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Abstract

Collision detection is a central task in the simulation of multibody systems. Depending on the description of the geom-
etry, there are many efficient algorithms to address this need. A widespread approach is the common normal concept:
potential contact points on opposing surfaces have antiparallel normal vectors. However, this approach leads to im-
plicit equations that require iterative solutions when the geometries are described by implicit functions or the common
parameterizations. We introduce the normal parameterization to describe the boundary of a strictly convex object as
a function of the orientation of its normal vector. This parameterization depends on a scalar function, the so-called
generating potential from which all properties are derived: points on the boundary, continuity/differentiability of the
boundary, curvature, offset curves or surfaces. An explicit solution for collisions with a planar counterpart is derived
and four iterative algorithms for collision detection between two arbitrary objects with the normal parametrization are
compared. The application of this approach for collision detection in multibody models is illustrated in a case study
with two ellipsoids and several planes.

Keywords: Collision detection, Contact kinematics, Geometry parameterization, Common normal concept, Offset
curve/surface, Superellipsoid, Superquadric

1. Introduction

The representation of three-dimensional objects is required in many disciplines, such as computer graphics, com-
puter vision, computer aided design (CAD) and the modeling of many physical systems. Because of the wide and
diverse range of applications, there is no single representation of three-dimensional objects that meets the requirements
of every problem. Therefore, depending on the respective representation, there are different approaches for collision
detection—a central task in the simulation of mechanical systems with considerable influence on computation times
and memory requirements.

Mathematical representations of three-dimensional objects can be categorized in two different ways [1, 2]: ei-
ther volume-based vs. surface-based approaches or explicit parameterizations vs. implicit definitions. An object
is a connected set Ω ⊂ R3 with the boundary ∂Ω. Volume-based approaches construct Ω via Boolean operations
(union, intersection, and difference) from basic geometries (e.g. cuboids, quadrics, prisms, sweeps, etc.), whereas
surface-based approaches construct ∂Ω as a union of independently constructed surface patches. Volume-based de-
scriptions are widely used in CAD applications where gapless or overlap-free boundaries are required. Meanwhile,
surface-based approaches are popular in computer graphics applications because of their greater flexibility [3]. Both
approaches require representations of the respective elementary components either by means of explicit parameteriza-
tions (e.g. splines, NURBS, meshes) or by implicit definitions (level sets). Some basic geometries such as ellipsoids,
superquadrics [4], superellipsoids [5] and superovoids [6] can be converted from an explicit parameterization to an
implicit definition and vice versa—this is, however, not possible in general1.
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The suitability of different geometry representations for use in simulation models with multiple objects and pos-
sible collisions among them depends on the requirements and objectives of the respective task. In this context, con-
siderable consequences result from the question of whether any object is modeled as elastic or all of them are rigid.
Elastic objects are usually treated using finite element analysis (FEA), where the discretization of an object’s volume
naturally provides a mesh representation for its surface. Contact treatment has a long history in FEA [9], the current
state of the art being mortar-based contact formulations [10]. For more details we refer to [11, Chapters 8–10]. An
extensive literature review on contact treatment is given in [12]. Furthermore, recent advances in this area include
improved geometry representation by isogeometric analysis (IGA) [13, 14] and its application to contact simulations
[15]. Finite element models for elastic objects usually result in a large number of degrees of freedom which are
required to achieve a desired accuracy; this is all the more true when contacts are involved and which may require
strategies such as adaptive mesh refinement in the areas where contacts occur [16, 17]. The field of flexible multibody
dynamics is concerned with the investigation of the dynamics of systems with several such elastic objects [18, 19, 20].
Since the objects’ geometry representation is based on the requirements of the finite element models and an exten-
sion of the isogeometric analysis approach is very extensive, elastic objects are not further elaborated in the present
manuscript.

On the other hand, rigid objects and contacts between them have been considered from the very beginning in the
areas of multibody dynamics [21] and the Discrete Element Method (DEM) [22]. In this context, the task of collision
detection requires the efficient identification of contacts between any two objects. Subsequently, interaction forces
are introduced to prevent the objects from interpenetrating each other in the normal direction and to account for other
interactions such as friction in the tangential direction. Meshes such as polyhedra can be used to approximate rigid
objects and efficient collision detection algorithms exist for this description [23, 24, 25, 26, 27, 28]. However, since
this approach is based on piecewise straight lines and flat surface patches, it usually requires a large number of vertices
to achieve a good approximation to smooth surfaces. Therefore, high-resolution meshes require a lot of memory and
lead to slow collision detection performance. Because of these limitations, this approach is not considered suitable
for applications such as real-time models for control purposes or large discrete element models (DEM) [29].

One approach to improve calculation times and memory requirements is not to use polyhedra but smooth para-
metric surfaces, which are discretized in a pre-processing step [30]. An error-controlled discretization results in a
minimum number of interpolation points between which a fast approximation of the smooth surface by interpolation
is possible. These interpolation points are stored in lookup tables, which can be partially loaded into memory as
required [31]. The lookup tables contain not only interpolation values for the surface, but also for the normal and
tangential directions. Fast simulations and real-time applications are possible, but the necessary pre-processing cal-
culations can be significant. An alternative approach is the approximation of object geometries by superquadrics [4],
superellipsoids [5] or superovoids [6]. This can be realized either by a union of several of these simple objects [6]
or by a piecewise approximation of the object’s surface via patches of their boundary [32, 33]. Collision detection
between smooth, rigid objects is usually performed based on the common normal concept: (potential) contact points
on the opposite boundaries of two objects have antiparallel outer normal vectors. This problem is easy to solve for
the collision detection between two spheres. However, so far there are no explicit solutions even for the collision
detection problem with two ellipsoids [34, 35, 36]. The determination of such points during simulations therefore re-
quires the iterative solution of implicit relations for most surfaces which is computationally more expensive and time
consuming. Common algorithms are based on Newton-type methods with analytical Jacobians, which are cumber-
some to implement for every combination of different objects[4, 5, 6]. To increase performance, currently proposed
approaches [28] use a combination of several algorithms, first checking whether there is a collision (e.g. by using
the GJK algorithm [23]) and then determining the common normal for these cases, which is needed for subsequent
calculation of the interaction forces.

Solid objects cannot penetrate each other, which is ensured by an interaction force in the direction of the com-
mon normal at the contact point. In addition, DEM or multibody models usually consider friction forces that are
perpendicular to the common normal in the respective tangent plane. Both normal and friction forces are associated
with unilateral constraints. When formulating the system dynamics, these constraints can be met either exactly or
via penalty terms that depend on (small) violations of the constraints. The first approach is pursued in the area of
nonsmooth dynamics and leads to complementarity problems [37]. In the latter, the penalty terms are usually physi-
cally motivated. In this context, Hertzian contact theory [38] can be understood as a penalty method for satisfying the
non-penetration condition: by assuming that the objects are elastic after all, but that significant deformations occur
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only in a small vicinity around the points of initial contact, a force-displacement relationship is determined based on
elastic half spaces [39]. This yields the behavior of a non-linear spring which, depending on the principal curvatures
of the two surfaces at the points of maximum penetration2, generates a restoring force which opposes the penetration
of the undeformed object geometries. There are numerous extensions of this model where both dissipative effects due
to local material deformation [40, 41, 42, 43, 44, 45, 46]3 and forces due to friction [49, 50, 51, 52, 53] are added. All
these approaches require the common normal and the maximum penetration depth to determine the interaction forces.
Given the common normal, an orthonormal basis for the tangent plane which is required when friction is present can
be calculated, e.g. using the Householder transformation [4, 6].

For smooth objects, the common normal concept for collision detection already provides the common normal and
thus allows easy calculation of all quantities required to determine the interaction forces. However, the solution of the
collision detection problem is complex, since there are no explicit solutions even for collisions between objects with
simple geometry [34, 35, 36]. Geometry representation by implicit functions already requires the iterative solutions
to determine points on the object boundary. When using a parametric representation, all points on the surface and
also the corresponding normal can be determined explicitly as functions of two coordinates. However, the inverse
problem, i.e. determining the coordinates and the corresponding surface points for a given normal direction, can again
only be solved implicitly if the usual parameterizations are used. As a result, the dynamics of such systems with rigid
objects cannot be formulated in a set of minimum coordinates, because the implicit constraint equations cannot be
eliminated, making it very difficult, if not impossible, to analytically study such models.

The aim of the present manuscript is to contribute to an improvement in the use of the common normal concept
through a novel representation of three-dimensional objects: the normal parameterization. This approach is a gener-
alization and simplification of the method the authors introduced in [54] for two-dimensional objects. It results in a
parameterization of object boundaries as a function of the outer normal direction and is thus limited to strictly convex
objects with a unique boundary point for any outer normal direction. In spite of this restriction, there are many possi-
ble applications for this representation such as granular particles in DEM-models [55], bounding volumes in robotic
applications [56], rigid foot models in biomechanics and robotics [57, 58], or general models of rigid bodies as unions
of strictly convex objects. For arbitrary, strictly convex geometries, the normal parameterization provides an explicit
solution to the collision detection problem when the counterpart is a plane. For collision detection between two such
objects, an iterative solution is still necessary, but due to the properties of the normal parameterization, it does not
require a combination of several algorithms or a cumbersome implementation of analytical Jacobians. In addition, the
normal parameterization allows a simple calculation of offset curves and surfaces for any such object. The focus of this
manuscript is on the derivation of the normal parameterization and its properties (such as continuity/differentiability).
A collision detection algorithm which is based on the common normal concept and does not require any derivatives
is proposed and compared to approaches based on Newton methods with analytic Jacobians in terms of convergence
and robustness. Its application for collision detection and the calculation of interaction forces is demonstrated in a
case study with two ellipsoids and five planes. A computationally efficient implementation in an existing multibody
or DEM software framework—or even a benchmark study as performed in [6]—are beyond the scope of the present
manuscript and remain for future work.

The remainder of this paper is organized as follows. The general expressions and relationships of the normal pa-
rameterization for two- and three-dimensional objects are introduced in Sections 2 and 3, respectively. The derivation
of the normal parameterization from basic principles of rigid body kinematics is presented in Section 4. Four algo-
rithms for collision detection based on the common normal concept are introduced and compared in Section 5. The
application in a multibody simulation is illustrated by a case study in Section 6. The capabilities and limitations of the
normal parameterization and propositions for future work are discussed in Section 7. A summary and a conclusion
are given in Section 8. Clarifications regarding the notation are summarized in Appendix A.

2Hertzian contact theory considers two elastic half-spaces that come into contact at one point in the undeformed state during contact initiation
(non-conformal contact) [39, Chapter 4]. As the two half spaces are pressed together in the normal direction, elastic deformation takes place. The
undeformed geometries penetrate each other, the initial contact points then being the points of maximum penetration.

3Since most of these approaches are based on Hertzian contact theory, their validity is based on the assumption of non-conformal contacts with
small deformations; if this is not the case, parameters must be adjusted [47] or a different approach is required [48].
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Figure 1: Normal parameterization of a strictly convex two-dimensional object Ω. Any point P ∈ ∂Ω is given by the generating potential gB via
Eq. (2) as a function of ϕ—the direction of the outer normal vector n at P in polar coordinates.

2. Normal parameterization for two-dimensional objects

The basic concept of the normal parameterization for two-dimensional objects is derived by the authors in [54].
Below, it is recapitulated, extended and summarized in a clearer and more precise form. The key idea is to find a
parameterization of the boundary of a strictly convex object as a function of its outer normal vector’s orientation. Since
the object is strictly convex, there is a unique point on the boundary for any given normal direction. The continuity
and curvature of the boundary are investigated and illustrated by selected examples. Based on these relationships, the
normal parameterization is then generalized for three-dimensional objects in Section 3.

A strictly convex two-dimensional object as depicted in Fig. 1 is represented by a closed set Ω ⊂ R2 which is
identical to its convex hull: Ω = conv(Ω). The normal parameterization uses an arbitrary body-fixed reference point
B ∈ R2 to describe any point P ∈ ∂Ω on the boundary ∂Ω = cl(Ω) as a function of the orientation of its outer normal
vector n = en in the following way.

Proposition 1. Let Ω ⊂ R2, Ω = conv(Ω) with boundary ∂Ω = cl(Ω). Introduce the body-fixed, orthonormal frame
B = {B, (bx,by)} and a rotating orthonormal frame E = {B, (en, eϕ)} with

en = cosϕbx + sinϕby , (1a)
eϕ = − sinϕbx + cosϕby , (1b)

cf. Fig. 1. Let the generating potential for point B gB : S1 → R, ϕ 7→ gB(ϕ) with gB ∈ Ck, k ≥ 1. Under these
assumptions, the following statements are valid: the normal parameterization of ∂Ω relative to B as a function of the
outer normal direction given by the angle ϕ is

rBP(ϕ) = gB(ϕ)en + g′B(ϕ)eϕ
=

(
cosϕ gB(ϕ) − sinϕ g′B(ϕ)

)
bx +

(
sinϕ gB(ϕ) + cosϕ g′B(ϕ)

)
by (2)

and the boundary’s smoothness in terms of the geometric continuity is

(i) ∂Ω ∈ G0 if gB ∈ Ck, k ≥ 1;

(ii) ∂Ω ∈ G1 if ∂Ω ∈ G0, gB ∈ Ck, k ≥ 2 and

0 < gB(ϕ) + g′′B(ϕ) (3)

for all ϕ ∈ S;

(iii) ∂Ω ∈ G2 if ∂Ω ∈ G1.
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A derivation of Eq. (2) is given in [54]. Before we continue with the proof of Proposition 1, we take a closer look
at the boundary’s curvature and geometric continuity. Consider the following relationships. Let gB ∈ Ck, k ≥ 1 and
n(ϕ) = en, then Eq. (1a) directly yields the differential

dn =
∂en

∂ϕ
dϕ = dϕ eϕ (4)

which is perpendicular to the normal direction dn ⊥ en. Let gB ∈ Ck, k ≥ 2, then Eq. (2) directly yields the differential

dr =
∂rBP

∂ϕ
dϕ =

(
gB(ϕ) + g′′B(ϕ)

)
dϕ eϕ (5)

which is perpendicular to the normal direction dr ⊥ en. Let ds =
√

dr · dr, then s =
∫

ds is the arc length of the curve
which represents the boundary ∂Ω. A unit tangent vector is given by t = dr/ds = eϕ and the curvature is determined
by the following corollary.

Corollary 2. Let gB ∈ Ck, k ≥ 2, then the boundary’s curvature is

κ(ϕ) =
(
gB(ϕ) + g′′B(ϕ)

)−1 (6)

and the corresponding curvature radius is

R(ϕ) = κ−1(ϕ) = gB(ϕ) + g′′B(ϕ) . (7)

Proof. By definition, the curvature is4 dt/ds = −κ n ⇒ κ = − dt/ds · n and the corresponding curvature radius is
R = κ−1. Since n · t = 0, this is equal to κ(ϕ) = (dr/ds) · (dn/ds) = (dr · dn)/(dr · dr) = (gB(ϕ) + g′′B(ϕ))−1.

Remark 3. If gB ∈ Ck, k ≥ 2, then κ(ϕ) > 0 for all ϕ ∈ S1 is the necessary and sufficient condition for strict convexity
of the boundary. κ , 0 implies that any set of three infinitesimally neighboring points on the boundary does not lie on
a common straight line, since the radius of the osculating circle R = κ−1 is finite everywhere. Since κ > 0 ⇒ R > 0,
the center of the osculating circle is in direction of the inner normal. Therefore, all neighbors of any point P ∈ ∂Ω lie
on the inner side (given by the direction −n) of the tangent line at P.

The geometric continuity Gk, k ≥ 0 of a curve is an invariant geometric property which is independent of any
specific parameterization. Geometric continuity is of special interest for piecewise descriptions of curves via splines,
B-splines, NURBS, etc. [59]. In the treatment of piecewise descriptions where a curve is constructed by connecting
several curve segments, it is often presumed that k-th order parametric continuity Ck implies k-th order geometric
continuity Gk within any segment and the focus is therefore on the transition points between the segments. This is not
true for the normal parameterization, where it is easily possible to construct a Cω parameterization5 which is only G0

continuous, cf. Example 4.
In this context, a plane curve c = x bx + y by is said to be G0-continuous iff there exists a C0-continuous param-

eterization c(t) = x(t)bx + y(t)by of the curve [59]. It is G1-continuous iff there is a C1-continuous parameterization
c(t) = x(t)bx + y(t)by of the curve with unit tangent vector t(t) ∈ C0. Without loss of generality use the arc length
parameterization t = s to see that this means that the tangent direction which is given by the unit tangent vector t(s)
at any point c(s) is changing continuously between any two neighboring points on the curve. G2 continuity makes the
same demands on the curvature vector dt/ds ∈ C0. The peculiarities of the normal parameterization are best illustrated
by an example.

Example 4. The general potential gB(ϕ) for the object in Fig. 2 is given by6

gB(ϕ) =

√
a2 cos2 ϕ + b2 sin2 ϕ −

b2

a
(8)

4The negative sign in this definition is due to n being the outer normal vector. By this definition the center of the osculating circle is in direction
of the inner normal vector −n.

5Cω means the parameterization is analytic.
6Equation (8) as the generating potential for a boundary curve which is equidistant to an ellipse follows from Eqs. (12) and (11) which are

derived below.
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Figure 2: Normal parameterization of an object Ω with generating potential via Eq. (8) with b/a = 1/2. The boundary ∂Ω ∈ G0 has two kinks at
ϕ = 0 and ϕ = π and is equidistant (with distance d = −b2/a) to an ellipse with semi-axes a, b (thick dashed line).

with a, b ∈ R and a > b > 0. The associated boundary curve ∂Ω is continuous, therefore ∂Ω ∈ G0. However ∂Ω < G1,
although the generating potential is analytic gB ∈ Cω. The depiction of this object shows two kinks in the boundary at
ϕ ∈ {0, π}. Indeed, the curvature radius via Eq. (7) vanishes at those points

R(0) = R(π) = 0 . (9)

The osculating circle with radius R touches the boundary curve in (at least) three infinitesimally neighboring points.
This means the unit tangent vector t which touches the curve in two neighboring points changes its orientation by a
finite angle although there is only an infinitesimal change in the arc length s when passing through one of these points.

This example shows that k-th order parametric continuity of rBP ∈ Ck is not sufficient for k-th order geometric
continuity of the boundary Gk. If there is any point P(ϕ∗) ∈ ∂Ω with gB(ϕ∗) + g′′B(ϕ∗) = 0, the unit tangent vector t
does not change continuously with the arc length s and ∂Ω < G1.

An equivalent statement can be obtained by studying the change of the normal vector n. This is more consistent
with the idea of the normal parameterization. Since n ⊥ t, the necessary and sufficient condition for G1 continuity is
that the normal vector at every point P ∈ ∂Ω is unique, which means ds(dϕ , 0) , 0 or, equivalently, that ds2 = dr ·dr
is positive definite with respect to dϕ.

Proof of Proposition 1. Since dr ⊥ en via Eq. (5), the normal parameterization via Eq. (2) indeed describes the
boundary ∂Ω as a function of the outer normal direction ϕ 7→ n(ϕ) = en. The propositions with regard to the
boundary’s geometric continuity can be shown as follows:

(i) Since Eq. (2) directly yields rBP · bx = (cosϕ gB(ϕ) − sinϕ g′B(ϕ)) and rBP · by = (sinϕ gB(ϕ) + cosϕ g′B(ϕ)), the
boundary is continuous iff both gB and g′B are continuous. Therefore, ∂Ω ∈ G0 if gB ∈ Ck, k ≥ 1.

(ii) As shown with Example 4, gB(ϕ) + g′′B(ϕ) , 0 for all ϕ ∈ S2 is a necessary condition for G1 continuity. Since
convexity of Ω requires the curvature radius via Eq. (7) to be non-negative, R = gB + g′′B ≥ 0 for all ϕ ∈ S is a
sufficient condition. Therefore, gB(ϕ) + g′′B(ϕ) > 0 for all ϕ ∈ S is necessary and sufficient for ∂Ω ∈ G1.

(iii) Let ∂Ω ∈ G1, then the curvature radius R = κ−1 is the sum of gB and g′′B . The curvature radius, and thus also the
curvature vector, are continuous iff both gB and g′′B are continuous. Since ∂Ω ∈ G1 implies gB ∈ Ck, k ≥ 2 and
κ > 0, ∂Ω ∈ G2 if ∂Ω ∈ G1.

Corollary 5. Given gB, the generating potential for a different body-fixed point A at rBA = d cosψbx − d sinψby,
cf. Fig. 1, is

gA(ϕ) = gB(ϕ) − d cos(ϕ + ψ) . (10)
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Proof. This relationship follows directly from rAP = rBP − rBA and Eq. (2).

Remark 6. Points A, B ∈ R2 are not required to be elements of Ω, as Eq. (10) is valid for all d ∈ R, ψ ∈ S. If B < Ω,
then minϕ gB(ϕ) < 0 as is evident from Fig. 1.

Corollary 7. Given the generating potential gB and the associated normal parameterization of a boundary curve ∂Ω,
an equidistant curve ∂Ω̄ with distance d is given by the generating potential

ḡB(ϕ) = gB(ϕ) + d . (11)

Proof. This relationship follows directly from

rBP̄(ϕ) = rBP(ϕ) + d en

= (gB(ϕ) + d) en + g′B(ϕ)eϕ
= ḡB(ϕ)en + ḡ′B(ϕ)eϕ

where rBP̄(ϕ) is a normal parameterization for any point P̄ ∈ ∂Ω̄ with outer normal vector n = en.

Remark 8. The curvature radius R̄ at any point P̄(ϕ∗) ∈ ∂Ω̄ is equal to the curvature radius R of the original curve
at the point with P(ϕ∗) ∈ ∂Ω the same outer normal vector R̄(ϕ) = R(ϕ) + d. The proof of this relationship follows
directly from Eq. (7). If the distance d of the equidistant curve ∂Ω̄ is negative, the offset is in direction of the
inner normal vector −n. If this distance is equal to the minimal curvature radius d = −minϕ∈S R(ϕ), the resulting
curve ∂Ω̄ has at least one point with vanishing curvature radius minϕ∈S R̄(ϕ) = 0 and ∂Ω̄ < G1. A further decrease
of the distance d < −minϕ∈S R(ϕ) results in self-intersections of the boundary curve ∂Ω̄ and violates the convexity
assumption Ω = conv(Ω). This case, although certainly of interest for some applications, will not be further elaborated
here. The general problem of equidistant offset curves has been studied for several decades [60, 61, 62]. To study if
and how the normal parameterization contributes to the solution of this problem is beyond the scope of the present
manuscript.

The specific definition of the generating potential gB is the core requirement for using the normal parameterization.
In principle, any 2π-periodic function which satisfies all of the requirements above can be used to define arbitrary
strictly convex objects. To determine the generating potential for a given geometry, we propose two approaches which
both result in differential equations for gB: either starting with a different parameterization and comparing coefficients
with Eq. (2), or starting with an implicit definition F(x, y) = 0 of the boundary ∂Ω and substituting Eq. (2). However,
solving the resulting differential equations is not easy as illustrated by the following example.

Example 9. Take an ellipse with semi-axes a in bx- and b in by-direction. Substitution of Eq. (2) into the implicit
definition of this ellipse gives the nonlinear differential equation

0 = F(x, y) =

( x
a

)2
+

( y
b

)2
− 1 =

(
cosϕ gB(ϕ) − sinϕ g′B(ϕ)

a

)2

+

(
sinϕ gB(ϕ) + cosϕ g′B(ϕ)

b

)2

− 1 .

Starting from the well known parametric representation of an ellipse and comparing coefficients to Eq. (2) gives the
two equations

x = a cos t = cosϕ gB(ϕ) − sinϕ g′B(ϕ) ,
y = b sin t = sinϕ gB(ϕ) + cosϕ g′B(ϕ) .

The solution for the generating potential via either one of these approaches is

gB(ϕ) =

√
a2 cos2 ϕ + b2 sin2 ϕ . (12)
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Remark 10. The generating potential of a superellipse is

gB(ϕ) =

((
a2 cos2 ϕ

) ε
2(ε−1)

+
(
b2 sin2 ϕ

) ε
2(ε−1)

) ε−1
ε

(13)

with ε > 1. It can be verified by substitution that this satisfies the implicit equation(( x
a

)2
) ε

2

+

(( z
c

)2
) ε

2

− 1 =

(rBP · bx

a

)2
ε
2

+

(rBP · bz

c

)2
ε
2

− 1 = 0 .

Remark 11. An approximation of any strictly convex geometry is possible by specifying the generating potential gB

by piecewise defined functions like splines or NURBS. Once such a generating potential is specified, the correspond-
ing boundary ∂Ω follows from Eq. (2). The coefficients of this ansatz can be fitted in such a way that the specified
geometry is best approximated by the approach, e.g. by an optimization. The requirement of strict convexity can
be checked via the curvature κ > 0 according to Eq. (6). An example of such a piecewise definition is given in [54,
section 6.2] and will not be discussed further in the present manuscript.

3. Normal parameterization for three-dimensional objects

The normal parameterization for three-dimensional objects can be derived in a similar fashion as in the two-
dimensional case. Before we proceed, we introduce the class of continuity on the sphere.

Definition 12. Let f : S2 → R, (ϕ, θ) 7→ f (ϕ, θ) be a mapping from spherical coordinates ϕ ∈ [0, π] and θ ∈ S1 to
the real domain. The function f is defined to be of class SCk if f ∈ Ck for all ϕ ∈ (0, π), θ ∈ S1 and f ∈ Ck+1 for
ϕ ∈ {0, π}, θ ∈ S1. The class of SCk is referred to as continuity on the sphere.

Continuity on the sphere is equal to parametric continuity Ck in the whole domain of definition (ϕ, θ) ∈ S2, with
the additional requirement that the derivatives of order (k + 1) exist and are continuous in a neighborhood around the
coordinate singularities ϕ ∈ {0, π}.

Consider now the strictly convex three-dimensional object as displayed in Fig. 3. It is represented by a closed set
Ω ⊂ R3 which is identical to its convex hull Ω = conv(Ω). The normal parameterization uses an arbitrary body-fixed
reference point B ∈ R3 to describe any point P ∈ ∂Ω on the boundary ∂Ω = cl(Ω) as a function the orientation of its
outer normal vector n = en in the following way.

Proposition 13. Let Ω ⊂ R3, Ω = conv(Ω) with boundary ∂Ω = cl(Ω). Introduce the body-fixed, orthonormal frame
B = {B, (bx,by,bz)} and a rotating orthonormal frame E = {B, (eϕ, eθ, en)} with

eϕ = cosϕ cos θ bx + cosϕ sin θ by − sinϕbz , (14a)
eθ = − sin θ bx + cos θ by , (14b)
en = sinϕ cos θ bx + sinϕ sin θ by + cosϕbz (14c)

cf. Fig. 3. The direction of n is given in spherical coordinates n : S2 → R3, (ϕ, θ) 7→ n(ϕ, θ) with ϕ ∈ [0, π] and θ ∈ S1.
Introduce the generating potential gB : S2 → R, (ϕ, θ) 7→ gB(ϕ, θ) with gB ∈ SCk, k ≥ 1 and

∂θgB(ϕ, θ)|ϕ∈{0,π} = 0 for all θ ∈ S1 . (15)

Under these assumptions, the following statements are valid: the normal parameterization of ∂Ω relative to B as a
function of the outer normal direction given by (ϕ, θ) is

rBP(ϕ, θ) =

∂ϕgB(ϕ, θ) eϕ + (sinϕ)−1 ∂θgB(ϕ, θ) eθ + gB(ϕ, θ) en , if ϕ ∈ (0, π) ,
∂ϕgB(ϕ, θ) eϕ + (cosϕ)−1 ∂ϕ∂θgB(ϕ, θ) eθ + gB(ϕ, θ) en , if ϕ ∈ {0, π} .

(16)

and the boundary’s smoothness in terms of the geometric continuity is

8



Figure 3: Normal parameterization of a strictly convex three-dimensional object Ω. Any point P ∈ ∂Ω is given by the generating potential gB via
Eq. (16) as a function of (ϕ, θ)—the direction of the outer normal vector n at P in spherical coordinates.

(i) ∂Ω ∈ G0 if the following conditions are true: gB ∈ SCk, k ≥ 1 and

∂ϕgB(ϕ, θ)
∣∣∣
ϕ=0 = xBP,0 cos θ + yBP,0 sin θ , ∂ϕgB(ϕ, θ)

∣∣∣
ϕ=π

= xBP,π cos θ − yBP,π sin θ (17)

with constants xBP,0, yBP,0, xBP,π, yBP,π ∈ R;

(ii) ∂Ω ∈ G1 if the following conditions are true: ∂Ω ∈ G0, gB ∈ SCk, k ≥ 2,e0(θ) = gB(0, θ) + ∂2
ϕgB(ϕ, θ)

∣∣∣
ϕ=0

= κ−1
1,0 cos2(θ + θ0) + κ−1

2,0 sin2(θ + θ0) ,

eπ(θ) = gB(π, θ) + ∂2
ϕgB(ϕ, θ)

∣∣∣
ϕ=π

= κ−1
1,π cos2(θ + θπ) + κ−1

2,π sin2(θ + θπ)
(18)

with constants {κ1,0, κ2,0, κ1,π, κ2,π ∈ R | κ1,0 ≥ κ2,0 > 0, κ1,π ≥ κ2,π > 0}, θ0, θπ ∈ S1 and

0 < eg − f 2 (19)

for all ϕ ∈ (0, π), θ ∈ S1, with e, f , and g as defined in Eq. (21);

(iii) ∂Ω ∈ G2 if ∂Ω ∈ G1.

Remark 14. Let gB ∈ SCk and m, n ∈ N, m + n ≤ k + 1, then

∂m
ϕ ∂

n
θgB(ϕ, θ)

∣∣∣
ϕ=0

= ∂n
θ

(
∂m
ϕ gB(ϕ, θ)

∣∣∣
ϕ=0

)
and ∂m

ϕ ∂
n
θgB(ϕ, θ)

∣∣∣
ϕ=π

= ∂n
θ

(
∂m
ϕ gB(ϕ, θ)

∣∣∣
ϕ=π

)
. (20)

This follows directly from the required differentiability with g(ϕ, θ) = ∂m
ϕ ∂

n−1
θ gB(ϕ, θ), g ∈ SC1 and

∂θ

(
lim
ϕ→0

g(ϕ, θ)
)

= lim
h→0

lim
ϕ→0

g(ϕ, θ + h) − lim
ϕ→0

g(ϕ, θ)

h
= lim

h→0

g(0, θ + h) − g(0, θ)
h

= ∂θg(0, θ) = lim
ϕ→0

∂θg(ϕ, θ) .

9



A derivation of Eq. (16) on the basis of rigid body kinematics is given in Section 4. Before we continue with the
proof of Proposition 13, introduce the abbreviations7

c = cosϕ , (21a)
s = sinϕ , (21b)

e = gB(ϕ, θ) + ∂2
ϕgB(ϕ, θ) , (21c)

f = ∂ϕ∂θgB(ϕ, θ) − cs−1∂θgB(ϕ, θ) , (21d)

g = s2gB(ϕ, θ) + cs ∂ϕgB(ϕ, θ) + ∂2
θgB(ϕ, θ) , (21e)

f̃ = 1
2 c−1∂2

ϕ∂θgB(ϕ, θ) , (21f)

g̃ = c∂ϕgB(ϕ, θ) + c−1∂ϕ∂
2
θgB(ϕ, θ) . (21g)

Notice that

f̃
∣∣∣
ϕ=0 = 1

2∂θe|ϕ=0 , f̃
∣∣∣
ϕ=π

= − 1
2∂θe|ϕ=π (22a)

g̃|ϕ=0 = 0 , g̃|ϕ=π = 0 (22b)

due to Eqs. (15), (17) and (20) and consider the following relationships. Since n(ϕ, θ) = en, Eq. (14c) directly yields
the differential

dn =
∂en

∂ϕ
dϕ +

∂en

∂θ
dθ = dϕ eϕ + sinϕ dθ eθ . (23)

Let gB ∈ SCk, k ≥ 2, then Eqs. (16) and (22) give the differential

dr =
∂rBP

∂ϕ
dϕ +

∂rBP

∂θ
dθ =

(e dϕ + f dθ) eϕ + s−1 ( f dϕ + g dθ) eθ if ϕ ∈ (0, π) ,
e dϕ eϕ +

(
f̃ dϕ + g̃ dθ

)
eθ , if ϕ ∈ {0, π}

(24)

=


(e dϕ + f dθ) eϕ + s−1 ( f dϕ + g dθ) eθ if ϕ ∈ (0, π) ,(
e0(θ) cos θ − 1

2 e′0(θ) sin θ
)

dϕbx +
(
e0(θ) sin θ + 1

2 e′0(θ) cos θ
)

dϕby , if ϕ = 0 ,
−

(
eπ(θ) cos θ − 1

2 e′π(θ) sin θ
)

dϕbx −
(
eπ(θ) sin θ + 1

2 e′π(θ) cos θ
)

dϕby , if ϕ = π ,
(25)

with e0(θ), eπ(θ) via Eq. (18). The principal curvatures are as follows.

Corollary 15. Let ∂Ω ∈ G0, gB ∈ SCk, k ≥ 2, e, f , g, s via Eq. (21) and κ1,0, κ2,0, κ1,π, κ2,π, θ0, θπ via Eq. (18), then
the boundary’s principal curvatures are

κ1 = 1/e , κ2 = s2/g , if ϕ ∈ (0, π) and f = 0 ,
κ1 = κ2 = κ = 1/(2e) , if ϕ ∈ (0, π) and g = s2e = ±s f ,

κ1/2 =
(s2e + g) ±

√
(s2e − g)2 + 4s2 f 2

2(eg − f 2)
, if ϕ ∈ (0, π) , f , 0 and (g , s2e or g , ±s f ) ,

κ1 = κ1,0 , κ2 = κ2,0 , if ϕ = 0 ,
κ1 = κ1,π , κ2 = κ2,π , if ϕ = π ,

(26)

7The abbreviations e, f and g are labeled consistently with the notation in [63]; g, g̃ are not to be confused with the generating potentials gB, ḡB.
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with the corresponding curvature directions

c1 = eϕ , c2 = eθ , if ϕ ∈ (0, π) and f = 0 ,
c1, c2 ⊥ en , if ϕ ∈ (0, π) and g = s2e = ±s f ,

c1/2 =
s f√

s2 f 2 +
(
g − (eg − f 2)κ1/2

)2
eϕ +

g − (eg − f 2)κ1/2√
s2 f 2 +

(
g − (eg − f 2)κ1/2

)2
eθ , if ϕ ∈ (0, π) , f , 0

and (g , s2e or g , ±s f ) ,

c1 = cos θ0 bx + sin θ0by , c2 = − sin θ0 bx + cos θ0 by if ϕ = 0 ,
c1 = cos θπ bx + sin θπby , c2 = − sin θπ bx + cos θπ by if ϕ = π .

(27)

Proof. We first treat the regular case ϕ ∈ (0, π) by the approach described in [63, Chapter 2]. The curvature can be
derived from the differentials dn and dr in Eqs. (23) and (25). The first and the second fundamental form are8

I = dr · dr =: E dϕ2 + 2F dϕ dθ + G dθ2 =

(
e2 +

f 2

s2

)
dϕ2 + 2 f

(
e +

g
s2

)
dϕ dθ +

(
f 2 +

g2

s2

)
dθ2 , (28a)

II = dr · dn = e dϕ2 + 2 f dϕ dθ + g dθ2 (28b)

and the normal curvature in direction λ = dθ/dϕ is given by

κ(λ) =
II
I

=
e + 2 fλ + gλ2

E + 2Fλ + Gλ2 =
e + 2 fλ + gλ2(

e2 +
f 2

s2

)
+ 2 f

(
e +

g
s2

)
λ +

(
f 2 +

g2

s2

)
λ2

. (29)

The two extrema of Eq. (29) are the principal curvatures κ1/2 with the corresponding curvature directions c1/2 =

dr1/2/
√

dr1/2 · dr1/2. If f = 0 then also F = 0 and the parametric lines are lines of curvature. The principle curvatures
are then

κ1 = 1/e , κ2 = s2/g (30)

with curvature directions

c1 = eϕ , c2 = eθ . (31)

If g = s2e = ±s f , the first and the second fundamental form are proportional and the point is an umbilic (a navel
point) with constant curvature

κ = 1/(2e) (32)

in every tangent direction. In the general case, the extrema of Eq. (29) follow from

dκ
dλ

= 0 ⇒ s2λ(e + fλ) − ( f + gλ) = s2 fλ2 + (s2e − g)λ − f = 0 (33)

with the solutions

λ1/2 =
−(s2e − g) ∓

√
(s2e − g)2 + 4s2 f 2

2s2 f
. (34)

Substitution into Eq. (29) yields the principal curvatures

κ1/2 =
(s2e + g) ±

√
(s2e − g)2 + 4s2 f 2

2(eg − f 2)
(35)

8Compared to [63, (5-8)], the sign of the second fundamental form has to be changed due to the use of the outer normal vector n instead of the
inner normal vector; cf. [63, p. 86, Chapter 2-8, 1.].
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and the corresponding curvature directions

c1/2 =
s(e + fλ1/2)√

s2(e + fλ1/2)2 + ( f + gλ1/2)2
eϕ +

f + gλ1/2√
s2(e + fλ1/2)2 + ( f + gλ1/2)2

eθ

=
s(e + fλ1/2)√

s2(e + fλ1/2)2 + s4λ2
1/2(e + fλ1/2)2

eϕ +
s2λ1/2(e + fλ1/2)√

s2(e + fλ1/2)2 + s4λ2
1/2(e + fλ1/2)2

eθ

=
s f√

s2 f 2 + s4 f 2λ2
1/2

eϕ +
s2 fλ1/2√

s2 f 2 + s4 f 2λ2
1/2

eθ

=
s f√

s2 f 2 +
(
g − (eg − f 2)κ1/2

)2
eϕ +

g − (eg − f 2)κ1/2√
s2 f 2 +

(
g − (eg − f 2)κ1/2

)2
eθ . (36)

In the first simplification step ( f + gλ1/2) = s2λ1/2(e + fλ1/2) via Eq. (33) is substituted.
In the singular cases ϕ ∈ {0, π} the singular points P0 and Pπ with respect to the body-fixed reference frame B are

given by ϕ = 0 and ϕ = π, cf. Eq. (46). rBP|ϕ∈{0,π} is independent of θ ∈ S1 which only determines the orientation of
reference frame E. Any smooth curve on the boundary surface which passes through one of the singular points P0 or
Pπ can be decomposed into two curve segments, each starting at the singular point with antiparallel tangent vectors t.

To derive the normal curvature from any curve which starts at a singular point with a certain tangent direction t,
consider the first and second fundamental forms

I0 =

(
(e0(θ))2 +

(
1
2 e′0(θ)

)2
)

dϕ2 , Iπ =

(
(eπ(θ))2 +

(
1
2 e′π(θ)

)2
)

dϕ2 , (37a)

II0 = e0(θ) dϕ2 , IIπ = eπ(θ) dϕ2 (37b)

which are functions of θ. The normal curvatures are then

κ0(θ) =
II0

I0
=

e0(θ)

(e0(θ))2 +
(

1
2 e′0(θ)

)2 , κπ(θ) =
IIπ
Iπ

=
eπ(θ)

(eπ(θ))2 +
(

1
2 e′π(θ)

)2 (38)

in directions

t0 = cos(θ + ψ0(θ)) bx + sin(θ + ψ0(θ)) by , tπ = − cos(θ + ψπ(θ)) bx − sin(θ + ψπ(θ)) by (39)

with

cos(ψ0) =
e0(θ)√

(e0(θ))2 +
(

1
2 e′0(θ)

)2
, sin(ψ0) =

1
2 e′0(θ)√

(e0(θ))2 +
(

1
2 e′0(θ)

)2
, (40a)

cos(ψπ) =
eπ(θ)√

(eπ(θ))2 +
(

1
2 e′π(θ)

)2
, sin(ψπ) =

1
2 e′π(θ)√

(eπ(θ))2 +
(

1
2 e′π(θ)

)2
. (40b)

The necessary and sufficient conditions for continuous normal curvature in all directions are

e0(θ) = e0(θ ± π) , eπ(θ) = eπ(θ ± π) , for all θ ∈ S1 , (41)
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which are satisfied by the requirements of Eq. (18). Substitution of the relationships Eq. (18) into (38) yields

κ0(θ) =
e0(θ)

(e0(θ))2 +
(

1
2 e′0(θ)

)2

=
κ−1

1,0 cos2(θ + θ0) + κ−1
2,0 sin2(θ + θ0)

(e0(θ))2 +
(

1
2 e′0(θ)

)2

=

(
κ−1

1,0 cos2(θ + θ0) + κ−1
2,0 sin2(θ + θ0)

) (
cos2(θ + θ0) + sin2(θ + θ0)

)2

(e0(θ))2 +
(

1
2 e′0(θ)

)2

=
κ−1

1,0

(
cos3(θ + θ0) + cos(θ + θ0) sin2(θ + θ0)

)2

(e0(θ))2 +
(

1
2 e′0(θ)

)2 +
κ−1

2,0

(
sin(θ + θ0) cos2(θ + θ0) + sin3(θ + θ0)

)2

(e0(θ))2 +
(

1
2 e′0(θ)

)2

=
κ1,0

(
cos(θ + θ0)

(
κ−1

1,0 cos2(θ + θ0) + κ−1
2,0 sin2(θ + θ0)

)
− 1

2 sin(θ + θ0)
(
2(κ−1

2,0 − κ
−1
1,0) sin(θ + θ0) cos(θ + θ0)

))2

(e0(θ))2 +
(

1
2 e′0(θ)

)2

+
κ2,0

(
sin(θ + θ0)

(
κ−1

1,0 cos2(θ + θ0) + κ−1
2,0 sin2(θ + θ0)

)
+ 1

2 cos(θ + θ0)
(
2(κ−1

2,0 − κ
−1
1,0) sin(θ + θ0) cos(θ + θ0)

))2

(e0(θ))2 +
(

1
2 e′0(θ)

)2

= κ1,0

(
e0(θ) cos(θ + θ0) − 1

2 e′0(θ) sin(θ + θ0)
)2

(e0(θ))2 +
(

1
2 e′0(θ)

)2 + κ2,0

(
e0(θ) sin(θ + θ0) + 1

2 e′0(θ) cos(θ + θ0)
)2

(e0(θ))2 +
(

1
2 e′0(θ)

)2

= κ1,0 cos2(θ + θ0 + ψ0) + κ2,0 sin2(θ + θ0 + ψ0) .

Using the angles θ̃0 = θ + θ0 + ψ0 and θ̃π = θ + θπ + ψπ, the curvatures in directions

t0 = cos(θ̃0 − θ0) bx + sin(θ̃0 − θ0) by , tπ = − cos(θ̃π − θπ) bx − sin(θ̃π − θπ) by (42)

are

κ0(θ̃0) = κ1,0 cos2(θ̃0) + κ2,0 sin2(θ̃0) , κπ(θ̃π) = κ1,π cos2(θ̃π) + κ2,π sin2(θ̃π) (43)

which shows that Euler’s theorem [63, p. 81] holds at the singular points due to the requirements via Eq. (18).9 The
principal curvatures are therefore κ1,0, κ2,0 and κ1,π, κ2,π with corresponding curvature directionsc1 = cos θ0 bx + sin θ0by , c2 = − sin θ0 bx + cos θ0 by if ϕ = 0 ,

c1 = cos θπ bx + sin θπby , c2 = − sin θπ bx + cos θπ by if ϕ = π .
(44)

If e0(θ) = κ−1
1,0 = κ−1

2,0 = κ−1
0 or eπ(θ) = κ−1

1,π = κ−1
2,π = κ−1

π are constant, the normal curvature at the respective singular
point is equal in every direction and the singular point is an umbilic (a navel point). Then all tangent directions are
curvature directions and θ0 or θπ are arbitrary.

Proof of Proposition 13. The differential dr ⊥ en via Eq. (25) proofs that the normal parameterization via Eq. (16)
indeed describes the boundary ∂Ω as a function of the outer normal direction (ϕ, θ) 7→ n(ϕ, θ) = en. The tangent plane
is spanned by {eϕ, eθ}. In the singular cases ϕ ∈ {0, π}, the limits

lim
ϕ→{0,π}

∂θgB(ϕ, θ)
sinϕ

=
∂ϕ∂θgB(ϕ, θ)

cosϕ

∣∣∣∣∣∣
ϕ∈{0,π}

(45)

9Since the coordinate singularities arise purely due to the choice of the reference frame B and not due to any property of the boundary ∂Ω,
Eq. (18) is introduced so that Euler’s theorem is valid at the singular points.
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follow from the regular case via L’Hôpital’s rule since ∂θgB(ϕ, θ)|ϕ∈{0,π} = 0 via Eq. (15). The normal parameterization
via Eq. (16) is valid for any point P ∈ ∂Ω.

The propositions with regard to the boundary’s geometric continuity can be shown as follows.

(i) In the regular case ϕ ∈ (0, π), the functions rBP · bx, rBP · by, rBP · bz via Eqs. (14) and (16) are continuous iff
gB, ∂ϕgB and ∂θgB are continuous.

In the singular cases ϕ ∈ {0, π}, the normal direction en is constant via Eq. (14c) and therefore consistency
requires a unique point P ∈ ∂Ω to be associated with each singular case. Therefore,

rBP(ϕ, θ) =

xBP,0 bx + yBP,0 by + gB(ϕ, θ) bz = ∂ϕgB(ϕ, θ) eϕ + ∂θ∂ϕgB(ϕ, θ) eθ + gB(ϕ, θ) en , if ϕ = 0 ,
xBP,π bx + yBP,π by − gB(ϕ, θ) bz = ∂ϕgB(ϕ, θ) eϕ − ∂θ∂ϕgB(ϕ, θ) eθ + gB(ϕ, θ) en , if ϕ = π

(46)

must be constant in the body-fixed frame B. Substitution of Eqs. (14) and a comparison of coefficients directly
yields Eqs. (17). Continuity in the regular case, consistency of both singular cases and the limit characteristic
(45) imply ∂Ω ∈ G0 if gB ∈ SCk, k ≥ 1.

(ii) ∂Ω ∈ G1 iff the outer normal vector n is unique at every point P ∈ ∂Ω on the boundary. In the regular case
ϕ ∈ (0, π), positive definiteness of the first fundamental form I is the necessary and sufficient condition for this
requirement, analogously to the two-dimensional case in Section 2. The first fundamental form I is positive
definite iff EG− F2 > 0, which directly yields Eq. (19) after substitution of the abbreviations given by Eq. (21).
The second fundamental form II is then also positive definite.

In the singular cases ϕ ∈ {0, π}, the normal vector at the respective singular point is unique iff the curvature radii
R0(θ) = (κ0(θ))−1 > 0 and Rπ(θ) = (κπ(θ))−1 > 0 for all θ ∈ S1 which is true via Eq. (43) since κ1,0, κ2,0, κ1,π, κ2,π >
0.

(iii) Let ∂Ω ∈ G1, then the principal curvatures via Eq. (26) and the curvature directions via Eq. (27) are continuous
functions of (ϕ, θ) which implies ∂Ω ∈ G2.

Corollary 16. Given the generating potential gB for point B, the generating potential for a different point A at rBA =

xBAbx + yBAby + zBAbz (cf. Fig. 3) is

gA(ϕ, θ) = gB(ϕ, θ) − (xBA sinϕ cos θ + yBA sinϕ sin θ + zBA cosϕ) . (47)

Proof. This relationship follows directly from rAP = rBP − rBA and Eq. (16).

Remark 17. Since Eq. (47) holds for all rBA ∈ R3, point A (and therefore also point B) may lie outside the object Ω.
Then min(ϕ,θ)∈S2 gA < 0.

Remark 18. Changing the orientation of the body-fixed reference frame requires a nonlinear coordinate change
(ϕ, θ) 7→ (ϕ̄, θ̄) and also changes the coordinate singularities. Due to the excessive length of this procedure, this has
not been investigated further.

Corollary 19. Given ∂Ω ∈ G2 via gB, then the normal parameterization ḡB of any equidistant boundary surface ∂Ω̄

with constant distance d ∈ R is

ḡB(ϕ, θ) = gB(ϕ, θ) + d . (48)

Proof. This relationship follows directly from

rBP̄(ϕ, θ) = rBP(ϕ, θ) + d en

=

∂ϕgB(ϕ, θ) eϕ + (sinϕ)−1 ∂θgB(ϕ, θ) eθ + (gB(ϕ, θ) + d) en , if ϕ ∈ (0, π) ,
∂ϕgB(ϕ, θ) eϕ + (cosϕ)−1 ∂ϕ∂θgB(ϕ, θ) eθ + (gB(ϕ, θ) + d) en , if ϕ ∈ {0, π}

=

∂ϕḡB(ϕ, θ) eϕ + (sinϕ)−1 ∂θḡB(ϕ, θ) eθ + ḡB(ϕ, θ) en , if ϕ ∈ (0, π) ,
∂ϕḡB(ϕ, θ) eϕ + (cosϕ)−1 ∂ϕ∂θḡB(ϕ, θ) eθ + ḡB(ϕ, θ) en , if ϕ ∈ {0, π}

where rBP̄(ϕ) is a normal parameterization for any point P̄ ∈ ∂Ω̄ with outer normal vector n = en.
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Remark 20. Analogously to the discussion of the two-dimensional case in Remark 8, there is a minimum value for
d below which the object enclosed by the equidistant boundary surface is not convex any more. To determine this
minimum value, both the regular and the singular cases have to be evaluated. In the regular case ϕ ∈ (0, π), positive
definiteness of the first fundamental form of the equidistant boundary surface is determined by the necessary and
sufficient condition

ēḡ − f̄ 2 = (e + d)(g + s2d) − f 2 = s2d2 + (s2e + g)d + (eg − f 2) > 0 (49)

via Eqs. (19), (21) and (48). If Eq. (49) becomes equal to zero, positive definiteness is lost; if the expression becomes
negative, convexity is lost. This gives a quadratic equation for d with two negative solutions (assuming eg − f 2 > 0).
The smallest absolute value of the solution

(√
(s2e + g)2 − 4s2 f 2 − (s2e + g)

)
/(2s2) for any ϕ ∈ (0, π), θ ∈ S1 is the

lower bound for d in this case. In the singular cases ϕ ∈ {0, π}, the according condition is vanishing of the curvature
radius R = κ−1 in any direction. Eqs. (18) and (43) give the lower bounds −κ−1

1,0 and −κ−1
1,π for these cases. Therefore,

the minimum value of d is

dmin = max

−κ−1
1,0,−κ

−1
1,π, max

ϕ∈(0,π),θ∈S1

√
(s2e + g)2 − 4s2 f 2 − (s2e + g)

2s2

 . (50)

Remark 21. The generating potential of a sphere with respect to its center is constant (its radius). The generating
potential of an ellipsoid with respect to its center is

gB(ϕ, θ) =

√
a2 sin2 ϕ cos2 θ + b2 sin2 ϕ sin2 θ + c2 cos2 ϕ (51)

with semi-axes a, b and c. By expressing rBP(ϕ, θ) via Eq. (16) and substitution of Eq. (51) it can be verified that the
implicit equation ( x

a

)2
+

( y
b

)2
+

( z
c

)2
− 1 =

(
rBP · bx

a

)2

+

(
rBP · by

b

)2

+

(
rBP · bz

c

)2

− 1 = 0

is satisfied. Even more general, the generating potential

gB(ϕ, θ) =

((a2 sin2 ϕ cos2 θ
) δ

2(δ−1)
+

(
b2 sin2 ϕ sin2 θ

) δ
2(δ−1)

) ε(δ−1)
δ(ε−1)

+
(
c2 cos2 ϕ

) ε
2(ε−1)


ε−1
ε

(52)

with δ, ε > 1 fulfills the implicit equation(( x
a

)2
) δ

2

+

(( y
b

)2
) δ

2

ε
δ

+

(( z
c

)2
) ε

2

− 1 =


(rBP · bx

a

)2
δ
2

+

(rBP · by

b

)2
δ
2

ε
δ

+

(rBP · bz

c

)2
ε
2

− 1 = 0

of a superellipsoid. With δ = ε this includes superquadrics as a special case.

Remark 22. Analogous to the proposal for the two-dimensional case in Remark 11, an approximation to any strictly
convex geometry is possible by specifying the generating potential gB by piecewise defined functions like splines or
NURBS. Once such a generating potential is specified, the corresponding boundary ∂Ω follows from Eq. (16) and
the coefficients of the ansatz can be fitted approximate the given geometry. Proposition 13 gives all prerequisites for
this approach to achieve a desired geometric continuity. This approach will not be discussed further in the present
manuscript.

4. Derivation of the normal parameterization

The normal parameterization Eq. (16) can be derived from basic rigid body kinematics; an approach which has
not been proposed in any literature we are aware of. This offers another perspective which originates in mechanics
rather than geometry. The basic approach is used in [54] to derive the normal parameterization for two-dimensional
objects from the kinematics of a rolling contact with a straight line. This can be regarded as a special case of a three-
dimensional object which is rolling on a plane where the axis of rotation is fixed and parallel to the plane. The key
concepts of the two-dimensional approach in this light are recalled in Section 4.1 and subsequently generalized to the
general three-dimensional rolling contact between any strictly convex object and a plane in Section 4.2.
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Figure 4: Approach for two-dimensional contact problem (from [54]): (a) contact between a two-dimensional convex object and a straight line;
rotation around the body-fixed axis by as introduced in [54]. This is interpreted as a special case of (b) the contact between a three-dimensional
convex object and a plane with the same restrictions: no translation in by-direction and rotation only around this axis. Perspective view with an
additional cutting plane (gray, perpendicular to by). A full rotation around the axis by produces a line of potential contact points on the object’s
boundary (black); in general these points do not lie in a common cutting plane. However, their projection along by produces the boundary of the
two-dimensional object in (a).

4.1. Rolling contact between a strictly convex two-dimensional object and a straight line
The two-dimensional contact detection problem between a strictly convex object and a straight line from [54] can

be interpreted as a special case of the three-dimensional contact between a convex object and a plane: the object is
rotating around a body-fixed axis which is parallel to the plane (denoted by in [54]) and any translation is perpendicular
to said axis, cf. Fig. 4a. The rotation of the three-dimensional object around the body-fixed axis by an angle α produces
a continuous set of potential contact points on the body’s boundary, as depicted in Fig. 4b. In general, these points do
not lie in a common plane, however, their projection onto the cutting plane that is perpendicular to the axis of rotation
gives the boundary of the two-dimensional object. In this special case, the distance of any body-fixed reference point
B from the contact plane is a function of α. As derived in [54, Section 4], it follows that

rB = xB(α) ix + zP(α) iz , (53)
rP = xP(α) ix , (54)

rBP = rP − rB

= xBP(α) ix + zBP(α) iz , (55)

and

zB(α) = gB(α) , (56)
zBP(α) = −gB(α) , (57)

where gB(α) is the generating potential as is shown below. The dependency of xBP(α) on gB(α) follows from the
velocity of P for an arbitrary angular velocity ω = α̇ iy which can be derived in two ways: differentiation of the
position yields [54, Eq. (20)]

vB = ṙB = ẋB(α) ix + żB(α) iz = x′B(α)α̇ ix + g′B(α)α̇ iz , (58)
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Figure 5: Generalization to three-dimensional contact problem: (a) Rotation of the object (the body-fixed frame B) around a body-fixed axis ky
which is parallel to the plane. The direction of ky in the {bx,by}-plane is defined by the angle β. A full rotation around the fixed axis ky produces a
line of potential contact points on the object’s boundary (black), cf. Fig. 4b. (b) Second (subsequent) rotation of the object around iz by the angle γ.
This drilling motion does not change the contact point as seen by an observer which is rotating with the object. The intermediate reference frameJ
is used below to properly define this rotation, cf. Fig. 6.

and the rolling condition

ṙP = vP = 0 (59)

results in [54, Eq. (22)]

vB = vP + ω × rPB = gB(α)α̇ ix + xBP(α)α̇ iz . (60)

Comparison of the coefficients in Eqs. (58) and (60) yields

xBP(α) = g′B(α) , (61)
rBP(α) = g′B(α) ix + gB(α) iz (62)

which just equals Eq. (2) with en = −iz and eϕ = ix.
These observations motivate a straightforward approach for the generalization of the solution of the two-dimen-

sional contact detection problem: every body-fixed axis of rotation which is parallel to the contact plane produces a
(slightly different) two-dimensional contact problem; the combination of all these two-dimensional solutions yields
the desired solution for the three-dimensional problem.

For any body-fixed axis of rotation which is parallel to the plane, the body-fixed frame B aligns with I in the
initial configuration α = 0. This means that the axis of rotation is always perpendicular to bz and iz, hence it is
simultaneously part of the {bx,by}-plane and of the {ix, iy}-plane. For the sake of clarity, an intermediate reference
frame K is introduced in the following way: the (body-fixed) axis of rotation is given by ky and kz ≡ iz. The
orientation of ky in the {bx,by}-plane is described by the angle β, cf. Fig. 5a. The special case β = 0 results in
iy = ky = by which is depicted in Fig. 4.

Any body-fixed axis ky which is given by some constant value of β produces a corresponding line of potential
contact points on the object’s boundary. Any point of this line can be turned into the actual contact point by a
corresponding value for the angle α. Furthermore, an infinitesimal change from β to β + dβ produces a different, but
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infinitesimally close line of potential contact points. Assuming sufficient smoothness, these lines of potential contact
points cover the whole boundary of the object. The described procedure produces a set of spherical coordinates
(α, β) ∈ S2 which can be used to parameterize the object’s boundary in dependence of the normal direction at any
point (by the common normal concept, the outer normal vector at the actual contact point has to be anti-parallel to
iz, the contact plane’s outer normal vector). Any point on the object’s boundary can be turned into the actual contact
point by specific values of α and β.

However, this approach is still incomplete because it lacks the ability to rotate the object into an arbitrary ori-
entation with respect to the inertial frame I. A subsequent, second rotation is necessary to complete the proposed
approach. Firstly, a certain point on the object’s boundary is turned into the actual contact point by the procedure
described above. The object is then rotated around iz by a third angle γ until the desired orientation is reached. This
drilling motion does not change the body-fixed contact point P(α, β) as seen by an observer which is rotating with the
object. Another intermediate reference frame J is introduced below to properly define both active rotations of the
object. The first rotation via α and β is then performed with respect to this intermediate frame instead of the reference
frame. The second rotation of the object is achieved by the rotation of frame J with respect to I.

4.2. Rolling contact between a strictly convex three-dimensional object and a plane

The contact point on the object’s boundary as a function of its orientation relative to the plane can be derived
as a function of the angles (α, β) ∈ S1 and the assumption of strict convexity. The first step in this endeavor is the
derivation of transformation matrices which define the orientation of the body-fixed reference frame B as well as the
two intermediate frames J and K with respect to the inertial frame I and to each other. The angular velocity of the
object can be expressed in term of the three angles α, β and γ and their time derivatives and follows directly from the
transformation matrix which describes B with respect to I. The next step in the following derivation assumes that the
position of the potential contact point P with respect to a body-fixed reference point B is a function of α and β only,
as motivated above. Analogously to [54], the special case of rolling without slipping is used to derive the kinematic
relationships for the position of P.

The orientations of all four reference frames relative to each other for arbitrary angles α, β and γ are displayed in
Fig. 6. Without loss of generality, let the plane be fixed in the inertial frame I with the origin O somewhere on the
plane. The tangential vectors of the plane are ix and iy, the normal vector is iz. The body-fixed reference frame B is
attached to the convex object at point B. In the initial configuration, all four frames are aligned as displayed in Fig. 6a.
The object’s translation is described by the position of B. Its orientation follows from one passive10 rotation of frame
K and two active rotations of frame B with respect to I. The passive rotation of K with respect to J by the angle
β around jz defines the axis of rotation for the subsequent active rotation, cf. Fig. 6b. The first active transformation
rotates B relative to J around ky by the angle α as displayed in Fig. 6c. The second active transformation rotates
J—and K , B which are defined relative to J—around iz by the angle γ, cf. Fig. 6d.

The transformation QIB(α, β, γ) from the initial orientation in Fig. 6a to the final orientation in Fig. 6d is thus put
together as follows. The rotation ofK relative toJ around the jz-axis is displayed in Fig. 6b and results in the rotation
matrix

QJK (β) =

cos (β) − sin (β) 0
sin (β) cos (β) 0

0 0 1

 , (63)

the rotation of B relative to J around the ky-axis is displayed in Fig. 6c and results in the transformation matrix

QJB(α, β) =


1 − 2 sin2

(
α
2

)
cos2 (β) − sin2

(
α
2

)
sin (2β) sin (α) cos (β)

− sin2
(
α
2

)
sin (2β) 1 − 2 sin2

(
α
2

)
sin2 (β) sin (α) sin (β)

− sin (α) cos (β) − sin (α) sin (β) cos (α)

 , (64)

10An active rotation changes the orientation of the object, whereas a passive rotation changes only the orientation of some reference frame
relative to the object.
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Figure 6: Position and orientation of the object (only partially visualized, slice planes in gray) relative to the plane. The object’s position is
described by rB relative to the origin O. The contact point P = P(α, β, γ) depends on the object’s orientation and is displayed accordingly. The
orientation of the body-fixed frame B relative to the inertial frame I follows from two consecutive (active) rotations:
(a) Initial configuration with equal alignment of I, J , K and B. (b) A passive rotation of K relative to J by the angle β around jz (no change of
the object’s orientation). (c) First active rotation of B relative to J by the angle α around ky. (d) Second active rotation of J—and K , B which
are defined relative to J—by the angle γ around iz. This results in the final orientation (P is concealed by the object in Figs. (c) and (d)).
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and the rotation of J relative to I around the iz-axis is displayed in Fig. 6d and results in the transformation matrix

QIJ (γ) =

cos (γ) − sin (γ) 0
sin (γ) cos (γ) 0

0 0 1

 . (65)

The object’s orientation relative to I is thus

QIB(α, β, γ) = QIJ (γ) QJB(α, β)

=


cos2

(
α
2

)
cos(γ) − sin2

(
α
2

)
cos(2β+γ) − cos2

(
α
2

)
sin(γ) − sin2

(
α
2

)
sin(2β+γ) sin(α)cos(β+γ)

cos2
(
α
2

)
sin(γ) − sin2

(
α
2

)
sin(2β+γ) cos2

(
α
2

)
cos(γ) + sin2

(
α
2

)
cos(2β+γ) sin(α) sin(β+γ)

−sin(α) cos(β) −sin(α) sin(β) cos(α)

 (66)

and its six degrees of freedom are described by the generalized coordinates q =
[
xIB(t), yIB(t), zIB(t), α(t), β(t), γ(t)

]T
. A

proof for the completeness of this definition, meaning that the transformation to any three-dimensional orientation is
possible, is given in Appendix B. The object’s angular velocity relative to the inertial frame is

ωIB =
(
− sin(α)β̇

)︸       ︷︷       ︸
ωKx

kx + α̇︸︷︷︸
ωKy

ky +
(
(1 − cos (α)) β̇ + γ̇

)︸                   ︷︷                   ︸
ωKz

kz , (67)

which can be derived from QIB(α, β, γ).
As is evident from Fig. 6, the position of the potential contact point P relative to B depends only on the orientations

α, β and γ. Assuming that P is unique, this relative position rBP(α, β, γ) follows from a scalar function gB : S2 → R.
The function gB(α, β) with the spherical coordinates α ∈ [0, π] and β ∈ [0, 2π) is a parameterization of the distance
between B and P in the direction of the plane’s normal iz (cf. Eq. (72)). It is independent of γ which corresponds to
a rotation of the object around iz and its specific form depends on the shape of the object’s boundary which must be
2π-periodic with respect to β. There are two coordinate singularities at α = 0 and α = π, which correspond to the two
poles of the spherical coordinates {α, β}. P being unique means that there are no straight line segments anywhere on
the boundary meaning its curvature in any direction is non-zero everywhere.

Analogously to the approach in [54], the dependency of rBP(α, β, γ) on gB(α, β) can be derived from the special
case of a rolling contact between the object and the plane. The system is then reduced to three degrees of freedom as
the translation of the contact point P is prevented by the rolling conditions. The positions of B and P become

rB = xKB kx + yKB ky + zKB kz , (68)

rP = xKP kx + yKP ky , (69)
rBP = rP − rB

= xKBP kx + yKBP ky + zKBP kz , (70)

and thus

zKBP = −zKB . (71)

The definition of

zKB (α, β) := gB(α, β) (72)

for the special case of rolling yields

zKBP(α, β) = −gB(α, β) . (73)
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The dependency of xKBP(α, β) and yKBP(α, β) on gB(α, β) follows from the velocity of B for an arbitrary angular velocity
ωIB. In general, the velocity is11

vB = ẋKB kx + ẏKB ky + żKB (α, β) kz

= ẋKB kx + ẏKB ky +
(
∂αzKB (α, β)α̇ + ∂βzKB (α, β)β̇

)
kz

= ẋKB kx + ẏKB ky +
(
∂αgB(α, β)α̇ + ∂βgB(α, β)β̇

)
kz , (74)

and the rolling condition

ṙP =: vP = 0 (75)

results in

vB = vP + ωIB × rPB

= rBP × ω
IB

=
(
gB(α, β)α̇ + (1 − cos (α)) yKBPβ̇ + yKBPγ̇

)
kx

+
((

gB(α, β) sin(α) − (1 − cos (α)) xKBP

)
β̇ − xKBPγ̇

)
ky

+
(
xKBPα̇ + sin(α)yKBPβ̇

)
kz . (76)

The comparison of the coefficient in kz-direction in Eqs. (74) and (76) yields

rBP = ∂αgB(α, β) kx + (sin(α))−1 ∂βgB(α, β) ky − gB(α, β) kz . (77)

Defining ϕ = −α, θ = β, eϕ = −kx, eθ = ky and en = −kz shows that Eq. (77) is equal to the regular case of the normal
parameterization in Eq. (16).

5. Collision detection

As the derivation of the normal parameterization from basic rigid body kinematics in the previous section shows,
it allows an explicit collision detection between an object and a planar counterpart. Since the normal vector at the
potential contact point on the object is antiparallel to that of the plane according to the common normal concept, only
the corresponding angles (ϕ, θ) have to be determined to evaluate Eq. (16). However, the common normal between
two general objects is not known a priori and we have not found any explicit solution to this problem, which is why an
iterative calculation is required. The same situation arises in the case of surface representation via implicit functions
or via different parameterizations, where common algorithms rely on Newton methods with analytical Jacobians for
an efficient solution [4, 6]. However, the specific properties of the normal parameterization allow further, derivative-
free approaches. This is demonstrated by a comparison of four different algorithms which are compared in terms of
implementation effort, robustness and rate of convergence.

The algorithms I and II are based on a Newton method with an analytical Jacobian for the concept of closest points
or on the common normal concept, respectively. Since the respective Jacobians depend on the parameterization of
the particular objects, e. g. two ellipsoids, the implementation effort for both approaches is considered to be high. As
investigated below, the rate of convergence of both algorithms is quadratic and therefore an accurate solution can be
determined very fast. However, the robustness, meaning the convergence to the correct solution, is worse than for the
other two algorithms.

To lower the implementation effort, algorithm III is proposed as an alternative approach based on a fixed-point
iteration that does not require any derivatives. This algorithm also shows fast convergence, albeit slower than the
Newton methods with analytical gradients. However, it is more robust, meaning it converges to the correct solution
more often than algorithms I and II. Finally, algorithm IV combines algorithms III and II, which results in a method
with very high robustness and fast convergence. However, the implementation effort is also very high, since both
methods have to be implemented.

11Here, ẋKB and ẏKB do not represent the time derivatives of xKB and yKB , because K is not an inertial reference frame. Instead, the two variables
express the respective component of the velocity of B relative to the inertial frame after proper transformation to K .
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5.1. Collision detection algorithms
All four algorithms are derived for collision detection between two objects. One object is designated as the

master object with reference point and base M = {M, (mx,my,mz)}; the second object is introduced as slave with
reference point and base S = {S , (sx, sy, sz)}. The relative distance and orientation are given by rMS and QMS and the
corresponding generating potentials are gM(ϕM , θM) and gS (ϕS , θS ). The master object’s outer normal vector is

nM(ϕM , θM) = sinϕM cos θM mx + sinϕM sin θM my + cosϕM mz (78)

and the slave variables are

ϕS = arccos(−nM · sz) , (79a)
θS = arctan2(−nM · sy,−nM · sx) (79b)

since the outer normal vectors are antiparallel at the potential contact point (arctan2 is defined in Appendix A).
Therefore, any direction given by (ϕM , θM) 7→ nM(ϕM , θM) defines a point P given by rMP(ϕM , θM) on the boundary of
the master object via Eq. (16) and a corresponding point Q given by rSQ(ϕS , θS ) on the slave object. The connection
of both points is

rPQ(ϕM , θM) = rMS − rMP(ϕM , θM) + rSQ
(
ϕS (ϕM , θM), θS (ϕM , θM)

)
. (80)

Algorithm I is based on the concept of closest points with the (squared) distance functional

ΦI(ϕM , θM) =
1
2

(
rPQ · rPQ

)
. (81)

The optimization problem

min
(ϕM ,θM )∈S2

ΦI(ϕM , θM) (82)

yields the Newton iteration[
ϕM,i+1
θM,i+1

]
=

[
ϕM,i

θM,i

]
−

[
∂2
ϕM

ΦI(ϕM,i, θM,i) ∂ϕM∂θM ΦI(ϕM,i, θM,i)
∂θM∂ϕM ΦI(ϕM,i, θM,i) ∂2

θM
ΦI(ϕM,i, θM,i)

]−1 [
∂ϕM ΦI(ϕM,i, θM,i)
∂θM ΦI(ϕM,i, θM,i)

]
. (83)

Algorithm II is adapted from [6, Eq. (18)] and based on the common normal concept that requires nM(ϕM , θM) and
rPQ(ϕM , θM) to be parallel. Consequently, the tangential components

ΦII(ϕM , θM) =

[
rPQ · eϕM

rPQ · eθM

]
(84)

must vanish yielding the Newton iteration[
ϕM,i+1
θM,i+1

]
=

[
ϕM,i

θM,i

]
−

[
∂ϕMΦII(ϕM,i, θM,i) ∂θMΦII(ϕM,i, θM,i)

]−1
ΦII(ϕM,i, θM,i) . (85)

The necessary derivatives for both algorithms I and II are quite cumbersome to calculate and are therefore not
explicitly given. Due to this fact, however, a fixed-point iteration is developed that does not require any derivatives.
An intuitive choice for this fixed-point iteration is the variant shown in Fig 7a. Starting from the normal vector nM,i,
the connection rPQ(ϕM,i, θM,i) is normalized and assigned as nM,i+1 = rPQ,i/‖rPQ,i‖2 for the next iteration step. The
common normal at the points with the closest points is a fixed point of this iteration rule. However, the iteration rule
itself proves to be unstable, which can also be observed in Fig 7a. Here, the connection of the reference points rMS

is selected as initialization nM,0 = rMS /‖rMS ‖2. According to the iteration rule, nM,1 and the corresponding points P1
and Q1 are determined. However, the direction of rPQ,1 (not depicted) differs more from nM,1 than the initialization
nM,0. The iteration rule diverges, although it was initialized close to the fixed point. It is therefore not suitable to
determine the common normal vector.
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Figure 7: Three fixed-point iteration schemes: (a) unstable scheme where nM,i+1 is parallel to rPQ,i. (b) slow, mostly stable scheme where nM,i+1
is the mean direction between nM,i and rPQ,i. (c) fast, stable scheme where nM,i+1 is parallel to rP̄Q̄,i.
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A modification with which the fixed-point iteration can be improved is shown in Fig 7b. Instead of just using the
connection rPQ,i to determine nM,i+1, the mean value

nM,i+1 =
nM,i + (rPQ,i/‖rPQ,i‖2)∥∥∥nM,i + (rPQ,i/‖rPQ,i‖2)

∥∥∥
2

(86)

is used. This iteration rule also has the common normal vector as a fixed point. It has been observed that this iteration
rule does converge, yet very slowly and not very reliably. It is therefore unsuitable for the desired application.

These observations motivate the development of algorithm III as follows: given the current and previous iteration
for the normal vector nM,i, nM,i−1 and the points Pi, Pi−1, P̄i is determined as the point on the line ai ∈ R 7→ rMP,i+ainM,i

which is closest to the line ai−1 ∈ R 7→ rMP,i−1 + ai−1nM,i−1; Q̄i is defined analogously. Solving for both points yields

rPP̄,i =

(
nM,i −

(
nM,i · nM,i−1

)
nM,i−1

)
·
(
rMP,i − rMP,i−1

)(
nM,i · nM,i−1

)2
− 1

nM,i =

(
nM,i −

(
nM,i · nM,i−1

)
nM,i−1

)
·
(
rMP,i − rMP,i−1

)
−

(
nM,i × nM,i−1

)
·
(
nM,i × nM,i−1

) nM,i ,

(87a)

rQQ̄,i =

(
nM,i −

(
nM,i · nM,i−1

)
nM,i−1

)
·
(
rSQ,i − rSQ,i−1

)(
nM,i · nM,i−1

)2
− 1

nM,i =

(
nM,i −

(
nM,i · nM,i−1

)
nM,i−1

)
·
(
rSQ,i − rSQ,i−1

)
−

(
nM,i × nM,i−1

)
·
(
nM,i × nM,i−1

) nM,i ,

(87b)

where the denominator is transformed into the cross product expressions to avoid numerical problems due to roundoff

errors. The connection from P̄i to Q̄i

rP̄Q̄,i = rMS −
(
rMP,i + rPP̄,i

)
+

(
rSQ,i + rQQ̄,i

)
(88)

is taken as next iteration for the normal vector

nM,i+1 =
rP̄Q̄,i∥∥∥rP̄Q̄,i

∥∥∥
2

. (89)

In contrast to the algorithms I and II, no derivatives are required for algorithm III defined in this way; instead, the
values of the previous iteration step are used. To initialize this procedure, the first iteration is calculated via Eq. (86).

Algorithm IV is a combination of algorithms III and II: algorithm III used to initialize the iteration. If the scalar
product between two successive iterates for the normal vector is above a certain tolerance (nM,i · nM,i−1 > 0.99), the
procedure switches to the Newton iteration via Eq. (85).

5.2. Convergence study

A comparison of all four algorithms in terms of robustness and rate of convergence is conducted using the fol-
lowing benchmark model. Two ellipsoids with the generating potential according to Eq. (51) are considered. The
semi-axes of the master and of the slave object are aM , bM , cM and aS , bS , cS , respectively. The offset of the slave
object is rMS = (aM + x̄MS )mx + (bM + ȳMS )my + (cM + z̄MS )mz and its orientation is given by QMS. The parameters
aM , bM , cM , aS , bS , cS , x̄MS , ȳMS , z̄MS ∈ (0, 1) and the rotation matrix QMS are generated randomly. By this choice of
parameters it is possible, but not very likely, that the objects penetrate each other (≈ 2.2 % of the realizations). This
way, the distance between the two objects ranges from very small values to the order of magnitude of the semi-axes.
A solution is accepted as successful if∣∣∣∣|ñM · rPQ(ñM)| −

√
rPQ(ñM) · rPQ(ñM)

∣∣∣∣ < √ε (90)

and rPQ(ñM) · rPQ(ñM) < rPQ(nM,0) · rPQ(nM,0) (91)

where ñM is the best result of any of the four algorithms and ε ≈ 2.2 · 10−16 is the machine precision. A set of
105 realizations is randomly generated and all algorithms are applied to every realization with an upper limit of
103 iterations. To investigate the algorithms’ robustness and convergence, two studies are performed with different
initializations: study A with nM,0 = rMS /‖rMS ‖2 and study B with nM,0 = random.
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Table 1: Percentage of successful iterations and aspect ratio of failed iterations for realizations with and without penetration for all four algorithms
for an upper limit of 103 iterations.

minimum maximum aspect ratio
successful iterations of any failed iteration

study A study B study A study B
Algorithm nM,0 = rMS /‖rMS ‖2 nM,0 = random nM,0 = rMS /‖rMS ‖2 nM,0 = random

w
ith

ou
t

pe
ne

tr
at

io
n I 55.2 % 16.5 % 1.3 1.0

II 92.8 % 47.5 % 2.0 1.1
III 99.9 % 99.7 % 18.2 3.4
IV 99.2 % 99.1 % 6.2 3.4

w
ith

pe
ne

tr
at

io
n I 48.9 % 18.4 % 1.5 1.3

II 77.7 % 47.3 % 1.5 1.2
III 97.8 % 96.4 % 4.1 3.6
IV 96.4 % 95.2 % 3.6 2.2

The success rate of both studies are summarized in Table 1. In realizations without penetration which are initialized
with the good estimate nM,0 = rMS /‖rMS ‖2 (study A), algorithm I converges only in about half of the realizations,
algorithm II succeeds in over 90 % and algorithms III and IV show a success rate of over 99 %. Algorithm III is the
most robust algorithm in this comparison and shows a failure rate of ≈ 0.1 %. Although algorithm IV is initialized by
the same procedure until two successive iterates for the normal vector are very similar (nM,i · nM,i−1 > 0.99), it still
diverges from the correct solution in some realizations and shows a worse failure rate of ≈ 0.8 %. The performance
of algorithms I and II drops significantly in study B with random initialization. Algorithm II succeeds in about half of
the realizations which is an expected result since the minimization of the tangential components of rPQ does not favor
convergence to the minimum distance solution over the maximum distance solution. Algorithms III and IV show only
very small losses of performance of less than 0.2 %. Algorithm III is again the most robust procedure with a failure
rate of less than 0.3 %.

If there is large penetration between both objects, the contact point is no longer well defined by the common normal
concept.12 If there is only small penetration, the common normal concept yields the point of maximum penetration
and all may still converge. For realizations with penetration, the success rate is still best for algorithms III and IV,
albeit slightly lower in both study A and study B which we attribute to the relatively small number of realizations
with large penetration. However, there is a significant drop of ≈ 15 % in the success rate for algorithm II in study
A indicating that its performance is particularly sensitive to penetration of the objects; a characteristic that cannot be
observed for the other algorithms.

Whenever algorithms III or IV fail to converge to the correct solution, there is either large penetration or the aspect
ratio max{a, b, c}/min{a, b, c} of one or both ellipsoids is very large. If the aspect ratio is large, there are lines on the
boundary surface with very small curvature (almost straight) where small changes of the normal vector result in large
changes of the corresponding boundary point P or Q. Thus the solution in each iteration step is very sensitive to the
normal vector and we consider the problem to be badly conditioned. In study A, algorithm III converges for aspect
ratios below 18.2, followed by algorithm IV with 6.2; in study B with random initialization, these numbers drop to
3.4. Since the convergence of algorithms I and II is much worse, the minimum aspect ratios are significantly lower.
Aspect ratios below 2.0 indicate that the reason for the failure of convergence lies elsewhere.

The necessary number of iterations to achieve a requested accuracy for a certain percentage of all realizations is
displayed in Table 2. Algorithm I not only has the lowest success rate, but also requires by far the highest number of
iterations to achieve a certain accuracy; it is therefore the worst examined algorithm. Algorithms II and IV require
more or less the same number of iterations, while algorithm III requires about twice as many. However, the compu-
tation times are difficult to compare, since algorithm III only requires function evaluations, but no derivatives, while
algorithm II requires the calculation or evaluation of the analytical Jacobian and algorithm IV is a combination of

12The common normal concept is unsuitable if e. g. one object completely interpenetrates the other and exits on the other side.
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Table 2: Necessary number of iterations to achieve a requested accuracy for a certain percentage of all realizations.

Necessary number of iterations to achieve requested accuracy for
percentage of all realizations

study A study B
nM,0 = rMS /‖rMS ‖2 nM,0 = random

Algorithm Accuracy 40% 50% 60% 70% 80% 90% 95% 40% 50% 60% 70% 80% 90% 95%

I

10−4 10 27
10−6 15 43
10−8 21 59
10−10 26 75
10−12 32 91
10−14 37 108

II

10−4 3 3 3 3 4 6 8
10−6 3 3 4 4 5 7 9
10−8 4 4 4 4 5 7 9
10−10 4 4 4 5 5 8 9
10−12 4 4 5 5 6 8 10
10−14 4 5 5 5 6 8 10

III

10−4 5 5 6 6 7 8 10 6 7 7 8 9 10 12
10−6 6 7 8 8 9 11 12 8 8 9 9 10 12 14
10−8 8 8 9 9 10 12 14 9 10 10 11 12 13 15
10−10 9 9 10 11 11 13 15 10 11 11 12 13 15 17
10−12 10 10 11 11 12 14 16 11 11 12 13 14 15 17
10−14 10 11 11 12 13 14 16 12 12 13 13 14 16 18

IV

10−4 3 4 4 4 5 5 6 5 5 5 6 6 7 8
10−6 4 4 4 5 5 6 7 5 6 6 6 7 8 9
10−8 4 5 5 5 6 6 7 6 6 6 7 7 8 9
10−10 5 5 5 5 6 7 7 6 6 7 7 7 8 9
10−12 5 5 5 6 6 7 8 6 7 7 7 8 9 10
10−14 5 5 6 6 6 7 8 6 7 7 7 8 9 10

both. Different computation times per iteration step may reduce or further increase this difference, depending on the
complexity of the objects’ generating potentials and their derivatives. Since a thorough study requires generating po-
tentials of further objects that have not yet been found, a meaningful benchmark and a comparison to other approaches
from the literature remain for future work.

In this convergence study with two ellipsoids, algorithm III shows the best performance in terms of robustness
and which is measured by the success rate and its dependence on the aspect ratio. As expected, the performance of all
algorithms is best if a good initialization (study A) is used. The robustness of algorithm IV is slightly worse than that
of algorithm III; the success rate is a little worse, which is probably due to poorer convergence for high aspect ratios,
cf. Table 1. Algorithm III requires more iteration steps than algorithm IV, however it is easier to implement and the
computation time per iteration step is difficult to compare. Algorithms I and II exhibit a bad success rate and are not
discussed further.

6. Case study

The application of the normal parameterization for collision detection in a multibody simulation is demonstrated
with a case study of two ellipsoids that are falling into a rectangular box with inclined walls. The focus is on the
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Figure 8: Ellipsoid objects I and II in box with inclined walls.

kinematics of the contact detection problem and the use of the principal curvatures in the interaction force law. The
two objects are referenced by the superscripts I and II; if an expression is valid for both objects and this is clear from
the context, the superscript is omitted. The following assumptions and simplifications are used: (i) the two objects
are ellipsoids with geometrical center M, body-fixed reference frameM = {M, (mx,my,mz)}, semi-axes a, b, c and
generating potential via Eq. (51); (ii) the center of mass B and the principal axes of the inertial tensor (bx,by,bz) do
not coincide with frame M at the geometrical center M; (iii) the objects are falling into a box with flat ground and
four flat walls which is fixed in the inertial frame J = {O, (jx, jy, jz)}; (iv) the interaction force between any object
and the box or between the objects is a combination of an elastic restoring force in normal direction and a dissipative
force which depends on the relative velocity.

For both objects the shape of an ellipsoid is chosen, because apart from a sphere it is described by the simplest
generating potential and only three parameters have to be specified for each object. The difference between frames
M and B = {B, (bx,by,bz)} is introduced to illustrate the ease of implementation of the normal parameterization
once the generating potential gM of a geometry with respect to any point M is available. The box consists of five
planes with constant normal vectors, which allows a direct calculation of the respective potential contact points. In
contrast to a single horizontal plane, the box with inclined walls restricts the possible configuration space and leads
to a high number of collisions between the two objects. The model proposed by Flores et al. [41] is used to describe
the interaction force in normal direction at every contact point since it requires curvature information like the Hertz
contact and at the same time introduces dissipation. For discussions regarding some of the limitations of this model
we refer to [42, 43, 44, 45]. The normal force model is combined with a tanh-approximation of Coulomb friction to
allow for combined slipping and rolling of the object. This approximation of dry friction is chosen for its simplicity
and its favorable numerical properties [51, 52, 53]. The interaction force that follows from this combination of forces
in normal and tangential direction is chosen to highlight the use of curvature information and to avoid common
problems of rigid contacts, cf. [64]; any dissipation due to drilling or rolling motions is neglected. This simplification
is appropriate for the present case study since more physical interaction laws for this type of non-holonomic rolling
contact as for example proposed in [42, 46] are much more complicated and distract from the actual focus of this
manuscript: the introduction of the normal parameterization and its application for collision detection.

The system under consideration is depicted in Fig. 8. All relationships are specified for object I and can be
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transferred analogously to object II. The position and velocity of the object’s center of mass BI relative to the origin O
are

rI
B = xI

B(t) jx + yI
B(t) jy + zI

B(t) jz , (92a)

vI
B = ẋI

B(t) jx + ẏI
B(t) jy + żI

B(t) jz , (92b)

and the orientation of frame BI relative to the inertial frame J is described by Tait–Bryan angles {αI(t), βI(t), γI(t)}
which give the rotation matrix QJB,I via Eq. (C.1) and the angular velocity ωI via Eq. (C.2). Tait-Bryan angles are
introduced to derive the equations of motion below as a set of ordinary differential equations in minimal coordinates
instead of differential algebraic equations which follow for other parameterization like e.g. Euler parameters; their
well known coordinate singularities are avoided by switching between two sets of coordinates as detailed in Appendix
C.

The relation between frames MI and BI is described by the distance rI
BM and the transformation matrix QBM,I .

The five planes which make up the box are defined by n j · r = d j, j = 1 . . . 5. Object I is subjected to gravity g = −g jz
and interaction forces FI

j with all planes and FI
II with object II. The interaction forces FI

j act at the (potential) contact
points PI

j which follow directly from Eq. (78) and (79); the (potential) contact point PI
II for the interaction force

FI
II with object II is determined iteratively via algorithm III from Section 5.1. The principal curvatures κI

1/2, j, κ
I
1/2,II

and the corresponding curvature directions cI
1/2, j, c

I
1/2,II follow directly from Eqs. (26) and (27) and the positions and

velocities of all potential contact points are

rI
P, j = rI

B + rI
BM + rI

MP, j , vI
P, j = vI

B + ωI ×
(
rI

BM + rI
MP, j

)
, (93a)

rI
P,II = rI

B + rI
BM + rI

MP,II , vI
P,II = vI

B + ωI ×
(
rI

BM + rI
MP,II

)
. (93b)

The normal penetration between object I and plane j or object II and their time derivatives are then

δI
j = n j · rI

P, j + d j , δ̇I
j = n j · vI

P, j , (94)

δI
II = nI

II ·
(
rI

P,II − rII
P,I

)
, δ̇I

j = nI
II ·

(
vI

P,II − vII
P,I

)
, (95)

where nI
II is the outer normal vector of object I at PI

II and δI
j < 0 or δI

II < 0 means that there is no contact between
object I and plane j or object II. The Flores et al. contact normal force model via [41, Eq. (44)] is used to calculate a
restoring normal forces

F I
n, j =


4
3

1 − ν2
I

EI
+

1 − ν2
j

E j

−1 (
κI

1κ
I
2

)− 1
4

1 +
8(1 − cI

r, j)

5cI
r, j

δ̇I
j

δ̇I −
j

 (δI
j

) 3
2 , if δI

j > 0 and
8(1 − cI

r, j)

5cI
r, j

δ̇I
j

δ̇I −
j

> −1 ,

0 , otherwise,

(96a)

F I
n,II =


4
3

1 − ν2
I

EI
+

1 − ν2
II

EII

−1 (
κI,II

1 κI,II
2

)− 1
4

1 +
8(1 − cI

r,II)

5cI
r,II

δ̇I
II

δ̇I −
II

 (δI
II

) 3
2 , if δI

II > 0 and
8(1 − cI

r,II)

5cI
r,II

δ̇I
II

δ̇I −
II

> −1 ,

0 , otherwise.
(96b)

This requires the Young’s moduli EI , EII , E j and Poisson’s ratios νI , νII , ν j of the objects and the j-th plane, the

Gaussian curvature
√
κI

1κ
I
2 at PI

j and the relative Gaussian curvature
√
κI,II

1 κI,II
2 via Eq. (C.6) at PI

II and the coefficients

of restitution cI
r, j, cI

r,II which are defined in Table C.3. The initial impact velocities δ̇I −
j , δ̇I −

II are determined whenever
the respective collision occurs. Negative values are set to zero [45]. Additionally, a friction force in tangential
direction is introduced as

FI
t, j =


−
µF I

n, j

k
vI

t, j , if
‖vI

t, j‖

k
< 10−6 ,

−
µF I

n, j

‖vI
t, j‖

tanh

 ‖vI
t, j‖

k

 vI
t, j , otherwise,

(97a)
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FI
t,II =


−
µF I

n,II

k
vI

t,II , if
‖vI

t,II‖

k
< 10−6 ,

−
µF I

n,II

‖vI
t,II‖

tanh

‖vI
t,II‖

k

 vI
t,II , otherwise,

(97b)

with the tangential velocities

vI
t, j = vI

P, j − (n j · vI
P, j)n j , vI

t,II = vI
P,II − (nI

II · v
I
P,II)n

I
II , (98)

the friction coefficient µ and some constant k � 1.13 The total interaction forces at P j and PI
II are

FP, j = F I
n, j n j + FI

t, j , FP,II = −F I
n,II nI

II + FI
t,II . (99)

The mass and inertia tensor of object I are mI and ΘI = ΘI
x bI

x ⊗ bI
x + ΘI

y bI
y ⊗ bI

y + ΘI
z bI

z ⊗ bI
z and the system is

governed by the differential equations

Jd
dt

vI
B = g +

1
mI

FI
P,II +

5∑
j=1

FI
P, j

 , (100a)

B,Id
dt
ωI =

(
ΘI

)−1
−ωI × (ΘI · ωI) +

(
rI

BM + rI
MP,II −

δI
II

2
nI

II

)
× FI

P,II +

5∑
j=1

rI
BM + rI

MP, j +
δI

j

2
n j

 × FI
P, j

 (100b)

where the operators Jd/dt and B,Id/dt define the time derivative of the vector components in frame J and BI , respec-
tively. For the moment balance (100b) it is assumed that the contact forces act at half the penetration depth, that is, at
the mean value between the points with the common normal on both object boundaries. Using the generalized coor-
dinates q =

[
xB(t), yB(t), zB(t), α(t), β(t), γ(t)

]
for each object, Eqs. (100) can be transformed into a system of ordinary

differential equations of first order and solved numerically.
An example implementation of the described system in Matlab is provided as supplementary material to this

manuscript. The parameters and initial conditions in Appendix C are chosen for the numerical simulation. The
young’s modulus and Poisson’s ratio of steel are used for all objects and planes. Both objects are released above
one of the corners of the box with an initial angular velocity. Snapshots of the solution are displayed in Fig. 9; an
animation is provided as supplementary material. After the initial drop, the objects bounce inside the box and there
are multiple contacts between themselves and with all planes, at times there are several contacts simultaneously. The
movement slows down rapidly since energy is dissipated by the contact forces.

The case study demonstrates a possible application of the normal parameterization for multibody simulations. The
description of the geometry of any object is independent of its mechanical properties such as the center of mass and
the inertia tensor. The collision detection via the common normal concept provides potential contact points with high
accuracy, which can be used to describe the interaction forces between two objects. As far as we have observed,
there are no artifacts caused by this contact kinematics that lead to unphysical behavior such as an unmodeled energy
source (negative damping). Collision detection with a planar counterpart can be explicitly solved and easily imple-
mented; collision detection between two convex objects has to be performed iteratively via algorithm III as described
in Section 5.1. This algorithm is implemented in a modular way, where a subroutine is called to evaluate the normal
parameterization for the generating potential of each object involved. The collision detection algorithm is therefore
insofar independent of the object’s geometries that only this subroutine needs to be replaced or updated if a different
generating potential is to be specified. The collision detection problem is solved in every time step. Since the selected
parameters lead to high contact stiffness, the Matlab solver ode15s14 is used for numerical time integration. This does

13This friction model is a modification of Coulomb friction to avoid typical numerical problems due to its non-smoothness. For very small
velocities—the first case is a linearization for vanishing velocity—this friction model resembles viscous damping. The parameter k is used to
define the behavior at very small velocities. This friction model does not allow for a sticking contact.

14This is an implicit variable step, variable order method based on numerical differentiation formulas for sets of stiff ordinary differential
equations.
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Figure 9: Snapshots of the time simulation of the ellipsoid for t ∈ {0, 1, 2, 3, 4} s and total energy (bottom right).
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not allow the exchange of information between different time steps and therefore the collision detection algorithm is
always restarted with the direction from center to center. Although sufficient for the demonstration purposes of this
case study, an implementation focusing on high efficiency should warm-start the collision detection with the normal
vector from the previous time step. Because of this and other limitations of the implementation in Matlab, a com-
parison of different algorithms in terms of efficiency and computation time is not very conclusive, and is therefore
omitted.

7. Discussion

The normal parameterization as derived in Sections 2 and 3 is a generalization and extension of a description for
two-dimensional and three-dimensional objects which was previously proposed for two-dimensional objects by the
authors in [54]. The proper statement of all requirements and assumptions which are necessary to prove different state-
ments for the continuity and differentiability of the boundary line or surface and the additional curvature relationships
provide a theoretical base for the use of this new parameterization in any application. While the treatment of the two-
dimensional case is very compact and yields clear and compact expressions, the treatment of the three-dimensional
case is more extensive due to the coordinate singularities. The coordinate singularities are not an inherent property of
the boundary surface but arise rather artificially due to the orientation of the chosen body-fixed reference frame. A
further extension or generalization of the presented concept which does not suffer from these artificial singularities is
desirable, however, there is no clear and apparent approach to achieve this.

Another challenging problem which has yet to be addressed is the definition of the generating potential for ar-
bitrary geometries. The normal parameterization introduced herein is a general solution that applies to any strictly
convex two-dimensional or three-dimensional geometry given its generating potential. The presented results indicate
that further generalizations for arbitrary dimensions might be possible, however, this has not been investigated yet.
So far, the authors have derived the three-dimensional generating potential for ellipsoids, superquadrics and superel-
lipsoids. The derivation or definition of other generating potentials is paramount for the future use of the normal
parameterization in any application. As illustrated in Example 9, the derivation of the generating potential for a
given geometry is non-trivial. However, this is partly mitigated by the possibility of using splines, NURBS or other
piecewise functions to approximate given geometries, as discussed in Remarks 11 and 22.

The derivation of the normal parameterization by means of rigid body kinematics in Section 4 motivates the
application of the presented approach to the problem of collision detection. In fact, the derivation itself relies on
the contact of an object with a plane. This is also the simplest case for the collision detection problem, because the
normal vector of the object’s counterpart is constant. The normal parameterization allows for an explicit calculation
of the potential contact point by means of the common normal concept; a property which has not been shown for any
other description of two-dimensional or three-dimensional objects which we are aware of. Although the special case
where the counterpart is a plane may seem like a major limitation, there is a need for this in certain disciplines. One
example is the modeling of foot-ground contact in biomechanics, prosthetics and robotics. Smooth rigid body models
for feet are either based on parameterizations that require an iterative solution for collision detection [57] even for
this simple case, or they make use of circles/ellipses [65, 66] or spheres/ellipsoids [67, 68] to achieve an explicit and
fast solution. With the normal parameterization, a more precise modeling and at the same time an explicit solution is
possible, which will allow the use e.g. in real-time capable control systems [65].

However, the general collision detection problem for two objects, neither of which is a plane, cannot be solved
explicitly but still requires some iterative procedure. In the literature, this is usually done using a Newton method
with an analytical Jacobian [4, 6], whereby with the usual parameterizations two coordinates per object are sought
and thus a total of four equations with four unknowns have to be solved. In Section 5, four iteration schemes for
collision detection between two objects are examined with respect to implementation effort, robustness and rate of
convergence. The literature approach of a Newton method with an analytical Jacobian requires only two equations
and two unknowns (algorithm II, Eq. (85)) due to the demand for antiparallelism from the common normal concept.
Whether this is advantageous from the point of view of computational effort and time was not investigated, since the
number of additions and multiplications strongly depends on the geometry (i.e. which formulas define the parameter-
ization) and the sophistication of the implementation. Instead, algorithm III (Eqs. (87)–(89)) is presented which does
not need any derivatives. This iteration scheme is motivated by geometrical relationships of the normal vectors in two
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consecutive iteration steps performs better in terms of implementation effort and robustness. However, it usually re-
quires about twice as many iterations as a Newton scheme based on the common normal concept (algorithm II). Since
the computation time per iteration is difficult to compare because of the reasons mentioned above, a general statement
as to which algorithm is more efficient cannot be made. An approach which combines both procedures (algorithm IV)
yields a comparable number of iterations as the Newton scheme but performs slightly worse than the derivative free
scheme in terms of robustness. A conclusion as to which of these three approaches performs best in any given ap-
plication cannot yet be made and requires further research. However, it should be mentioned that the derivative-free
method as per algorithm III is only possible with the normal parameterization. This method has a comparatively low
implementation effort and is independent of the respective object geometry; thus, it is not necessary to implement new
Jacobians for each geometry or combination of geometries, as is the case with the Newton methods commonly used
in literature.

The case study in Section 6 illustrates a possible application of the normal parameterization for collision detection
in a multibody simulation. The calculation of the potential contact point based on the common normal concept uses
the explicit solution for the potential contact point of each object with the plane boundaries of the box. The potential
contact points for any collisions between the objects are determined iteratively by the derivative free iteration scheme
from Section 5 (algorithm III). Furthermore, the objects’ curvatures at any contact point is easily utilized in the
normal force model proposed by Flores et al. The contact model can be interchanged with other models which rely
on curvature information to describe the interaction between the objects, c.f. [42, 43, 44, 45]. Tait-Bryan angles are
used to parameterize the objects’ orientations; however, the collision detection problem is independent of the specific
parameterization and requires only the representation of the normal direction in the body-fixed frame which is used to
define the normal parameterization. Therefore, other parameterizations like Euler parameters or unit quaternions can
be used instead of Tait-Bryan angles without any changes to the implementation of the collision detection procedure.

8. Conclusions

The main results presented in the present manuscript are: (i) the normal parameterization for strictly convex
two- and three-dimensional geometries; (ii) proofs for many relevant properties such as continuity/differentiability
requirements and expressions for the curvature; (iii) offset curves or surfaces and (iv) collision detection algorithms
based on the normal parameterization.

The normal parameterization is based on only a few, concise equations: the object’s boundary curve is given by
Eqs. (2) and (16) and the curvature by Eqs. (6) and (26) in the two- and three-dimensional case, respectively. The
implementation of all expressions is straightforward and requires only derivatives up to order three of the (scalar)
generating potential. Any application requires only the definition of the generating potential to describe the desired
objects. So far, only expressions for (super-)ellipses and (super-)ellipsoids (and their offset curves or surfaces) have
been found. The derivation of the generating potential for a given geometry – e. g. superovoids – is non-trivial
and requires further research to broaden the applicability of this method. However, it is possible to approximate the
generating potential of any strictly convex geometry by splines, NURBS or other piecewise functions (cf. Remarks 11
and 22) which offers a possibility to bypass this problem until further closed form solutions have been derived. In any
case, the geometric continuity is given by the requirements in propositions 1 and 13.

The calculation of offset curves or surfaces is quite simple since it requires only the addition of a constant to the
generating potential, as outlined in corollaries 7 and 19. This property appears to be useful for applications beyond
multibody simulations such as computer aided design and manufacturing.

Collision detection based on the common normal concept can be realized either by a Newton method – ideally
based on analytic gradients – or by a derivative-free fixed-point iteration. The latter proves to be more robust in
the convergence study above, however, it requires a higher number of iterations to achieve a given accuracy. A
special feature of the normal parameterization is that collisions with a plane can be calculated explicitly, whereas
this is not possible with any other parameterization method known to the authors. An implementation of collision
detection based on the normal parameterization with two objects and five planes is provided. This case study shows
no unexpected drawbacks and illustrates the applicability of the presented approach.

The focus of the present manuscript is on the theoretical basis of the normal parameterization and its applicability
for collision detection. Both subjects are treated in detail, but some important issues for future research remain: the
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normal parameterization for three-dimensional objects suffers from two coordinate singularities due to the choice of
spherical coordinates to describe the direction of the outer normal vector; a further extension or generalization of the
presented concept which does not suffer from these artificial singularities is a desirable goal.

Four collision detection algorithms are introduced and compared in the presented convergence study, three of
which show good performance in terms of robustness and rate of convergence. However, a benchmark study with a
comparison to established collision detection algorithms (e. g. [5, 6, 23]) is required before any quantitative assess-
ment of the presented approach’s benefits can be made.

The normal parameterization itself appears to be a fundamental result in the area of classical differential geometry.
The presented results for N ∈ {2, 3} show that an embedded N−1-dimensional manifold in an N-dimensional Euclidean
space which encloses a strictly convex set is fully described by its generating potential. This concept is very similar
to the natural parameterization of embedded 1-dimensional manifolds in N-dimensional Euclidean space (curves).
Further extensions and generalizations of the presented approach as a fundamental concept for analysis in differential
geometry is desirable, but exceeds the authors’ own expertise.

Appendix A. Notation

The following notation is used throughout the manuscript: vectors are denoted by bold lowercase letters, e. g. a.
Reference frames are denoted by capital calligraphic letters, e. g. I. The same lowercase letter denotes the corre-
sponding right-handed orthonormal base vectors {

ix, iy, iz
}

.

The decomposition of a vector in the reference frame I is denoted

a = xIix + yIiy + zIiz .

The rotation tensor from reference frame J to I is expressed as

QIJ :=
∑

p

∑
q

QIJpq ip ⊗ jq , p, q ∈
{
x, y, z

}
and the corresponding rotation matrix

QIJ :=


QIJxx QIJxy QIJxz

QIJyx QIJyy QIJyz

QIJzx QIJzy QIJzz


is orthogonal (

QIJ
)−1

=
(
QIJ

)T
= QJI .

The derivative of a function with respect to a single argument is denoted by

a′(b) :=
d

db
a(b) ,

time derivatives are denoted by a dot unless stated otherwise

ȧ :=
d
dt

a ,

and partial derivatives by the shorthand

∂a :=
∂

∂a
.
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The function arctan2—the arctangent with two arguments—is defined as

arctan2 (x, y) :=



arctan
(

y
x

)
for x > 0

arctan
(

y
x

)
+ π for x < 0, y > 0

±π for x < 0, y = 0
arctan

(
y
x

)
− π for x < 0, y < 0

+ π
2 for x = 0, y > 0
− π2 for x = 0, y < 0 .

Appendix B. Proof of completeness for transformation (66)

The transformation given by Eq. (66) is complete if it allows for rotations of the body around any arbitrary axis
(given by a unit vector a) by an arbitrary angle ψ. To show this property, the direction of the rotation axis is defined
by spherical coordinates {θ, ϕ} in the inertial frame I

a = sin (θ) cos (ϕ) ix + sin (θ) sin (ϕ) iy + cos (θ) iz
=: sθcϕix + sθsϕiy + cθiz . (B.1)

Due to the excessive length of the following expressions, the shorthand sθ := sin (θ), cθ := cos (θ) is used below. The
rotation matrix which corresponds to a rotation of the body around this axis by the angle ψ is [21, Eq. (2.24)]

QIB(θ, ϕ, ψ) =


cψ + s2

θc
2
ϕ

(
1−cψ

)
s2
θsϕcϕ

(
1−cψ

)
− cθsψ sθcθcϕ

(
1−cψ

)
+ sθsϕsψ

s2
θsϕcϕ

(
1−cψ

)
+ cθsψ cψ + s2

θs
2
ϕ

(
1−cψ

)
sθcθsϕ

(
1−cψ

)
− sθcϕsψ

sθcθcϕ
(
1−cψ

)
− sθsϕsψ sθcθsϕ

(
1−cψ

)
+ sθcϕsψ cψ + c2

θ

(
1−cψ

)
 (B.2)

and the transformation via Eq. (66) expressed in the same notation is

QIB(α, β, γ) =


c2
α/2cγ − s2

α/2c2β+γ c2
α/2sγ − s2

α/2s2β+γ sαcβ+γ
c2
α/2sγ − s2

α/2s2β+γ c2
α/2cγ + s2

α/2c2β+γ sαsβ+γ
−sαcβ −sαsβ cα

 . (B.3)

The transformation is complete if there is a triple {α, β, γ} such that QIB(α, β, γ) = QIB(θ, ϕ, ψ) for all θ ∈ [0, π],
ϕ ∈ [0, 2π), ψ ∈ [0, 2π). The comparison of Eqs. (B.2) and (B.3) yields

cα = cψ + c2
θ

(
1−cψ

)
, (B.4a)

−sαsβ = sθcθsϕ
(
1−cψ

)
+ sθcϕsψ =: sθk1(θ, ϕ, ψ) , (B.4b)

−sαcβ = sθcθcϕ
(
1−cψ

)
− sθsϕsψ =: sθk2(θ, ϕ, ψ) , (B.4c)

sαsβ+γ = sθcθsϕ
(
1−cψ

)
− sθcϕsψ =: sθk3(θ, ϕ, ψ) , (B.4d)

sαcβ+γ = sθcθcϕ
(
1−cψ

)
+ sθsϕsψ =: sθk4(θ, ϕ, ψ) (B.4e)

which can be solved for

α = arccos
(
c2
θ + s2

θcψ
)

, (B.5a)

β = arctan2
(
−k2(θ, ϕ, ψ),−k1(θ, ϕ, ψ)

)
, (B.5b)

γ = arctan2
(
k1(θ, ϕ, ψ)k3(θ, ϕ, ψ) − k2(θ, ϕ, ψ)k4(θ, ϕ, ψ),

−k1(θ, ϕ, ψ)k4(θ, ϕ, ψ) − k2(θ, ϕ, ψ)k3(θ, ϕ, ψ)
)

. (B.5c)

This is the direct transformation from Eq. (B.2) to (B.3) for all {θ, ϕ, ψ}.
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Appendix C. Implementation details, parameters and initial conditions for the case study

Two sets of Tait–Bryan angles {α(t), β(t), γ(t)} and {ᾱ(t), β̄(t), γ̄(t)} are used to circumvent the inherent coordinate
singularities. The orientation of any object of the parameter study is described by the rotation matrix

QJB =

cosα(t) cos β(t) cosα(t) sin β(t) sin γ(t) − sinα(t) cos γ(t) cosα(t) sin β(t) cos γ(t) + sinα(t) sin γ(t)
sinα(t) cos β(t) sinα(t) sin β(t) sin γ(t) + cosα(t) cos γ(t) sinα(t) sin β(t) cos γ(t) − cosα(t) sin γ(t)
− sin β(t) cos β(t) sin γ(t) cos β(t) cos γ(t)


=

− cos ᾱ(t) sin β̄(t) cos γ̄(t) − sin ᾱ(t) sin γ̄(t) cos ᾱ(t) sin β̄(t) sin γ̄(t) − sin ᾱ(t) cos γ̄(t) cos ᾱ(t) cos β̄(t)
− sin ᾱ(t) sin β̄(t) cos γ̄(t) + cos ᾱ(t) sin γ̄(t) sin ᾱ(t) sin β̄(t) sin γ̄(t) + cos ᾱ(t) cos γ̄(t) sin ᾱ(t) cos β̄(t)

− cos β̄(t) cos γ̄(t) cos β̄(t) sin γ̄(t) − sin β̄(t)


(C.1)

and the angular velocity

ω = (−α̇(t) sin β(t) + γ̇(t)) bx +
(
α̇(t) cos β(t) sin γ(t) + β̇(t) cos γ(t)

)
by +

(
α̇(t) cos β(t) cos γ(t) − β̇(t) sin γ(t)

)
bz

=
(
− ˙̄α(t) cos β̄(t) cos γ̄(t) + ˙̄β(t) sin γ̄(t)

)
bx +

(
˙̄α(t) cos β̄(t) sin γ̄(t) + ˙̄β(t) cos γ̄(t)

)
by +

(
− ˙̄α(t) sin β̄(t) + ˙̄γ(t)

)
bz .
(C.2)

The description is switched form one set to the other by the relationships

α(t) = arctan2(− sin ᾱ(t) sin β̄(t) cos γ̄(t) + cos ᾱ(t) sin γ̄(t),− cos ᾱ(t) sin β̄(t) cos γ̄(t) − sin ᾱ(t) sin γ̄(t)) , (C.3a)
β(t) = arcsin(cos β̄(t) cos γ̄(t)) , (C.3b)
γ(t) = arctan2(cos β̄(t) sin γ̄(t),− sin β̄(t)) , (C.3c)

α̇(t) = ˙̄α(t) +
˙̄β(t) cos β̄(t) cos γ̄(t) sin γ̄(t) − ˙̄γ(t) sin β̄(t)

1 − cos2 β̄(t) cos2 γ̄(t)
, (C.3d)

β̇(t) = −
˙̄β(t) sin β̄(t) cos γ̄(t) + ˙̄γ(t) cos β̄(t) sin γ̄(t)√

1 − cos2 β̄(t) cos2 γ̄(t)
, (C.3e)

γ̇(t) =
˙̄β(t) sin γ̄(t) − ˙̄γ(t) cos β̄(t) sin β̄(t) cos γ̄(t)

1 − cos2 β̄(t) cos2 γ̄(t)
(C.3f)

and

ᾱ(t) = arctan2(sinα(t) sin β(t) cos γ(t) − cosα(t) sin γ(t), cosα(t) sin β(t) cos γ(t) + sinα(t) sin γ(t)) , (C.4a)
β̄(t) = − arcsin(cos β(t) cos γ(t)) , (C.4b)
γ̄(t) = arctan2(cos β(t) sin γ(t), β̄(t)) , (C.4c)

˙̄α(t) = α̇(t) +
β̇(t) cos β(t) cos γ(t) sin γ(t) − γ̇(t) sin β(t)

1 − cos2 β(t) cos2 γ(t)
, (C.4d)

˙̄β(t) =
β̇(t) sin β(t) cos γ(t) + γ̇(t) cos β(t) sin γ(t)√

1 − cos2 β(t) cos2 γ(t)
, (C.4e)

˙̄γ(t) =
−β̇(t) sin γ(t) + γ̇(t) cos β(t) sin β(t) cos γ(t)

1 − cos2 β(t) cos2 γ(t)
(C.4f)

whenever cos β(t) < 0.1 or cos β̄(t) < 0.1.
If there is contact between the objects I and II, the normal force component is calculated by an extension of the

model proposed by Flores et al., which is itself an extension of the Hertz theory for elastic contacts. In the case of

two convex objects, the Hertzian model requires the calculation of the effective curvature
√
κI,II

1 κI,II
2 which depends

on the principal curvatures κI
1, κI

2, κII
1 and κII

2 of both objects at the contact point and the relative orientation of the
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corresponding principal curvature directions cI
1, cI

2, cII
1 and cII

2 . A derivation of the necessary relationships is given in
[39, Section 4.1, p. 84–85].

The principal curvature directions cI
1, cI

2, cII
1 and cII

2 are unique except for their sign. To derive a correct imple-
mentation, the signs of object II are defined by

cII
1 ← sign(cI

1 · c
II
1 ) cII

1 ,

cII
2 ← sign(cI

2 · c
II
2 ) cII

2 .

The relative orientation of the principal curvatures is then

ϑ = − sign(cI
1 · c

II
2 ) arccos(cI

1 · c
II
1 ) (C.5)

and the principal relative curvatures follow from(
κI,II

1 + κI,II
2

)
=

1
2

(
κI

1 + κI
2 + κII

1 + κII
2

)
, (C.6a)

∣∣∣κI,II
1 − κI,II

2

∣∣∣ =
1
2

√(
κI

1 − κ
I
2

)2
+

(
κII

1 − κ
II
2

)2
+ 2

(
κI

1 − κ
I
2

) (
κII

1 − κ
II
2

)
cos(2ϑ) . (C.6b)
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Table C.3: Parameters and initial conditions for case study.

parameter
or variable value unit description

g 9.81 m/s2 gravity
E 210 GPa Young’s modulus (both objects and all planes)
ν 0.3 Poisson’s ratio (both objects and all planes)
cr 0.6 coefficient of restitution (all contacts)
µ 0.2 coefficient of friction (all contacts)
k 10−6 constant in friction model (all contacts)
aI 0.3 m mI

x semi axis of object I
bI 0.2 m mI

y semi axis of object I
cI 0.1 m mI

z semi axis of object I
mI 200 kg mass of object I
ΘI 2 bI

x ⊗ bI
x + 4 bI

y ⊗ bI
y + 5.2 bI

z ⊗ bI
z kg m2 inertia tensor of object I

rI
BM 0.025bI

z m distance from BI to MI of object I

QBM,I

cos( π
18 ) 0 − sin( π

18 )
0 1 0

sin( π
18 ) 0 cos( π

18 )

 rotation matrix fromMI to BI of object I

aII 0.3 m mII
x semi axis of object II

bII 0.05 m mII
y semi axis of object II

cII 0.1 m mII
z semi axis of object II

mII 50 kg mass of object II
ΘII 0.1 bII

x ⊗ bII
x + 1 bII

y ⊗ bII
y + 0.9 bII

z ⊗ bII
z kg m2 inertia tensor of object II

rII
BM 0.075bII

x m distance from BII to MII of object II

QBM,II

 cos( π
18 ) 0 sin( π

18 )
0 1 0

− sin( π
18 ) 0 cos( π

18 )

 rotation matrix fromMII to BII of object II

n1 jz normal vector of plane 1
d1 0 m distance of plane 1 from origin
n2

√
2

2 jx +
√

2
2 jz normal vector of plane 2

d2 −
√

2
8 m distance of plane 2 from origin

n3 −
√

2
2 jx +

√
2

2 jz normal vector of plane 3
d3 −

√
2

8 m distance of plane 3 from origin
n4 −

√
3

2 jy + 1
2 jz normal vector of plane 4

d4 −
√

3
4 m distance of plane 4 from origin

n5

√
3

2 jy + 1
2 jz normal vector of plane 5

d5 −
√

3
4 m distance of plane 5 from origin

xI
B(0), yI

B(0), zI
B(0) − 1

4 ,−
1
2 , 1 m initial position of object I

ẋI
B(0), ẏI

B(0), żI
B(0) 0, 0, 0 m/s initial velocity of object I

αI(0), βI(0), γI(0) π
3 ,

π
4 ,

π
5 rad initial orientation of object I

α̇I(0), β̇I(0), γ̇I(0) π, 0, 0 rad/s initial angular velocity of object I
xII

B (0), yII
B (0), zII

B (0) 1
4 ,

1
2 , 1 m initial position of object II

ẋII
B (0), ẏII

B (0), żII
B (0) 0, 0, 0 m/s initial velocity of object II

αII(0), βII(0), γII(0) π
3 ,

π
4 ,

π
5 rad initial orientation of object II

α̇II(0), β̇II(0), γ̇II(0) π, 0, 0 rad/s initial angular velocity of object II
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geot.1979.29.1.47.
[23] E. G. Gilbert, D. W. Johnson, S. S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space,

IEEE J. Robotic. Autom. 4 (2) (1988) 193–203. doi:10.1109/56.2083.
[24] B. Mirtich, V-Clip: Fast and robust polyhedral collision detection, ACM T. Graphic. 17 (3) (1998) 177–208. doi:10.1145/285857.285860.
[25] G. van den Bergen, Efficient collision detection of complex deformable models using AABB trees, J. Graphics Tools 2 (4) (1997) 1–13.

doi:10.1080/10867651.1997.10487480.
[26] S. Redon, A. Kheddar, S. Coquillart, An algebraic solution to the problem of collision detection for rigid polyhedral objects, in: IEEE Int.

Conf. Robot., Vol. 4, 2000, pp. 3733–3738. doi:10.1109/ROBOT.2000.845313.
[27] G. van den Bergen, Proximity Queries and Penetration Depth Computation on 3D Game Objects, in: Game Developers Conference, 2001.

URL graphics.stanford.edu/courses/cs468-01-fall/Papers/van-den-bergen.pdf

[28] A. Pournaras, F. Karaoulanis, S. Natsiavas, Dynamics of mechanical systems involving impact and friction using an efficient contact detection
algorithm, Int. J. Nonlin. Mech. 94 (2017) 309–322. doi:10.1016/j.ijnonlinmec.2016.08.007.

[29] P. M. Hubbard, Approximating polyhedra with spheres for time-critical collision detection, ACM T. Graphic. 15 (3) (1996) 179–210. doi:
10.1145/231731.231732.

[30] J. Ambrósio, Selected Challenges in Realistic Multibody Modeling of Machines and Vehicles, in: C. J. Zahariev E. (Ed.), IUTAM Symposium
on Intelligent Multibody Systems – Dynamics, Control, Simulation, Vol. 33 of IUTAM Bookseries, Springer, Cham, 2019, pp. 1–39. doi:
10.1007/978-3-030-00527-6_1.

[31] M. Machado, P. Flores, J. Ambrósio, A Lookup-Table-Based Approach for Spatial Analysis of Contact Problems, J. Comput. Nonlinear Dyn.
9 (4) (2014) 041010. doi:10.1115/1.4026894.

[32] J. F. Peters, M. A. Hopkins, R. Kala, R. E. Wahl, A poly-ellipsoid particle for non-spherical discrete element method, Eng. Computation.
26 (6) (2009) 645–657. doi:10.1108/02644400910975441.

[33] S. Zhao, J. Zhao, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int. J. Numer. Anal.
Met. 43 (13) (2019) 2147–2169. doi:10.1002/nag.2951.

[34] X. Zheng, W. Iglesias, P. Palffy-Muhoray, Distance of closest approach of two arbitrary hard ellipsoids, Phys. Rev. E 79 (5) (2009) 057702.
doi:10.1103/PhysRevE.79.057702.

[35] X. Lin, T. Ng, Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling, Int. J. Numer. Anal. Meth.
Geomech. 19 (9) (1995) 653–659. doi:10.1002/nag.1610190905.

[36] A. Donev, F. H. Stillinger, P. M. Chaikin, S. Torquato, Unusually Dense Crystal Packings of Ellipsoids, Phys. Rev. Lett. 92 (2004) 255506.
doi:10.1103/PhysRevLett.92.255506.

[37] B. Brogliato, Nonsmooth Mechanics, 2nd Edition, Communications and Control Engineering, Springer, London, 1999. doi:10.1007/

978-1-4471-0557-2.
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