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Abstract 
Cost-efficiency and public acceptance are competing objectives for onshore wind 
locations. We quantify the link between economic wind resources and beautiful 
landscapes with over 1.5 million ‘scenicness’ ratings of around 200,000 geotagged 
photographs from across Great Britain. We find statistically significant evidence that 
planning applications for onshore wind are more likely to be rejected when proposed in 
more scenic areas. Compared to the technical potential of onshore wind of 1700 TWh at 
total costs of £280 billion, removing the 10% most scenic areas implies about 18% lower 
generation potential and 8-26% higher costs. We consider connection distances to the 
nearest electricity network transformer for the first time, showing that the connection costs 
constitute up to half of the total costs. The results provide a quantitative framework for 
researchers and policymakers to consider the trade-offs between cost-efficiency and 
public acceptance for onshore wind.  

 
Locating onshore wind farms implies a tension between cost-efficiency and public 

acceptance. In the British context adopted for this research, onshore wind was until very 
recently not eligible* for subsidies.1 Yet onshore wind has very high approval ratings, as 
highlighted by some recent surveys. Overall support for renewable energy reached its 
highest ever level of 85% in 2018, increasing from 79% in 2017.2 A YouGov3 survey in 
2018 ranked onshore wind as the cheapest perceived technology of all options, as well 
as finding general support for onshore wind development as a technology.  

Despite this general approval, onshore wind encounters local opposition from 
stakeholders, especially if they are not directly engaged in the planning processes.4,5 

Visual impact is one of the central arguments from local residents against onshore wind 
installations6,7,8, although concern is reduced when people live further away from 
turbines8,9 and in contexts where the affected people have previous experience with wind 
energy.10,11,12,13 A prominent example is the Scout Moor wind farm in Lancashire, England, 
consisting of 26 2.5 MW turbines. The rejection in 2017 of the planning application to add 
16 additional turbines emphasized the “valued landscape because of its openness, 
tranquillity and attractive views into the lower valleys”.1  

Until now, the connection between beautiful landscapes and economic onshore 
wind resources (i.e. high average wind speeds) has remained qualitative and anecdotal. 
But this link is typically not considered in resource assessments for renewable energy 
technologies. Instead, these studies tend to calculate a technical generation potential 

                                                 
* In the Contracts for Differences auctions, effectively a market-oriented price-based subsidy. 



along with costs, which are employed by researchers and policymakers to analyze future 
energy scenarios.14,15 These resource assessment methods have recently been improved 
by developing open source methods16, employing more accurate data17,18 and considering 
non-technical and especially social constraints19,20,21 including the visual impact of 
renewable technologies on the landscape.22,23 Yet none of these previous studies has 
quantified the trade-off between the public valuation of the landscape and the cost of 
onshore wind at the national scale.  

The remoteness of aesthetically-appealing landscapes24 could also be a key cost 
factor. Average wind speeds tend to be higher in rural locations, due to a generally lower 
surface roughness and steeper velocity gradients.25 This could imply an increased 
distance from the electricity network than alternative locations, hence higher grid 
connection costs. These represent one component of the so-called system costs of 
renewable energies, which also include the profiling costs due to the ‘residual’ power 
system having to modulate its output, and balancing costs due to the inaccuracy in 
forecasts and needs for the system to provide short-term flexibility.26,27  

Against this background, this paper presents a quantitative spatial framework to 
explore the tension between landscape beauty (scenicness) and cost-efficiency for 
onshore wind. This means connecting the aesthetic quality of the landscape with the 
quality of the wind resource to answer the following research questions: 

1. Is scenicness already implicitly considered in planning practice for onshore wind?  

2. How is scenicness related to onshore wind resources, if at all?  

3. What is the impact of scenincess on the costs and potentials of onshore wind?  

Linking landscape beauty with planning application outcomes  
To study the association between the scenicness and the planning outcome of energy 
projects, we use two main data sources. First, we measure scenicness using 
crowdsourced scenic ratings from Scenic-Or-Not 
(http://scenicornot.datasciencelab.co.uk/). Scenic-Or-Not presents users with random 
geotagged photographs, most of which have been taken at eye level at 1km2 resolution 
for the whole of Great Britain. Users are asked to rate the photographs on an integer 
scale of 1–10, where 10 indicates “very scenic” and 1 indicates “not scenic”. The 
photographs are sourced from Geograph (http://www.geograph.org.uk), a web-based 
project that aims to collect and reference geographically representative images of every 
square kilometre of the British Isles. The final Scenic-Or-Not database covers nearly 95% 
of the 1 km squares of land mass in Great Britain and contains 1,536,054 ratings for 
212,212 images. Here, we analyse the mean scenicness values for all photos rated three 
times or more.  

The second primary data source is the Renewable Energy Planning Database, 
which contains detailed data about renewable energy applications in Great Britain.28 For 
all locations within this database, five different variables are computed: distance to the 
closest Special Areas of Conservation (SAC), distance to the closest Special Protection 
Areas (SPA), distance to the closest Ramsar areas (wetlands), distance to the closest 
National Park, and distance to the closest airport.  

Fehler! Verweisquelle konnte nicht gefunden werden. Table 1 shows the 
results of the logit regression between the given independent variables and the planning 
application outcome. Model 1 includes only the scenicness value, whereby the associated 

http://scenicornot.datasciencelab.co.uk/
http://www.geograph.org.uk/


estimated odds ratio is below one (estimated coefficient is negative) and significant. In 
the following models 2-4 we sequentially introduce the year fixed effects, the project size, 
and the environmental variables respectively, and in model 5 we exclude the scenicness 
value. The estimated odds ratio associated with the scenicness value remains below one 
and significant in all specifications. Due to the AIC values and the Akaike weights, model 
4 is our preferable specification, whereby the odds ratio associated with the scenicness 
value is estimated at -0.781 (std.err. is 0.037). For every one unit increase in the 
scenicness value, we expect a 0.22 decrease in the log-odds of a positive application 
decision, all else being equal. The marginal effect is -0.06, i.e. an application with 1% 
higher scenicness value has 6% lower probability to be evaluated positively. In the Scout 
Moor example mentioned above, the maximum scenicness value in the vicinity was 7.2, 
i.e. within the top 10% of most scenic locations in the dataset.    

 
Table 1 | Logit regression results (odds-ratio) for wind project planning outcomes 

 Model 1 Model 2 Model 3 Model 4 Model 5 
      

Scenicness value 0.850*** 0.793*** 0.769*** 0.781***  
 (0.033) (0.034) (0.036) (0.037)  
Number of turbines   1.231*** 1.228*** 1.221*** 
   (0.031) (0.031) (0.030) 
Capacity (MW)   0.934*** 0.935*** 0.935*** 
   (0.008) (0.008) (0.008) 
log distance to the closest     1.173*** 1.215*** 
     National Park      (0.068) (0.069) 
log distance to the closest airport    0.988 0.943 
    (0.112) (0.105) 
log distance to the closest Special     0.965 0.919** 
     Protection Areas (SPA)    (0.042) (0.039) 
log distance to the closest Special     0.889* 0.906 
     Areas of Conservation (SAC)    (0.054) (0.054) 
log distance to the closest Ramsar 
areas     1.028 1.039 
    (0.061) (0.061) 
Year fixed effect no yes yes yes yes 
Constant 2.626*** 1.296 1.668 1.634 0.822 
 (0.449) (1.610) (2.122) (2.249) (1.137) 

Number of observations 1,324 1,324 1,324 1,324 1324 

AIC 1,794.50 1,536.51 1,426.08 1,425.27 1,450.73 
Akaike weights 3.99E-81 4.19E-25 4.00E-01 6.00E-01 1.78E-06 
Log likelihood -895.25 -751.26 -694.04 -688.63 -702.36 

Note: discrete dichotomous variable taking a value of 1 if the application decision is positive, otherwise 0; 
***, **, * indicate that estimates are significantly different from zero at the 0.01, 0.05 and 0.10 levels, 
respectively; standard errors are in parentheses. AIC is Akaike’s29 information criterion. Akaike weights 
represent the minimized Kullback–Leibler discrepancy, given the data and the set of candidate models. 

 
Turning to the other results, several general observations can be made. First, a larger 
number of wind turbines is associated with an increase in the probability that a planning 
application would be accepted, whereas larger project capacity is associated with a  small 
decrease in the probability of acceptance. Harper et al.30 also find a positive correlation 
between the number of turbines and the positive application outcome, and Roddis et al.31 
find the negative associations between project capacity and the positive outcome of the 



project application. Both variables account for the technical characteristics of the projects 
and are to some degree proxies for the scope of the projects. They are in our case jointly 

significant (𝜒2(1) = 67.64, 𝑝 < 0.001), which implies that projects with more wind turbines 
are more likely to be approved, for a given capacity and the other included variables.  
 

Potential electricity generation and costs of onshore wind 
Many studies have analysed the potential and associated costs for onshore wind in Great 
Britain, leading to a range of estimates based on different assumptions. Most employ the 
Levelized Costs Of Electricity (LCOE), which relate the costs over the lifetime of the plant 
to one unit of electricity generated. Remote locations could mean long distances from the 
electricity network, which is why we also assess the connection costs to the nearest 
transformer. We thereby differentiate between the following four scenarios (for details see 
the methods section): 

 Individual wind polygons† without network connections, Turbine_no_conn 

 Individual wind polygons with individual network connections to the nearest 

transformer, Turbine_conn  

 Wind polygons clustered into wind parks with network connections to the nearest 

transformer, based on the maximisation of the energy yield, Wind_parks_EYield – 

employed here as the “reference” scenario as considered most realistic 

 Wind polygons clustered into wind parks with network connections to the nearest 

transformer, based on the minimisation of the LCOEs, Wind_parks_LCOE  

To analyse the impact of grid connection costs, we first determine and economically 
assess potential locations and capacities for onshore wind, and then compute the 
additional costs to connect these to the nearest transformer. Figure 1 shows the 
cumulative generation potential and cumulative costs associated with realizing this 
potential in the four analysed scenarios, for locations with LCOEs < 1 £/kWh. The gradient 
of the curve can be interpreted as the marginal cost in £/kWh to realise one additional 
unit of generation potential. The maximum potential shown for each scenario is what 
would be achieved if all suitable land were used for wind farms. The flattest curve is the 
one relating to Turbine_no_conn, with total potentials and costs of 1350 TWh and £ 90 
billion respectively. At the other extreme is the Turbine_conn case, resulting in over £ 
1470 billion costs and around 1610 TWh generation potential. The difference in the results 
of these two scenarios is due to considering the connection costs, which for a given 
available area tend to increase the LCOEs. Roughly half-way between these two extreme 
scenarios are the arguably more realistic scenarios, in which the wind polygons are 
clustered into wind farms and these are connected to the nearest transformer. Both of 
these scenarios exhibit similar gradients, with overall costs and potentials at around 1400 
TWh and £ 210 billion in the case of Wind_parks_LCOE, and 1720 TWh and £ 280 billion 
in the case of Wind_parks_EYield respectively. Comparing the latter scenario with the 
scenario without connections (Turbine_no_conn) reveals an approximate difference in 

                                                 
† A wind polygon is a suitable area for onshore wind plants, with space for one or more turbines, derived 

as outlined in the methods section. 



total costs of £ 190 billion to realize the full potential. Expressed as a marginal cost, this 
equates to a difference between £ 0.16 billion/TWh (Wind_parks_EYield) and £ 0.06 
billion/TWh (Turbine_no_conn). In other words, the marginal and total costs per TWh 
more than double if network connection costs are considered. 

  

 
Figure 1 | Cumulative costs and electricity generation potentials of onshore wind in Great Britain, with and 
without network connections costs in four analysed scenarios. We also depict Great Britain’s national 

electricity demand32 and electricity generation from onshore wind in 201833. The end of the curve for 
Turbine_conn is at about 1610 TWh and £ 1470 Billion. 

The results of this study are in broad agreement with the literature. In terms of total 
suitable area, we identified 33% of Great Britain’s land area, somewhat higher than 
Ryberg et al.16 who found 28% and McKenna et al.34 with 21%. The latter found total costs 
of about € 70 billion (about £ 50 billion at then-current rates) for around 1270 TWh (or 470 
GW), which corresponds well with the Turbine_no_conn scenario here. In our base case 
(Wind_parks_EYield), we determined 1700 TWh and 760 GW as the generation potential 
and installed capacity respectively. This is relatively high compared to McKenna et al.34, 
but much closer to the more recent study of Ryberg et al.35, who found 2260 TWh and 
690 GW potential. The only other recent study to analyze Great Britain14 concluded a very 
modest 220 GW potential in its reference scenario, up to 421 GW in the high case. These 
deviations between studies are mainly due to different technical and geographical 
assumptions.36  

Implications of landscape beauty for onshore wind potentials  
Building on the preceding two sections, we here explore the implications of scenicness in 
two central scenarios. To facilitate interpretation of the results, we firstly focus on one 
scenario (Wind_parks_EYield) and present the cost-potential curves for quartiles of the 
scenicness distribution, as well as the maximum value (i.e. 10). We present the minimum, 
mean and maximum generation from six diverse wind years in Figure 2. The distribution 
of LCOEs is similar in all four shown sets of curves, but the cumulative generation 
potential at LCOEs less than 1 £/kWh ranges from just 363 TWh with scenicness values 



of up to 3.67, to 750 TWh up to 4.67, to 1173 TWh up to 5.8, and finally to 1700 TWh up 
to 10.  

  
Figure 2 | Cost-potential curves for four scenicness thresholds 3.67, 4.67, 5.8 and 10, showing minimum, mean 
and maximum ranges for the wind years of 2001-2006 in Great Britain in the Wind_parks_EYield scenario. 

Differences in total potential to Figure 1 are due to the cut-off at 1 £/kWh. 

Figure 3 illustrates the normalized marginal LCOEs‡ and cumulative generation 
potentials for progressively-increasing upper bounds of scenicness. It shows a strong 
linear correlation between scenicness and the marginal LCOEs and the cumulative 
generation potentials respectively. For the scenarios Wind_parks_EYield and 
Turbine_no_conn, the implications of progressively excluding the most scenic areas for 
costs and potentials are revealed. For example, removing the 10% most scenic areas 
(around 6700 km2) implies around 17% less potential in both scenarios, whereas the 
marginal LCOEs increase by 26% and 8% in Wind_parks_EYield and Turbine_no_conn 
respectively. This cost increase for exploiting the same high-quality wind locations needs 
to be weighed against the avoided, external costs to affected communities, as returned 
to in the discussion. 

As well as the example of Scout Moor above, the largest British onshore wind 
farms are located within the 10% most scenic areas, namely Whitelee with 539 MW and 
maximum scenicness values nearby of 6.4, Crystal Rig 2 & 2a (138 MW and 7.3) and 
Arecleoc (120 MW and 7.4). All of these scenicess values were recorded after the erection 
of the respective wind farm, meaning they would not have been built if excluding the 10% 
most scenic areas in the planning process. This may seem like a contradiction of the 
findings above relating planning applications to scenicness, but really only shows that 
more rejected applications are required for each positive one in a given location.  

The signifcant difference in cost between the Wind_parks_EYield and 
Turbine_no_conn scenarios again emphasizes the importance of considering the 

                                                 
‡ i.e. based on the additional costs and potential for one scenicness class. 



connection costs for remote and scenic locations: the most scenic sites tend to be more 
“rural and wild”24, which therefore results in larger distances from and higher connection 
costs to the nearest transformer stations. The inverse also applies: sites with lower 
scenicness values are neither associated with a particularly good wind resource, nor are 
they located far from the nearest transformer, as they tend to be in urban and/or industrial 
areas. Overall, then, the network costs make the overall costs higher, but all other things 
being equal the LCOEs are lower in more remote locations. 

 
Figure 3 | Normalized marginal LCOEs and cumulative generation potential for scenicness quantiles <=x (linear 
regressions from top to bottom: y=-0,027x+1.041, R²=0.96; y=-0.080x+1.04, R²=0.97; y=0.10x-0.14, R²=0.97; 
y=0.12x-0.25, R²=0.96)  

Discussion 
Our analysis represents a quantitative framework to assess the trade-off between cost-
efficiency and public acceptance for onshore wind§. Public acceptance is here 
approximated by visual impact, which is operationalized through the scenicness dataset 
– an approach with some inevitable shortcomings. First and foremost is the lack of 
economic value for the public acceptance, which would be required for an exhaustive 
analysis of this eponymous trade-off. Combining insights relating to actually-paid 
compensations with stated (from surveys) and revealed (from property prices) 
preferences enables aggregated acceptance costs to be estimated.37 But monetary 
valuations of public acceptance are notoriously uncertain as well as person- and location-
specific. At the very least, spatially-disaggregated data relating to these preferences in 
Britain would be required in order to draw up a complete balance sheet. This data needs 
to take into account the impact on communities living in the vicinity of new or existing wind 
farms, but also to consider the economic value of beautiful landscapes. This would involve 

                                                 
§ The complete data can be made available upon request. 



considering the number or frequency of ‘sightings’ as well as the actual value (per 
sighting) as inferred by scenicness. 

We adopt the perspective of a neutral investor and do not distinguish between 
large(r) utility-scale wind farms and small(er) community scale-ones. In practice, however, 
the difference is important, both in terms of the economic criteria applied to the project 
and its local acceptability. There is abundant evidence in the literature that local 
community involvement in onshore wind (and other community energy) can increase the 
acceptance and thereby ameliorate some of the otherwise negative aspects that may be 
associated with larger utility-scale projects.38,39 Related to this point is the question of land 
ownership and use, recreational or otherwise. The owners of the land not only have 
ultimate decision-making authority in the context of onshore wind developments, they also 
stand to directly benefit from the investment whilst also potentially suffering adverse 
landscape impact effects (costs). 

The ratings of photographs are likely to be influenced by temporary features of a 
scene, such as the weather, as well as the skill and mood of the photographer, which add 
noise to the dataset. A further concern relates to how users of Scenic-Or-Not may have 
interpreted the core construct of ‘scenic’, although the sensitivity analyses in the methods 
section reduce this concern. Earlier analyses of the Scenic-Or-Not data do provide some 
insight into the characteristics of an image that influence the ‘scenic’ measure. These 
results make it clear that measurements of scenicness are not simply the same as 
measurements of greenspace40, and indeed that man-made structures such as viaducts, 
castles and lighthouses can in some circumstances boost the aesthetics of a scene.41 

To extend our approach to other countries**, a starting point could be to identify 
similarities and differences between acceptance and planning procedures elsewhere.42 
Either a set of images of the environment taken at eye-level is needed, or a relationship 
between scenicness and land use categories.43 For the former, scenic ratings of the 
images could then be crowdsourced like for Scenic-Or-Not or estimated using computer 
vision approaches.41 Further crowdsourced ratings or deep learning estimates would 
make it possible to increase data granularity above one photograph per 1 km2. Ratings 
for further photographs would also help ensure that views in different directions were 
taken into account for each area. This framework could also be enhanced to consider the 
size and type of turbines installed, introduce a setback distance that can strongly increase 
acceptance9,44 or account for the experience that local communities already have with 
wind energy.10,11,12 It could also include estimates of the potential impact of changes to 
landscape aesthetics on happiness and health, building on the modelling reported by 
Seresinhe et al.24,26, to help policymakers understand the range of trade-offs at play. 

Finally, it is important to stress that wind energy should be considered in the 
context of other alternatives and their like-for-like impacts across all categories.45 This 
means assessing the relative impact for one unit of energy of wind turbines alongside 
alternatives such as coal, gas and waste power plants. The static viewpoint adopted here 
should also be extended to embrace the dynamic processes of energy system transition 
and changing acceptance, but this is partly hindered by a lack of longitudinal studies.46,47 
Ultimately, research on the social acceptance of wind energy is highly heterogeneous 
with some contradictory findings11, which encourages widening the scope of this research 
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to consider additional perspectives.48 To relieve the tension between ambitious energy 
system transformations and democratic social process49, compromises will have to be 
made at all levels.  

 

Conclusions 
To conclude, we return to the research questions posed at the outset. Firstly, the outcome 
of planning applications for onshore wind are strongly correlated with scenicness: an 
application with 1% higher scenicness value has 6% lower probability to be evaluated 
positively. Secondly, we found a strong link between locations with an economical wind 
resource and high scenicness. The better wind resurce in more remote locations means 
that the total generation costs more than double, however, if network connection costs 
are considered. Thirdly, compared to the technical potential of onshore wind of 1700 TWh 
at total costs of £280 billion, removing the 10% most scenic areas implies about 18% 
lower potential and 8-26% higher costs. All of these findings mean that trade-offs will be 
inevitable if sustainable energy policies are to reflect public concerns and offer the 
maximum possible economic and social benefits. 

 
Methods 
1. Regression of planning applications’ outcomes and scenicness 
In addition to the scenicness data, we also employ the Renewable Energy Planning 
Database, which includes the date of the application, operator, information on the site 
(name, address and coordinates), technology concerned, project capacity, the number of 
turbines (for the wind energy projects), and the outcome of the application (granted or 
rejected). For onshore wind energy, 568 project applications have been rejected and 756 
have been granted for the time period 2001-2017, so the mean success rate is about 0.6 
(Table 2). 

 
Figure 4 | Frequency distribution of scenicness 
values 

Notes: Number of observations is 1324; kernel = 
epenechnikov, bandwidth = 0.3134. 

 
Figure 5 | Frequency distribution of scenicness, 
number of votes  

Notes: Number of observations is 1324; kernel = 
epenechnikov, bandwidth = 2.6142. 
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The scenicness values are in the range from 1 to 8.7 with the mean value of about 
4. There are only a few high scenicness values (99% percentile is 7.8), see also Figure 
4. It is slightly higher for rejected applications. Each scenicness value is associated with 
number of votes. The mean number of the actual votes per picture is about 27 (Figure 
5).The sample also includes other relevant variables that have been selected following 
findings in Roddis et al.31 and Harper et al.30 These variables are computed from protected 
sites data extracted from the Joint Nature Conservation Committee website50 and the 
National Parks data from the Office for National Statistics.51 To account for non-linear 
effects related to distance, all variables describing the geographical distance are 
transformed using a natural logarithm before being included in the statistical models. 

Table 2 shows summary statistics for the final sample of planning applications 
used for estimation. The mean number of votes is also somewhat higher for rejected 
applications††. Given the uncertainty surrounding the scenicness values (the average 
rating of photos) when the number of votes is low, in the empirical analysis we estimate 
models when we remove the 10% of photos with the lowest number of votes as a 
robustness check. This does not affect the interpretation of the results, as explained in 
more detail below. 
 
Table 2 | Descriptive statistics of Renewable Energy Planning Database 

 Positive application decision 
mean = 0.57, n=756 

Negative application decision 
   mean = 0.43, n=568 

 Mean Std. dev. Mean          Std. dev. 

Scenicness value (the average 
rating of photos) 

4.005 1.517 4.351 1.373 

Number of votes  26.147 15.985 28.363 14.202 
Capacity (MW) 19.268 34.041 17.654 33.778 
Number of turbines 9.503 13.643 6.773 10.203 
Dist. to the closest airport (km) 39.890 23.393 41.474 34.230 
Dist. to the closest Special Area 
of Conservation (SAC) (km) 

7.653 6.754 7.878 7.359 

Dist. to the closest Special 
Protection Area (SPA) (km)  

93.134 106.948 76.244 87.688 

Dist. to the closest Ramsar area 
(km) 

19.656 17.516 18.961 16.630 

Dist. to the closest National 
Park (km) 

52.644 47.639 41.474 34.230 

Notes: number of observations is 1324. 

 

In our analysis, we assume a standard specification for the planning outcome for 
a project application 𝑖 at year 𝑡: 
 

Pr(D𝑖,𝑡 = 1 | S, 𝐗;  α, β, 𝛅, 𝛄) = F(𝛼 + 𝛽 𝑆𝑖,𝑡 +  𝜹′𝑿𝒊,𝒕  + 𝜸𝒕) (1) 

 
where 𝐷𝑖,𝑡 denotes the discrete dichotomous variable taking a value of 1 if the application 

decision is positive, otherwise 0; α is a constant term and γ is the year fixed effect; 𝑆𝑖,𝑡 is 

                                                 
†† The difference between the mean number of votes for applications with a negative and a positive 

outcome is 2.216 (28.363- 26.147). 𝐻0: 𝑑𝑖𝑓𝑓 ≠ 0. 𝑃𝑟(|𝑇|  >  |𝑡|)  =  0.009. 



the scenicness value; and 𝑿𝒊,𝒕 denotes controls for project characteristics such as 

technical and geographical attributes. The coefficients are estimated using maximum 
likelihood assuming that the error term is identically and independently Extreme Value 
type I distributed (i.i.d. EV I), so 𝐹(𝑧)  =  𝑒𝑧/(1 + 𝑒𝑧) is the cumulative logistic 

distribution‡‡. We are particularly interested in the value of 𝛽, as if the scenicness is not 
related to the application decision then 𝛽 = 0, whereas 𝛽 < 0 if the scenicness value 
negatively impacts the planning outcome. 

A series of logit models are estimated, the first with only the main variable of 
interest (the scenicness value) and the following models including additional variables, 
which have been selected following the relevant literature30,31, see Table 2 in the main text. 
Finally, we also include a year fixed effect to account for possible year-specific structural 
trends such as business cycles, inflation and political environment. 
 

 
Table 3 | Sensitivity analyses: logistic regression results for project planning outcome 

 Model 1 Model 2 Model 3 
 Wind energy Wind energy  Solar energy 
 probit logit$ logit 

Scenicness value -0.148*** -0.220*** -0.030 
 (0.028) (0.056) (0.054) 
Number of turbines 0.121*** 0.229***  
 (0.014) (0.028)  
Capacity -0.040*** -0.073*** -0.013 
 (0.005) (0.009) (0.008) 
log distance to the closest National Park   0.093*** 0.169*** 0.101* 
 (0.033) (0.061) (0.060) 
log distance to the closest airport -0.001 0.001 0.209** 
 (0.068) (0.124) (0.090) 
log distance to the closest Special  -0.022 -0.024 -0.030 
     Protection Area (SPA) (0.026) (0.047) (0.096) 
log distance to the closest Special  -0.072** -0.085 -0.282*** 
     Areas of Conservation (SAC) (0.036) (0.064) (0.081) 
log distance to the closest Ramsar 
areas  0.015 0.033 0.026 
 (0.035) (0.063) (0.082) 
Year fixed effect yes yes yes 
Constant 0.240 0.207 0.612 
 (0.856) (1.411) (0.682) 

Number of observations 1,324 1,169 1,558 
AIC 1425.84 1254.61 1422.88 

Log likelihood -688.92 -604.31 -697.44 

Notes: discrete dichotomous variable taking a value of 1 if the application decision is positive, otherwise 
0; ***, **, * indicate that estimates are significantly different from zero at the 0.01, 0.05 and 0.10 levels, 
respectively; standard errors are in parentheses. AIC is Akaike’s29 information criterion. $# votes>11 (10% 
percentile). 
 

We have performed a number of sensitivity analyses in Table 3. First we assume 
that the error term is i.i.d. normally distributed. In this case the inverse standard normal 
distribution of the probability is modeled as a linear combination of the predictors. The 

                                                 
‡‡ A particular advantage of the logit model over the linear probability models is that is has a choice 
theoretic interpretation.52 



estimation results are reported in Table 3 Model 1. The estimated coefficient associated 
with the scenicness value is negative and significant. Model 2 in Table 3 reports the 
results of a logit model (the error term is i.i.d. EV I) estimated on a subsample when the 
number of votes is larger than 11 (10% percentile). The coefficient associated with the 
scenicness value is again negative and significant. We have also estimated models when 
the number of votes is larger than 15 (25% quartile) and 25 (median) and the coefficient 
remains unchanged. Finally, we also conduct an additional sensitivity test, which entails 
replicating our baseline estimate by using ground-mounted solar panel project planning 
outcomes as the dependent variable. We observe 1,558 solar energy project applications, 
where 283 project applications were rejected and 1,275 were granted during the time 
period 2011-2017. We expect this effect to be zero because the impact of ground-
mounted solar panels on landscape aesthetics is less pronounced. The estimated 
coefficient associated with the scenicness value is indeed small and statistically 
insignificant (Table 3 Model 3). 

 

2. Estimating onshore wind potentials and network connection costs 
a. Determination of the feasible area for onshore wind 

The general approach to determining feasible areas and technical generation potentials 
for onshore wind in Great Britain follows the one in McKenna et al.34 The suitable areas 
and offset distances for onshore wind turbines are taken from the cited source. Existing 
wind turbines and sites are removed based on OSM data53 with the Overpass Turbo tool. 
The wind data employed consists of monthly mean wind speeds for the years 2001-2006 
at 5 km2 spatial resolution.54 These years have an average capacity factor for onshore 
wind of 24%, which broadly correspond to the long-term average in the UK.33 In addition 
to the feasible areas and mean wind conditions, the determination of the technical 
potential is also based on a turbine database, containing capacities, power curves and 
costs. The most suitable turbine type is selected for each wind polygon based on LCOE 
or energy yield, whereby connection costs to the nearest transformers are also 
considered in three scenarios, as outlined in the main text. 
  

b. Retrieval of transformer locations 
After the determination of the technical potential, the wind turbines have to be connected 
to the National Grid. Typically, larger wind plants are connected to transformers with a 
voltage level of 132 kV 
(https://wiki.openstreetmap.org/wiki/Power_networks/Great_Britain). The transformers 
are determined with the following query in OSM: 
[timeout:900]; 
area["ISO3166-1"="GB"]->.a; 
( 
  relation["power"="substation"]["voltage"~".*132000.*"](area.a); 
  way["power"="substation"]["voltage"~".*132000.*"](area.a); 
  relation["power"="sub_station"]["voltage"~".*132000.*"](area.a); 
  way["power"="sub_station"]["voltage"~".*132000.*"](area.a); 
  relation["power"="station"]["voltage"~".*132000.*"](area.a); 
  way["power"="station"]["voltage"~".*132000.*"](area.a); 
); 



out qt;>;out qt; 
Smaller wind plants are generally connected to 33 kV or 13 kV. The latter is the 

final-level distribution voltage (https://wiki.openstreetmap.org/wiki/Power_networks/ 
Great_Britain). These transformers can be retrieved by replacing 132000 with 33000 or 
11000 in the query above. The voltage 13 kV is not used as a tag in OSM, therefore, we 
assume that the 11 kV transformers are equivalent to the 13 kV transformers. This 
voltage level is closest to the 13 kV. The next voltage levels in OSM would be 6.6 kV and 
25 kV. 

This procedure resulted in 964 transformers at 132 kV, 1115 at 33 kV and 673 at 
11 kV (cf. left part of Figure 6). For the northern part of Great Britain (e.g. the Shetland 
Islands), only 19 transformers without voltage classification could be retrieved. Therefore, 
these 19 transformers are not used in the following analyses. Many transformers include 
connection points for more than one voltage level. In these cases, the transformers are 
plotted on top of each other in Figure 6 and only one transformer is visible for the relevant 
location.  

 
Figure 6 | Transformers, which are tagged in OpenStreetMap, as well as area classification in Great Britain. 
The comparison of the locations of transformers (left part of figure) and urban areas (brown shapes, right part 
of figure) shows, that those transformers are predominantly located in or near urban areas. For data sources, 
please refer to the text.  
 



c. Determination of network connection costs 
As a cost estimation for connecting the wind plant with transformers, linearized functions 
were derived from the National Grid’s cost estimator (https://www.nationalgridet.com/get-
connected/cost-estimator). The National Grid is the owner of the electricity transmission 
network in England and Wales. The costs of connection, costs for site-specific 
maintenance as well as transmission running costs depend on the voltage level of the 
transformer, generation capacity of the wind plant and the area classification. The 
classification of areas distinguishes between urban and rural. The costs include fixed 
costs CF and variable costs CV that depend on the length of the connection line. The fixed 
and variable costs for the connection to the different voltage levels are given in Table 4. 
According to the National Grid, for connections up to 50 MW, 13 kV is the most 
appropriate voltage, and the same is true for 135 MW and 33 kV as well as 300 MW and 
132 kV (https://www.nationalgridet.com/get-connected/cost-estimator). In Table 4, 
however, the interval for 132 kV only reaches 240 MW, since the National Grid cost 
estimator only indicates costs up to this value. None of our wind farms has a larger 
capacity. 
 
Table 4 | Costs for connection of a wind farm to a transformer, depending on voltage level, generation capacity 
and area classification (https://www.nationalgridet.com/get-connected/cost-estimator). 

Voltage 
level 
[kV] 

Generation 
capacity 
interval 
[MW] 

Area 
classi-
fication 

Connection Maintenance Transmission 
running 

CF 
[M£] 

CV 
[M£/km] 

CF 
[k£] 

CV 
[k£/km] 

CF [k£] CV 
[k£/km] 

13 [0; 50] 
rural 2.3 1.1 14.1 6.8 49.9 19.2 

urban 2.9 1.4 17.6 8.4 50.3 24.1 

33 

(50; 90] 
rural 2.0 1.1 12.0 6.8 34.2 19.2 

urban 2.4 1.4 15.0 8.4 42.7 24.1 

(90; 120] 
rural 4.7 1.1 28.8 6.8 82.0 19.2 

urban 5.9 1.4 36.0 8.4 102.5 24.1 

(120; 135] 
rural 5.7 1.1 34.6 6.8 98.8 19.2 

urban 7.1 1.4 43.3 8.4 123.4 24.1 

132 (135; 240] 
rural 5.3 1.9 32.6 11.5 92.9 32.7 

urban 6.7 2.3 40.7 14.3 116.1 40.9 

 

d. Area classification for cost estimation 
The classification of areas into urban or rural is necessary for the cost estimation. The 
official classifications in England and Wales 
(https://geoportal.statistics.gov.uk/datasets/276d973d30134c339eaecfc3c49770b3) as 
well as Scotland (https://www2.gov.scot/Publications/2018/03/6040/downloads) are used 
for this purpose. As can be seen in the right panel of Figure 6, there are significantly more 
urban areas (brown shapes) in England than in Scotland and Wales. We use two different 
definitions for wind farms in two scenarios, which are explained in Sections 2.e and 2.f 
respectively.  
 

https://www.nationalgridet.com/get-connected/cost-estimator
https://www.nationalgridet.com/get-connected/cost-estimator
https://geoportal.statistics.gov.uk/datasets/276d973d30134c339eaecfc3c49770b3


e. Separate consideration of wind polygons† 
In the first case, wind farms are represented by the wind polygons (scenario 
Turbine_no_conn). Here, the centroids of the wind polygons are used as an estimate for 
the length of the connection lines (Turbine_conn).   

Figure 7 shows the connections with the nearest three transformers of the different 
voltage levels for an example wind polygon. In the next step, the connections are 
intersected with the urban areas. The red part of the black connection lines in Figure 7 
shows the proportion of connections leading through urban areas. The length of the 
connections through rural and urban areas were calculated for all wind polygons. 

Since the maximum capacity of a wind farm corresponds to the most economical 
option due to economies of scale, this capacity is assumed for each wind farm when 
calculating the connection costs. The selection of the turbine type is done (according to 
McKenna et al. 34) simultaneously with the determination of the connections to the 
transformers. Previously, the wind turbines were only selected based on the lowest LCOE 
(i.e. for scenarios Turbine_no_conn and Turbine_conn). Now the calculations could result 
in a wind turbine with a higher LCOE. When considered simultaneously with the 
connection costs, this might lead to lower overall LCOEs due to a higher energy yield.  

 

 

f. Clustering wind polygons into larger wind farms 
In a second case, the individual wind polygons are combined to form larger wind farms. 
For this purpose, buffer zones with a radius of 1 km are formed around the centroids of 
the individual wind polygons. The 1 km is chosen to represent the minimum distance 
between turbines (eight times the rotor diameter). The wind polygons, where these buffer 
zones overlap, can be combined in a next step to form a contiguous wind park. To ensure 
that this does not result in a wind farm that is far too large, the maximum capacity of the 
wind farms is limited to 240 MW (cf. maximum capacity in Table 4). This results in 29,060 
wind farms with capacities between 1.9 MW and 240.0 MW (mean value = 231.2 MW). 

  
Figure 7 | Possible connection lines of one 
wind farm to the nearest three transformers 
of each voltage level. The red part of the lines 
leads through urban areas.  For data 
sources, please refer to the text. 

Figure 8 | Combination of wind polygons to wind farms for a 
specific area in Great Britain. The colours of the wind 
polygons indicate different wind parks. For data sources, 
please refer to the text. 



Figure 8 shows resulting wind parks for a specific area in Great Britain. However, these 
capacities only represent upper bounds, since turbines with a lower capacity density could 
also be selected in the algorithm.  

In contrast to the calculation with separate wind polygons in section 2.e, the 
connection costs to the transformers are not simultaneously included with the costs for 
the individual wind turbines. Instead, for each wind polygon in the simulation, the wind 
turbine types are selected first, and then the connection costs are added to determine the 
overall LCOE. The distance of the centroid of the wind farm (cf. stars in Figure 8) to the 
transformers is used to estimate the connection costs. Since the connection costs are 
added afterwards, the wind turbines are selected in the first step in two cases with 
different criteria: 1) minimum LCOE (Wind_parks_LCOE), 2) maximum energy yield 
(Wind_parks_EYield).  
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