned upper bounding procedures such as
acceptance of ε f -feasible points or by using local solvers, since it is not clear whether
sufficiently good and correct upper bounds are found at all. In contrast, for commonly
used lower bounding procedures such proofs of convergence are available, and so
the combination of these methods with our new upper bounding procedure leads to
convergent branch-and-bound methods where lower as well as upper bounds converge
to the globally minimal value, at least in the absence of rounding errors. In order to
obtain a rigorous global branch-and-bound solver, finite precision arithmetic has to be
taken into consideration during the implementation, which we have not done so far.
Our new upper bounding procedure may be seen as the mathematical foundation of
such a rigorous global solver. This will be discussed in more detail in Sect. 6.

In the literature, the problem of feasibility verification has been mainly addressed
by heuristics, which are not considered in this article. In contrast, our focus is on deter-
ministic methods. In context of rigorous upper bound determination, such approaches
are introduced by Kearfott [19,20] and Domes and Neumaier [9]. They determine
approximately feasible points with conventional nonlinear solvers and then construct
boxes around such points, for which the existence of a feasible point can be proven
via interval Newton methods. Yet, as n − m variables have to be fixed using heuristic
approaches and some parameters have to be carefully chosen, verification of feasible
points is not guaranteed in general. A deterministic method to calculate convergent
upper bounds for v∗ and ensure the termination of branch-and-bound algorithms for
purely inequality constrained problems is presented in [21]. In the context of semi-
infinite programming a deterministic upper bounding procedure is derived in [31,32]
by exploiting a certain Slater condition.

The idea of feasibility verification in our method is based on a theorem of Miranda
in [28] which extends the intermediate value theorem from the one-dimensional to the
multidimensional case with several constraints in some sense. Instead of single points,
here facets of boxes have to satisfy certain sign conditions to assure the existence of
a feasible point. We will show that under mild assumptions and transformations, the
conditions of this generalization are guaranteed to be satisfied in a branch-and-bound
algorithm after a finite number of steps. Thus, valid upper bounds for v∗ can be
calculated in a deterministic way and, as the boxes gradually become smaller leading
to convergent upper bounds, termination of the branch-and-bound algorithm is assured.

We start by presenting the general spatial branch-and-bound framework for global
optimization and its shortcomings with respect to upper bounds for nonconvex prob-
lems in Sect. 2. In Sect. 3 we introduce the theorem of Miranda, before we use it
to develop our algorithm in Sect. 4. Preliminary numerical results are presented in
Sect. 5, and Sect. 6 concludes the paper with some final remarks.

The notation in this paper is standard. The gradient of a function h j , j ∈ J ,
is denoted by ∇h j and the Jacobian of the vector-valued function h : R

n → R
m

with h = (h1, . . . , hm) by ∇h = (∇h1, . . . ,∇hm) or Dh = (∇h)ᵀ. For a box
X = [

¯x, x̄
] := {x ∈ R

n |¯x ≤ x ≤ x̄ } ⊆ R
n we denote the midpoint by mid(X) :=

(x̄ + ¯x)/2 and the diagonal length with diag(X) := ‖x̄ − ¯x‖2.
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2 Difficulties in branch-and-bound algorithms

In this section we present a general spatial branch-and-bound framework to solve
global minimization problems and then discuss its main difficulties in the presence of
nonconvex equality constraints. The framework and our notation are based on [21]. It
is primarily designed to approximate the minimal value v∗ of problem P(B).

2.1 The spatial branch-and-bound framework

The main principle of the branch-and-bound framework is to branch on the original
problem P(B) iteratively, yielding subproblems on sub-boxes. Using these subprob-
lems, convergent upper and lower bounds for the globalminimal valuev∗ are calculated
to approximate the globally minimal value v∗. Moreover, the bounds can be used to
exclude subproblems from further examination if they cannot contain a globally min-
imal point of the original problem. In this subsection, we will present the framework
in a very generic way. Afterwards, we will discuss procedures to determine lower and
upper bounds.

The main steps within the general framework are the following.

Branching In each iteration k the current box Xk is divided into two sub-boxes Xk,1 and
Xk,2, for example along the midpoint of a longest edge. In the literature also different,
and more efficient, branching techniques for spatial branch-and-bound algorithms are
proposed, for example in [8] in the setting of mixed-integer variables.

Bounding For both sub-boxes Xk,l , l ∈ {1, 2}, a lower bounding procedure is used to
calculate a lower bound �(Xk,l) for the globally minimal value vl

k of P restricted to
Xk,l . If the latter problem is infeasible, we formally set �(Xk,l) := +∞. For boxes
Xk.l which do not only satisfy �(Xk,l) < +∞ but also �(Xk,l) ≤ uk−1 for some
known overall upper bound uk−1 of v∗ (see below), the pair (Xk,l , �(Xk,l)) is added
to a list L of subproblems which are potentially needed to approximate v�.

Then, some upper bounding procedure is used to determine a valid upper bound
ūl

k for v∗. The value uk is defined as the smallest known upper bound for v∗. It is
initialized as u0 = +∞ and updated in each iteration using ū1

k and ū2
k , if possible.

Commonly ūl
k is determined by evaluating f at some feasible point xk,l ∈ M(Xk,l),

if such a trial point exists, and the point corresponding to the best known upper bound
uk is stored as the best known feasible point so far.

More generally, in our approach ūl
k is determined as an upper bound for f on some

box which is only known to contain a point from M(Xk,l), but the explicit knowledge
of this point is not necessarily required. Hence, instead of storing the best known trial
point so far, one could store the best known box so far. However, since the proposed
algorithm focuses on the approximation of the optimal value v∗, we do not state these
possibilities to approximate minimal points in the below pseudo code of Algorithm 1,
but we refer to the subsequent discussion for further details.

Fathoming If L contains an element (X̃ , �(X̃)) with �(X̃) > uk , this element can be
removed from the list, since the lower bound for the minimal value on the correspond-
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ing box is larger than the best known upper bound for v∗. Hence, X̃ cannot contain a
globally minimal point.

Update of Lower Bound From all lower bounds �(X̃) for the global minimal value
of P(B) restricted to boxes X̃ a valid lower bound for v∗ can be constructed by
�k := min

{
�(X̃) | (X̃ , �(X̃)) ∈ L}

.

Stopping Criterion The algorithm terminates if uk − �k ≤ ε holds for a prescribed
tolerance ε > 0. Otherwise, a new iteration is started in which a box X̃ corresponding
to �k is branched.

Algorithm 1 summarizes the procedure of the branch-and-bound method. Upon
termination, the case L = ∅ yields a certificate for infeasibility of P . Otherwise, the
value v∗ lies in the interval [�k, uk] of length ε. Moreover, if as mentioned above
in each iteration the best known feasible point so far, or the best known box, are
stored, upon termination the point is ε-minimal or the box contains an ε-minimal
point, respectively.

2.2 Bounding and difficulties in presence of nonconvexities

The aim of Algorithm 1 is to solve nonconvex problems of type P(B). The algorithm
requires convergent lower and upper bounds for the globally minimal value v∗ to
terminate. However, as the feasible set of P(B) is nonconvex, difficulties may occur
with regard to the upper bounds, as we will show.

Typically, lower bounds at v∗ are obtained by special bounding procedures. Among
those are procedures based on Lipschitz constants [34], interval arithmetic [33] and
its enhancements, such as centered forms [22] or optimal centered forms [7]. Another
approach is to obtain lower bounds from convex relaxations. This approach is fol-

Algorithm 1 Conceptual Branch-and-Bound Method
Input: Problem P(B).

1: Initialization: Choose a tolerance ε > 0. Set the initial lower bound for v∗ to �0 = −∞, the upper
bound to u0 = +∞ and the list to L = {(B, �0)}. Set the iteration counter to k = 0.

2: repeat
3: Increase the iteration counter k by one.
4: Choose a pair (Xk , �(Xk )) from L with smallest lower bound and remove it from L.
5: Divide Xk along the midpoint of a longest edge into Xk,1 and Xk,2.
6: for l = 1, 2 do
7: Determine a lower bound �(Xk,l ) for the minimal value of P(B) on Xk,l using

some lower bounding procedure, with �(Xk,l ) = +∞ for an infeasible problem.
8: If �(Xk,l ) < +∞ and �(Xk,l ) ≤ uk−1, add the pair (Xk,l , �(Xk,l )) to L.
9: Determine an upper bound ūl

k for v∗ using some upper bounding technique based

on Xk,l . If no valid upper bound can be determined set ūl
k = +∞.

10: Calculate the best upper bound for v∗ as uk = min
{

uk−1, ū1k , ū2k

}
.

11: Remove all pairs (X̃ , �(X̃)) with �(X̃) > uk from L.
12: if L �= ∅ then
13: Update the lower bound for v∗ to �k = min

{
�(X̃) | (X̃ , �(X̃)) ∈ L}

.

14: until uk − �k ≤ ε or L = ∅.
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lowed in the αBB-method, which has been originally proposed in [6] and extended in
[1–5,26]. Convex relaxations are also used in COUENNE, where symbolic reformu-
lations [27,42], determination of convex underestimators [43] and bound tightening
techniques [8] are combined. Moreover, lower bounds can be derived by exploiting
duality as proposed in [10,11] or by using piecewise linear approximations of multi-
dimensional functions [15,29,35]. For several of those techniques it is proven that the
determined lower bounds converge to v∗ for decreasing box sizes, as they occur in
Algorithm 1.

Upper bounds are commonly obtained by evaluating the objective function f at fea-
sible points of P(B), either explicitly or implicitly by applying local solvers. However,
as the problem P(B) is in general nonconvex, it may be hard to determine feasible
points. Thus, it cannot be assured that within Algorithm 1, feasible points with suf-
ficiently good objective function value are found and the current upper bound uk is
updated. This also implies that the upper bounds are not guaranteed to converge for
decreasing box sizes. Therefore, Algorithm 1 is not guaranteed to terminate.

To cope with this, in the literature sometimes it is suggested to accept ε f -feasible
solutions, thats is, for a given tolerance ε f > 0 points x ∈ B with

max
j∈J

∣∣h j (x)
∣∣ ≤ ε f ,

are considered to be feasible (see for example [13]). The idea behind this is that the
small distance between approximately feasible points and the feasible set leads to
a small distance in function values as well. However, the function value of an ε f -
feasible solution is not guaranteed to be a valid upper bound for v∗, as exemplarily
shown in [21] for purely inequality constrained problems. In fact, for any ε f examples
can be created where the objective value of an ε f -feasible point is arbitrarily much
smaller than v∗. This feasibility tolerance should not be confused with a termination
tolerance or a machine precision, since even in the absence of rounding errors and
even for a small value of ε f this approach can lead to arbitrary large errors, depending
on the problem at hand.

Despite providing sufficiently good upper bounds on average in practical applica-
tions, upper bound generation techniques proposed in literature suffer from the above
mentioned theoretical drawbacks. The naive approach to obtain upper bounds using
the optimal point of the convex relaxation after checking its feasibility, for example
proposed in [26], is not guaranteed to work, as such points might never be feasible
in the course of the algorithm. For box- and inequality-constrained problems in [21]
an example is given, for which the αBB method with such an upper bound procedure
does not terminate, since u0 is never updated.

The current state-of-the-art approach to solve the nonconvex optimization problem
P(B) (or some restricted subproblem P(X)) locally, as proposed in [6], has several
drawbacks: Firstly, it is computationally expensive. Liberti and Maculan even iden-
tify it as the most expensive step in current branch-and-bound implementations [24].
Secondly, for nonconvex feasible sets it is not guaranteed that the local solverwill even-
tually find a feasible point of P(B). Thus, usually ε f -feasible solutions are accepted,
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see for example [6,13]. However, as stated before, in such a case it is not ensured that
valid upper bounds for the true globally minimal value v∗ are determined.

Hence, neither of the two approaches is suitable to guarantee the termination of
Algorithm 1. In the following we will present a method which determines a valid
upper bound for v∗ for a sufficiently small box X based on verifying the existence
of a feasible point of the problem P(B). If a feasible point in X is verified, an upper
bound for v∗ does not have to be determined by evaluating the objective function f
at a specific feasible point, but it suffices to apply an upper bounding procedure to the
whole box X .

The obtained upper bounds converge for decreasing box sizes and, thus, incorporat-
ing our method into Algorithm 1 is sufficient to ensure termination, i.e. convergence
to v∗. This can be proven using standard arguments from global optimization [16].
The main idea is that in a branch-and-bound algorithm the boxes eventually become
sufficiently small and, hence, upper bounds for v∗ can be determined in a finite num-
ber of steps. Feasibility verification will also succeed for any sufficiently small box
containing a globally minimal point of P(B), and with smaller such boxes the upper
bounds for v∗ gradually become better and converge to v∗. Contrary to lower bounding
procedures, we are not aware of any convergent upper bounding procedure proposed
so far.

3 Miranda’s theorem

Before presenting our algorithm to calculate convergent upper bounds, we will first
introduce the main idea that our approach is based on. As stated before, our algorithm
is designed to verify the existence of a feasible point within some sub-box X ⊆ B,
this means a point x̂ ∈ X satisfying h j (̂x) = 0 for all j ∈ J . If the existence of a
feasible point in a sub-box X is verified, an upper bound calculated on this whole box
can serve as a valid upper bound for v∗.

Themain idea of feasibility verification is based onMiranda’s Theorem, sometimes
also referred to as Poincaré–Miranda Theorem. It was first proven by Carlo Miranda
in 1940, see [28], and in some sense can be thought of as generalizing Bolzano’s
intermediate value theorem to the multidimensional case. It states that if not single
points but whole facets

Xi := {x ∈ X |xi = x̄ i } , Xi := {x ∈ X |xi = ¯xi }

of a box X , with i = 1, . . . , n, satisfy certain sign conditions, the existence of a
feasible point in X is guaranteed. Formally, this is stated in the following result.

Theorem 3.1 (Miranda’s Theorem, from [28]) Let X ⊆ R
n be a box and h =

(h1, . . . , hn) : X → R
n a continuous function. Moreover, let h satisfy the condi-

tions

hi (x) ≤ 0, ∀x ∈ Xi ,

hi (x) ≥ 0, ∀x ∈ Xi ,
(2)
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for all i = 1, . . . , n. Then h(x) = 0 has a solution in X.

Proofs of this theorem can be found in [23,45] among others. The number of facets
of a n-dimensional box is 2n and, hence, can be iterated over at low computational
costs. Figure 1a shows an example where all conditions of Theorem 3.1 are satisfied.

Note that by index changes arbitrary allocations of facet pairs and functions are
possible in the conditions (2) and that the sign conditions for the facets could also be
reversed to guarantee a zero of h in X . However, later on we will transform the system
in such a way that it is reasonable to use the sign conditions as stated above.

Theorem 3.1 can be extended so that it can be applied not only for the same number
of equality constraints m and variables n, but more general for m ≤ n and, thus, for
problems we are interested in.

Theorem 3.2 (Extended Miranda’s Theorem) Let X ⊆ R
n be a box and h =

(h1, . . . , hm) : X → R
m a continuous function on X with m ≤ n. Moreover, let

there exist a set of indices S := {s1, . . . , sm} with S ⊆ {1, . . . , n} so that h satisfies

h0
1=

h0
2=

x̂

X

h1(X1) > 0h1(X1) < 0

h2(X2) > 0

h2(X2) < 0

−3 3

−1.5

1.5

x1

x2

(a) Conditions (3) are satisfied.

h0
1=

x̂

X

h0
2=

−3 3

−3

3

x1

x2

(b) Box too large for verification of
the existence of a feasible point.

h0
2=

x̂

X

−3 3

−1

1

x1

x2

(c) Feasible point on a facet of X.

∇h2(x̂)
∇h1(x̂)

x̂

h0
1=

h0
2=

X

−3 3

−3

3

x1

x2

(d) Example with one gradient in x
not having unit direction.

Fig. 1 Illustration of Theorem 3.2 and its difficulties
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the conditions

h j (x) ≤ 0, ∀x ∈ Xs j
,

h j (x) ≥ 0, ∀x ∈ Xs j ,
(3)

for all j ∈ J . Then h(x) = 0 has a solution in X.

Proof Without loss of generality we assume that S = {1, . . . , m}, so that

h j (x) ≤ 0, ∀x ∈ X j ,

h j (x) ≥ 0, ∀x ∈ X j ,
(4)

holds for all j ∈ J . For arbitrary x̂� ∈ X�, with � ∈ {m + 1, . . . , n} , we define
ĥ = (̂h1, . . . , ĥm) : X1 × · · · × Xm → R

m with

ĥ(x1, . . . , xm) := h(x1, . . . , xm, x̂m+1, . . . , x̂n).

With the conditions in (4) for all x ∈ X1 × · · · × Xm and j ∈ J we have

ĥ j (x1, . . . , x j−1, ¯x j , x j+1, . . . , xm) ≤ 0, ĥ j (x1, . . . , x j−1, x̄ j , x j+1, . . . , xm) ≥ 0,

so that with Theorem 3.1 it follows that ĥ has a zero (̂x1, . . . , x̂m) in X1 × · · · × Xm .
From the definition of ĥ it follows h(̂x1, . . . , x̂m, x̂m+1, . . . , x̂n) = 0 and since

(̂x1, . . . , x̂n) ∈ X , the function h has a zero in X . ��
Theorem 3.2 provides a sufficient, but not necessary condition for the existence of

feasible points in X . One can think of simple examples of feasible points within boxes
for which the conditions (3) are not satisfied. Additionally, even if they are, it is not
clear in advance which function h j , j ∈ J , does satisfy the sign conditions on which
pair of facets

{
Xi , Xi

}
, i = 1, . . . , n. Therefore it is not possible to exclude facets

from examination or fix variables without excluding possible feasible points from the
search space.

For an upper bounding procedure that ensures termination of spatial branch-and-
bound algorithms in global optimization we shall overcome these difficulties in the
remaining part of this article. We will start by discussing different scenarios, in which
the conditions (3) are not satisfied even though a feasible point exists in X .

Case 1 (The box X is too large) Despite containing a feasible point the conditions (3)
in Theorem 3.2 might not be satisfied for a box X if it is too large, as illustrated
exemplarily inFig. 1b.While for h2 the conditions are satisfied, they are not for h1, even
though the point x̂ = (0, 0) ∈ X is feasible. However, if the box is shrunk sufficiently
around x̂ , the existence of a feasible point can be verified by using Theorem 3.2.

Case 2 (Feasible point on a facet of X) Further difficulties might occur if a feasible
point x̂ ∈ X is located on a facet of X . In this case, the conditions (3) might still be
satisfied for sufficiently small boxes, but this is not guaranteed, as shown in Fig. 1c.
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The function h2 takes solely positive values on X2. Even if the box X is shrunk with x̂
remaining feasible, h2 will never take negative values on this facet. In Sect. 4.3 we will
present an approach which makes it still possible to verify the existence of feasible
points using Theorem 3.2 in such a case.

Case 3 (Gradients in feasible point not directed towards the facets) The conditions (3)
in Theorem 3.2 might also not be satisfied if the gradients∇h j (̂x), j ∈ J , in a feasible
point x̂ have no unit direction and, hence, are not directed towards the facets X j . This
is shown in Fig. 1d for the function h1. It is not guaranteed that this difficulty vanishes
for any type of smaller boxes around x̂ . As within a branch-and-bound algorithm
usually the rule to construct new boxes is predetermined, this case requires a more
specific approach, which we will present in Sect. 4.4.

4 Convergent upper bounds for the globally minimal value

In this section we will develop the announced algorithm to calculate convergent valid
upper bounds for the globally minimal value v∗ of P(B) based on Theorem 3.2.

A straightforward ideamight be to consider every box that occurs during the branch-
and-bound algorithm and to check whether the conditions of Theorem 3.2 are fulfilled.
If this is the case, a valid upper bound at the globally minimal value could be obtained
by computing an upper bound at the objective function over thewhole box, for instance
by applying interval arithmetic or any other convergent bounding procedure.

However, as already discussed at the end of the previous section, in Theorem 3.2
only a sufficient, but not necessary condition for verifying the existence of a feasi-
ble point is provided. Therefore, this approach does not necessarily need to lead to a
convergent procedure. In this section, we will show how the boxes obtained by stan-
dard branch-and-bound algorithms can be altered so that the conditions are fulfilled,
provided a sufficiently small box contains a feasible point.

In order to achieve this we start by considering an artificial and very simple case
where

– the box midpoint equals the feasible point x̂ ,
– the gradient ∇h j (̂x) is the j-th unit vector for all j ∈ J and
– the box X is sufficiently small.

Then it can be ensured that the conditions of Theorem 3.2 are satisfied, aswewill prove
in Sect. 4.1. Afterwards in Sects. 4.2, 4.3 and 4.4, we will sequentially generalize our
results to more realistic sequences of boxes that occur in spatial branch-and-bound
algorithms by addressing the difficulties mentioned in Sect. 3, and finally state our
algorithm for the general case.

4.1 Feasibility verification in a simple case

In this subsection we consider the simple case where the gradient of h j , j ∈ J , in a
feasible point x̂ equals the j-th unit vector e j , that is, ∇h j (̂x) = e j for all j ∈ J .
Moreover, we assume the midpoint mid(X) of a box X to be feasible, so we have
x̂ = mid(X) with h j (̂x) = 0 for all j ∈ J .
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Wewill show that in this specific case, for a sufficiently small box X , the conditions
of Theorem 3.2 are guaranteed to be satisfied and hence, the existence of a feasible
point can be verified. The intuition behind this is that starting from x̂ the function h j

will take positive values in direction e j and any direction towards X j for sufficiently
small steps and for all j ∈ J . On the other hand, h j will take negative values in
direction −e j and any other direction towards X j for sufficiently small steps.

To derive the above result, we will analyze exhaustive sequences of boxes, that is,
sequences

(
Xk

)
k∈N of non-empty boxes Xk ⊆ B with Xk+1 ⊆ Xk (nestedness) and

limk→∞ diag
(
Xk

) = 0. Additionally, we assume that the feasible point x̂ is midpoint
of each element Xk . We will show that there is a k̂ ∈ N so that for all k ≥ k̂ Miranda’s
conditions are satisfied. To make this work, in addition, we have to ensure that boxes
do not become increasingly deformed. Therefore we will only consider non-deformed
exhaustive sequences of boxes, i.e. sequences for which the maximum ratio of the
length of box edges is bounded above by a constant t̄ < ∞ for all boxes Xk .

Definition 4.1 (Non-Deformed Sequence of Boxes) Let
(
Xk

)
k∈N be a sequence of

boxes with the maximum ratio of the length of box edges

tk := maxi=1,...,n
(
x̄ k

i − ¯x
k
i

)

mini=1,...,n
(
x̄ k

i − ¯x
k
i

) ,

bounded above by a constant t̄ < ∞. Then we call
(
Xk

)
k∈N a non-deformed sequence

of boxes.

The following lemma shows that this additional requirement does not exclude the
typical branching rule of standard branch-and-bound algorithms in global optimization
to divide a box along a longest edge. We believe that this may also be shown for other
branching rules along the lines of this proof.

Lemma 4.2 Let
(
Xk

)
k∈N be a sequence of boxes where Xk+1 is constructed by dividing

Xk along a longest edge. Then
(
Xk

)
k∈N is non-deformed.

Proof For simplicity we denote the lengths of the edges i = 1, . . . , n by Δxk
i :=

x̄ k
i − ¯x

k
i . For n = 1 the ratio tk is trivially 1 and thus, bounded above for all k ∈ N .

For n > 1 we distinguish two cases:
First, let tk > 2. As a longest edge is bisected we obtain

tk+1 = maxi=1,...,n Δxk+1
i

mini=1,...,n Δxk+1
i

≤ maxi=1,...,n Δxk
i

mini=1,...,n Δxk+1
i

tk>2= maxi=1,...,n Δxk
i

mini=1,...,n Δxk
i

= tk .

Now, let tk ≤ 2. Then, after dividing a longest edge the length of the short-
est edge is exactly half the length of the previously longest edge. That is, we have
mini=1,...,n Δxk+1

i = 1
2 · maxi=1,...,n Δxk

i . With this we obtain

tk+1 = maxi=1,...,n Δxk+1
i

mini=1,...,n Δxk+1
i

= 2 · maxi=1,...,n Δxk+1
i

maxi=1,...,n Δxk
i

≤ 2 · maxi=1,...,n Δxk
i

maxi=1,...,n Δxk
i

= 2,
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where the second equality follows from the bisection of a longest edge.
Summarizing, the ratio tk is bounded above by t̄ := max

{
t1, 2

}
< ∞ for all k ∈ N.

��
For non-deformed exhaustive sequences of boxes we can now show that there is a

k̂ ∈ N so that for all k ≥ k̂ the conditions of Theorem 3.2 are satisfied. This is stated
formally in the following result.

Theorem 4.3 Let
(
Xk

)
k∈N be a non-deformed exhaustive sequence of boxes with

x̂ := mid
(
Xk

)
for all k ∈ N and x̂ feasible. Furthermore, let h : R

n �→ R
m,

h ∈ C1(Rn,Rm) and let the gradients satisfy the conditions ∇h j (̂x) = e j for all
j ∈ J . Then, there is some k̂ ∈ N so that the conditions (3) of Theorem 3.2 are
satisfied for all k ∈ N with k ≥ k̂.

Proof Consider an arbitrary element Xk ∈ (
Xk

)
k∈N. Without loss of generality we

examine constraint h1. Let x̃ k be a maximum point of h1 on Xk
1. Using Taylor’s

Theorem with limx̃ k→x̂ ω
(
x̃ k

) = ω(̂x) = 0 we obtain

h1
(
x̃ k) = h1(̂x) +

〈
∇h1(̂x), x̃ k − x̂

〉
+ ω

(
x̃ k) ·

∥∥∥x̃ k − x̂
∥∥∥ .

With the feasibility of x̂ , ∇h1 = e1 and x̃ k ∈ Xk
1 it follows

h1
(
x̃ k) = −1

2

(
x̄ k
1 − ¯x

k
1

)
+ ω

(
x̃ k) ·

∥∥∥x̃ k − x̂
∥∥∥ .

With the box property ‖x − mid(X)‖2 ≤ 1
2 diag(X) for all x ∈ X we obtain

h1
(
x̃ k) ≤ −1

2

(
x̄ k
1 − ¯x

k
1

)
+ 1

2
ω

(
x̃ k) diag

(
Xk).

Using the equivalence of norms and that
(
Xk

)
k∈N is non-deformed we have

x̄ k
1 − ¯x

k
1 ≥ min

i=1,...,n

(
x̄ k

i − ¯x
k
i

)
= 1

tk
max

i=1,...,n

(
x̄ k

i − ¯x
k
i

)
= 1

tk

∥∥x̄ k − ¯x
k
∥∥∞

≥ 1

tk

diag
(
Xk

)

√
n

≥ 1

t̄
√

n
diag

(
Xk)

and hence,

h1
(
x̃ k) ≤ − 1

2
√

n t̄
diag

(
Xk) + 1

2
ω

(
x̃ k) diag

(
Xk).

Since for k approaching infinity we have limk→∞ diag
(
Xk

) = 0 but also x̃ k → x̂ and
hence ω

(
x̃ k

) → ω(̂x) = 0, the first term on the right hand side determines the sign
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of the whole expression. With n, t̄ > 0, it is always negative, so that there is some
k11 ∈ N so that for all k ≥ k11 and all x ∈ Xk

1 we have

h1(x) ≤ max
x∈Xk

1

h1(x) = h1
(
x̃ k) < 0.

Analogously, with x̌ k the minimum point of h1 on X
k
1 there is some k21 ∈ N so that

for all k ≥ k21 and all x ∈ X
k
1 we have

h1(x) ≥ min
x∈X

k
1

h1(x) = h1
(
x̌ k)

> 0.

We proceed analogously for the equality constraints h2, . . . , hm . Thus, for all k ≥
k̂ := max�=1,2 max j=1,...,m

{
k�

j

}
the assertion follows. ��

Consequently, for this specific case an algorithm based on Theorem 3.2 is able to
verify the existence of a feasible point within some box Xk and to determine a valid
upper bound for v∗.

4.2 A first extension of the simple case

In Sect. 4.1we assume themidpointmid
(
Xk

)
of each box Xk in

(
Xk

)
k∈N to be feasible.

Now we relax this assumption and generalize our results to exhaustive sequences
of boxes for which the feasible point x̂ only becomes midpoint asymptotically, but
still ∇h j (̂x) = e j holds for all j ∈ J . We will show that for sufficiently small
boxes, i.e. after a finite number of steps within a branch-and-bound algorithm, still
the conditions (3) in Theorem 3.2 are guaranteed to be satisfied. To begin with, we
introduce the concept of asymptotically centered sequences of boxes.

Definition 4.4 (Asymptotically Centered Sequence of Boxes) Let
(
Xk

)
k∈N be a

sequence of boxes with x̂ ∈ Xk for all k ∈ N, and

lim
k→∞

x̂i − ¯x
k
i

x̄k
i − ¯x

k
i

= 1

2
, i = 1, . . . , n. (5)

Then, we call the sequence
(
Xk

)
k∈N asymptotically centered on x̂ .

Definition 4.4 states that a sequence of boxes is asymptotically centered on a point
x̂ if this point asymptotically becomes the midpoint of elements of the sequence.
Note that for this property it is not sufficient that the midpoint mid

(
Xk

)
of Xk solely

converges to x̂ for k approaching infinity.
Although x̂ only becomes midpoint of Xk asymptotically, the following theorem

proves that for a non-deformed and exhaustive sequence of boxes
(
Xk

)
k∈N, which is

asymptotically centered on a feasible point x̂ ∈ Xk for all k ∈ N, there still is a k̂ ∈ N

so that for all k ≥ k̂ the conditions of Theorem 3.2 are satisfied.
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Theorem 4.5 Let
(
Xk

)
k∈N be a non-deformed sequence of boxes asymptotically cen-

tered on a feasible point x̂ of P(B) and with limk→∞ diag
(
Xk

) = 0. Furthermore, let
h : Rn �→ R

m, h ∈ C1(Rn,Rm) and the gradients satisfy the conditions ∇h j (̂x) = e j

for all j ∈ J . Then, there is some k̂ ∈ N so that the conditions (3) of Theorem 3.2 are
satisfied for all k ∈ N with k ≥ k̂.

Proof We follow the same approach as in the proof of Theorem 4.3 and obtain

h1
(
x̃ k) = −(̂x1 − x̃ k

1 ) + 1

2
ω

(
x̃ k) diag

(
Xk).

Introducing the ratio

s
(
Xk) := x̂1 − x̃ k

1

x̄ k
1 − ¯x

k
1

= x̂1 − ¯x
k
1

x̄ k
1 − ¯x

k
1

∈ [0, 1]

we can express the first term in terms of a box edge. Then, using norm properties and
the non-deformity of

(
Xk

)
k∈N it follows

h1
(
x̃ k) ≤ − s

(
Xk

)

√
n t̄

diag
(
Xk) + 1

2
ω

(
x̃ k) diag

(
Xk).

Since we assume Xk to be an element of a sequence of boxes asymptotically centered

on x̂ , s
(
Xk

)
converges to 1

2 and thus, − s
(

Xk
)

√
n t̄

converges to a non-zero constant when

diag
(
Xk

)
approaches 0. Hence, there is some k11 ∈ N, so that for all k ≥ k11, k ∈ N,

and for all x ∈ Xk
1 we have

h1(x) ≤ max
x∈Xk

1

h1(x) = h1
(
x̃ k) < 0.

For X
k
1 and h2, . . . , hm we proceed analogously. With the same line of argumentation

as for Theorem 4.3 the assertion follows. ��

4.3 A further extension of the simple case

In Sect. 3 we demonstrated that the conditions (3) of Theorem 3.2 may not be satis-
fied if a feasible point is located on a facet of X . In this subsection we will address
this challenge and present an approach to guarantee that upper bounds to v∗ can be
determined in a finite number of steps within a branch-and-bound algorithm.

The main idea to handle such situations is to artificially extend a box X to a box X̃
so that all feasible points in X are interior points of X̃ . Thereby, for each exhaustive
sequence of boxes

(
Xk

)
k∈N with x̂ ∈ Xk we obtain an additional sequence

(
X̃ k

)
k∈N

with Xk ⊆ X̃ k . This sequence is not guaranteed to be nested any longer, but this is
no restriction to our results. Additionally, we construct this sequence such that it is

123



C. Füllner et al.

asymptotically centered on x̂ . Then, using Theorem 3.2 the existence of a feasible
point in some box X̃ k can be verified, as shown in the previous subsection. Generally,
the verification of a feasible point in X̃ k does not guarantee the existence of a feasible
point in Xk . However, we will demonstrate that it is sufficient to determine valid upper
bounds for v∗.

The following lemma provides a method to construct a sequence with the desired
properties for boxes with edge lengths smaller than 1. This is sufficient for our pur-
poses, as we are only interested in convergence properties for small boxes.

Lemma 4.6 (Construction of a Centered Sequence of Super-Boxes) Let
(
Xk

)
k∈N be

an exhaustive sequence of boxes with x̄k
i − ¯x

k
i < 1 for all i = 1, . . . , n and x̂ ∈ Xk

for all k ∈ N. Furthermore, let
(
X̃ k

)
k∈N be a sequence of boxes with X̃k = [̃xk, x̃ k],

mid
(
X̃ k

) = mid
(
Xk

)
and x̃k

i −
˜
xk

i :=
√

x̄ k
i − ¯x

k
i for all i = 1, . . . , n and k ∈ N.

Then, Xk ⊆ X̃ k for each k ∈ N and the sequence
(
X̃ k

)
k∈N is centered on x̂.

Proof With mid
(
X̃ k

) = mid
(
Xk

)
, x̃ k

i −
˜
xk

i =
√

x̄ k
i − ¯x

k
i and x̄ k

i − ¯x
k
i < 1 we

have Xk ⊆ X̃ k for all k ∈ N. To prove the second assertion, we will show that

limk→∞
x̂i −̃xk

i

x̃k
i −̃xk

i
= 1

2 for an arbitrary i ∈ {1, . . . , n}.
We start with the case x̂i ≥ mid

(
Xk

i

)
. Using the definition of X̃ k and basic box

properties it follows

s
(
X̃ k) := x̂i −

˜
xk

i

x̃k
i −

˜
xk

i

= x̂i − mid
(
Xk

i

) + mid
(
Xk

i

) −
˜
xk

i

x̃k
i −

˜
xk

i

= x̂i − mid
(
Xk

i

)

x̃ k
i −

˜
xk

i

+ 1

2

≤ 1

2

x̄ k
i − ¯x

k
i

x̃k
i −

˜
xk

i

+ 1

2
= 1

2

x̄ k
i − ¯x

k
i√

x̄ k
i − ¯x

k
i

+ 1

2
= 1

2

√
x̄ k

i − ¯x
k
i + 1

2
.

For an exhaustive sequence of boxes
(
Xk

)
k∈N we have limk→∞ x̄ k − ¯x

k = 0.

Hence, we obtain limk→∞ s
(
X̃ k

) ≤ 1
2 . Moreover, with x̂i ≥ mid

(
Xk

i

)
we have

s
(
X̃ k) ≥ mid

(
Xk

i

) −
˜
xk

i

x̃k
i −

˜
xk

i

= 1

2
,

and hence the assertion.
For the case x̂i < mid

(
Xk

i

)
with the same line of argumentation we obtain s

(
X̃ k

) ≥
− 1

2

√
x̄ k

i − ¯x
k
i + 1

2 and

s
(
X̃ k) ≤ mid

(
Xk

i

) −
˜
xk

i

x̃k
i −

˜
xk

i

= 1

2
,

from which the assertion follows for k approaching infinity. ��
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X1

x̂

X2
˜X2

X1

x̂

X3
˜X3
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x̂

X4
˜X4

X1

x

X5 X5

X1

x

X6

X6

X1

x

X7

X7

Fig. 2 A sequence of boxes
(
Xk)

k∈N and the sequence
(
X̃ k)

k∈N constructed using Lemma 4.6. The latter
is asymptotically centered on x̂

Figure 2 illustrates the proven result for an exemplary sequence of boxes Xk where
consecutive boxes are constructed by division along a longest edge.

Using this construction we obtain the following result with regard to the verification
of the existence of feasible points:

Corollary 4.7 Let
(
Xk

)
k∈N be a non-deformed exhaustive sequence of boxes with

x̄k
i − ¯x

k
i < 1 for all i = 1, . . . , n and k ∈ N, x̂ ∈ Xk for all k ∈ N and x̂ feasi-

ble. Furthermore, let h : Rn �→ R
m, h ∈ C1(Rn,Rm) and the gradients satisfy the

conditions ∇h j (̂x) = e j for all j ∈ J . Then, there is some k̂ ∈ N so that for all k ∈ N

with k ≥ k̂ the conditions (3) of Theorem 3.2 are satisfied for the boxes X̃k constructed
as in Lemma 4.6.

Proof With Lemma 4.6 it follows that the constructed sequence of boxes (X̃)k∈N
is asymptotically centered on x̂ . For a sufficiently small box Xk also X̃ k becomes
sufficiently small, since diag

(
Xk

) → 0 implies diag
(
X̃ k

) → 0. Consequently, there
is some k̂ so that all assumptions of Theorem 4.5 are satisfied and the assertion follows.

��

Therefore, if Xk contains a feasible point and Xk is sufficiently small, it is guar-
anteed that with the construction of X̃ k the existence of this point can be verified
using Theorem 3.2, as Xk ⊆ X̃ k . In a branch-and-bound algorithm with additional
construction of boxes X̃ k this is the case after a finite number of steps. On the contrary,
it is also possible that the conditions (3) in Theorem 3.2 are satisfied due to a point
x̂ ∈ X̃ k with h(̂x) = 0 but x̂ /∈ Xk or even x̂ /∈ B. We will discuss this aspect in detail
later on and show that it is no strong restriction to our approach.
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4.4 The general case

In this subsection we further generalize our results from the previous subsections by
dropping the assumption ∇h j (̂x) = e j for all j ∈ J . In this case it is possible, but not
guaranteed that the conditions (3) of Theorem 3.2 are satisfied for sufficiently small
boxes. The main idea to still guarantee the verification of the existence of feasible
points based on this theorem, is to transform the system in such a way that at least
asymptotically all conditions from Corollary 4.7 are satisfied. In particular, that all
gradients of constraints in a feasible point have unit direction at least asymptotically.

First, we will introduce our transformation approach in Sect. 4.4.1, afterwards in
Sect. 4.4.2 we will present our algorithm and prove that within a branch-and-bound
context it determines valid upper bounds for v∗ after a finite number of steps.

4.4.1 Transformation of the system

As before, we will first construct a sequence of boxes
(
X̃ k

)
k∈N with midpoints

mid
(
Xk

)
which is asymptotically centered on x̂ . Then, to transform the system in

the desired manner, for each k ∈ N we will apply a coordinate transformation from
the standard basis of Rn to another basis Bk .

Such a coordinate transformation can be describedwith amatrix Ak whose columns
are the basis vectors of Bk . Then, we obtain x �→ yk = A−1

k x for the transformation
of a point x in the original coordinates to a point y in the new coordinates and yk �→
x = Ak yk for the reverse transformation from the new to the original coordinates. In
the following, yk will always denote the image of a point x under A−1

k and ŷk that of
a feasible point x̂ . The functions h j , j ∈ J , can be expressed in the new coordinates
by

h j (x) = h j
(

Ak yk) = (h j ◦ Ak)
(
yk) =: h̃k

j

(
yk). (6)

Using the chain rule it follows ∇h̃k
j (ŷk) = Aᵀ

k ∇h j (̂x) for the gradient of h̃k
j in the

transformed feasible point ŷk .
Our aim is to determine Ak in such a way that the gradients of h̃k

j in the new

coordinates have unit direction at a feasible point ŷk . As the feasible points and their
gradients are not yet known, we will use the box midpoints instead. With

(
X̃ k

)
k∈N

asymptotically centered on x̂ , asymptotically the feasible point x̂ becomes box mid-
point and the coordinate transformation will be conducted in x̂ . This will prove to be
sufficient to verify the existence of a feasible point in a finite number of steps in a
branch-and-bound algorithm with additional construction of boxes X̃ k .

We want to choose the (n, n)-matrix Aᵀ
k such that

Aᵀ
k

(
∇h1

(
mid

(
Xk)), . . . ,∇hm

(
mid

(
Xk))

)
= (e1, . . . , em)

⇔ Aᵀ
k ∇h

(
mid

(
Xk)) = In,m

⇔ Dh
(
mid

(
Xk)) Ak = Im,n .
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If Dh(mid
(
Xk

)
) is quadratic and the gradients ∇h j (mid

(
Xk

)
) are linearly indepen-

dent, using the inverse of Dh(mid
(
Xk

)
) we obtain

Ak = (
Dh

(
mid

(
Xk)))−1

, A−1
k = Dh

(
mid

(
Xk)).

If Dh(mid
(
Xk

)
) is not quadratic, since m < n, we will extend the matrix to a basis

of Rn by adding a basis of its null space null(Dh(mid
(
Xk

)
)) and then proceed anal-

ogously. Denoting the extended matrix with Dh(m
(
Xk

)
) we obtain

Ak =
(

Dh(̂x)
)−1

A−1
k = Dh(̂x).

WithAssumption1.1, linearly independent gradients are guaranteed asymptotically for
sequences of boxes asymptotically centered on a globally minimal point x∗ of P(B).
Moreover, as the following lemma shows, this condition is also satisfied after a finite
number of steps within a branch-and-bound algorithm with additional construction of
boxes X̃ k .

Lemma 4.8 Let
(
X̃ k

)
k∈N be a sequence of boxes centered on a globally minimal point

x∗ of P(B) and with limk→∞ diag
(
X̃ k

) = 0, and let Assumption 1.1 hold. Then, there

is a k̃ ∈ N so that for all k ≥ k̃ the coordinate transformation using Ak =
(

Dh(̂x)
)−1

can be applied in mid
(
Xk

)
.

Proof With Assumption 1.1 we have linearly independent gradients of h j , j ∈ J in
x∗, and hence, for sequences

(
X̃ k

)
k∈N asymptotically. Additionally, all functions h j ,

j ∈ J , are presumed to be continuously differentiable, so linear independence will
also be guaranteed for midpoints sufficiently close to x∗. Within a branch-and-bound
algorithm such midpoints occur after a finite number of steps. ��

Based on this lemma, in the following we will restrict our results to sequences of
boxes asymptotically centered on globally minimal points although they also hold for
any sequence asymptotically centered on a feasible point x̂ with linearly independent
gradients ∇h j (̂x).

As intended, with the above transformation asymptotically we obtain unit directed
gradients in the transformed globally minimal point y∗k , as Lemma 4.9 shows. In

its proof we shall need that the matrices A−1
k = Dh(mid

(
Xk

)
), k ∈ N, form a

convergent sequence. While this is clear in the case m = n, for m < n the bases of
the null spaces of the matrices Dh(mid

(
Xk

)
), k ∈ N, need to be chosen carefully.

One such possibility is to collect m linearly independent columns of Dh(mid
(
Xk

)
)

in a matrix Rk and write Dh(mid
(
Xk

)
) = (Rk, Sk) where, without loss of generality,

we assume that one can choose the first m columns. Then the columns of the matrices(− (
Rk

)−1
Sk

In−m,n−m

)
form convergent bases of the null spaces of Dh(mid

(
Xk

)
), k ∈ N.
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Lemma 4.9 Let
(
X̃ k

)
k∈N be a sequence of boxes centered on a globally minimal point

x∗ and with limk→∞ diag
(
X̃ k

) = 0, and let Assumption 1.1 hold. Then for all j ∈ J
we have

lim
k→∞ ∇h̃k

j

(
mid

(
Ỹ k)) = ∇h̃x∗

j

(
y∗k) = e j ,

where h̃x∗
j refers to a transformation conducted in x∗.

Proof Since
(
X̃ k

)
k∈N is centered on x∗ we have limk→∞ mid

(
Xk

) = x∗. With
Lemma 4.8 there is a k̃ ∈ N so that for all k ≥ k̃ the coordinate transformation
is applicable. For all such k, with A−1

k = Dh(mid
(
Xk

)
) and h continuously differen-

tiable we obtain limk→∞ A−1
k = A−1

x∗ , where Ax∗ refers to a transformation conducted
in x∗. By construction of the transformation we have

∇h̃k
j

(
mid

(
Ỹ k)) = Aᵀ

k ∇h j
(
mid

(
Xk)) = e j .

Since inverting a matrix is a continuous transformation and h is continuously differ-
entiable, introducing limits for all j ∈ J it follows

lim
k→∞ ∇h̃k

j

(
mid

(
Ỹ k)) = lim

k→∞ Aᵀ
k lim

k→∞ ∇h
(
mid

(
Xk))

= Aᵀ
x∗∇h(x∗) = ∇h̃x∗

j

(
y∗k) = e j .

��
So applying the coordinate transformation we obtain a sequence of functions

(̃hk)k∈N whose elements at least asymptotically satisfy the conditions from Corol-
lary 4.7. Yet, the box X̃ k is not necessarily transformed to another box, but to a
n-parallelepiped Ỹ k . To cope with that, for each k ∈ N we will overestimate Ỹ k with
a box Ỹ ′k and then prove that all conditions from Corollary 4.7 are fulfilled.

To overestimate an n-parallelepiped Ỹ k with a box we will construct its minimum
bounding box Ỹ ′k by determining the maximum and minimum entries for each com-
ponent i = 1, . . . , n among all vertices of Ỹ k and then taking them as component-wise
interval boundaries. Iterating over all vertices of Ỹ k is expensive from a computational
point of view, but the maxima and minima can also be determined by solving 2n linear
optimization problems.

To derive these linear optimization problems and some following results, we will
make use of the edge vectors of a box Xk , which we define by d Xk

i := (0, . . . , x̄ k
i −

¯x
k
i , . . . , 0)ᵀ for all i = 1, . . . , n, with edge length ‖d Xk

i ‖2 = x̄ k
i − ¯x

k
i . Any point x̃ in

Xk can be addressed by

x̃ = ¯x +
n∑

i=1

αi d Xk

i
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with appropriate αi ∈ [0, 1] for all i = 1, . . . , n. Analogously, we denote the edge
vectors of an n-parallelepiped Ỹ k by dỸ k

i := A−1
k d Xk

i . Any point ỹk within the n-
parallelepiped can be addressed by

ỹk =
¯
yk +

n∑

i=1

ti dỸ k

i = A−1
k ¯x +

n∑

i=1

ti A−1
k d X̃k

i

with appropriate ti ∈ [0, 1] for all i = 1, . . . , n.
Using these definitions, for each i = 1, . . . , n we have to solve the linear optimiza-

tion problems

PỸ ′k ,i,max : max
t∈Rn

yk,i s.t. yk =
¯
yk +

n∑

l=1

tl dỸ k

l , tl ∈ [0, 1] ∀l = 1, . . . , n, (7)

and

PỸ ′k ,i,min : min
t∈Rn

yk,i s.t. yk =
¯
yk +

n∑

l=1

tl dỸ k

l , tl ∈ [0, 1] ∀l = 1, . . . , n. (8)

Constructing the boxes Ỹ ′k for each k ≥ k̃ we obtain a sequence of boxes (Ỹ ′k)k∈N.
In order to apply our results from Corollary 4.7 we now have to check whether this
sequence has all the required properties.

First, we can state that the transformed midpoint mid(Ỹ k) := A−1
k mid

(
Xk

)
of the

box X̃ k is also midpoint of the n-parallelepiped Ỹ k , i.e. mid(Ỹ k) =
¯
yk + ∑n

i=1
1
2dỸ k

i ,
which follows from the linearity of the coordinate transformation. As constructing
the box Ỹ ′k does not change the componentwise boundaries, mid(Ỹ k) is also mid-
point of the box Ỹ ′k , and the previous results from this subsection remain valid. In
addition, we have to show that (Ỹ ′k)k∈N is a non-deformed sequence of boxes asymp-
totically centered on the globallyminimal point y∗k in the new coordinates and satisfies
limk→∞ diag(Ỹ ′k) = 0. The following lemma proves these properties.

Lemma 4.10 Let
(
X̃ k

)
k∈N be a non-deformed sequence of boxes asymptotically cen-

tered on a globally minimal point x∗ and with limk→∞ diag
(
X̃ k

) = 0, and let
Assumption 1.1 hold. Then the sequence (Ỹ ′k)k∈N of boxes

(a) satisfies limk→∞ diag(Ỹ ′k) = 0,
(b) is asymptotically centered on

y∗ = lim
k→∞ y∗k = lim

k→∞ A−1
k x∗ = A−1

x∗ x∗,

(c) is non-deformed.
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Proof To prove assertion (a) we use the row-sum norm, i.e. the matrix norm induced
by ‖·‖∞. With the compatibility of the row-sum norm of A−1

k we have

∥∥∥A−1
k x

∥∥∥∞ ≤
∥∥∥A−1

k

∥∥∥∞ ‖x‖∞

for all x ∈ R
n, k ∈ N. In particular, for all x ′, x ′′ ∈ X̃ k it follows

∥∥∥A−1
k

(
x ′ − x ′′)

∥∥∥∞ ≤
∥∥∥A−1

k

∥∥∥∞
∥∥x ′ − x ′′∥∥∞ ≤

∥∥∥A−1
k

∥∥∥∞ max
i=1,...,n

(
x̃ k

i −
˜
xk

i

)
.

With
(
X̃ k

)
k∈N asymptotically centered on x∗ we have limk→∞ mid

(
Xk

) = x∗ and
with h being continuously differentiable it follows that limk→∞ A−1

k = A−1
x∗ . With

limk→∞ diag
(
X̃ k

) = 0 we also have limk→∞ maxi=1,...,n (̃xk
i −

˜
xk

i ) = 0. Moreover,
‖A−1

x∗ ‖∞ is a real number. As both limit values exist, we obtain

0 ≤ lim
k→∞‖A−1

k

(
x ′ − x ′′)‖∞

≤ lim
k→∞‖A−1

k ‖∞ max
i=1,...,n

(
x̃ k

i −
˜
xk

i

)

= lim
k→∞‖A−1

k ‖∞ · lim
k→∞ max

i=1,...,n

(
x̃ k

i −
˜
xk

i

)
= 0.

Hence, for arbitrary x ′, x ′′ ∈ X̃ k all components of A−1
k

(
x ′ − x ′′) converge to 0. As

Ỹ ′k is constructed from these component entries, also all edge lengths of Ỹ ′k converge
to zero and thus, also diag(Ỹ ′k).

Nowwe turn towards assertion (b). The globally minimal point x∗ can be described
as a linear combination of all edge vectors of X̃ k starting from

˜
xk , i.e.

x∗ =
˜
xk + αk

1d X̃k

1 + αk
2d X̃k

2 + · · · + αk
nd X̃k

n

with αi ∈ R for all i = 1, . . . , n and k ∈ N. As x∗ asymptotically becomes midpoint
of the elements of

(
X̃ k

)
k∈N, we have limk→∞ αk

i = 1
2 for all i = 1, . . . , n.

Since the coordinate transformation is linear, it follows

y∗k =
¯
yk + αk

1dỸ k

1 + αk
2dỸ k

2 + · · · + αk
ndỸ k

n . (9)

Hence, with limk→∞ αk
i = 1

2 the feasible point ŷk in the new coordinates also becomes
midpoint of Ỹ k and, thus, Ỹ ′k asymptotically.

To show assertion (c) again we use the row-sum norm of A−1
k . Similarly to (a), for

all x ′, x ′′ ∈ X̃ k we obtain

∥∥∥A−1
k

(
x ′ − x ′′)

∥∥∥∞ ≤
∥∥∥A−1

k

∥∥∥∞ max
i=1,...,n

∥∥∥d X̃k

i

∥∥∥∞ . (10)
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Analogously, with the induced norm of Ak for all x ′, x ′′ ∈ X̃ k it follows

∥∥∥A−1
k

(
x ′ − x ′′)

∥∥∥∞ ≥ 1

‖Ak‖∞
min

i=1,...,n

∥∥∥d X̃k

i

∥∥∥∞ . (11)

The Eqs. (10) and (11) provide the maximum and minimum stretching under the
coordinate transformation. These factors also bound the edge lengths of the new box
Ỹ ′k . Hence, for the maximum ratio of the length of box edges we obtain

t Ỹ ′k ≤
∥∥∥A−1

k

∥∥∥∞ maxi=1,...,n

∥∥∥d X ,k
i

∥∥∥∞
1

‖Ak‖∞ mini=1,...,n

∥∥∥d X ,k
i

∥∥∥∞
= κ

(
A−1

k

)
tk ≤ κ

(
A−1

k

)
t̄, (12)

where in the last step we used that
(
X̃ k

)
k∈N is a non-deformed sequence. Thus, the

ratio of the edge lengths of Ỹ ′k is bounded above by a constant, κ , containing the
condition number of A−1

k .
Since the gradients of h in x∗ are linearly independent, because of Assumption 1.1,

A−1
x∗ is a regular matrix. For regular matrices the condition number is bounded. Hence,

for k approaching infinity the ratio t Ỹ ′k
is bounded by a finite constant. Thus, the boxes

do not become increasingly deformed. ��
Lemmas 4.9 and 4.10 show that using the, possibly extended, Jacobian of h in

mid
(
Xk

)
as the transformation matrix A−1

k for all k ≥ k̃ the system is transformed in
a way that all requirements of Corollary 4.7 are met at least asymptotically. Therefore,
we obtain the following result with regard to Theorem 3.2.

Theorem 4.11 Let
(
Xk

)
k∈N be a non-deformed exhaustive sequence of boxes with

x̄k
i − ¯x

k
i < 1 for all i = 1, . . . , n and k ∈ N, x∗ ∈ Xk for all k ∈ N and x∗ globally

minimal point of P(B). Let
(
X̃ k

)
k∈N be a sequence of boxes with X̃k = [̃xk, x̃ k],

mid
(
X̃ k

) = mid
(
Xk

)
and x̃k

i −
˜
xk

i :=
√

x̄ k
i − ¯x

k
i for all i = 1, . . . , n and k ∈ N.

Furthermore, let h : Rn �→ R
m, h ∈ C1(Rn,Rm) and let Assumption 1.1 hold. Then,

there is some k̂ ∈ N so that for all k ∈ N with k ≥ k̂ the conditions (3) of Theorem 3.2
are satisfied for the boxes Ỹ ′k obtained by applying the aforementioned transformation
of the system.

Proof With the extension of Xk for each k ∈ N according to Lemma 4.6 we obtain a
sequence (X̃)k∈N of boxes which is asymptotically centered on the globally minimal
point x∗. According to Lemma 4.8 there is a k̃ ∈ N so that for all k ≥ k̃ the coordi-
nate transformation, and afterwards the extension of Ỹ k to a box Ỹ ′k can be applied.
Thereby we obtain a sequence of boxes (Ỹ ′k)k∈N that is non-deformed, asymptotically
centered on y∗ and satisfies limk→∞ diag(Y ′k) = 0, as shown in Lemma 4.10, and a
sequence of functions (̃hk

j )k∈N in the new coordinates. Using Lemma 4.9 it follows

limk→∞ ∇h̃k
j (y∗k) = e j . Hence, asymptotically, all assumptions from Corollary 4.7

are met, so that we can conclude that h̃k asymptotically satisfies the sign conditions
of Theorem 3.2 on Ỹ ′k . As h̃k is continuously differentiable, there is some k̂ so that
for all k ≥ k̂ the sign conditions are satisfied as well. ��
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4.4.2 Determining upper bounds in the transformed system

With the previous results we are now able to present our method to calculate valid
upper bounds for the globally minimal value v∗.

In a first phase, the box is extended to cope with feasible points on facets. If the box
is too large for our extension approach, we set X̃ = X . In a second phase, if possible,
the system is transformed such that at least asymptotically the gradients ∇h̃ j , j ∈ J ,
at a transformed globally minimal point y∗ have unit direction. We note again that
the transformation can be also applied for sufficiently small boxes in a sequence of
boxes asymptotically centered on a feasible point x̂ with linearly independent gradients
∇h j (̂x). In phase three, Theorem 3.2 is used to check for feasibility. Theorem 4.11
states that after a finite number of steps within a branch-and-bound algorithm, its
conditions are satisfied and the existence of a zero in Ỹ ′k can be verified. However, as
checking

h̃k
j (y) ≤ 0, ∀y ∈ Ỹ ′k

j and h̃k
j (y) ≥ 0, ∀y ∈ Ỹ ′k

j ,

for all j ∈ J is not an easy task, we will use quadratically convergent upper bounding
procedures, e.g. centered forms [7,22], to determine upper and lower bounds on the
facets instead.

For all j ∈ J we will determine an upper bound u j (Ỹ ′k
j ) for the maximal value of

h̃k
j on the facet Ỹ ′k

j and a lower bound � j (Ỹ ′k
j ) for the minimal value of h̃k

j on the facet

Ỹ ′k
j . Using such bounds is sufficient to verify the existence of feasible points, since

u j (Ỹ ′k
j ) ≤ 0 and � j (Ỹ ′k

j ) ≥ 0 for all j ∈ J imply that all conditions of Theorem 3.2

are satisfied.
In general, the verification of a zero of h̃k in a box Ỹ ′k does neither guarantee the

existence of a feasible point in the original box Xk nor the existence of a feasible
point of P(B) at all, since by extending Xk to X̃ k and Ỹ k to Ỹ ′k the considered set
of points is enlarged. Applying the coordinate transformation, for each feasible point
x̂ ∈ Xk ⊆ B we obtain a feasible point ŷk ∈ Ỹ ∗k in the new coordinates. Hence, if
Xk is sufficiently small, the existence of a feasible point is verified correctly. On the
contrary, it is also possible that the conditions (3) in Theorem 3.2 are satisfied due to
a point ŷ ∈ Ỹ ′k with h̃k

j (ŷk) = 0 for all j ∈ J without a corresponding point x̂ ∈ Xk

in the original coordinates. While for x̂ /∈ B the existence of a feasible point of P(B)

cannot be concluded then, if we have x̂ /∈ Xk but x̂ ∈ B, still a feasible point of the
original problem P(B) is verified. We will show that for a sufficiently small box Xk

the latter condition is guaranteed to be satisfied so that for such a box our algorithm
verifies the existence of a feasible point of the problem P(B). Then, an upper bound
for the objective function on Ỹ ′k may serve as a new upper bound for v∗.

In practice, it is not clear in advancewhether a box is sufficiently small for a detected
zero to be located in B. As the zero is not determined explicitly, to check for this, we
transform the whole box Ỹ ′k to an n-parallelepiped X̃

′k in the original coordinates and
then extend it to a minimum bounding box X̃ ′′k with the same ideas as in the previous
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subsection. Then, we can check whether X̃ ′′k ⊆ B which implies x̂ ∈ B. The box X̃ ′′k
is also used to save the best-known approximation of a globally minimal point in the
original coordinates within a branch-and-bound algorithm. However, to calculate an
upper bound for v∗ that is as tight as possible, the upper bound should be determined
on Ỹ ′k in the new coordinates.

Algorithm 2
Input: Box X ⊆ B ⊆ R

n , equality constraints h j (x) = 0, j ∈ J , objective function f

Phase 1 - Box extension

1: if x̄∗
i − ¯x

∗
i < 1 then

2: Construct X̃ with mid(X̃) = mid(X) and x̃i −
˜
xi := √

x̄i − ¯xi for all i = 1, ..., n.
3: else
4: Set X̃ := X .

Phase 2 - System transformation

5: Extend Dh(mid(X̃)) to a matrix A−1 of basis vectors in R
n with null(Dh(mid(X̃))).

6: If possible, apply a coordinate transformation using A−1, which transforms X̃ to Ỹ .
7: Determine a minimum bounding box Ỹ ′ for Ỹ .

Phase 3 - Feasibility verification and upper bound for v∗

Phase 3a - Zero verification for Ỹ ′
8: for j ∈ J do
9: Use a quadratically convergent bounding procedure to determine a

– lower bound � j for min
y∈Ỹ ′

j
h̃ j (y),

– upper bound u j for maxy∈Ỹ ′
j

h̃ j (y).

10: if u j ≤ 0 and � j ≥ 0 for all j ∈ J then
11: Ỹ ′ contains a point ŷ with h̃ j (ŷ) = 0 for all j ∈ J .

Phase 3b - Retransformation to the original coordinates

12: Apply a transformation using matrix A, which transforms Ỹ ′ to X̃ ′.
13: Determine a minimum bounding box X̃ ′′ for X̃ ′.

Phase 3c - Feasibility verification and upper bound determination

14: if X̃ ′′ ⊆ B then
15: The verified point ŷ is also feasible for B.
16: Determine an upper bound u f for f̃ on Ỹ ′.

Output: Upper bound u f for v∗.

The following corollary formally proves that Algorithm 2 determines an upper
bound for v∗ after a finite number of steps.

Corollary 4.12 Let
(
Xk

)
k∈N be a non-deformed exhaustive sequence of boxes with

x̄k
i − ¯x

k
i < 1 for all i = 1, . . . , n and k ∈ N, Xk ⊆ B, x∗ ∈ Xk for all k ∈ N and x∗

a globally minimal point of P(B). Furthermore, let h : Rn �→ R
m, h ∈ C1(Rn,Rm)

and let Assumption 1.1 hold. Then, there is some k̂ ∈ N so that for all k ∈ N with
k ≥ k̂ Algorithm 2 verifies the existence of a feasible point of P(B) and determines a
valid upper bound u f for v∗.
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Proof With Theorem 4.11 there is a k1 so that the conditions (3) of Theorem 3.2 are
satisfied for all k ≥ k1. Hence, with ỹk the maximum point on Ỹ ′k

j for some arbitrary

j ∈ J we have

h̃k
j (y) ≤ h̃k

j

(
ỹk

)
< 0, ∀y ∈ Ỹ ∗k

j .

Using a quadratically convergent bounding procedure on Ỹ ′k
j we obtain

u j

(
Ỹ ′k

j

)
≤ h̃k

j

(
ỹk

)
+ δ diag

(
Ỹ ′k

j

)2 ≤ h̃k
j

(
ỹk

)
+ δ diag

(
Ỹ ′k)2 .

Since the first term is negative for sufficiently large k and converges to zero linearly
while the second one converges to zero quadratically, there is some k2 ∈ N so that for
all k ≥ k2 and for all j ∈ J we have

u j

(
Ỹ ′k

j

)
< 0.

The proof for the facet Ỹ ′k
j follows completely analogously.

In the retransformation phase we obtain a sequence of boxes (X̃
′′k)k∈N in the

original coordinates. Analogously to our ideas in Sect. 4.4 we can conclude that
limk→∞ diag(X̃ ′′k) = 0. Additionally, we assume all feasible points of P(B) to
strictly satisfy the box constraints. Hence, for any box containing a feasible point
there is some k3 ∈ N so that X̃ ′′k ⊆ B for all k ≥ k3.

So in total, there is some k̂ = max
{
k1, k2, k3

}
so that Algorithm 2 verifies the

existence of a feasible point of P(B) in Ỹ ′k for all k ≥ k̃ and a valid upper bound u f

for v∗ is determined. ��

5 Preliminary numerical results

In this subsectionwe present preliminary numerical results forAlgorithm2. The aimof
these results is to demonstrate the effectiveness of the algorithm to detect the existence
of feasible points of P(B) and, thus, to complement our theoretical results. The results
also indicate that our approach could be used within a branch-and-bound framework
to calculate convergent upper bounds for v∗.

For the purpose of demonstration, we construct (sequences of) boxes as they typi-
cally occur within a branch-and-bound algorithm by division along the longest edge.
Then, we verify the existence of feasible points on the obtained boxes. If the existence
of a feasible point is verified for a box, the algorithm determines an upper bound for
v∗ and terminates. Otherwise, the box is divided along a longest edge, added to a list
and the next box is chosen from the list based on the FIFO principle, as long as the
list is not empty.

Our current implementation is not rigorous in the sense that it does not take round-
ing errors into consideration. To the best of our knowledge, currently there is no
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commercial branch-and-bound solver in global optimization that ensures that all com-
putations are performed in such a rigorous manner so that the user can be sure that
the lower bound is actually less or equal than the globally minimal value, although
mathematically the proofs for the lower bounds are available for exact arithmetic. So
far, we follow this practice also for our new upper bounding procedure and do not
consider rounding errors in our implementation, although the proofs for the case of
exact arithmetic are now available in this paper. A more detailed discussion on this
subject can be found at the end of this article.

5.1 Implementation details

Algorithm 2 constitutes the basis of the implementation, but some further additions are
made to improve its efficiency and the quality of the upper bounds. Figure 3 illustrates
the feasibility verification checks and transformations within Algorithm 2 together
with these additions.

– Bounds u(X) and �(X) for h j , j ∈ J , are calculated on the current box X to
exclude it from further examination, if it is guaranteed not to contain a feasible
point, that is, u(X) < 0 or �(X) > 0 hold.

– Despite the better convergence rate of the former, centered forms aswell as interval
arithmetic are applied as bounding procedures and the tighter bounds are used in
each case.

– We use a cascaded system of feasibility verifications: First we check the sign
conditions of Theorem 3.2 for X . If they are satisfied, a feasible point is verified
in X and there is no need for a box extension or coordinate transformation. If they
are not satisfied, we extend X to X̃ and check the sign conditions for the extended
box. If they are not satisfied, we apply the system transformation and check the
conditions for Ỹ ′. The reason behind this approach is that we obtain tighter upper
bounds if we verify the existence of a feasible point in a smaller box. Therefore,
it is reasonable to extend the boxes only if necessary.

As shown in Corollary 4.12, Algorithm 2 guarantees that the conditions (3) of The-
orem 3.2 are satisfied for sufficiently small boxes containing feasible points. After
applying the coordinate transformation it is clear which function h j , j ∈ J is allo-
cated to which box facet with respect to the sign conditions because their gradients
have unit direction. However, a reasonable allocation beforehand might lead to a less
rough overestimation of X̃ in the new coordinates and increase the probability that no
transformation is required at all, as the conditions (3) might be satisfied for the boxes
X or X̃ already. Therefore, we test two different strategies of allocating m of the n
facets of a box to the m functions h j , j ∈ J . Allocation strategy I simply allocates the
j-th function to the j-th facets of X . Allocation strategy II determines the allocation
iteratively based on the angle of the m gradients ∇h j , j ∈ J , with the n unit vectors.

The method is implemented in MATLAB R2018b and executed on an Intel Core
i5-6300 U (2.4 GHz) processor with 12 GB RAM. In addition to standard MATLAB
commands, the INTLAB toolbox V7.1 for reliable computing is used to realize the
calculation of bounds, the determination of the box Ỹ ∗ and interval computations in
general [36].
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Determine Bounds for hj on X for all j ∈ J

No Feasible Point possible Check Theorem 3.2
for X

Extension to ˜X if possible

Check Theorem 3.2 for ˜X

Coordinate Transformation
to ˜Y and construction of ˜Y

′
if possible

No Feasible Point verified Check Theorem 3.2
for ˜Y

′

No Feasible Point verified Retransformation to ˜X
′

and construction of ˜X
′′

Check whether ˜X
′′ ⊆ B

No Feasible Point verified Feasible Point in ˜X
′′

(or ˜Y
′
, respectively)

Determine Upper Bound
for v∗ on ˜Y

′

Check whether ˜X ⊆ B

No Feasible Point verified Feasible Point in ˜X

Determine Upper Bound
for v∗ on ˜X

Feasible Point in X

Determine Upper Bound
for v∗ on X

Fig. 3 Possible outcomes of one iteration of the implemented method

5.2 Results for test problems

Our implementation is tested for a selection of problems from the COCONUT bench-
mark [40]. All selected problems are also examined by Domes and Neumaier in [9].
In the case that a test problem did not include any box constraints, these were added to
the problem to make it applicable to our purposes. We chose B = [−1000, 1000]n as
the initial box. The problems aljazzaf and bt13 were slightly modified for the feasible
points to strictly satisfy the box constraints. The examined problems and the main
results are summarized in Table 1.

For all but two problems the algorithm successfully verifies the existence of fea-
sible points. For 26 of 35 problems the algorithm terminates successfully for both
allocation strategies, as indicated by yes in Table 1. For the specific problem parabola
the following example illustrates the application of our method in detail.
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Table 1 Summary of test problems analyzed

Problem n m Strategy I Strategy II

Verified Iterations Verified Iterations

bt1 2 1 Yes 153 Yes 153

extrasim 2 1 Yes 15 Yes 1

hs006 2 1 Yes 5 Yes 5

maratos 2 1 Yes 153 Yes 153

tame 2 1 Yes 53 Yes 53

try-b 2 1 Yes 41 Yes 41

gottfr 2 2 Yes 462 Yes 462

a 2 2 Yes 530 Yes 530

booth 2 2 Yes 110 Yes 110

himmelbc 2 2 Yes 17 Yes 17

hs008 2 2 Yes 155 Yes 155

hypcir 2 2 Yes 127 Yes 127

mickey 2 2 Yes 204 Yes 204

parabola 2 2 Yes 23 Yes 23

supersim 2 2 Yes 92 Yes 90

hs028 3 1 Yes 62 Yes 3

aljazzaf 3 1 No Yes*

hs061 3 2 Yes 51 Yes 11

rediff3 3 3 Yes 2822 Yes 2822

zangwil3 3 3 Yes 59 Yes 59

bronstein 3 3 Yes 1637 Yes 1637

clo1 3 3 Yes 100 Yes 100

czaporgeddes 3 3 Yes 6719 Yes 6936

eqlin 3 3 Yes 61 Yes 61

hong2 3 3 Yes* No

mathews 3 3 Yes 7493 Yes 7493

hs042 4 2 Yes* Yes*

kear3 4 4 No No

powell 4 4 No No

b1 4 4 Yes 765 Yes 8499

eiger 4 4 Yes 952 Yes 1141

hong1 4 4 Yes* Yes*

lorentz 4 4 Yes* 8924 Yes* 9073

bt13 5 1 No Yes 6707

vrahatis 9 9 Yes 1023 Yes 1023

123



C. Füllner et al.

Example 5.1 The problem consists of the following constraints

h1(x) := x21 − x2 = 0,

h2(x) := x21 + x22 − 2 = 0,

x ∈ B := [0, 10] × [0, 2].
The only feasible point of this problem is x̂ = (1, 1).

In the first iteration the box X1 = B is too large for our extension approach, so we
set X̃1 = X1. The box-midpoint is mid(X1) = (5, 1). The gradients ∇h1(mid(X1))

and ∇h2(mid(X1)) do not have unit direction, as can be seen in Fig. 4a. Then, the
coordinate transformation is applied in Algorithm 1, such that the gradients ∇h1 and
∇h2 in the transformed midpoint do have unit direction, see Fig. 4b. However, this
is still not the case in the image ŷ1 of the feasible point x̂ in the new coordinates. As
the level curves of h̃1

1 and h̃1
2 in Fig. 4b show, the conditions of Theorem 3.2 are not

satisfied. Moreover, we can see that in this iteration the minimum bounding box Ỹ ′1
only provides a rough approximation of Ỹ 1.

However, after 23 iterations our method terminates with the verification of the
existence of a feasible point. In this iteration we have X23 = [0.9374, 1.2501] ×
[1, 1.5], X̃23 ≈ [0.8142, 1.3733] × [0.8964, 1.6036] and Ỹ ′23 ≈ [0.1175, 2.1076] ×
[4.0222, 7.0129]. The original and the transformed system for this iteration are visu-
alized in Fig. 4c and d. The parallelepiped is much less skewed than in the first
iteration. The gradients in the transformed feasible point ŷ23 are approximately equal
to the gradients in mid(Ỹ 23) . Moreover, the constructed box Ỹ ′23 is sufficiently small.
Therefore, the existence of a zero of h̃23 is verified using Theorem 3.2. Since Ỹ ′23
transformed back to the original coordinates is a subset of B, a feasible point for the
original problem is verified and an upper bound for v∗ can be determined.

For some problems, starting with the initial box constraints (b1, hong1, hong2,
aljazzaf, hs042, lorentz) no verification of a feasible point was possible within a time
frame of 30minutes. Thismight be explained by the combination of large initial boxes,
no fathoming in our implementation and using the FIFO principle instead of choosing
boxes based on bounds for v∗. Starting with a sufficiently small initial box containing
a feasible point, however, our algorithm was able to verify the existence of such a
point for all of these problems at least with one of the two allocation strategies (see
yes* in Table 1). Hence, valid upper bounds for v∗ could be determined. These results
validate the results proven in Sect. 4.

For allocation strategy I in 28 cases the existence of a feasible point is verified after
a coordinate transformation. This underlines the significance of gradient directions
towards facets. However, our results also indicate a trade-off between the allocation
and the coordinate transformation. If the functions h j , j ∈ J , and the facets are
allocated in a more reasonable way, as done with allocation strategy II, in 12 cases the
existence of a feasible point can be verified for box Xk or X̃ k already. Therefore, the
computationally expensive transformation and further box extensions are not required
at all.

Compared to numerical results in the literature, for some of the problems our algo-
rithm performs better than the majority of the methods analyzed in [9] (bt1, extrasim,
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Fig. 4 Illustration of Algorithm 2 applied to Parabola

hs006, hs061, maratos, tame, try-b). For two problems, hs028 and aljazzaf, ourmethod
is even the only one to successfully verify the existence of a feasible point and provide
a valid upper bound for v∗. The only two problems, for which the methods presented
in [9] clearly perform better are kear2 and powell, for which the existence of a feasible
point cannot be verified with our algorithm, as Assumption 1.1 is violated.

6 Final remarks

In this article, a new method to compute convergent valid upper bounds in spatial
branch-and-bound methods is proposed. The numerical results show that our method
performs well on standard test problems in global optimization. However, there are
still some issues that have to be addressed.

For example, our approach is described for equality constrainedproblems that donot
involve inequalities beside the box constraints. Although, in theory, additional inequal-
ities can be reformulated as equality constraints by using the slack variable approach
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as described in the introduction, this reformulation is known to have some drawbacks
as explained in [18]. In order to see this in the context of spatial branch-and-bound
methods we consider a problem of the form P(B) with additional inequality con-
straints gi (x) ≤ 0, i ∈ I . Using the slack variable approach this can be reformulated
as gi (x) + y2i = 0, i ∈ I , together with the additional box constraints −c̄i ≤ yi ≤ c̄i

where c̄i , i ∈ I , are chosen appropriately, for instance by applying interval arithmetic.
Assuming the existence of a globally minimal point x∗ with gi (x∗) < 0, i ∈ I , for
the original problem, there is also a globally minimal point (x∗, y∗)� for the reformu-
lated problem that provides the same globally minimal value. Here, every y∗

i can be
either

√−gi (x∗) or −√−gi (x∗) so that there are 2|I | globally minimal points for the
reformulated problem. Thus, we see that the number of globally optimal points may
grow exponentially in the number of inequality constraints, which is undesirable as
this slows down spatial branch-and-bound methods considerably.

A straightforward possibility to circumvent this difficulty in many practical appli-
cations might be to introduce the box constraints −γ ≤ yi ≤ c̄i with a small γ > 0
instead of the aforementioned ones. However, even if it cuts off many superfluous
globally minimal points introduced during the reformulation step, it might be difficult
to determine a reasonable value for γ . Moreover, for problems with active inequalities
in the globally minimal point x∗ this introduces nearly optimal points that provide
very good, although not globally minimal, values. These points can be expected to be
difficult to handle for global optimization solvers. Note that letting γ = 0 is not a valid
option as strict box constraints are required by our new upper bounding technique.
In summary, the integration of inequality constraints into our new upper bounding
procedure needs to be examined in more detail and is left for future research.

Another issue we want to address is our current transformation approach as
described in Sect. 4.4.1 that might lead to significantly enlarged boxes and, addi-
tionally, leads to 2n linear optimization problems that have to be solved as well as the
inversion of amatrix. As an alternative, one could try toworkwith the non-transformed
system. However, this would require a different extension of Miranda’s Theorem that
copes with parallelepipeds instead of boxes. This is also left for future research.

Moreover, so far our implementation of the new upper bounding procedure is not
included into a branch-and-bound framework. Instead of this, in the current paper
the new method is applied to exhaustive sequences of boxes that also occur during
the solution of these problems by standard algorithms in global optimization. This
approach enables us to examine our upper bounding procedure isolatedly and in more
detail without side effects produced by the remaining solution procedure. However,
especially if combinedwith an improved approach to handle inequality constraints, our
aim is to integrate this procedure into a complete spatial branch-and-bound algorithm.
This is also left for future research.

By using our new upper bounding procedure we believe that it is possible to develop
a rigorous global branch-and-bound solver. In this article we have shown that, at least
in exact arithmetic, our new upper bounding procedure converges to the globally min-
imal value. While this cannot be ensured for other commonly used upper bounding
procedures, this is also true for standard lower bounding procedures in global opti-
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mization and, thus, the combination of both may serve as starting point for a rigorous
implementation.

However, for a rigorous global branch-and-bound solver it is important to dis-
tinguish mathematical convergence results from implementation details. During
implementation of numerical methods the additional difficulty of finite precision arith-
metic arises since on a computer a given real number can be represented only within a
certain accuracy. There are at least two possibilities to cope with this issue. Firstly, so-
called arbitrary precision arithmetic libraries could be used that allow higher precision
at the cost of longer computation times and higher memory usage. Secondly, current
processors allow to change rounding modes of floating point numbers. By exploiting
this, it is possible to develop advanced interval arithmetic libraries that ensure that the
actual value of an arithmetic expression is contained in an interval, where lower as
well as upper bounds can be represented by floating point numbers.

Using one of the aforementioned techniques we believe that a rigorous global solver
can be implemented. However, the implementation of such a method is beyond the
scope of this paper.
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