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1 Introduction
This thesis deals with distribution function estimation, which is a very important topic in statistics. In
the following, distribution function estimation is defined and the importance of the topic is explained.
After that, a short overview of the thesis is given.

What is distribution function estimation? The setting is that we have an infinite sequence of
independent and identically distributed (i.i.d.) random variables X1, X2, ... that have an underlying
unknown distribution function F . Now, the task is to estimate F , given a finite random sample
X1, ..., Xn, n ∈ N.

In the case of parametric distribution function estimation, the model structure is already defined
before knowing the data. It is for example known that the distribution will be of the form N (µ, σ2).
The only goal is to estimate the parameters, here µ and σ2.

Compared to this, in the nonparametric setting, the model structure is not specified a priori but
is determined only by the sample. In this thesis, all the considered estimators are of nonparametric
type.
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Figure 1: Illustration of the Inverse Transform Sampling.

Why is distribution function estimation important? The goal is to investigate properties of
a random sample and its underlying distribution. As the random variables are i.i.d., we here consider
the properties of X1 without loss of generality. One property of the distribution is the probability
P(a ≤ X1 ≤ b) = F (b)− F (a), which can directly be estimated without the need to integrate as in
the density estimation setting. By taking the inverse of F , it is also possible to calculate quantiles

xp = inf{x ∈ R : p ≤ F (x)} = F−1(p).

Another application of the inverse of F is the so-called Inverse Transform Sampling (ITS). It can be
used to generate more samples than already given. The idea is to use the expression

Y ∼ U [0, 1]⇒ F−1
X1 (Y ) ∼ X1.

The intuition of ITS is shown in Figure 1: Given a random number r ∈ [0, 1] that corresponds to Y ,
the number F−1

X1 (r), corresponding to F−1
X1 (Y ), is the new sample.
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Figure 2: The different intervals of the estimators on the real line.

About this thesis Two very famous distribution function estimators are the empirical density
function (EDF) and the kernel estimator. However, there are many other estimators that perform
better than these two. Some of them are discussed in this thesis. The goal is to derive properties of
the considered estimators and compare them theoretically and in simulation.

One contribution of this thesis is the Szasz estimator that, to the best of my knowledge, is a new
way to estimate distribution functions on [0,∞). Another contribution is that several properties of
the estimators in this thesis were not proven before, such as the asymptotic normality of the Hermite
estimators.

In Section 2 and Section 3, the EDF and the kernel estimator are introduced. A short summary
of the most important definitions and properties is given. In Section 4, the background on function
estimation with Bernstein polynomials is explained and in Section 5, the Bernstein distribution
function estimator is defined. The Szasz estimator that is derived in Section 6 uses the ideas of
the Bernstein estimator but can estimate functions on the real half line. Section 7 on the Hermite
estimator is split up into two parts - one for the real half line and the other one for the real line. In
Section 8, a theoretical comparison of the estimators is given and in Section 9, the estimators are
compared in simulation. In Section 10, the most important findings of the thesis are summarized.

The proofs for each estimator can always be found at the end of the respective section, whereas
the proofs for the EDF and the kernel estimator are omitted as the results are well known.

We now give a quick overview of the estimators compared in this thesis.

1.1 The Different Estimators
The first and most obvious difference between the estimators is that all of them are defined on different
domains. This is illustrated in Figure 2. The Bernstein estimator for example can only estimate
distributions that are supported on [0, 1], while the Szasz estimator and the Hermite estimator on the
real half line can estimate distributions supported on [0,∞). These domains are of course normalized.
A distribution on [a, b], a < b, can easily be transformed to the unit interval so that the Bernstein
estimator can be applied. Furthermore, a distribution on [−a,∞), a > 0, can be shifted to the positive
line. However, it is not possible to transform a distribution on [0,∞) to the unit interval without
losing some important properties. This is explained in the beginning of Section 5.

The Bernstein, Szasz, and both Hermite estimators are specifically designed for their respective
intervals. The EDF and the kernel estimator serve as a comparison.

It holds that

{Distributions on [0, 1]} ⊂ {Distributions on [0,∞)} ⊂ {Distributions on (−∞,∞)},

which means that the distributions where the Bernstein estimator can be applied are a subset of
those where the Szasz estimator can be applied and so on. More explanations about the resulting
estimates and their properties can be found in Section 8.

All the estimators use different approaches to estimate the distribution function.
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Figure 3: Illustration of the EDF with n = 20 and n = 50.

2 Empirical Distribution Function
The empirical distribution function (EDF) is the simplest way to estimate the underlying true
distribution function, given a finite random sample X1, ..., Xn, n ∈ N. The idea is to use the strong
law of large numbers. Then, the estimator is defined by

Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x),

where I is the indicator function. The estimator is illustrated in Figure 3 for n = 20 and n = 50.
The Glivenko-Cantelli theorem assures the uniform, almost sure convergence of this estimator. In
the sequel, some important properties of the EDF are stated. The following theorem follows directly
from the central limit theorem.

Theorem 2.1. For the empirical distribution function it holds for x with 0 < F (x) < 1 that

n1/2(Fn(x)− E[Fn(x)]) = n1/2(Fn(x)− F (x)) D−→ N
(
0, σ2(x)

)
for n→∞, where σ2(x) = F (x)(1− F (x)). End Theorem

The next theorem gives the mean squared error (MSE) and the mean integrated squared error
(MISE) of the empirical distribution function, which are defined by

MSE[Fn(x)] = E[(Fn(x)− F (x))2]

and

MISE[Fn] = E

∫
D

(Fn(x)− F (x))2 dx
 ,

where we integrate over the considered domain D.

Theorem 2.2. In [1], it can be seen that the MSE of the empirical distribution function is given by

MSE[Fn(x)] = Var[Fn(x)] = n−1σ2(x). (2.1)

The MISE of the empirical distribution function is given by

MISE[Fn(x)] = n−1
∫
D

σ2(x) dx,

where σ2(x) is defined as in Theorem 2.1. End Theorem
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Figure 4: Illustration of the kernel density estimator.

3 Kernel Estimation
One of the most popular density estimators is the kernel density estimator. This estimator is also
called the Parzen-Rosenblatt estimator after the two inventors Emanuel Parzen and Murray Rosenblatt
who independently came up with the idea, see [2, 3]. It uses a kernel K : R→ R that has to fulfill
the properties

•
∫
K(x) dx = 1,

• K(x) ≥ 0 for all x,

• K(x) = K(−x) for all x,

•
∫
xK(x) dx = 0, and

•
∫
x2K(x) dx <∞,

following [4]. This means that the kernel is a symmetric density function with zero mean and bounded
variance. Some popular kernels are

• the Normal/Gaussian kernel: K(x) = (2π)−1/2 exp
(
−1

2x
2
)
,

• and the Epanechnikov kernel: K(x) = 3
4 (1− x2) I (|x| ≤ 1).

Let X1, X2, ... be i.i.d. random variables that have an underlying unknown distribution function F
and unknown density function f . Given a finite random sample X1, ..., Xn, n ∈ N, the univariate
kernel density estimator is defined by

fh,n(x) = 1
nh

n∑
i=1

K

x−Xi

h

, x ∈ R,

where the parameter h ∈ R>0 is called the bandwidth. In Figure 4, the estimator is illustrated. The
idea is that the number of kernels is higher in regions with many samples, which leads to a higher
density. The width and height of each kernel is determined by the bandwidth h. In this case, the
bandwidth is the same for all kernels.
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Figure 5: Illustration of the kernel distribution estimator for n = 20.

To estimate the distribution function, the kernel density estimator is integrated. This means that
if the distribution function is of the form

F (x) =
x∫

−∞

f(u) du

for a density function f , the kernel distribution estimator is of the form

Fh,n(x) =
x∫

−∞

fh,n(u) du =
x∫

−∞

1
nh

n∑
i=1

K

u−Xi

h

 du = 1
n

n∑
i=1

K

x−Xi

h

, (3.1)

where

K(t) =
t∫

−∞

K(u) du

is a cumulative kernel function. This estimator was first introduced in [5]. In Figure 5, the integrated
kernels 1

n
K
(
x−Xi
h

)
that sum up to the estimator (red) are illustrated in blue.

For both the kernel distribution estimator and the kernel density estimator, it is stated in [6,
p. 592] and [7, Eq. (27), Eq. (33)] respectively that the mean and the bias are o(h2). The variance of
the density estimator is O(1/(nh)) and of the distribution estimator O(n−1) +O(h/n) = O(n−1).

The kernel distribution estimator works well when the density is supported on (−∞,∞). When
the support is finite, problems at the boundaries can arise. In [8], it is shown that the bias at the
boundary is O(h), which is worse than O(h2). This is the reason why other approaches such as the
Bernstein estimator are used to estimate distribution functions on bounded intervals.

We now state the most important properties of the kernel estimator. The first property is the
asymptotic behavior.

3.1 Asymptotic Behavior
The next result follows from [9, Theorem 6]. It actually even holds for a more general case than
kernel estimators.

Theorem 3.1. It holds for x with 0 < F (x) < 1 that

n1/2(Fh,n(x)− E[Fh,n(x)]) D−→ N
(
0, σ2(x)

)
for n→∞, where σ2(x) is defined as in Theorem 2.1. End Theorem
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It is also possible to consider the asymptotic behavior of n1/2(Fh,n(x)− F (x)). As shown in [8], it
holds that

n1/2(Fh,n(x)− F (x)) = n1/2(Fh,n(x)− E[Fh,n(x)]) + n1/2(E[Fh,n(x)]− F (x))

= n1/2(Fh,n(x)− E[Fh,n(x)]) + n1/2
(1

2h
2f ′(x)µ2 + o(h2)

)
= n1/2(Fh,n(x)− E[Fh,n(x)]) + 1

2h
2n1/2f ′(x)µ2 + o(h2n1/2),

where
µ2 =

∫
D

t2K(t) dt

and the necessary properties of K are defined as in the beginning of this section. Again, we integrate
over the considered domain D. Using this equation, the next corollary follows directly.

Corollary 3.1. Let n→∞ and h→ 0. Then, for x with 0 < F (x) < 1 and support [−1, 1] of K it
holds that

(a) if h−2n−1/2 →∞, then
n1/2(Fh,n(x)− F (x)) D−→ N

(
0, σ2(x)

)
,

(b) if h−2n−1/2 → c, where c is a positive constant, then

n1/2(Fh,n(x)− F (x)) D−→ N
(
µ2

2c f
′(x), σ2(x)

)
,

where σ2(x) is defined as in Theorem 2.1. End Corollary

For the asymptotic normality of the difference to the mean, no restrictions on the bandwidth h
are required, while for the behavior with respect to F there are restrictions on h.

Next, the asymptotically optimal h with respect to the MSE is calculated.

3.2 Asymptotically Optimal h with Respect to MSE
The next result follows from [8] and gives the MSE of the kernel distribution estimator.

Theorem 3.2. The MSE of the kernel distribution estimator is of the form

MSE[Fh,n(x)] = n−1σ2(x)− hn−1ηf(x) + h4v(x) + o
(
h4
)

+O

(
h

n

)
,

where

η = 2
∫
D

xK(x)K(x) dx, v(x) =
1

2f
′(x)

∫
D

t2K(t) dt
2

,

K and K are defined as in Section 3. End Theorem

In order to minimize the MSE, we take the derivative with respect to h and asymptotically get

∂

∂h
MSE[Fh,n(x)] = 4v(x)h3 − n−1ηf(x).
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Setting this to zero, we obtain

4v(x)h3 − n−1ηf(x) = 0
⇔ 4v(x)h3 = n−1ηf(x)

⇔ h = n−1/3
[
ηf(x)
4v(x)

]1/3

.

This leads to the following corollary.

Corollary 3.2. Assuming that f(x) 6= 0 and f ′(x) 6= 0, the asymptotically optimal h for estimating
F (x) with respect to MSE is

hopt = n−1/3
[
ηf(x)
4v(x)

]1/3

. (3.2)

This gives

MSE
[
F̂hopt,n(x)

]
= n−1σ2(x)− 3

4n
−4/3

[
(ηf(x))4

4v(x)

]1/3

+O(n−4/3), (3.3)

the optimal MSE. End Corollary

The same is done in the next section for the MISE instead of the MSE.

3.3 Asymptotically Optimal h with Respect to MISE
For the kernel distribution estimator Fh,n, the MISE is defined as

MISE[Fh,n] = E

∫
D

(Fh,n(x)− F (x))2 dx
 ,

where we integrate over the considered domain D. The following result about the MISE of a kernel
estimator can be found in [8, 10, 11].

Theorem 3.3. It holds that

MISE[Fh,n] = n−1
∫
D

σ2(x) dx− n−1hη + 1
4h

4µ2
2rF + o

(
h4
)

+O

(
h

n

)
,

where
η = 2

∫
D

xK(x)K(x) dx, rF =
∫
D

(f ′(x))2 dx, µ2 =
∫
D

t2K(t) dt,

and σ2(x) is defined as in Theorem 2.1. End Theorem

As before, in order to minimize the MISE, we take the derivative with respect to h and asymptoti-
cally get

∂

∂h
MISE[Fh,n] = h3µ2

2rF − n−1η.

Setting this to zero leads to

h3µ2
2rF − n−1η = 0

⇔ h3µ2
2rF = n−1η

⇔ h = n−1/3
[

η

rFµ2
2

]1/3

.

With this result, the following corollary is trivial.
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Corollary 3.3. It follows that the asymptotically optimal h for estimating F with respect to MISE is

hopt = n−1/3
[

η

rFµ2
2

]1/3

,

which leads to the asymptotic expression

MISE
[
F̂hopt,n

]
= n−1

∫
D

σ2(x) dx− 3
4n
−4/3

(
α4

rF

)1/3

+O(n−4/3), (3.4)

where α = η

µ
1/2
2

and σ2(x) is defined as in Theorem 2.1. End Corollary
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4 Function Estimation With Bernstein Polynomials
In 1912 (see [12]), Sergei Natanowitsch Bernstein introduced the Bernstein polynomial of order m of u

Bm(x) = Bm(u;x) =
m∑
k=0

u

(
k

m

)
Pk,m(x) (4.1)

for a continuous function u on [0, 1], where Pk,m are the Bernstein basis polynomials

Pk,m(x) =
(
m

k

)
xk(1− x)m−k

(see Section 12.1 for more information). The following theorem that can be found in [13, Theorem 1]
shows that this function uniformly converges to u.

Theorem 4.1. If u is a continuous function on [0, 1], then as m→∞,

Bm(u;x) =
m∑
k=0

u

(
k

m

)
Pk,m(x)→ u(x)

uniformly for x ∈ [0, 1]. End Theorem

At a Congress in Khar’kov in 1930 (see [14]), the three mathematicians Kantorovich, Vronskaya,
and Khlodovskii introduced a new way to approximate functions v ∈ L[0, 1] with

Km(x) = Km(v, x) = (m+ 1)
m∑
k=0

Pk,m(x)

k+1
m+1∫
k

m+1

v(t) dt,

the so-called Kantorovich polynomials. The connection between the Kantorovich polynomials and the
Bernstein polynomials is

B′m+1(u;x) = (m+ 1)
m∑
k=0

(
u

(
k + 1
m+ 1

)
− u

(
k

m+ 1

))
Pk,m(x) = Km(v;x)

for functions u and v with

u(x) =
x∫

−∞

v(t) dt.

Of course, this relation calls to mind the density and distribution functions. The aforementioned
approximations seem to be a good way to estimate these functions. This was done in 1975 when
Vitale was the first to introduce an estimation of density functions with Bernstein polynomials based
on the Kantorovich polynomials, see [15]. For a finite random sample X1, ..., Xn, n ∈ N, with unknown
density function f supported on [0, 1], define

A
(n)
k,m = Number of Xi in

(
k

m+ 1 ,
k + 1
m+ 1

]

for k ∈ {0, ...,m}1.

1In the original work of Vitale, A(n)
k,m is defined as the number of Xi in

[
k

m+1 ,
k+1
m+1

]
. This definition counts many

points twice, which is not very appealing even though the probability that Xi falls into one of these points is zero
because of the continuity of our distribution. In the definition given in this work, only the point x = 0 is not defined.
This could be avoided by defining a special interval

[
0, 1

m+1

]
.
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Using this result, Vitale approximates f with

fVm,n(x) = m+ 1
n

m∑
k=0

A
(n)
k,mPk,m(x).

Vitale replaces the unknown distribution function F by the EDF Fn to estimate the density. This
can easily be shown by

Km(f ;x) = (m+ 1)
m∑
k=0

Pk,m(x)

k+1
m+1∫
k

m+1

f(t) dt

= (m+ 1)
m∑
k=0

(
F

(
k + 1
m+ 1

)
− F

(
k

m+ 1

))
Pk,m

≈ (m+ 1)
m∑
k=0

(
Fn

(
k + 1
m+ 1

)
− Fn

(
k

m+ 1

))
Pk,m

= m+ 1
n

m∑
k=0

n∑
i=1

I
(

k

m+ 1 < Xi ≤
k + 1
m+ 1

)
Pk,m

= m+ 1
n

m∑
k=0

A
(n)
k,mPk,m = fVm,n(x).

The next section deals with the estimation of distribution functions based on the Bernstein
polynomials.
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Figure 6: Illustration of the Bernstein estimator for different parameters.

5 Bernstein Distribution Function Estimation on [0, 1]
In this section, let X1, X2, ... be a sequence of i.i.d. random variables with unknown distribution
function F and unknown density function f supported on the unit interval [0, 1].

We now talk about when it is possible to transform distributions to the unit interval without any
disadvantages.

In the case where a random variable Y is supported on the compact interval [a, b], a < b, it can
easily be restricted to [0, 1] by transforming Y to (Y − a)/(b− a). The back-transformation can be
done without worrying about optimality or convergence rates.

If a random variable Z occupies the real line (−∞,∞), one transformation that changes the
support to (0, 1) is 1/2+(1/π) tan−1 Z. In the case that Z is supported on [0,∞), a possible approach
is Z/(1 + Z), which leads to concentration on (0, 1). Although the resulting random variable is
supported on (0, 1) in the last two cases, it is not clear what happens to optimality conditions and
convergence rates after the back-transformation.

Another argument against nonlinear transformations is the loss of interpretability. Imagine having
two random variables Z1 and Z2 on [0,∞) and transforming them to Z1/(1 +Z1) and Z2/(1 +Z2). If
Z1/(1 + Z1) is statistically less than Z2/(1 + Z2), it is not directly apparent if this also holds for Z1
and Z2. Hence, these transformations have to be treated with care.

The case of the real half line [0,∞) without the need to transform the random variable is considered
in Section 6 and Section 7 deals with both the real half line [0,∞) and the real line (−∞,∞).

Throughout the entire Section 5, we assume the following.
Assumption 5.1. The distribution function F is continuous and has two continuous and bounded
derivatives on [0, 1]. End Assumption

The continuity is to be understood as right and left continuity at the boundaries, as appropriate.
The same holds for the differentiability.
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Note that the restrictions at the boundary are only necessary to better derive the rates of
convergence. For the convergence itself, the behavior at the boundary is not of importance as the
estimator has zero bias and variance there. This insight was gained in [16].

The goal of this section is the estimation of a distribution function F with density f supported on
[0, 1], given a finite random sample X1, ..., Xn, n ∈ N. As F is continuous in our case, the use of a
continuous estimator often makes much more sense than using the empirical distributon function
(EDF) Fn. With Theorem 4.1 we know that F can be represented by the expression

Bm(F ;x) =
m∑
k=0

F

(
k

m

)
Pk,m(x),

which converges to F uniformly for x ∈ [0, 1]. As the distribution function F is unknown, the idea
now is to replace F with the EDF Fn. Following [17], this leads to the distribution function estimator

F̂m,n(x) =
m∑
k=0

Fn

(
k

m

)
Pk,m(x),

where Pk,m =
(
m
k

)
xk(1− x)m−k are the Bernstein basis polynomials. We always assume that m = mn

depends on n.
Figure 6 shows how the weighted Bernstein basis polynomials (blue) add up to estimate the

distribution function.
We now state and prove some important properties of the Bernstein distribution estimator.

5.1 General Properties
One big advantage of the Bernstein distribution estimator is that it yields very smooth estimates
with good behavior at the boundaries. Indeed, the estimator is unbiased with zero variance at the
boundary because

F̂m,n(0) = 0 = F (0) = Bm(F ; 0) and F̂m,n(1) = 1 = F (1) = Bm(F ; 1) (5.1)

with probability one.
The expected value can easily be calculated as

E
[
F̂m,n(x)

]
= Bm(F ;x) =

m∑
k=0

F

(
k

m

)
Pk,m(x) (5.2)

for x ∈ [0, 1], n ≥ 1, which is the Bernstein polynomial of order m of F introduced in Eq. (4.1).
Following [13], we now show that F̂m,n(x) yields a proper continuous distribution function almost

surely for all values of m. It is easy to see that F̂m,n(x) is continuous. Furthermore, it holds that
0 ≤ F̂m,n(x) ≤ 1 for x ∈ [0, 1] because of Eq. (5.1) and the fact that F̂m,n(x) is increasing, which is
shown now. The following statement can for example be found in [13].

Theorem 5.1. The function F̂m,n(x) is increasing in x on [0, 1]. End Theorem

Proof. It holds that
F̂m,n(x) =

m∑
k=0

gn

(
k

m

)
Uk(m,x), (5.3)

where
gn(0) = 0 and gn

(
k

m

)
= Fn

(
k

m

)
− Fn

(
k − 1
m

)
, k = 1, ...,m,



5 BERNSTEIN DISTRIBUTION FUNCTION ESTIMATION ON [0, 1] 15

and

Uk(m,x) =
m∑
j=k

Pj,m(x) = m

(
m− 1
k − 1

) x∫
0

tk−1(1− t)m−k dt.

The last equation follows from the fact that
m∑
j=k

Pj,m(x) =
m∑
j=k

(
m

j

)
xj(1− x)m−j

= 1−
k−1∑
j=0

(
m

j

)
xj(1− x)m−j

= 1−m
(
m− 1
k − 1

) 1∫
x

tk−1(1− t)m−k dt

= m

(
m− 1
k − 1

) 1∫
0

tk−1(1− t)m−k dt−
1∫
x

tk−1(1− t)m−k dt
 ,

where the connection between the binomial distribution and the beta function was used.
Eq. (5.3) holds because of

m∑
k=0

gn

(
k

m

)
Uk(m,x) =

m∑
k=1

[
Fn

(
k

m

)
− Fn

(
k − 1
m

)]
m∑
j=k

Pj,m(x)

=
m∑
k=1

m∑
j=k

Fn

(
k

m

)
Pj,m(x)−

m−1∑
k=0

m∑
j=k

Fn

(
k

m

)
Pj,m(x) +

m−1∑
k=0

Fn

(
k

m

)
Pk,m(x)

= Fn

(
m

m

)
Pk,m(x) +

m−1∑
k=0

Fn

(
k

m

)
Pk,m(x)

= F̂m,n(x).

Now, F̂m,n(x) is increasing since gn
(
k
m

)
is non-negative for at least one k and Uk(m,x) is increasing

in x. End Proof

As mentioned in [13], another positive property of the Bernstein estimator is that it takes the
knowledge of the support of the distribution into account, which is [0, 1] in this section. Other
estimators do not have this property and assign positive probability to a region that is actually known
to have zero probability. It is also worth noticing that F̂m,n(x) is a polynomial in x and therefore, all
derivatives exist.

The next theorem follows from [13, Theorem 2.1] and shows that F̂m,n(x) is uniformly strongly
consistent.

Theorem 5.2. If F is a continuous probability distribution function on [0, 1], then∥∥∥F̂m,n − F∥∥∥→ 0

almost surely for m,n→∞. We use the notation ‖G‖ = sup
x∈[0,1]

|G(x)| for a bounded function G on

[0, 1]. End Theorem

Proof. It holds that ∥∥∥F̂m,n − F∥∥∥ ≤ ∥∥∥F̂m,n −Bm

∥∥∥+ ‖Bm − F‖
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and ∥∥∥F̂m,n −Bm

∥∥∥ =
∥∥∥∥∥
m∑
k=0

[Fn(k/m)− F (k/m)]Pk,m
∥∥∥∥∥

≤ max
0≤k≤m

|Fn(k/m)− F (k/m)| ≤ ‖Fn − F‖.

We know with the Glivenko-Cantelli theorem that ‖Fn − F‖ → 0 a.s. for n→∞. The claim follows
from Theorem 4.1. End Proof

In [18], it is shown that under certain conditions, the Chung-Smirnov property

lim sup
n→∞

(
2n

log log n

)1/2

sup
x∈[0,1]

∣∣∣F̂m,n(x)− F (x)
∣∣∣ ≤ 1, a.s., (5.4)

holds. This result is used in Section 5.7.
In the following, we turn our attention to the bias and the variance of the estimator.

5.1.1 Bias and Variance

We already know that the estimator is unbiased with zero variance at the boundaries. We now take a
closer look at the inner interval (0, 1). The following result can be found in [19, Section 1.6.1] and
leads to the bias of F̂m,n.

Lemma 5.1. It holds for x ∈ (0, 1) that

Bm(F ;x) = Bm(x) = F (x) +m−1b(x) + o(m−1),

where b(x) = x(1−x)f ′(x)
2 . For the uniform case, this equation simplifies to Bm(x) = F (x) = x for all

m ≥ 1, x ∈ [0, 1]. End Lemma

Proof. Following the proof in [19, Section 1.6.1], it holds that

F

(
k

m

)
= F (x) +

(
k

m
− x

)
f(x) + 1

2

(
k

m
− x

)2

f ′(x) + o

( k
m
− x

)2
 .

Using this result, it follows that

Bm(x) =
m∑
k=0

F

(
k

m

)
Pk,m(x)

= F (x) + f(x)
m∑
k=0

(
k

m
− x

)
Pk,m(x)︸ ︷︷ ︸

S2

+ 1
2f
′(x)

m∑
k=0

(
k

m
− x

)2

Pk,m(x)︸ ︷︷ ︸
S3

+
m∑
k=0

o

( k
m
− x

)2
Pk,m(x)

︸ ︷︷ ︸
S4

.

The second summand S2 simplifies to zero as
m∑
k=0

(
k

m
− x

)(
m

k

)
xk(1− x)m−k = 1

m
E[Y ]− x = x− x = 0 (5.5)
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for x ∈ [0, 1], where Y ∼ Bin(m,x).
The third part S3 can be calculated by using the variance

m∑
k=0

(
k

m
− x

)2

Pk,m(x) = 1
m2

m∑
k=0

(k −mx)2 Pk,m(x) = 1
m2 Var[Y ] = x(1− x)

m
, (5.6)

where Y is again a random variable with distribution Bin(m,x).
Because of Eq. (5.6), for the last summand S4, we obtain

S4 =
m∑
k=0

o

( k
m
− x

)2
Pk,m(x)

= o

 m∑
k=0

(
k

m
− x

)2

Pk,m(x)


= o

(
x(1− x)

m

)
= o(m−1).

For the uniform case, it is of course well known that

f(x) =

1, x ∈ [0, 1],
0, else,

and F (x) =


0, x < 0,
x, x ≤ 0 < 1,
1, x ≥ 1,

so that
b(x) = x(1− x)f ′(x)

2 = 0 on (0, 1). (5.7)

From Eq. (5.5) we know that

Bm(x) =
m∑
k=0

F

(
k

m

)
Pk,m(x)

=
m∑
k=0

k

m
Pk,m(x) = x = F (x),

which proves the claim. End Proof

We now turn our attention to the asymptotic expressions for bias and variance of the estimator
F̂m,n as m,n→∞. The theorem can be found in [17, Theorem 1].

Theorem 5.3. For x ∈ (0, 1), we have that

Bias
[
F̂m,n(x)

]
= E

[
F̂m,n

]
− F (x) = m−1b(x) + o(m−1),

where b(x) is defined as in Lemma 5.1. For the variance it holds that

Var
[
F̂m,n(x)

]
= n−1σ2(x)−m−1/2n−1V (x) + ox(m−1/2n−1),

where

V (x) = f(x)
[

2x(1− x)
π

]1/2

and σ2(x) is defined as in Theorem 2.1. End Theorem

For the proof, see Proofs Bernstein.
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Note that the bias of the Bernstein estimator F̂m,n is O(m−1) = O(h) if setting the “bandwidth” as
h = 1/m, which seems a natural step. This order is worse than that of the bias of a kernel distribution
estimator that typically is O(h2) (see Section 3). The variance here is O(n−1), which is the same as
the variance of the kernel distribution estimator (see Section 3).

Remembering the properties of the kernel distribution estimator, we know that the order of the
bias is worse at the boundary. For the Bernstein estimator, the opposite holds true if f ′′ is also
assumed to be bounded and continuous on [0, 1]. In [20, p. 2770], it is shown that the bias in the
boundary area is of order m−2. Under the extra assumption that f ′(0) = f ′(1) = 0 (the so-called
shoulder condition), the order even decreases to m−3. In [20, p. 2770, p. 2771], it can be seen that
the variance reduces from order n−1 to order m−1n−1 at the boundary.

In the following, we turn our attention to the asymptotic behavior of the Bernstein estimator.

5.2 Asymptotic Behavior
We now show that the asymptotic distribution of the difference between the Bernstein estimator and
its expected value is the same as for the EDF and the kernel estimator. The next theorem can be
found in [17, Theorem 2].

Theorem 5.4. Let x ∈ (0, 1), such that 0 < F (x) < 1. Then, for m,n→∞, it holds that

n1/2
(
F̂m,n(x)− E[F̂m,n(x)]

)
= n1/2

(
F̂m,n(x)−Bm(F ;x)

)
D−→ N

(
0, σ2(x)

)
,

where σ2(x) is defined as in Theorem 2.1. End Theorem

The idea for the proof is to use the central limit theorem for double arrays, see Proofs Bernstein
for more details.

Note that the asymptotic result holds for all m with m→∞ in contrast to the density estimation.
In the density setting, there are restrictions on the choice of m as can be seen in [13, Proposition 1].

The next corollary deals with the asymptotic behavior of F̂m,n(x)− F (x). This is of more interest
than the one of F̂m,n(x)− E[F̂m,n(x)] as we want to know more about the behavior of the estimator
with respect to the true function. With Lemma 5.1, it is easy to see that

n1/2
(
F̂m,n(x)− F (x)

)
= n1/2

(
F̂m,n(x)−Bm(F ;x)

)
+m−1n1/2b(x) + o(m−1n1/2). (5.8)

This directly leads to the following corollary from [17, Corollary 2].

Corollary 5.1. Let m,n→∞. Then, for x ∈ (0, 1) with 0 < F (x) < 1, it holds that

(a) if mn−1/2 →∞, then
n1/2

(
F̂m,n(x)− F (x)

)
D−→ N

(
0, σ2(x)

)
,

(b) if mn−1/2 → c, where c is a positive constant, then

n1/2
(
F̂m,n(x)− F (x)

)
D−→ N

(
c−1b(x), σ2(x)

)
,

where σ2(x) and b(x) are defined as in Theorem 5.3. End Corollary

Part (b) can be seen as a border case. Note that for these properties to hold, there are restrictions
on the asymptotic behavior of m, as in the kernel setting.

We now calculate the asymptotically optimal m with respect to MSE.
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5.3 Asymptotically Optimal m with Respect to MSE
Here, we take a closer look at the mean squared error (MSE), defined by

MSE
[
F̂m,n(x)

]
= E

[(
F̂m,n(x)− F (x)

)2
]
.

In the current setting, for x ∈ {0, 1}, the Bernstein estimator and the EDF both have an MSE of
zero.

We show that the optimal MSE of the Bernstein estimator and the kernel estimator are of a very
similar form. They both asymptotically outperform the EDF.

The next theorem can be found in [17] and follows directly from Theorem 5.3.

Theorem 5.5. It holds that

MSE
[
F̂m,n(x)

]
= Var

[
F̂m,n(x)

]
+ Bias

[
F̂m,n(x)

]2
= n−1σ2(x)−m−1/2n−1V (x) +m−2b2(x) + o(m−2) + ox(m−1/2n−1) (5.9)

for x ∈ (0, 1). End Theorem

Note that we use the notation ox here, which means that the bound is pointwise. For a uniform
bound, the notation o is used.

Taking the derivative of Eq. (5.9) with respect to m, we asymptotically obtain

∂

∂m
MSE

[
F̂m,n(x)

]
= 1

2m
−3/2n−1V (x)− 2m−3b2(x) = 0

⇔ m−3/2n−1V (x)) = 4m−3b2(x)

⇔ m3/2 = n
4b2(x)
V (x)

⇔ m = n2/3
[

4b2(x)
V (x)

]2/3

. (5.10)

This leads to the following corollary, which can also be found in [17, Corollary 1].

Corollary 5.2. Assuming that f(x) 6= 0 and f ′(x) 6= 0, the asymptotically optimal choice of m for
estimating F (x) with respect to MSE is

mopt = n2/3
[

4b2(x)
V (x)

]2/3

. (5.11)

Using this result, we get for x ∈ (0, 1) that

MSE
[
F̂mopt,n(x)

]
= n−1σ2(x)− 3

4n
−4/3

[
V 4(x)
4b2(x)

]1/3

︸ ︷︷ ︸
S2

+ox(n−4/3), (5.12)

where σ2(x), b(x), and V (x) are defined as in Theorem 5.3. End Corollary

By comparing this expression with Eq. (2.1), one can see that the Bernstein estimator asymptoti-
cally outperforms the EDF with respect to MSE as the second summand S2 in Eq. (5.12) is always
positive. More details can be found in Section 5.6. The same is true for the kernel estimator, see
Eq. (3.3).

We now take a look at the optimal m with respect to MISE.



5 BERNSTEIN DISTRIBUTION FUNCTION ESTIMATION ON [0, 1] 20

5.4 Asymptotically Optimal m with Respect to MISE
Similar to the section before we now focus on the mean integrated squared error (MISE), which is
defined as

MISE
[
F̂m,n

]
= E

 1∫
0

(
F̂m,n − F (x)

)2
dx


for the Bernstein estimator.
Note that the MISE of the Bernstein estimator cannot be calculated by integrating the expression

of MSE
[
F̂m,n

]
given in Eq. (5.9) as the asymptotic expression ox(m−1/2n−1) for the variance of the

Bernstein estimator depends on x.
We show that similar to the section before, the Bernstein and the kernel estimator asymptotically

outperform the EDF with respect to MISE.
The next theorem can be found in [17, Theorem 3] and gives the MISE of the Bernstein estimator.

Theorem 5.6. It holds that

MISE
[
F̂m,n

]
= n−1C1 −m−1/2n−1C2 +m−2C3 + o(m−1/2n−1) + o(m−2)

with

C1 =
1∫

0

σ2(x) dx , C2 =
1∫

0

V (x) dx and C3 =
1∫

0

b2(x) dx.

The definitions of σ2(x), b(x), and V (x) can be found in Theorem 5.3. End Theorem

For the proof, see Proofs Bernstein.
The three integrals C1, C2, and C3 are positive, except in the special case of the uniform distribution,

where C3 = 0. This follows from Eq. (5.7).
As in the section for the MSE, it is also possible to compute the optimal m with respect to MISE.

The next corollary follows from [17, Corollary 4] and gives this optimal m.

Corollary 5.3. In the case C3 > 0, it follows that the asymptotically optimal m for estimating F
with respect to MISE is

mopt = n2/3
[4C3

C2

]2/3
,

which leads to

MISE
[
F̂mopt,n

]
= n−1C1 −

3
4n
−4/3

[
C4

2
4C3

]1/3

︸ ︷︷ ︸
S2

+o(n−4/3), (5.13)

the optimal MISE. End Corollary

The calculation of the optimal m with respect to MISE is very similar to Eq. (5.10) so that we
omit the proof here.

Similar to the MSE case one can compare the Bernstein estimator with the EDF. The fact that
the second summand S2 in Eq. (5.13) is always positive leads to the conclusion that the Bernstein
estimator asymptotically outperforms the EDF. For more information on this, see Section 5.6. The
same is again true for the kernel estimator, see Eq. (3.4).

We now talk about a property that holds for both the Bernstein estimator and the kernel estimator.
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5.5 Difference of the Distribution Estimator to the Density Estimator
The phenomenon that we will talk about here was first observed by Hjort and Walker in [21] for the
kernel estimator but can also be applied to the Bernstein estimator.

We first describe this phenomenon in the case of the kernel estimator.

Kernel Distribution Estimator

The recommended bandwidth for estimating the density with a kernel estimator is O(n−1/5), see [17].
When using this bandwidth for the estimation of the distribution function, the following problem was
observed by Hjort and Walker: the estimated function does not lie in any reasonable confidence band
of F based on Fn. This problem is solved by using the optimal bandwidth o(n−1/4) for estimating the
distribution function, see [17].

Bernstein Estimator

The same phenomenon as for the kernel distribution estimator is observed in [17] for Bernstein
estimators. In density estimation, the optimal number m of Bernstein polynomials with respect
to MISE is O(n2/5), see [22]. For the estimation of the distribution, the optimal choice is o(n2/3)
(see Corollary 5.3) and when using O(n2/5), the estimation lies outside of any confidence band of F .
This holds because of the fact that from mn−2/5 → c it follows that mn−1/2 → 0 and together with
f ′(x) 6= 0 and Eq. (5.8), it holds that

P
(
n1/2

∣∣∣F̂m,n(x)− F (x)
∣∣∣ > ε

)
→ 1

for all ε > 0. This shows that for m chosen as O(n2/5), F̂m,n(x) does not converge to a limiting
distribution centred at F (x) with proper rescaling. It follows that F̂m,n lies outside of confidence
bands based on Fn with probability going to one.

5.6 Deficiency
It was already made clear in the Sections 5.3 and 5.4 that it is interesting to compare the performances
of the Bernstein estimator and the EDF. Here, the comparison is done with the help of the so-called
deficiency.

In [23], the defiency is defined as follows. Consider a statistical procedure A, which is based on n
observations and another procedure B that is less effective than the first one. This means that the
procedure B needs a larger number i(n) of observations to perform at least as well as procedure A.
One way to compare the two procedures is to take a look at the ratio i(n)

n
. Another way is to inspect

the number of required additional observations i(n)− n, which is called deficiency. Taking the limit
leads to the asymptotic deficiency.

In our case we measure the performance using the MSE and the MISE. The procedure A is of
course the Bernstein estimator F̂m,n while the EDF Fn is the procedure B. We define the local and
the global number of observations that Fn needs to perform at least as well as F̂m,n as

iL(n, x) = min
{
k ∈ N : MSE[Fk(x)] ≤ MSE

[
F̂m,n(x)

]}
, and

iG(n) = min
{
k ∈ N : MISE[Fk] ≤ MISE

[
F̂m,n

]}
.

Following from [17, Theorem 4], the next result gives conditions under which Fn is asymptotically
efficient. It also gives the asymptotic defiency in two cases.
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Theorem 5.7. Let x ∈ (0, 1) and m,n→∞. If mn−1/2 →∞, it holds that

iL(n, x) = n[1 + ox(1)] and iG(n) = n[1 + o(1)].

In addition, the following is true.

(a) If mn−2/3 →∞ and mn−2 → 0, then

iL(n, x)− n = m−1/2n[θ(x) + ox(1)], and
iG(n)− n = m−1/2n[C2/C1 + o(1)].

(b) If mn−2/3 → c, where c is a positive constant, then

iL(n, x)− n = n2/3[c−1/2θ(x)− c−2γ(x) + ox(1)], and
iG(n)− n = n2/3[c−1/2C2/C1 − c−2C3/C1 + o(1)],

where
θ(x) = V (x)

σ2(x) and γ(x) = b2(x)
σ2(x) .

V (x), σ2(x) and b(x) are defined as in Theorem 5.3 and C1, C2 and C3 are defined as in Theorem 5.6.
In the case where x ∈ {0, 1}, it is easy to see that

iL(n, 0) = iL(n, 1) = n

for any choice of m > 0. End Theorem

For the proof, see Proofs Bernstein.
The theorem shows in which cases the Bernstein estimator outperforms the EDF. In the setups

(a) and (b), the asymptotic deficiency goes to infinity as n grows. This means that for increasing n,
more and more extra observations are needed for the EDF to outperform the Bernstein estimator.

As mentioned before, it can be shown that the EDF is also outperformed by the kernel estimator
with respect to MSE and MISE, see [24].

It seems natural that one can also base the selection of an optimal m on the deficiency. Indeed,
maximizing the deficiency seems a good way to make sure that the Bernstein estimator outperforms
the EDF as much as possible.

With arguments from [17] the following statement holds.

Lemma 5.2. The optimal m with respect to the global deficiency in the case mn−2/3 → c is of the
same order as in Corollary 5.3. End Lemma

Proof. Note that when mn−2/3 → c, iG(n)− n is asymptotically positive only when

c >
[
C3

C2

]2/3
= c∗.

Now the goal is to choose m so that mn−2/3 → c and c > c∗ is chosen to maximize

g(c) = c−1/2C2/C1 − c−2C3/C1.
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This is achieved by taking the derivative of g with respect to c and setting it to zero

g′(c) = 2c−3C3

C1
− 1

2c
−3/2C2

C1
= 0

⇔ 2c−3C3

C1
= 1

2c
−3/2C2

C1

⇔ c−3/2 = 1
4
C2

C3
.

This leads to
copt =

[4C3

C2

]2/3
= 24/3c∗.

Hence, the optimal order of the Bernstein estimator with respect to the deficiency satisfies

moptn
−2/3 → copt ⇔ mopt = n2/3[copt + o(1)],

which leads to the assertion. End Proof

The next section deals with a way to choose the optimal m that is different to the approaches
before.

5.7 Another Way to Choose the Optimal m

In Sections 5.3 and 5.4, the asymptotically optimal m is obtained by minimizing the MSE and the
MISE. The resulting mopt depends on the unknown density. In the sequel, another approach to finding
an optimal m is discussed, following from [25]. We will distinguish between a local and a global
optimum.

As already mentioned before, 1/m plays the same role in Bernstein estimation as the bandwidth
does for kernel estimation. This means that a data-driven choice of m seems to be of interest. This
approach is used by Dutta in [25]. Such an m depends on the random variables X1, ..., Xn, n ∈ N,
and hence, is random.

In the entire Section 5.7, we assume that for the kernel density estimator the following assumption
holds.

Assumption 5.2. K is a density, which is differentiable in the interior of the support, where K ′
satisfies

∫
K ′(x) dx = 0 and

∫
xK ′(x) dx = −1. End Assumption

This assumption is satisfied by many well-known kernels such as the Gaussian and the Epanechnikov
kernel that were defined in Section 3.

We now calculate the locally optimal m.

5.7.1 Local Choice of m

The aim is to choose m such that F (x) is optimally estimated. In Corollary 5.2, the asymptotically
optimal choice of m for estimating F (x) with respect to MSE was calculated. We now do something
similar but in the end, m will not depend on any unknown parameters.

With Eq. (5.2), it holds that

Bias
[
F̂m,n(x)

]
= Bm(x)− F (x) (5.14)

and in Eq. (5.25), it was calculated that

Var
[
F̂m,n(x)

]
= 1
n

 m∑
k=0

F

(
k

m

)
P 2
k,m(x) + 2

∑∑
0≤k<l≤m

F

(
k

m

)
Pk,m(x)Pl,m(x)−B2

m(x)
 .
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Using these two equations, the MSE can be calculated by

MSE
[
F̂m,n(x)

]
= Var

[
F̂m,n(x)

]
+ Bias

[
F̂m,n(x)

]2
.

The proposal in [25] is now to replace the unknown distribution function F by the kernel estimator
Fh,n in the bias and by the EDF Fn in the variance. This gives

Bias∗
[
F̂m,n(x)

]
= Bh,m(x)− Fh,n(x), (5.15)

Var∗
[
F̂m,n(x)

]
= 1
n

 m∑
k=0

Fn

(
k

m

)
P 2
k,m(x) + 2

∑∑
0≤k<l≤m

Fn

(
k

m

)
Pk,m(x)Pl,m(x)− F̂ 2

m,n(x)
 ,

MSE∗
[
F̂m,n(x)

]
= Var∗

[
F̂m,n(x)

]
+ Bias∗

[
F̂m,n(x)

]2
,

where
Bh,m(x) =

m∑
k=0

Fh,n

(
k

m

)
Pk,m(x).

The question that arises now is, why the distribution function is replaced by two different terms
in bias and variance. Following [25], the goal is to obtain

MSE∗
[
F̂m,n(x)

]
= MSE

[
F̂m,n(x)

]
+ o(rn) a.s.,

where rn → 0 for n → ∞ faster than MSE
[
F̂m,n(x)

]
. In Theorem 5.3, it was shown that the bias

converges to zero in o(m−1). Replacing F by Fn in the bias would not lead to the same result as Fn
is discrete. Hence, F is replaced by the continuous kernel estimator.

For the variance, simulations in [25] show that it is enough to use the EDF to replace F .
As can be seen later in the proof of Theorem 5.8, the goal in choosing the bandwidth h for the

kernel estimator is not that it optimally estimates F . Instead, the goal is to obtain the relation

Bias∗
[
F̂m,n(x)

]2
− Bias

[
F̂m,n(x)

]2
= o

( 1
m2

)
.

In [25], it is stated that h = n−1/9 fulfills this equation. Let h satisfy this from now on in Section 5.7.
In Corollary 5.2, it is shown that

nMSE
[
F̂mopt,n(x)

]
→ σ2(x) (5.16)

if m is a multiple of n2/3.
In the next theorem, which follows [25, Theorem 1], the convergence of MSE∗

[
F̂m,n(x)

]
−

MSE
[
F̂m,n(x)

]
is examined. The result can be expected from Eq. (5.16).

Theorem 5.8. Let F fulfill Assumption 5.1 and additionally be absolutely continuous. Then

MSE∗
[
F̂m,n(x)

]
−MSE

[
F̂m,n(x)

]
= o

( 1
n

)
a.s.

for c1n
2/3 ≤ m ≤ c2n

2/3, where c1 and c2 are two constants. End Theorem

For the proof, see Proofs Bernstein.
Now, the proposal given in [25] is to choose m so that it minimizes MSE∗

[
F̂m,n(x)

]
under the

condition that m ∈ In = [c1n
2/3, c2n

2/3], where 0 < c1 < c2 are constants. We call the resulting
number m̂, which is defined by

m̂ =
⌈
argmink∈In MSE∗

[
F̂m,n(x)

]⌉
. (5.17)

A simulation in [25] suggests that
[

4b2(x)
V (x)

]2/3
, the coefficient in mopt, varies between 0 and 1500 so

that In = [ 1
10n

2/3, 1500n2/3].
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5.7.2 Global Choice of m

Now, the goal is to find the global optimum of m. As in Section 5.4, this is done with the MISE. As
the support of F is on [0, 1], the MISE is defined by

MISE
[
F̂m,n

]
=

1∫
0

MSE
[
F̂m,n(x)

]
dx

and following [25], an estimator of the MISE is

MISE∗
[
F̂m,n

]
=

1∫
0

MSE∗
[
F̂m,n(x)

]
dx.

Using nMSE
[
F̂mopt,n(x)

]
→ σ2(x) from Corollary 5.2 again together with Fatou’s lemma, it holds

that

lim inf
n→∞

nMISE
[
F̂mopt,n

]
≥

1∫
0

lim inf
n→∞

nMSE
[
F̂mopt,n(x)

]
dx > 0.

Similar to the theorem above, the next theorem, which can be found in [25, Theorem 2] deals
with the convergence rate of MISE∗

[
F̂m,n

]
−MISE

[
F̂m,n

]
.

Theorem 5.9. Under the same conditions as in Theorem 5.8, it holds that

MISE∗
[
F̂m,n

]
−MISE

[
F̂m,n

]
= o

( 1
n

)
for n→∞. End Theorem

For the proof, see Proofs Bernstein.
The proposition in [25] is now very similar to the one for the local choice of m. The parameter is

chosen to minimize the MISE and is called ˆ̂m, i.e.

ˆ̂m =
⌈
argmink∈In MISE∗

[
F̂m,n

]⌉
, (5.18)

where In is the interval as defined above.

5.7.3 Asymptotic Properties

Here, the asymptotic properties of the optimal parameters proposed above are stated. More precisely,
the properties are stated for the degree m̃ of the Bernstein estimator chosen by a data-based algorithm.
The parameters m̂ and ˆ̂m are special cases of m̃.

The following theorem gives the rates of pointwise and uniform convergence of Fm̃,n to F under
i.i.d. assumption. It follows [25, Theorem 3].

Theorem 5.10. If X1, X2, ... are i.i.d. as already assumed in the beginning of the section and
m̃ ≥ cnδ+1/2 for c, δ > 0, then for all 0 ≤ x ≤ 1 it holds for n→∞ that

(a)
∥∥∥F̂m̃,n − F∥∥∥ = o(n−1/3) a.s. and Bias

[
F̂m̃,n

]
= o(n−1/3),

(b) lim sup
(

2n
log log(n)

)1/2 ∥∥∥F̂m̃,n − F∥∥∥ ≤ 1 a.s., and

(c) ‖F̂m̃,n−F‖‖Fn−F‖ ≤ 1 + oP (1) a.s.,
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where ‖ · ‖ is the sup-norm defined in Theorem 5.2 and Xn = oP (1) means that lim
n→∞

(|Xn| ≥ ε) = 0
for all ε > 0. End Theorem

For the proof, see Proofs Bernstein.
Sup-norm convergence implies point-wise convergence. As the support of F is on [0, 1], the sup-norm

convergence of F̂m̃,n also implies that
1∫

0

∣∣∣F̂m̃,n(x)− F (x)
∣∣∣ dx and MISE =

1∫
0

E
[
F̂m̃,n(x)− F (x)

]2
dx

converge to zero for n→∞.
Part (b) says that the Chung-Smirnov property that was shown for nonrandom m in Eq. (5.4)

still holds for random m = m̃.
In part (c), one can see that for large n, the probability that the EDF is more accurate than the

estimator Fm̃,n, is very small.

5.7.4 Simulation

The simulation in [25] compares the Monte Carlo estimates of the MSE coming from different kernel
and Bernstein estimators and the EDF. The bandwidths used for the kernel estimators are from [10],
[26], [27], and hopt from Eq. (3.2) while the degrees for the Bernstein estimators are m̂,ˆ̂m and mopt

from Eq. (5.11).
The sample size is chosen to be n = 100 and 12 different distributions are tested. Nine of them are

beta distributions with different parameters and three are AR(1)-processes. The MSE is calculated
for five points: the 5th, 25th, median, 75th, and 95th percentiles.

The main observations that were found in [25] are the following.

(a) Even in the case that the density is given, mopt and hopt are not always the best choices for m
and h.

(b) m̂ compares very well with mopt for the 5th and 95th percentile. In many cases it performs even
better.

(c) mopt varies a lot depending on the underlying distribution, m̂ and ˆ̂m not so much.

(d) In the tail region, i.e., the 5th and 95th percentile, [10],[26], and m̂ seem to outperform the
empirical EDF or the other kernel estimators in almost all the examples. But none of them can
be said to be the best of the three.

(e) In the interquartile region, [27], ˆ̂m and m̂ seem to be better than the other estimators.

(f) In the tail regions of the AR(1)-models, m̂ seems to be the most accurate estimator.
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5.8 Properties of Pk,m

We now present a few properties of the Bernstein polynomials that are needed for some proofs in this
thesis. The following lemma can be found in [17, Lemma 2 and Lemma 3].

Lemma 5.3. Define

Lm(x) =
m∑
k=0

P 2
k,m(x)

and
Rj,m(x) = m−j

∑∑
0≤k<l≤m

(k −mx)jPk,m(x)Pl,m(x)

for j ∈ {0, 1, 2}. It trivially holds that

1. Lm(0) = Lm(1) = 1,

2. 0 ≤ Lm(x) ≤ 1 for x ∈ [0, 1], and

3. Rj,m(0) = Rj,m(1) = 0 for j ∈ {0, 1, 2}.

In addition, defining φ1(x) = [4πx(1− x)]−1/2 and φ2(x) =
[
x(1−x)

2π

]1/2
and letting g be a continuous

function on [0, 1] leads to the properties

(a) 0 ≤ R2,m(x) ≤ (4m)−1 for x ∈ (0, 1),

(b) Lm(x) = m−1/2 [φ1(x) + ox(1)] for x ∈ (0, 1),

(c) R1,m(x) = m−1/2 [−φ2(x) + ox(1)] for x ∈ (0, 1),

(d) m1/2
1∫
0
Lm(x) dx =

1∫
0
φ1(x) dx+O(m−1) =

√
π

2 +O(m−1), and

(e) m1/2
1∫
0
g(x)R1,m(x) dx = −

1∫
0
g(x)φ2(x) dx+ o(1).

End Lemma

Proof. This proof follows the proof of Theorem 1 in [17]. For part (d), [28] helps to understand
some equations.
For the proof, define

Tj,m(x) =
m∑
k=0

(k −mx)jPk,m(x) and Hj,m(x) =
m∑
k=0
|k −mx|jPk,m(x). (5.19)

Then it holds with [19, Section 1.5] that

Tj+1,m(x) = x(1− x)
[
T ′j,m(x) +mjTj−1,m(x)

]
.

With this, it is easy to see that

T1,m(x) = 0, T2,m(x) = mx(1− x), T3,m(x) = mx(1− x)(1− 2x),
T4,m(x) = 3m(m− 2)x2(1− x)2 +mx(1− x). (5.20)

Now, we proof the lemma.
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(a) The positivity of R2,m(x) is clear. For the second inequality, note that

R2,m(x) = m−2 ∑∑
0≤k<l≤m

(k −mx)2Pk,m(x)Pl,m(x)

≤ m−2
m∑
k=0

m∑
l=0

(k −mx)2Pk,m(x)Pl,m(x)

= m−2T2,m(x)

= x(1− x)
m

≤ 1
4m.

(b) Let Ui,Wj, i, j ∈ {1, ..,m} be i.i.d. Bernoulli random variables with P(U1 = 1) = x and

Ri = Ui −Wi√
2x(1− x)

.

Then it holds that E[Ri] = 0,Var[Ri] = 1 and Ri has a lattice distribution with span

h = 1√
2x(1− x)

.

Note that

P
(

m∑
i=1

Ri = 0
)

= P
(

m∑
i=1

Ui =
m∑
i=1

Wi

)

= P
(

m∑
i=1

Ui =
m∑
i=1

Wi = 0
)

+ ...+ P
(

m∑
i=1

Ui =
m∑
i=1

Wi = m

)

=
m∑
k=0

Pk,m(x)2.

With [29, XV.5, p. 517, Theorem 3], it holds that
√
m

h

m∑
k=0

P 2
k,m(x)− 1√

2π
→ 0

and it follows that √
4πmx(1− x)

m∑
k=0

P 2
k,m(x)→ 1

from which the claim follows.

(c) In [30, Theorem 1], it was shown that
m∑
l=k

Pl,m(x) = 1− Φ(δk −Gx(δk−1/2)) +Ox(m−1),

where Ox(m−1) is independent of k, Φ is the standard normal distribution function,

δk = (k −mx)[mx(1− x)]−1/2,

and
Gx(t) =

[1
2 + 1

6(1− 2x)(t2 − 1)
]

[mx(1− x)]−1/2.
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Expanding Φ(t) about t = 0 leads to

Φ(t) = 1
2 + t√

2π
+ o(|t|),

from where we get that
m∑

l=k+1
Pl,m(x) = 1

2 −
δk+1 −Gx(δk+1/2)√

2π
+ ox(|δk+1 −Gx(δk+1/2)|) +Ox(m−1),

where Ox(m−1) is again independent of k.
Now, note that

δk+1 −Gx(δk+1/2) = (k + 1−mx)A−
[1
2 + 1

6(1− 2x)(δ2
k+1/2 − 1)

]
A

= δk + A−
[1
2 + 1

6(1− 2x)(δ2
k + δkA+ 1

4A
2 − 1)

]
A

= 1
3(2− x)A+

[
1− 1

6(1− 2x)A2
]
δk −

1
6(1− 2x)Aδ2

k + 1
24(1− 2x)A3

= 1
3(2− x)[mx(1− x)]−1/2 +

[
1− 1

6(1− 2x)[mx(1− x)]−1
]
δk

− 1
6(1− 2x)[mx(1− x)]−1/2δ2

k +Ox(m−3/2),

where A = [mx(1− x)]−1/2.
From this it follows that

R1,m(x) = m−1
m∑
k=0

(k −mx)Pk,m(x)
 m∑
l=k+1

Pl,m(x)


=
[1
2 −

1
3(2− x)[2πmx(1− x)]−1/2

]
m−1T1,m(x)

− [2πmx(1− x)]−1/2m−1T2,m(x)
+ ox(m−3/2H1,m(x)) + ox(m−3/2H2,m(x)) +Ox(m−5/2H3,m(x)).

Inserting Eq. (5.20), it holds that

R1,m(x) = −x(1− x)[2πmx(1− x)]−1/2 + ox(m−1/2)
+ ox(m−3/2H1,m(x)) +Ox(m−5/2H3,m(x)). (5.21)

The Cauchy-Schwarz inequality implies that

m−3/2H1,m(x) ≤ m−3/2[T2,m(x)]1/2

= m−3/2[mx(1− x)]1/2 ≤ 1
2m = O(m−1) (5.22)

and

m−5/2H3,m(x) ≤ m−5/2[T2,m(x)T4,m(x)]1/2

= m−5/2[3m2(m− 2)x3(1− x)3 +m2x2(1− x)2]1/2 = O(m−1).



5 BERNSTEIN DISTRIBUTION FUNCTION ESTIMATION ON [0, 1] 30

Inserting this into Eq. (5.21), it follows that

R1,m(x) = −x(1− x)[2πmx(1− x)]−1/2 + ox(m−1/2) +Ox(m−1)

= m−1/2

−
√
x(1− x)
√

2π
+ ox(1)

 .
(d) It holds that

m∑
k=0

1∫
0

P 2
k,m(x) =

m∑
k=0

(
Γ(m+ 1)

Γ(k + 1)Γ(m− k + 1)

)2 1∫
0

x2k(1− x)2(m−k) dx

=
m∑
k=0

(
Γ(m+ 1)

Γ(k + 1)Γ(m− k + 1)

)2 Γ(2k + 1)Γ(2(m− k) + 1)
Γ(2m+ 2)

= Γ(m+ 1)2

Γ(2m+ 2)

m∑
k=0

(
2k
k

)(
2(m− k)
m− k

)

= Γ(m+ 1)2

Γ(2m+ 2)4m

=
√
π

2m+ 1
Γ(m+ 1)

Γ(m+ 1/2) ,

where the second equality uses the Betafunction and the last equality follows from the fact that

4m = Γ(2m)2
√
π

Γ(m)Γ(m+ 1/2) ,

that can be found in [31, p. 256, 6.1.18]. It follows with [31, p. 257] that

m1/2
1∫

0

Lm(x) dx =
√
πm

2m+ 1
Γ(m+ 1)

Γ(m+ 1/2)

=
√
πm

2m+ 1

[
1 + 1

8m +O(m−2)
]

=
√
π

2 +O(m−1)

=
1∫

0

φ1(x) dx+O(m−1).

This concludes the proof.

(e) With part (c) we know that Gm(x) := m1/2R1,m → −φ2(x) =: G(x) on the unit interval. It also
holds that

|Gm(x)| = m−1/2

∣∣∣∣∣∣
m∑
k=0

(k −mx)Pk,m(x)
 m∑
l=k+1

Pl,m(x)
∣∣∣∣∣∣

≤ m−1/2
m∑
k=0
|k −mx|Pk,m(x)

 m∑
l=k+1

Pl,m(x)


≤ m−1/2H1,m(x) ≤ 1
2



5 BERNSTEIN DISTRIBUTION FUNCTION ESTIMATION ON [0, 1] 31

for x ∈ [0, 1], where the last inequality comes from Eq. (5.22). Hence, the sequence is uniformly
bounded on the unit interval and with this also uniformly integrable. With [32, Thm 16.14 on
pp. 217-218], it holds that

1∫
0

|Gm(x)−G(x)| dx = o(1),

which implies that∣∣∣∣∣∣
1∫

0

g(x)Gm(x) dx−
1∫

0

g(x)G(x) dx

∣∣∣∣∣∣ ≤ sup
x∈[0,1]

|g(x)|
1∫

0

|Gm(x)−G(x)| dx = o(1).

End Proof
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5.9 Proofs Bernstein
Proof of Theorem 5.3. This proof follows the proof of Theorem 1 in [17]. The first part follows
directly from Lemma 5.1 because of E

[
F̂m,n(x)

]
= Bm(x).

For the second part, define
∆i(x) = I(Xi ≤ x)− F (x)

for x ∈ [0, 1], where I is the indicator function. It follows that the sequence of random variables
∆1, ...,∆n, n ∈ N, are i.i.d. with mean zero. Defining

Yi,m =
m∑
k=0

∆i

(
k

m

)
Pk,m(x),

it is easy to see that

F̂m,n(x)−Bm(x) =
m∑
k=0

[
Fn

(
k

m

)
− F

(
k

m

)]
Pk,m(x)

= 1
n

m∑
k=0

n∑
i=1

[
I
(
Xi ≤

k

m

)
− F

(
k

m

)]
Pk,m(x)

= 1
n

n∑
i=1

Yi,m. (5.23)

The random variables Y1,m, ..., Yn,m are also i.i.d. with mean zero for given m. This means that the
variance can be calculated by

Var
[
F̂m,n(x)

]
= Var

[
F̂m,n(x)−Bm(x)

]
= 1
n2

n∑
i=1

Var[Yi,m]

= 1
n

Var[Y1,m]

= 1
n
E[Y 2

1,m]. (5.24)

It also holds for x, y ∈ [0, 1] that

E[∆1(x)∆1(y)] = E[(I(X1 ≤ x)− F (x))(I(X1 ≤ y)− F (y))]
= E[I(X1 ≤ x)I(X1 ≤ y)]− F (x)F (y)
= E[I(X1 ≤ min(x, y))]− F (x)F (y)
= min(F (x), F (y))− F (x)F (y),

which implies

E[Y 2
1,m] =

m∑
k=0

m∑
l=0

E
[
∆1

(
k

m

)
∆1

(
l

m

)]
Pk,m(x)Pl,m(x)

=
m∑
k=0

m∑
l=0

min
(
F

(
k

m

)
, F

(
l

m

))
Pk,m(x)Pl,m(x)−

m∑
k=0

m∑
l=0

F

(
k

m

)
F

(
l

m

)
Pk,m(x)Pl,m(x)

=
m∑
k=0

F

(
k

m

)
P 2
k,m(x) + 2

∑∑
0≤k<l≤m

F

(
k

m

)
Pk,m(x)Pl,m(x)−B2

m(x). (5.25)
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Now the goal is to find an asymptotic expression of this formula. Using Taylor’s theorem we get

F

(
k

m

)
= F (x) +O

(∣∣∣∣∣ km − x
∣∣∣∣∣
)
.

Hence, the first term of Eq. (5.25) can be written as
m∑
k=0

F

(
k

m

)
P 2
k,m(x) = F (x)Lm(x) +O(Im(x)), (5.26)

where
Im(x) =

m∑
k=0

∣∣∣∣∣ km − x
∣∣∣∣∣P 2

k,m(x)

and Lm is defined as in Lemma 5.3. We use Taylor’s theorem again to obtain

F

(
k

m

)
= F (x) +

(
k

m
− x

)
f(x) +O

( k
m
− x

)2
 .

Note that

1 =
m∑
k=0

m∑
l=0

Pk,m(x)Pl,m(x) = 2
∑∑

0≤k<l≤m
Pk,m(x)Pl,m(x) +

m∑
k=0

P 2
k,m(x) = 2R0,m(x) + Lm(x),

from which we get that
R0,m = 1

2[1− Lm(x)].

Using this result, the Taylor expansion and the fact that R2,m ≤ (4m)−1 (see Lemma 5.3) leads to
the transformation∑∑

0≤k<l≤m
F

(
k

m

)
Pk,m(x)Pl,m(x) = F (x)R0,m(x) + f(x)R1,m(x) +O(R2,m(x))

= 1
2F (x)(1− Lm(x)) + f(x)R1,m(x) +O(m−1) (5.27)

of the second term of Eq. (5.25). We are now applying Lemma 5.1 to get

F (x)−B2
m(x) = F (x)−

(
F (x) +m−1b(x) +O(m−1)

)2

= F (x)−
(
F (x) +O(m−1)

)2

= F (x)− F (x)2 − 2F (x)O(m−1)−O(m−1)2

= σ2(x) +O(m−1)

and plugging Eq. (5.26) and Eq. (5.27) into Eq. (5.25) leads to

E[Y 2
1,m] = F (x)Lm(x) +O(Im(x)) + F (x)(1− Lm(x)) + 2f(x)R1,m(x) +O(m−1)−B2

m(x)
= σ2(x) + 2f(x)R1,m(x) +O(Im(x)) +O(m−1). (5.28)

Now, using the fact that 0 ≤ Pk,m(x) ≤ 1 and applying the Cauchy-Schwarz inequality gives

Im(x) ≤
 m∑
k=0

(
k

m
− x

)2

Pk,m(x)
1/2 [

m∑
k=0

P 3
k,m(x)

]1/2

≤
[
T2,m

m2 Lm(x)
]1/2

≤
[
Lm(x)

4m

]1/2

, (5.29)
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where T2,m(x) =
m∑
k=0

(k −mx)2 Pk,m(x) = mx(1− x) ≤ m

4 for x ∈ [0, 1]. With Lemma 5.3 (b), this

leads to

Im(x) ≤
( 1

4m3/2 [φ1(x) + ox(1)]
)1/2

= ox(m−3/4) = Ox(m−3/4). (5.30)

Finally we can calculate with Lemma 5.3 (c) that

E[Y 2
1,m] = σ2(x) + 2f(x)R1,m(x) +O(Im(x)) +O(m−1)

= σ2(x) + 2f(x)m−1/2[−φ2(x) + ox(1)] +O(Im(x)) +O(m−1)
= σ2(x)−m−1/2V (x) + ox(m−1/2), (5.31)

where the last part comes from Eq. (5.30). With Eq. (5.24) this leads to the desired asymptotic
expression

Var
[
F̂m,n(x)

]
= n−1σ2(x)−m−1/2n−1V (x) + ox(m−1/2n−1)

for the variance. End Proof

Proof of Theorem 5.4. This proof follows the proof of Theorem 2 in [17]. For fixed m we know
from the proof of Theorem 5.3 that

F̂m,n(x)−Bm(x) = 1
n

n∑
i=1

Yi,m,

where the Yi,m are i.i.d. random variables with mean 0. Define γ2
m = E[Y 2

1,m]. We use the central limit
theorem for double arrays (see [33], Section 1.9.3) to show the claim.

Defining

An = E
[
n∑
i=1

Yi,m

]
= 0 and B2

n = Var
[
n∑
i=1

Yi,m

]
= nγ2

m,

it says that ∑n
i=1 Yi,m − An

Bn

D−→ N (0, 1)

if and only if the Lindeberg condition

nE[I(|Y1,m| > εBn)Y 2
1,m]

B2
n

→ 0 for n→∞ and all ε > 0

is satisfied. With Eq. (5.31) we know that γm → σ(x) for m→∞ (which follows from n→∞) and
it holds for n→∞ that ∑n

i=1 Yi,m − An
Bn

D−→ N (0, 1)

⇔
∑n
i=1 Yi,m√
n · γm

D−→ N (0, 1)

⇔
√
n

γm

(
F̂m,n(x)−Bm(x)

)
D−→ N (0, 1)

⇔
√
n
(
F̂m,n(x)−Bm(x)

)
D−→ N

(
0, σ2(x)

)
,

which is the claim of Theorem 5.4. In our case the Lindeberg condition has the form

E[I(|Y1,m| > ε
√
nγm)Y 2

1,m]
γ2
m

→ 0 for n→∞ and all ε > 0.
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This is what has to be shown to proof the theorem. Using the fact that

|Y1,m| ≤
m∑
k=0

∣∣∣∣∣∆1

(
k

m

)∣∣∣∣∣Pk,m(x) ≤
m∑
k=0

Pk,m(x) = 1

leads to
I(|Y1,m| > ε

√
nγm) ≤ I(1 > ε

√
nγm)→ 0,

which gives the desired result. End Proof

Proof of Theorem 5.6. This proof follows the proof of Theorem 3 in [17]. Using a part of Eq. (5.29),
Jensen’s inequality, and Lemma 5.3 (d) leads to

1∫
0

Im(x) dx ≤
 1

4m

1∫
0

Lm(x) dx
1/2

=
[

1
4m3/2

(√
π

2 +O(m−1)
)]1/2

= O(m−3/4).

Using Eq. (5.23),Lemma 5.1, and Eq. (5.28)

MISE
[
F̂m,n

]
=

1∫
0

Var
[
F̂m,n(x)

]
+ Bias

[
F̂m,n(x)

]2
dx

= 1
n

1∫
0

σ2(x) + 2f(x)R1,m(x) +O(Im(x)) +O(m−1) dx+ 1
m2

1∫
0

b2(x) + o(1) dx

= 1
n

1∫
0

σ2(x) + 2f(x)R1,m(x) dx+ 1
m2

1∫
0

b2(x) dx+O(m−3/4n−1) + o(m−2),

because of [34, Section 4.2.1] and the fact that Im is positive. Now, we get

MISE
[
F̂m,n

]
= n−1C1 − n−1m−1/2C2 +m−2C3 + o(m−2) + o(m−1/2n−1)

with 2f(x)φ2(x) = V (x) and Lemma 5.3 (e). End Proof

Proof of Theorem 5.7. This proof follows the proof of Theorem 4 in [17].
We only show the claims for the global variable iG(n) because the local part can be shown almost

analogously using θ(x) = V (x)
σ2(x) and γ(x) = b2(x)

σ2(x) instead of θ̃ and γ̃. With the dependency on x, the
error terms are x-dependent as well.

For simplicity we write i(n) = iG(n). By the definition of i(n) we know that lim
n→∞

i(n) =∞ and

MISE
[
Fi(n)

]
≤ MISE

[
F̂m,n

]
≤ MISE

[
Fi(n)−1

]
⇔ i(n)−1C1 ≤ n−1C1 −m−1/2n−1C2 +m−2C3 + o(m−1/2n−1) + o(m−2) ≤ (i(n)− 1)−1C1

⇔ 1 ≤ i(n)
n

[
1−m−1/2θ̃ +m−2nγ̃ + o(m−1/2) + o(m−2n)

]
≤ i(n)
i(n)− 1 , (5.32)

where θ̃ = C2
C1

and γ̃ = C3
C1
. Now, if mn−1/2 →∞ (⇔ m−2n→ 0), taking the limit n→∞ leads to

i(n)
n
→ 1,

so that
i(n) = n+ o(n) = n(1 + o(1)).
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(a) We assume that that mn−2/3 →∞ and mn−2 → 0. Rewrite Eq. (5.32) as

m−1/2n−1θ̃ ≤ A1,n +m−2γ̃ + o(m−1/2n−1) + o(m−2) ≤ m−1/2n−1θ̃ + A2,n

⇔ θ̃ ≤ m1/2nA1,n +m−3/2nγ̃ + o(1) + o(m−3/2n) ≤ θ̃ +m1/2nA2,n, (5.33)

where
A1,n = 1

n
− 1
i(n) and A2,n = 1

i(n)− 1 −
1
i(n) .

It holds that

lim
n→∞

m1/2nA1,n =
(

lim
n→∞

i(n)− n
m−1/2n

)(
lim
n→∞

n

i(n)

)
= lim

n→∞

i(n)− n
m−1/2n

,

and because m1/2n−1 = (mn−2)1/2 → 0

lim
n→∞

m1/2nA2,n =
(

lim
n→∞

m1/2n−1
)(

lim
n→∞

n

i(n)

)(
lim
n→∞

n

i(n)− 1

)
= 0.

We also know that m−3/2n = (mn−2/3)−3/2 → 0 so that

lim
n→∞

i(n)− n
m−1/2n

= θ̃ ⇒ i(n)− n
m−1/2n

= θ̃ + o(1)

follows from Eq. (5.33).

(b) The second part can be proven with very similar arguments. If mn−2/3 → c it also holds that
m−2n = (mn−2/3)−3/2m−1/2 → 0 and m1/2n−1 = (mn−2/3)1/2n−2/3 → 0 so that

lim
n→∞

i(n)− n
m−1/2n

= θ̃ − c−3/2γ̃

and with

lim
n→∞

i(n)− n
m−1/2n

=
(

lim
n→∞

i(n)− n
n2/3

)(
lim
n→∞

m1/2n−1/3
)

= c1/2 lim
n→∞

i(n)− n
n2/3

the claim
c1/2 i(n)− n

n2/3 = θ̃ − c−3/2γ̃ + o(1)

holds.

End Proof

Proof of Theorem 5.8. This proof follows the proof of Theorem 1 in [25]. It holds that
∣∣∣Var∗

[
F̂m,n(x)

]
− Var

[
F̂m,n(x)

]∣∣∣ ≤ 1
n

[
m∑
k=0

∣∣∣∣∣Fn
(
k

m

)
− F

(
k

m

)∣∣∣∣∣P 2
k,m(x)

+2
∑∑

0≤k<l≤m

∣∣∣∣∣Fn
(
k

m

)
− F

(
k

m

)∣∣∣∣∣Pk,m(x)Pl,m(x)

+
m∑
k=0

∣∣∣∣∣Fn
(
k

m

)
− F

(
k

m

)∣∣∣∣∣Pk,m(x)
]

≤ 4
n
‖Fn − F‖.
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This means that
∣∣∣Var∗

[
F̂m,n(x)

]
− Var

[
F̂m,n(x)

]∣∣∣ = o (n−1). For the bias it follows with Lemma 5.1
that

Bias
[
F̂m,n(x)

]2
=
[
x(1− x)

2m f ′(x) + o(m−1)
]2

=
[
x(1− x)

2m f ′(x)
]2

+ x(1− x)
2m f ′(x)o(m−1) + o(m−2)

=
[
x(1− x)

2m f ′(x)
]2

+ o(m−2)

and it holds with very similar arguments as in the proof of Lemma 5.1 and as in the equation before
with F ′′h,n(x) = f ′n(x) that

Bias∗
[
F̂m,n(x)

]2
=
[
x(1− x)

2m f ′n(x)
]2

+ o(m−2) a.s.,

where
f ′n(x) = 1

nh2

n∑
i=1

K ′
(
x−Xi

h

)
.

Under the assumption that h is a multiple of n−1/9 it holds that

f ′n(x)→ f ′(x) a.s. (5.34)

for n→∞ which is shown at the end of the proof. With this, it holds that

Bias∗
[
F̂m,n(x)

]2
− Bias

[
F̂m,n(x)

]2
= o(m−2)

for m→∞. The claim follows with

MSE∗
[
F̂mopt,n(x)

]
−MSE

[
F̂mopt,n(x)

]
= Var∗

[
F̂m,n(x)

]
− Var

[
F̂m,n(x)

]
+ Bias∗

[
F̂m,n(x)

]2
− Bias

[
F̂m,n(x)

]2
= o(n−1) + o(m−2) = o(n−2)

for n→∞, where the last step holds because of the conditions on m.
Now, we show Eq. (5.34). It holds that

E [f ′n(x)] = E
[
F ′′h,n(x)

]
= E

[
f ′h,n(x)

]
= f ′(x) + o(1)

for n→∞ and hence, for all ε > 0 there exists an N so that for all n > N , we get

|E [f ′n(x)]− f ′(x)| < ε

2 .

Then the triangle inequality yields for n > N that

P(|f ′n(x)− f ′(x)| > ε) ≤ P
(
|E[f ′n(x)]− f ′n(x)| > ε

2

)
= P

(
1
n

∣∣∣∣∣
n∑
i=1

Yni

∣∣∣∣∣ > εh2

2

)

where Yni = K ′
(
x−Xi
h

)
− E

[
K ′
(
x−Xi
h

)]
, i ∈ {1, ..., n}, are independent mean-zero random variables.

It holds that supi ‖Yni‖∞ ≤ ‖K ′‖ where constants are omitted. Now, using [35], it holds for n ≥ 4
that

P(|f ′n(x)− f ′(x)| > ε) ≤ exp

(
− Cε2h4n

‖K ′‖2 + εh2‖K ′‖log(n)log(log(n))

)
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where some constants are omitted again and for h being a multiple of n−1/9 we know that

P(|f ′n(x)− f ′(x)| > ε) ≤ exp

(
− C1ε

2n5/9

log(n)log(log(n))

)
, C1 > 0.

This can be used to show with the Borel-Cantelli theorem that f ′n(x) → f ′(x) a.s. for n → ∞.
End Proof

Proof of Theorem 5.9. This proof follows the proof of Theorem 2 in [25].
It is enough to show that

∣∣∣MSE∗
[
F̂mopt,n(x)

]
−MSE

[
F̂mopt,n(x)

]∣∣∣ can be bounded by a constant
free of n and x because then it follows that the integral exists and hence

MISE∗
[
F̂mopt,n

]
−MISE

[
F̂mopt,n

]
=

1∫
0

MSE∗
[
F̂mopt,n(x)

]
−MSE

[
F̂mopt,n(x)

]
dx

=
1∫

0

o(n−1) dx = o(n−1).

We know from the proof before that
∣∣∣Var∗

[
F̂m,n(x)

]
− Var

[
F̂m,n(x)

]∣∣∣ ≤ 4
n
‖Fn − F‖ ≤

4
n
≤ 4.

With Eq. (5.15) and Eq. (5.14) we know that the absolute values of Bias∗
[
F̂m,n(x)

]
and Bias

[
F̂m,n(x)

]
are both bounded by 1. Summarizing the former results leads to∣∣∣MSE∗

[
F̂mopt,n(x)

]
−MSE

[
F̂mopt,n(x)

]∣∣∣ ≤ 4 + 2 = 6,

which is a constant boundary. End Proof

Proof of Theorem 5.10. As the proofs before, this one follows from [25, Theorem 3].

(a) With the Dvoretzky, Kiefer and Wolfowitz inequality that can be found in [33, p. 59], there
exists a finite positive constant C not depending on F such that

P(‖Fn − F‖ > d) ≤ Ce−2nd2
, d > 0

for all n = 1, 2, ... . It follows that

P(n1/3‖Fn − F‖ > d) ≤ Ce−2d2n1/3

for all d > 0 and with the Borel-Cantelli theorem, it follows that

‖Fn − F‖ = o(n−1/3) a.s..

It holds that
∣∣∣F̂m̃,n(x)−Bm̃(x)

∣∣∣ =
∣∣∣∣∣
m̃∑
k=0

Fn

(
k

m̃

)
Pk,m̃(x)−

m̃∑
k=0

F

(
k

m̃

)
Pk,m̃(x)

∣∣∣∣∣
≤

m̃∑
k=0

∣∣∣∣∣Fn
(
k

m̃

)
− F

(
k

m̃

)∣∣∣∣∣Pk,m̃(x) ≤ ‖Fn − F‖
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and with this ∥∥∥F̂m̃,n −Bm̃

∥∥∥ ≤ ‖Fn − F‖ a.s.,

as the right side does not depend on x.
It is easy to see that

Bm̃(x) =
m̃∑
k=0

F

(
k

m̃

)
Pk,m̃(x) = E

[
F
(
Z

m̃

) ∣∣∣∣An] ,
where An = σ(X1, ...Xn) and Z has the conditional distribution Bin(m̃, x). Using the Taylor
Theorem it holds that

|Bm̃(x)− F (x)| =
∣∣∣∣E [F (Zm̃

) ∣∣∣∣An]− F (x)
∣∣∣∣

=
∣∣∣∣∣E
[
F (x) +

(
Z

m̃
− x

)
f(x) + 1

2

(
Z

m̃
− x

)2
f ′(x)

∣∣∣∣An
]
− F (x)

∣∣∣∣∣
=

∣∣∣∣∣∣f(x)E
Z
m̃
− x

∣∣∣∣An
+ 1

2f
′(x)E

[(
Z

m̃
− x

)2 ∣∣∣∣An
]∣∣∣∣∣∣

≤ 1
2‖f

′‖Var
[
Z

m̃
− x

∣∣∣∣An] = 1
2‖f

′‖ 1
m̃2 m̃x(1− x) ≤ ‖f ′‖

2cnδ+1/2 .

It follows that
‖Bm̃(x)− F (x)‖ ≤ ‖f ′‖

2cnδ+1/2

and in total∥∥∥F̂m̃,n − F∥∥∥ ≤ ∥∥∥F̂m̃,n −Bm̃

∥∥∥+ ‖Bm̃ − F‖

≤ ‖Fn − F‖+ ‖f ′‖
2cnδ+1/2 = o(n−1/3) + o(n−δ−1/2) = o(n−1/3) a.s., (5.35)

which proves the first claim of the first part.
For the second claim, note that

∥∥∥F̂m̃,n − F∥∥∥ ≤ 1 and with the same arguments as in the proof
of Theorem 5.9,

E
∥∥∥F̂m̃,n − F∥∥∥ = o(n−1/3).

From this, the claim follows because

E
[

sup
x∈[0,1]

∣∣∣F̂m̃,n(x)− F (x)
∣∣∣] ≥ E

[
F̂m̃,n(x)− F (x)

]
= Bias

[
F̂m,n(x)

]
.

(b) Note that with Eq. (5.35),

lim sup
n→∞

(
2n

log log n

)1/2 ∥∥∥F̂m̃,n − F∥∥∥
≤ lim sup

n→∞

(
2n

log log n

)1/2

‖Fn − F‖+ lim sup
n→∞

(
2n

log log n

)1/2 ‖f ′‖
2cnδ+1/2 ,

where the first part can be bounded by one because of Eq. (5.4) and the second part converges
to 0.
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(c) Again with Eq. (5.35), it is easy to see that∥∥∥F̂m̃,n − F∥∥∥
‖Fn − F‖

≤ 1 + ‖f ′‖
2cnδ+1/2‖Fn − F‖

a.s..

With Theorem 2.1, we know that

n1/2(Fn(x)− F (x)) D−→ N (0, σ2(x))

and with the continuous mapping theorem, it is easy to see that n1/2‖Fn − F‖ converges
in distribution to a positive-valued random variable. With this, ‖f ′‖

2cnδ+1/2‖Fn−F‖ converges in
distribution to 0 which is a constant so that it also converges in probability. This proves the
claim.

End Proof
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Figure 7: Illustration of the Szasz estimator for n = 20.

6 Szasz Distribution Function Estimation on Half Line
As already mentioned in Section 5, it is not enough to consider distribution functions on [0, 1]. This
is the reason why in this section, we deal with distributions on [0,∞).

Similar to Section 5, let X1, X2, ... be a sequence of i.i.d. random variables with unknown
distribution function F and unknown density function f supported on the interval [0,∞). We assume
that a finite random sample X1, ..., Xn, n ∈ N, is available.

In order to estimate a distribution function on [0,∞), a very similar technique to the Bernstein
estimator is used. Instead of the Bernstein basis polynomials, we here use the functions

Vk,m(x) = e−mx
(mx)k
k! .

The first person to do so was Mirakyan in 1941. In 1950, Szasz wrote the famous paper [36], where
he expanded the Bernstein polynomials to the Szasz-Mirakyan operator

Sm(x) = Sm(u;x) =
∞∑
k=0

u

(
k

m

)
e−mx

(mx)k
k! =

∞∑
k=0

u

(
k

m

)
Vk,m(x)

for a function u being continuous on (0,∞).
He proved the following theorem, which can be found in [36].

Theorem 6.1. If u is a continuous function on (0,∞) with a finite limit at infinity, then as m→∞,

Sm(u;x) =
∞∑
k=0

u

(
k

m

)
e−mx

(mx)k
k! → u(x)

uniformly for x ∈ (0,∞). End Theorem

One can expand Theorem 6.1 to a function u being continuous on [0,∞) with u(0) = 0. Then,
Sm(u; 0) = 0 and with the continuity it holds that Sm(u;x)→ u(x) for x ∈ [0,∞).

Similar to Vitale, this is used to estimate a density function f in [37] with

f̂Sm,n(x) = m

n

∞∑
m=0

B
(n)
k,me

−mx (mx)k
k! ,

where f is supported on [0,∞) and

B
(n)
k,m = Number of Xi in

[
k

m
,
k + 1
m

)
, k ∈ N0.
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Now, we turn our attention to the distribution function. With Theorem 6.1 we know that a
distribution function F on [0,∞) can be represented by

Sm(F ;x) =
∞∑
k=0

F

(
k

m

)
e−mx

(mx)k
k! , (6.1)

which converges to F uniformly for x ∈ [0,∞). This follows from F (0) = 0 and the remark after the
theorem. An idea to estimate this distribution function F on [0,∞) is

F̂ S
m,n(x) =

∞∑
k=0

Fn

(
k

m

)
e−mx

(mx)k
k! .

The intuition is that we replace the unknown distribution function F in the Szasz-Mirakyan operator
Eq. (6.1) by the empirical distribution function (EDF) Fn. We call this estimator F̂ S

m,n the Szasz
estimator. As before, we assume that m = mn depends on n.

Note here that the sum is infinite, which is not a desirable property. The sum cannot be truncated
because then the poisson probabilities do not add up to one anymore. This yields an estimator not
approaching one for x→∞. However, later on we will see that the estimator can easily be rewritten,
so that the sum is finite.

In order to work with this estimator we assume the following.

Assumption 6.1. The distribution function F is continuous. The derivatives f and f ′ are continuous
and bounded on [0,∞). End Assumption

Note that if only the convergence itself is important and we are not interested in deriving the
convergence rate, it is enough to assume these properties on (0,∞).

In the following, we state and prove some important properties of the Szasz estimator.

6.1 General Properties
Here, some important properties of the Szasz estimator F̂ S

m,n(x) are shown. The behavior at the
boundary is very good as can be seen now. We know that

F̂ S
m,n(0) = 0 = F (0) = Sm(F ; 0) and lim

x→∞
F̂ S
m,n(x) = 1 = lim

x→∞
F (x) = lim

x→∞
Sm(F ;x) (6.2)

with probability one for all m. This means that bias and variance in the point x = 0 are zero.
To show that the limit is one, the following functions are needed. The gamma function is defined

as

Γ(z) =
∞∫
0

xz−1e−xdx.

The upper and lower incomplete gamma functions are defined by

Γ(z, s) =
∞∫
s

xz−1e−xdx,

γ(z, s) =
s∫

0

xz−1e−xdx
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respectively. The limit is one since

F̂ S
m,n(x) =

∞∑
k=0

Fn

(
k

m

)
e−mx

(mx)k
k!

= 1
n

n∑
i=1

∞∑
k=0

I{k ≥ mXi}e−mx
(mx)k
k!

= 1
n

n∑
i=1

∞∑
k=dmXie

e−mx
(mx)k
k!

= 1
n

n∑
i=1

P(Y ≥ dmXie)

= 1
n

n∑
i=1

γ(dmXie,mx)
Γ(dmXie)

x→∞−−−→ 1,

where Y ∼ Poi(mx) is a random variable. Since the above representation only contains a finite
number of summands, it can be used to simulate the estimator. Now, it is also possible to illustrate
the estimator, see Figure 7.

The expectation of the Szasz operator is of course given by the expression E[F S
m,n(x)] = Sm(F ;x)

for x ∈ [0,∞).
It holds that F̂m,n(x) yields a proper continuous distribution function with probability one and for

all values of m. The continuity of F̂m,n(x) is obvious. Moreover, it follows from Eq. (6.2) and the
next theorem that 0 ≤ F̂m,n(x) ≤ 1 for x ∈ [0,∞).

Theorem 6.2. The function F̂ S
m,n(x) is increasing in x on [0,∞). End Theorem

Proof. This proof is similar to the one of Theorem 5.1. Let

gn(0) = 0 and gn

(
k

m

)
= Fn

(
k

m

)
− Fn

(
k − 1
m

)
, k = 1, 2, ...,

and

Uk(m,x) =
∞∑
j=k

Vj,m(x) = 1
Γ(k)

mx∫
0

tk−1e−t dt.

The last equation holds because

Uk(m,x) = 1−
k−1∑
j=0

Vj,m(x) = 1− Γ(k,mx)
Γ(k) = γ(k,mx)

Γ(k) .

It follows that F̂ S
m,n can be written as

F̂ S
m,n(x) =

∞∑
k=0

gn

(
k

m

)
Uk(m,x)

because
∞∑
k=0

gn

(
k

m

)
Uk(m,x) =

∞∑
k=1

[
Fn

(
k

m

)
− Fn

(
k − 1
m

)] ∞∑
j=k

Vj,m(x)

=
∞∑
k=1

∞∑
j=k

Fn

(
k

m

)
Vj,m(x)−

∞∑
k=0

∞∑
j=k

Fn

(
k

m

)
Vj,m(x) +

∞∑
k=0

Fn

(
k

m

)
Vk,m(x)

= F̂ S
m,n(x).

The claim follows since gn
(
k
m

)
is non-negative for at least one k and Uk(m,x) is increasing. End Proof
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The next theorem shows that F̂ S
m,n(x) is uniformly strongly consistent.

Theorem 6.3. If F is a continuous probability distribution function on [0,∞), then∥∥∥F̂ S
m,n − F

∥∥∥→ 0 a.s.

for m,n → ∞. We use the notation ‖G‖ = sup
x∈[0,∞)

|G(x)| for a bounded function G on [0,∞).

End Theorem

Proof. The proof follows the proof of Theorem 5.2. It holds that∥∥∥F̂ S
m,n − F

∥∥∥ ≤ ∥∥∥F̂ S
m,n − Sm

∥∥∥+ ‖Sm − F‖

and ∥∥∥F̂ S
m,n − Sm

∥∥∥ = ‖
∞∑
k=0

[Fn(k/m)− F (k/m)]Vk,m‖ ≤ ‖Fn − F‖ · ‖
∞∑
k=0

Vk,m‖ = ‖Fn − F‖.

We know with the Glivenko-Cantelli theorem that ‖Fn − F‖ → 0 a.s. for n→∞ so that the claim
follows with Theorem 6.1. End Proof

In the sequel, the bias and the variance of the estimator are calculated.

6.1.1 Bias and Variance

We now calculate the bias and the variance of the Szasz estimator F̂ S
m,n on the inner interval (0,∞),

as we already know that bias and variance are zero for x = 0. In the following lemma, we first find a
different expression of Sm that is similar to Lemma 5.1.

Lemma 6.1. It holds for x ∈ (0,∞) that

Sm(F ;x) = Sm(x) = F (x) +m−1bS(x) + ox(m−1),

where bS(x) = xf ′(x)
2 . End Lemma

Proof. Following the proof of Lemma 5.1, Taylor’s theorem gives

Sm(x) =
∞∑
k=0

F

(
k

m

)
Vk,m(x)

= F (x) +
∞∑
k=0

(
k

m
− x

)
f(x)Vk,m(x)︸ ︷︷ ︸

S2

+ 1
2f
′(x)

∞∑
k=0

(
k

m
− x

)2

Vk,m(x)︸ ︷︷ ︸
S3

+
∞∑
k=0

o

( k
m
− x

)2
Vk,m(x)

︸ ︷︷ ︸
S4

.

The second summand S2 simplifies to S2 = xf(x)− xf(x) = 0 because for x ∈ [0,∞), it holds that
∞∑
k=0

k

m
Vk,m(x) = 1

m
E[Y ] = x,



6 SZASZ DISTRIBUTION FUNCTION ESTIMATION ON HALF LINE 45

where Y ∼ Poi(mx).
The third part S3 can be written as

∞∑
k=0

(
k

m
− x

)2

Vk,m(x) = 1
m2 Var[Y ] = x

m
. (6.3)

For the last summand S4 we know that

S4 =
∞∑
k=0

o

( k
m
− x

)2
Vk,m(x)

= o

 ∞∑
k=0

(
k

m
− x

)2

Vk,m(x)


= o
(
x

m

)
= ox(m−1)

with Eq. (6.3). End Proof

The following theorem establishes asymptotic expressions for the bias and the variance of the
Szasz estimator F̂ S

m,n as m,n→∞ are established. The statement is similar to Theorem 5.3.

Theorem 6.4. For each x ∈ (0,∞), the bias has the representation

Bias
[
F̂ S
m,n(x)

]
= E

[
F̂m,n

]
− F (x) = m−1xf

′(x)
2 + ox(m−1)

= m−1bS(x) + ox(m−1).

For the variance it holds that

Var
[
F̂ S
m,n(x)

]
= n−1σ2(x)−m−1/2n−1V S(x) + ox(m−1/2n−1),

where
σ2(x) = F (x)(1− F (x)), V S(x) = f(x)

[2x
π

]1/2

and bS(x) is defined as in Lemma 6.1. End Theorem

For the proof, see Proofs Szasz.
In the following, we talk about the asymptotic behavior of the Szasz estimator.

6.2 Asymptotic Behavior
Here, we turn our attention to the asymptotic behavior of the Szasz estimator. The next theorem is
similar to Theorem 5.4 and shows the asymptotic normality of this estimator.

Theorem 6.5. Let x ∈ (0,∞), such that 0 < F (x) < 1. Then, for m,n→∞ it holds that

n1/2
(
F̂ S
m,n(x)− E[F̂ S

m,n(x)]
)

= n1/2
(
F̂ S
m,n(x)− Sm(x)

)
D−→ N

(
0, σ2(x)

)
,

where σ2(x) = F (x)(1− F (x)). End Theorem
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The idea for the proof is to use the central limit theorem for double arrays, see Proofs Szasz for
more details.

Note that as in the settings before, this result holds for all choices of m with m→∞ without any
restrictions.

We now take a closer look at the asymptotic behavior of F̂ S
m,n(x)−F (x), where the behavior of m

is restricted. With Lemma 6.1, it is easy to see that

n1/2
(
F̂ S
m,n(x)− F (x)

)
= n1/2

(
F̂ S
m,n(x)− Sm(x)

)
+m−1n1/2bS(x) + ox(m−1n1/2). (6.4)

This leads directly to the following corollary, which is similar Corollary 5.1 but on (0,∞).

Corollary 6.1. Let m,n→∞. Then, for x ∈ (0,∞) with 0 < F (x) < 1, it holds that

(a) if mn−1/2 →∞, then
n1/2

(
F̂ S
m,n(x)− F (x)

)
D−→ N

(
0, σ2(x)

)
,

(b) if mn−1/2 → c, where c is a positive constant, then

n1/2
(
F̂ S
m,n(x)− F (x)

)
D−→ N

(
c−1bS(x), σ2(x)

)
, (6.5)

where σ2(x) and bS(x) are defined as in Theorem 6.4. End Corollary

Next, we derive the asymptotically optimal m with respect to MSE.

6.3 Asymptotically Optimal m with Respect to MSE
For the estimator F̂ S

m,n, it is also interesting to calculate the MSE

MSE
[
F̂ S
m,n(x)

]
= E

[(
F̂ S
m,n(x)− F (x)

)2
]

and the asymptotically optimal m with respect to MSE. In the point x = 0, the MSE is zero. For
(0,∞), the next theorem shows the MSE.

Theorem 6.6. The MSE of the Szasz estimator is of the form

MSE
[
F̂ S
m,n(x)

]
= Var

[
F̂ S
m,n(x)

]
+ Bias

[
F̂ S
m,n(x)

]2
= n−1σ2(x)−m−1/2n−1V S(x) +m−2

(
bS(x)

)2
+ ox(m−2) + ox(m−1/2n−1) (6.6)

for x ∈ (0,∞). End Theorem

Proof. This follows directly from Theorem 6.4. End Proof

To calculate the optimal m with respect to the MSE, one has to take the derivative with respect
to m of the above equation and set it to zero. This can be done analogously to Eq. (5.10). The next
corollary, which is similar to Corollary 5.2, follows.

Corollary 6.2. Assuming that f(x) 6= 0 and f ′(x) 6= 0, the asymptotically optimal choice of m for
estimating F (x) with respect to MSE is

mopt = n2/3
[

4(bS(x))2

V S(x)

]2/3

. (6.7)
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Therefore, the associated MSE can be written as

MSE
[
F̂ S
mopt,n(x)

]
= n−1σ2(x)− 3

4n
−4/3

[
(V S(x))4

4(bS(x))2

]1/3

︸ ︷︷ ︸
S2

+ox(n−4/3) (6.8)

for x ∈ (0,∞), where σ2(x), bS(x), and V S(x) are defined as in Theorem 6.4. End Corollary

In [37], it is stated that the optimal m to estimate the density function with respect to the MSE is
O(n2/5). We just established that for the distribution function, m ∈ O(n2/3). The same phenomenon
as in Section 5.5 can be observed here. When using m ∈ O(n2/5) for the distribution estimation, it
lies outside of any confidence band of F . This holds because of the fact that from mn−2/5 → c it
follows that mn−1/2 → 0. Together with f ′(x) 6= 0 and Eq. (6.4), it holds that

P
(
n1/2

∣∣∣F̂ S
m,n(x)− F (x)

∣∣∣ > ε
)
→ 1

for all ε > 0. This shows that for this choice of m, F̂ S
m,n(x) does not converge to a limiting distribution

centred at F (x) with proper rescaling. Therefore, F̂ S
m,n lies outside of any confidence band based on

Fn with probability going to one.
As before, we now take a closer look at the asymptotically optimal m with respect to MISE.

6.4 Asymptotically Optimal m with Respect to MISE
We now focus on the MISE, using a different definition than before. As we deal with an infinite integral,
we use a non-negative weight function ω. Here, the weight function is chosen as ω(x) = e−axf(x).
Following [27], the MISE is defined as

MISE
[
F̂ S
m,n

]
= E

 ∞∫
0

(
F̂ S
m,n(x)− F (x)

)2
e−axf(x) dx

 .
Note that MISE

[
F̂ S
m,n

]
cannot be calculated by integrating the expression of MSE

[
F̂ S
m,n

]
obtained in

Eq. (6.6) as the asymptotic expressions depend on x.
The next theorem gives the MISE of the Szasz operator and is similar to Theorem 5.6.

Theorem 6.7. It holds that

MISE
[
F̂ S
m,n

]
= n−1CS

1 −m−1/2n−1CS
2 +m−2CS

3 + o(m−1/2n−1) + o(m−2)

with

CS
1 =

∞∫
0

σ2e−axf(x) dx , CS
2 =

∞∫
0

V S(x)e−axf(x) dx and CS
3 =

∞∫
0

(bS(x))2e−axf(x) dx.

The definitions of σ2(x), bS(x), and V S(x) can be found in Theorem 6.4. End Theorem

For the proof, see Proofs Szasz.
Very similar to Corollary 5.3, the next corollary gives the asymptotically optimal m for estimating

F with respect to MISE.
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Corollary 6.3. It follows that the asymptotically optimal m for estimating F with respect to MISE is

mopt = n2/3
[

4CS
3

CS
2

]2/3

,

which leads to

MISE
[
F̂ S
mopt,n

]
= n−1CS

1 −
3
4n
−4/3

[
(CS

2 )4

4CS
3

]1/3

︸ ︷︷ ︸
S2

+o(n−4/3), (6.9)

the optimal MISE. End Corollary

If we compare the optimal MSE and optimal MISE of the Szasz estimator with those of the EDF,
we observe the same behavior as for the Bernstein estimator. The second summand S2 in Eq. (6.8)
and Eq. (6.9) is always positive so that the Szasz estimator seems to outperform the EDF. This is
proven in the following.

6.5 Deficiency
We now measure the local and global performance of the Szasz estimator with the help of the deficiency.
Let

iSL(n, x) = min
{
k ∈ N : MSE[Fk(x)] ≤ MSE

[
F̂ S
m,n(x)

]}
, and

iSG(n) = min
{
k ∈ N : MISE[Fk] ≤ MISE

[
F̂ S
m,n

]}
be the local and global numbers of observations that Fn needs to perform at least as well as F̂ S

m,n.
The next theorem deals with these quantities and is similar to Theorem 5.7.

Theorem 6.8. Let x ∈ (0,∞) and m,n→∞. If mn−1/2 →∞ it holds that

iSL(n, x) = n[1 + ox(1)] and iSG(n) = n[1 + o(1)].

In addition, the following statements are true.

(a) If mn−2/3 →∞ and mn−2 → 0, then

iSL(n, x)− n = m−1/2n[θS(x) + ox(1)], and
iSG(n)− n = m−1/2n[CS

2 /C
S
1 + o(1)].

(b) If mn−2/3 → c, where c is a positive constant, then

iSL(n, x)− n = n2/3[c−1/2θS(x)− c−2γS(x) + ox(1)], and
iSG(n)− n = n2/3[c−1/2CS

2 /C
S
1 − c−2CS

3 /C
S
1 + o(1)],

where
θS(x) = V S(x)

σ2(x) and γS(x) = (bS(x))2

σ2(x) .

Here, V S(x), σ2(x), and bS(x) are defined as in Theorem 6.4 and CS
1 , C

S
2 , and CS

3 are defined as in
Theorem 6.7. End Theorem

For the proof, see Proofs Szasz.
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This theorem shows under which conditions the Szasz estimator outperforms the EDF. The
asymptotic deficiency goes to infinity as n grows. This means that for increasing n, the number of
extra observations has to increase so that the EDF outperforms the Szasz estimator. Hence, the EDF
is asymptotically deficient to the Szasz estimator.

It is again possible to maximize the deficiency to get an optimal m. The following statement is
similar to Lemma 5.2.

Lemma 6.2. The optimal m with respect to the global deficiency in the case mn−2/3 → c is of the
same order as in Corollary 6.3. End Lemma

Proof. The proof is the same as for Lemma 5.2. In the case mn−2/3 → c, the deficiency iG(n)− n is
asymptotically positive only when

c >

[
CS

3
CS

2

]2/3

= c∗.

Then, the optimal c maximizing g(c) = c−1/2CS
2 /C

S
1 − c−2CS

3 /C
S
1 is

copt =
[

4CS
3

CS
2

]2/3

= 24/3c∗.

Hence, the optimal order of the Szasz estimator with respect to the deficiency satisfies

moptn
−2/3 → copt ⇔ mopt = n2/3[copt + o(1)],

which shows the claim. End Proof
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6.6 Properties of Vk,m

We now present a few properties of Vk,m that are needed for the proofs. The following lemma is
similar to Lemma 5.3.
Lemma 6.3. Define

LSm(x) =
∞∑
k=0

V 2
k,m(x)

and
RS
j,m(x) = m−j

∑∑
0≤k<l≤∞

(k −mx)jVk,m(x)Vl,m(x)

for j ∈ {0, 1, 2}, and Vk,m(x) = e−mx (mx)k
k! . It trivially holds that 0 ≤ LSm(x) ≤ 1 for x ∈ [0,∞). In

addition, the following properties hold. Let g be a continuous and bounded function on [0,∞). This
leads to
(a) LSm(0) = 1 and lim

x→∞
LSm(x) = 0,

(b) RS
j,m(0) = 0 for j ∈ {0, 1, 2},

(c) 0 ≤ RS
2,m(x) ≤ x

m
for x ∈ (0,∞),

(d) LSm(x) = m−1/2
[
(4πx)−1/2 + ox(1)

]
for x ∈ (0,∞),

(e) RS
1,m(x) = m−1/2

[
−
√
x√
2π + ox(1)

]
for x ∈ (0,∞),

(f) m1/2
∞∫
0

LSm(x)e−ax dx =
∞∫
0

(4πx)−1/2e−ax dx+ o(1) = 1
2
√
a

+ o(1) for a ∈ (0,∞),

(g) m1/2
∞∫
0

xLSm(x)e−ax dx =
∞∫
0

x1/2(4π)−1/2e−ax dx+ o(1) = 1
4a3/2 + o(1) for a ∈ (0,∞),

(h) m1/2
∞∫
0

g(x)RS
1,m(x)e−ax dx = −

∞∫
0

g(x)
√
x√
2π
e−ax dx+ o(1) for a ∈ (0,∞).

End Lemma

Proof. The proof is similar to the proof of Lemma 5.3.
(a) LSm(0) = 1 is clear. Using the mode of the poisson distribution it holds for the limit that

lim
x→∞

LSm(x) ≤ lim
x→∞

max
k

Vk,m
∞∑
k=0

Vk,m = lim
x→∞

P (Y = bmxc)) = 0,

where Y ∼ Poi(mx).

(b) RS
j,m(0) = 0 holds trivially.

(c) The non-negativity is clear. For the other inequality, it holds that

RS
2,m(x) ≤ m−2

∞∑
k=0

∞∑
l=0

(k −mx)2Vk,m(x)Vl,m(x)

= m−2
∞∑
k=0

(k −mx)2Vk,m(x) = m−2 Var[Y ] = x

m
,

where Y ∼ Poi(mx).
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(d) Let Ui,Wj, i, j ∈ {1, ...,m}, be i.i.d. random variables with distribution Poi(x), hence,

P(U1 = k) = e−x
xk

k! .

Define
Ri = Ui −Wi√

2x
.

Then, we know that E[Ri] = 0,Var[Ri] = 1 and Ri has a lattice distribution with span

h = 1√
2x
.

Note that with the independence it holds that

P
(

m∑
i=1

Ri = 0
)

= P
(

m∑
i=1

Ui =
m∑
i=1

Wi

)

= P
(

m∑
i=1

Ui =
m∑
i=1

Wi = 0
)

+ P
(

m∑
i=1

Ui =
m∑
i=1

Wi = 1
)

+ ...

=
∞∑
k=0

V 2
k,m(x).

With [29, XV.5, p. 517, Theorem 3], we get that
√
m

h

∞∑
k=0

V 2
k,m(x)− 1√

2π
→ 0

and it follows that √
4πmx

∞∑
k=0

V 2
k,m(x)→ 1,

from which the claim follows.

(e) With [38, Eq. (2.2), Example 2], we know that for a random variable Y ∼ Poi(mx),
∞∑

l=k+1
Vl,m(z) = 1− P(Y ≤ k) = 1− Φ(z + ∆2(k)) +O((mx)−3/2),

where z = (k −mx)/
√
mx and

∆2(k) = (mx)−1/2 1
6(4− z2) + (mx)−1 1

72z(5z2 − 14).

Expandig Φ(t) about t = 0 leads to

Φ(t) = 1
2 + t√

2π
+ o(|t|)

and therefore
∞∑

l=k+1
Vl,m(z) = 1

2 −
k −mx√

2πmx
− ∆2(k)√

2π
+ ox

(∣∣∣∣∣k −mx√
mx

+ ∆2(k)
∣∣∣∣∣
)

+O
(
(mx)−3/2

)
.

It holds that
∆2(k) = Ox(m1/2)
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and hence,

RS
1,m(x) = m−1

∞∑
k=0

(k −mx)Vk,m(x)
 ∞∑
l=k+1

Vl,m(x)


= m−1
∞∑
k=0

(k −mx)Vk,m(x)
[

1
2 −

k −mx√
2πmx

+Ox(m1/2)

+ox
(∣∣∣∣∣ k −mx√

2πmx
+Ox(m1/2)

∣∣∣∣∣
)

+O(m−3/2)
]

= −m−1
∞∑
k=0

(k −mx)2 Vk,m(x)√
2πmx

+m−1
∞∑
k=0

(k −mx)Vk,m(x)
[
ox

(∣∣∣∣∣ k −mx√
2πmx

+Ox(m1/2)
∣∣∣∣∣
)]

= − mx

m
√

2πmx
+ ox

(
1

m
√

2πmx

∞∑
k=0

(k −mx)2Vk,m(x)
)

= m−1/2
(
−
√
x√
2π

+ ox(1)
)
,

where we used that
∞∑
k=0

(k −mx)Vk,m(x) = 0.

(f) The goal is to calculate

m1/2
∞∫
0

LSm(x)e−ax dx = m1/2
∞∫
0

∞∑
k=0

V 2
k,m(x)e−ax dx = m1/2

∞∑
k=0

∞∫
0

V 2
k,m(x)e−ax dx.

For the integral we know that
∞∫
0

V 2
k,m(x)e−ax dx =

∞∫
0

(
e−mx

(mx)k
k!

)2

e−ax dx

= m2k

(k!)2

∞∫
0

x2ke−(2m+a)x dx

= m2k

(k!)2(2m+ a)2k+1

∞∫
0

y2ke−ydy = m2k

(k!)2(2m+ a)2k+1 Γ(2k + 1).

Calculating the sum leads to

m1/2
∞∑
k=0

m2k

(k!)2(2m+ a)2k+1 Γ(2k + 1) = m1/2
∞∑
k=0

( 1
2m+ a

)2k+1
m2k

(
2k
k

)

=
√

m

a(a+ 4m)

= 1
2
√
a

+ 1√
a

[√
m

a+ 4m −
1
2

]
= 1

2
√
a

+ o(1).

It holds that ∞∫
0

(4πx)−1/2e−ax dx = 1
2
√
a
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and hence,

m1/2
∞∫
0

LSm(x)e−ax dx = 1
2
√
a

+ o(1) =
∞∫
0

(4πx)−1/2e−ax dx+ o(1).

(g) Similar to (f), we get
∞∫
0

xV 2
k,m(x)e−ax dx = m2k

(k!)2(2m+ a)2k+2 Γ(2k + 2),

leading to

m1/2
∞∑
k=0

m2k

(k!)2(2m+ a)2k+2 Γ(2k + 2) =
√
m(a+ 2m)

(a(a+ 4m))3/2

= 1
4a3/2 + 1

a3/2

[√
m(a+ 2m)

(a+ 4m)3/2 −
1
4

]

= 1
4a3/2 + o(1).

(h) Define GS
m(x) = m1/2RS

1,m(x)e−ax and GS(x) = −
√
x√
2πe
−ax. Then with part (e) we know that

GS
m(x) m→∞−−−→ GS(x).

Note that

R1,m(x) = m−1e−2mx ∑∑
0≤k<l≤∞

(k −mx)(mx)k+l

k!l!

= m−1e−2mx
∞∑
k=0

(k −mx)(mx)k
k!

 ∞∑
l=k+1

(mx)l
l!


= m−1e−mx

∞∑
k=0

(k −mx)(mx)k
k!

(
1− Γ(1 + k,mx)

Γ(1 + k)

)

= −m−1e−mx
∞∑
k=0

(k −mx)(mx)k
k!

Γ(1 + k,mx)
Γ(1 + k) .

Using Γ(1+k,mx)
Γ(1+k) = P(Y ≤ k) ∈ [0, 1] for Y ∼ Poi(mx), the above calculation yields

|GS
m(x)| ≤ m−1/2e−(a+m)x

∞∑
k=0
|k −mx|(mx)k

k!
Γ(1 + k,mx)

Γ(1 + k)

≤ m−1/2e−ax
∞∑
k=0
|k −mx|Vk,m(x)

≤ m−1/2e−ax
( ∞∑
k=0

(k −mx)2Vk,m(x)
)1/2

= m−1/2e−ax
√
mx =

√
xe−ax.

This is integrable since
∞∫
0

√
xe−ax dx =

√
π

2a3/2 .
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With the dominated convergence theorem it follows that
∞∫
0

|GS
m(x)−GS(x)| dx = o(1)

and ∣∣∣∣∣∣
∞∫
0

g(x)GS
m(x) dx−

∞∫
0

g(x)GS(x) dx

∣∣∣∣∣∣ ≤ sup
x∈[0,∞)

|g(x)|
∞∫
0

|GS
m(x)−GS(x)| dx = o(1),

as g is bounded.

End Proof
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6.7 Proofs Szasz
Proof of Theorem 6.4. This proof is similar to that of Theorem 5.3. The bias follows directly
from Lemma 6.1. For the proof of the variance, let

Y S
i,m =

∞∑
k=0

∆i

(
k

m

)
Vk,m(x),

where
∆i(x) = I(Xi ≤ x)− F (x)

for x ∈ [0,∞). We know that ∆1, ...,∆n are i.i.d. with mean zero. Hence,

F̂ S
m,n(x)− Sm(x) =

∞∑
k=0

[
Fn

(
k

m

)
− F

(
k

m

)]
Vk,m(x)

= 1
n

∞∑
k=0

n∑
i=1

[
I
(
Xi ≤

k

m

)
− F

(
k

m

)]
Vk,m(x)

= 1
n

n∑
i=1

Y S
i,m. (6.10)

Note that Y S
i,m <∞ a.s. and that, for given m, Y S

1,m, ..., Y
S
n,m are i.i.d. with mean zero. It follows with

the same arguments as in the proof of Theorem 5.3 that

Var
[
F̂ S
m,n(x)

]
= 1
n
E[(Y S

1,m)2] (6.11)

and for x, y ∈ [0,∞) that

E[∆1(x)∆1(y)] = min(F (x), F (y))− F (x)F (y),

from which we get that

E[(Y S
1,m)2] =

∞∑
k=0

F

(
k

m

)
V 2
k,m(x) + 2

∑∑
0≤k<l≤∞

F

(
k

m

)
Vk,m(x)Vl,m(x)− S2

m(x). (6.12)

We want to find an asymptotic expression for the previous expression. For the first part of Eq. (6.12),
write

F

(
k

m

)
= F (x) +O

(∣∣∣∣∣ km − x
∣∣∣∣∣
)

from which follows that
∞∑
k=0

F

(
k

m

)
V 2
k,m(x) = F (x)LSm(x) +O(ISm(x)), (6.13)

where
ISm(x) =

∞∑
k=0

∣∣∣∣∣ km − x
∣∣∣∣∣V 2

k,m(x)

and LSm is defined as in Lemma 6.3. For the second term of Eq. (6.12), use Taylor’s theorem to get

F

(
k

m

)
= F (x) +

(
k

m
− x

)
f(x) +O

( k
m
− x

)2
 .
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We know that
RS

0,m = 1
2[1− LSm(x)]

because

1 =
∞∑
k=0

∞∑
l=0

Vk,m(x)Vl,m(x) = 2
∑∑

0≤k<l≤∞
Vk,m(x)Vl,m(x) +

∞∑
k=0

V 2
k,m(x) = 2RS

0,m(x) + LSm(x).

Now, Lemma 6.3, which states that RS
2,m(x) ≤ x

m
, leads to

∑∑
0≤k<l≤∞

F

(
k

m

)
Vk,m(x)Vl,m(x) = F (x)RS

0,m(x) + f(x)RS
1,m(x) +O

(
RS

2,m(x)
)

= 1
2F (x)(1− LSm(x)) + f(x)RS

1,m(x) +Ox(m−1). (6.14)

With Lemma 6.1, we get that

F (x)− S2
m(x) = F (x)−

(
F (x) +m−1xf

′(x)
2 +Ox(m−1)

)2

= F (x)−
(
F (x) +Ox(m−1)

)2

= F (x)− F (x)2 − 2F (x)Ox(m−1)−Ox(m−1)2

= σ2(x) +Ox(m−1)

and using Eq. (6.13) and Eq. (6.14) for Eq. (6.12), it holds that

E[(Y S
1,m)2] = F (x)LSm(x) +O(ISm(x)) + F (x)(1− LSm(x)) + 2f(x)RS

1,m(x) +Ox(m−1)− S2
m(x)

= σ2(x) + 2f(x)RS
1,m(x) +O(ISm(x)) +Ox(m−1). (6.15)

Note that Cauchy-Schwarz can be applied here so that with Lemma 6.3 (d), we get that

ISm(x) ≤
 ∞∑
k=0

(
k

m
− x

)2

Vk,m(x)
1/2 [

m∑
k=0

V 3
k,m(x)

]1/2

≤
[
T S2,m
m2 L

S
m(x)

]1/2

≤
[
x

m
LSm(x)

]1/2

≤
[
x

m
m−1/2

[
(4πx)−1/2 + ox(1)

]]1/2

= ox(m−3/4), (6.16)

where T S2,m(x) =
∞∑
k=0

(k −mx)2 Vk,m(x) = mx for x ∈ [0,∞). Now with Lemma 6.3 (e), it holds that

E[(Y S
1,m)2] = σ2(x) + 2f(x)RS

1,m(x) +O(ISm(x)) +Ox(m−1)

= σ2(x) + 2f(x)m−1/2
[
−
√
x√
2π

+ ox(1)
]

+O(ISm(x)) +Ox(m−1)

= σ2(x)−m−1/2
√

2xf(x)√
π

+ ox(m−1/2). (6.17)
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With Eq. (6.11), the desired claim

Var
[
F̂ S
m,n(x)

]
= n−1σ2(x)−m−1/2n−1

√
2xf(x)√
π

+ ox(m−1/2n−1) (6.18)

holds. End Proof

Proof of Theorem 6.5. This proof follows the proof of Theorem 5.4. For fixed m we know from
the proof of Theorem 5.3 that

F̂ S
m,n(x)− Sm(x) = 1

n

n∑
i=1

Y S
i,m,

where the Y S
i,m are i.i.d. random variables with mean 0. Define (γSm)2 = E[(Y S

1,m)2]. We now use the
central limit theorem for double arrays (see [33], Section 1.9.3) to show the claim. In the proof of
Theorem 5.4, it was already explained why it is enough to show

E[I(|Y S
1,m| > ε

√
nγSm)(Y S

1,m)2]
(γSm)2 → 0 for n→∞ and all ε > 0,

because with Eq. (6.17), it holds that γsm → σ(x).
We know that

|Y S
1,m| ≤ 1

which leads with
I
(
|Y S

1,m| > ε
√
nγSm

)
≤ I(1 > ε

√
nγSm)→ 0

to the desired result. End Proof

Proof of Theorem 6.7. This proof follows the proof of Theorem 5.6. With a part of Eq. (6.16),
Jensen’s inequality for expected values, and Lemma 6.3 (g) leads to

∞∫
0

ISm(x)e−axf(x) dx ≤
 1
m

∞∫
0

xLSm(x)e−2axf(x) dx
1/2

≤

‖f‖
m

∞∫
0

xLSm(x)e−2ax dx
1/2

=
[
‖f‖
m3/2

(
1

4(2a)3/2 + o(1)
)]1/2

= O(m−3/4).

Using Eq. (6.10),Lemma 6.1, and Eq. (6.15) leads to

MISE
[
F̂ S
m,n

]
=
∞∫
0

[
Var

[
F̂ S
m,n(x)

]
+ Bias

[
F̂ S
m,n(x)

]2]
e−axf(x) dx

= 1
n

∞∫
0

[
σ2(x) + 2f(x)RS

1,m(x) +O(ISm(x)) +O
(
x

m

)]
e−axf(x) dx

+
∞∫
0

[
m−1bS(x) + o

(
x

m

)]2
e−axf(x) dx

= 1
n

∞∫
0

[
σ2(x) + 2f(x)RS

1,m(x)
]
e−axf(x) dx+

∞∫
0

m−2(bS(x))2e−axf(x) dx

+O(m−3/4n−1) + o(m−2).
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Now, with 2f(x)
√
x√
2π = V S(x) and Lemma 6.3 (h), we get

MISE
[
F̂ S
m,n

]
= n−1CS

1 − n−1m−1/2CS
2 +m−2CS

3 + o(m−2) + o(m−1/2n−1).

The integrals CS
i exist for i = 1, 2, 3 because f and (f ′)2 are positive and bounded on [0,∞). It

follows that

CS
1 =

∞∫
0

F (x)(1− F (x))e−axf(x) dx ≤ ‖f‖
∞∫
0

e−ax dx = ‖f‖
a

<∞,

CS
2 =

∞∫
0

f(x)
[2x
π

]1/2
e−axf(x) dx ≤

√
2‖f‖2
√
π

∞∫
0

√
xe−ax dx = ‖f‖2

√
2a3/2

<∞,

and

CS
3 =

∞∫
0

(
xf ′(x)

2

)2

e−axf(x) dx ≤ ‖(f
′)2‖ · ‖f‖

4

∞∫
0

x2e−ax dx = ‖f
′‖2‖f‖
2a3 <∞,

where the norm is again defined by ‖g‖ = sup
x∈[0,∞)

|g(x)| for a bounded g : [0,∞)→ R. End Proof

Proof of Theorem 6.8. This proof follows the proof of Theorem 5.7. We only present the proof
for the local part. For simplicity, write i(n) = iSL(n, x).

By the definition of i(n) we know that lim
n→∞

i(n) =∞ and

MSE
[
Fi(n)(x)

]
≤ MSE

[
F̂ S
m,n(x)

]
≤ MSE

[
Fi(n)−1(x)

]
⇔ i(n)−1σ2(x) ≤ n−1σ2(x)−m−1/2n−1V S(x) +m−2(bS(x))2

+ ox(m−1/2n−1) + ox(m−2) ≤ (i(n)− 1)−1σ2(x)

⇔ 1 ≤ i(n)
n

[
1−m−1/2θS(x) +m−2nγS(x) + ox(m−1/2) + ox(m−2n)

]
≤ i(n)
i(n)− 1 , (6.19)

where θS(x) = V S(x)
σ2(x) and γS(x) = (bS(x))2

σ2(x) . Now, if mn−1/2 → ∞ (⇔ m−2n → 0), taking the limit
n→∞ leads to

i(n)
n
→ 1, (6.20)

so that
i(n) = n+ ox(n) = n(1 + ox(1)).

(a) We assume that mn−2/3 →∞ and mn−2 → 0. Rewrite Eq. (6.19) as

m−1/2n−1θS(x) ≤ A1,n +m−2γS(x) + ox(m−1/2n−1) + ox(m−2) ≤ m−1/2n−1θS(x) + A2,n

⇔ θS(x) ≤ m1/2nA1,n +m−3/2nγS(x) + ox(1) + ox(m−3/2n) ≤ θS(x) +m1/2nA2,n, (6.21)

where
A1,n = 1

n
− 1
i(n) and A2,n = 1

i(n)− 1 −
1
i(n) .

It holds that

lim
n→∞

m1/2nA1,n =
(

lim
n→∞

i(n)− n
m−1/2n

)(
lim
n→∞

n

i(n)

)
= lim

n→∞

i(n)− n
m−1/2n

,
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and because m1/2n−1 = (mn−2)1/2 → 0,

lim
n→∞

m1/2nA2,n =
(

lim
n→∞

m1/2n−1
)(

lim
n→∞

n

i(n)

)(
lim
n→∞

n

i(n)− 1

)
= 0.

We also know that m−3/2n = (mn−2/3)−3/2 → 0, hence

lim
n→∞

i(n)− n
m−1/2n

= θS(x)⇒ i(n)− n
m−1/2n

= θS(x) + ox(1)

follows from Eq. (6.21).

(b) The second part can be proven with similar arguments. If mn−2/3 → c it also holds that
m−2n = (mn−2/3)−3/2m−1/2 → 0 and m1/2n−1 = (mn−2/3)1/2n−2/3 → 0 so that we get that

lim
n→∞

i(n)− n
m−1/2n

= θS(x)− c−3/2γS(x)

and with

lim
n→∞

i(n)− n
m−1/2n

=
(

lim
n→∞

i(n)− n
n2/3

)(
lim
n→∞

m1/2n−1/3
)

= c1/2 lim
n→∞

i(n)− n
n2/3

the claim
c1/2 i(n)− n

n2/3 = θS(x)− c−3/2γS(x) + ox(1)

holds.

The global part can be proved analogously to the proof of Theorem 5.7 with θ̃S = CS2
CS1

and

γ̃S = CS3
CS1

. End Proof
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Figure 8: The normalized Hermite functions for k ∈ {0, ..., 5}.

7 Hermite Distribution Function Estimation
In this section, let X1, X2, ... again be a sequence of i.i.d. random variables with unknown distribution
function F and unknown density function f . We receive a finite random sample X1, ..., Xn, n ∈ N, to
estimate the distribution function F with the so-called Hermite polynomials that are introduced in
Section 7.1.

We first do this for f supported on [0,∞) in Section 7.3, following [39] and then for (−∞,∞) in
Section 7.4, following [40].

During this section, we want the following assumption to hold.

Assumption 7.1. The density function f is in L2. End Assumption

Note that for many results to hold, the additional assumption of
(
x− d

dx

)r
f ∈ L2 where r > 1

needs to be fulfilled. This assures that the function f is rapidly decreasing, which makes sense as the
Hermite functions share this property, see [41].

One result will be that the proposed estimator is inferior to the kernel distribution estimator
in terms of the asymptotic rate of convergence but there is one clear advantage. For the empirical
distribution function (EDF) and the kernel estimator, the sequential (online) estimation (i.e., to
process the observations sequentially so that the storage of all observations is not necessary) of the
distribution function is only possible at a particular x (see for example [42]). For the estimator
introduced in this section, the sequential estimation is possible at an arbitrary x. In addition, the time
that it takes to update the estimate is O(1) and hence, does not grow with the number of samples.

Throughout this section we sometimes use the notation a(x) ∼ b(x), x→∞, which means that

lim
x→∞

a(x)
b(x) = 1.

We now introduce the Hermite polynomials.

7.1 Hermite Polynomials
The so-called Hermite polynomials Hk are defined by

Hk(x) = (−1)kex2 dk

dxk e
−x2

.
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An explicit expression for the polynomials is

Hk(x) = k!
bk/2c∑
m=0

(−1)m
m!(k − 2m)!(2x)k−2m.

These polynomials are orthogonal under e−x2 , which means that
∞∫
−∞

e−x
2
Hk(x)Hl(x) dx =

√
π2kk!δkl,

where δkl is the Kronecker delta function. The normalized Hermite functions are defined by

hk(x) = (2kk!
√
π)−1/2e

−x2
2 Hk(x). (7.1)

They form an orthonormal basis for L2 and hence, fulfill
∞∫
−∞

hk(x)hl(x) dx = δkl.

The normalized Hermite functions are illustrated in Figure 8 for k ∈ {0, ..., 5}.
The Hermite polynomials satisfy the inequality

(2kk!
√
π)−1/2|Hk(x))|e

−x2
2 ≤ ca(k + 1)−1/4, |x| ≤ a

for some constant ca and non-negative a and the inequality

(2kk!
√
π)−1/2|x−1/3Hk(x))|e

−x2
2 ≤ db(k + 1)−1/4, |x| ≥ b

for some constant db and positive b (see [43, Theorem 8.91.3], used in [44, p. 176, p. 177]).
In this section, we use the Gauss-Hermite expansion to estimate the density function and the

distribution function.

7.2 Gauss-Hermite Expansion
The Gauss-Hermite expansion is for example defined in [45]. It has good convergence properties and
is robust to outliers, see [46]. In the following, we show the necessary steps to obtain this expansion.
We define

Z(x) = 1√
2π
e
−x2

2 ,

αk =
√
π

2k−1k! ,

and

ak =
∞∫
−∞

f(x)hk(x) dx.

As already mentioned before, the normalized Hermite functions hk, defined in Eq. (7.1), form an
orthonormal basis for L2. Using this result, it makes sense that for f ∈ L2,

f(x) =
∞∑
k=0

akhk(x) (7.2)

=
∞∑
k=0

√
αk · akHk(x)Z(x). (7.3)
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From now on, the expressions in Eq. (7.2) and Eq. (7.3) are used interchangeably and are called
the Gauss-Hermite expansion. The equality of the two expressions holds because of

∞∑
k=0

akhk(x) =
∞∑
k=0

ak(2kk!
√
π)−1/2e

−x2
2 Hk(x)

=
∞∑
k=0

√ √
π

2k−1k!ak
1√
2π
e
−x2

2 Hk(x)

=
∞∑
k=0

√
αk · ak ·Hk(x)Z(x).

The expression Eq. (7.2) shows that the density of the normal distribution can be estimated with
only the first summand a0h0. For the standard normal distribution, the first summand is of the form

a0h0(x) = 1
π1/4

∞∫
−∞

1√
2π
e−x

2 dx · 1
π1/4 e

−x2/2 = 1√
2π
e−x

2/2.

All the other summands are zero in this case.
The infinite sum in Eq. (7.2) and Eq. (7.3) is not desirable. A truncation of the sum leads to the

N + 1 truncated expansion

fN(x) =
N∑
k=0

akhk(x)

=
N∑
k=0

√
αk · akHk(x)Z(x).

The coefficients ak are chosen so that the L2-distance between f and fN is minimized. A detailed
explanation can be found in [47, 2.3 Orthogonal sequences].

In the following, if N = N(n) depends on n, which is always the case unless explicitly mentioned,
we assume that N →∞ for n→∞.

In the following, we deal with Hermite density estimation.
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Figure 9: Illustration of the Hermite density estimator for different parameters.

7.2.1 Density Estimation

With the expressions defined above we now define a density estimator. The coefficients ak can also be
written as ak = E[hk(Y )], where Y is a random variable with density function f . Following [39], ak
can be estimated by

âk = 1
n

n∑
i=1

hk(Xi) (7.4)

with the law of large numbers. Therefore, the above mentioned density estimator is defined as

f̂N,n(x) =
N∑
k=0

âkhk(x)

=
N∑
k=0

√
αk · âkHk(x)Z(x). (7.5)

This estimator is illustrated in Figure 9.
The next step is to calculate the MISE. With Parseval’s identity and the fact that the functions

hk form an orthonormal basis for L2, we obtain

MISE
[
f̂N,n

]
= E

 ∞∫
−∞

(f̂N,n(x)− f(x))2 dx


= E
[
‖f̂N,n − f‖2

L2

]
= E

[ ∞∑
k=0
| < f̂N,n − f, hk > |2

]

= E
[
N∑
k=0

(âk − ak)2
]

︸ ︷︷ ︸
S1

+
∞∑

k=N+1
a2
k︸ ︷︷ ︸

S2

(7.6)



7 HERMITE DISTRIBUTION FUNCTION ESTIMATION 64

because

< f̂N,n − f, hk > =
∞∫
−∞

[
N∑
l=0

âlhl(x)−
∞∑
r=0

arhr(x)
]
hk(x) dx

=
N∑
l=0

âl

∞∫
−∞

hl(x)hk(x) dx−
∞∑
r=0

ar

∞∫
−∞

hr(x)hk(x) dx

=

âk − ak, if k ≤ N,

−ak, if k > N.

The first term S1 in Eq. (7.6) is the integrated variance term that gives the error that we get from
using the estimates âk instead of ak. The second term S2 in Eq. (7.6) is the integrated squared bias
term that represents the error due to truncation. In [44, Theorem 1], the MISE consistency of the
density estimator was proven under the condition N5/6/n→ 0.

For many density functions, the Gauss-Hermite estimation yields good estimates, see [46, p. 208].
The downside is that through the truncation, the results can get negative for certain values of x.
Furthermore, for distributions that deviate strongly from the Gaussian distribution, it might be
necessary to choose large N to get a satisfactory fit.

Note that it is not possible to estimate the distribution function in the same way as the density
function because F is not in L2. This is easy to see with

∞∫
−∞

F 2(x) dx ≤
∞∫
−∞

F (x) dx,

which is not bounded. Hence, the distribution function has to be estimated in a different way that is
explained in the next sections for the real half line and the real line.

Before doing so, the next section is a small excursion that deals with a way to estimate the
distribution function with Hermite polynomials that is not the focus of this section. The approach is
needed later in Lemma 7.9. It is similar to the Gauss-Hermite estimator.

7.2.2 Gram-Charlier Series of Type A

Here, we quickly define the Gram-Charlier Series of Type A that can be used to estimate the
distribution function and the density function, following [40]. Afterwards, we turn our attention to
the Gauss-Hermite expansion again that is the topic of the rest of Section 7.

We first need to define the Chebyshev-Hermite polynomials

Hek(x) = 2− k2Hk

(
x√
2

)

and the function
Z(x) = 1√

2π
e−

x2
2 .

Now, if a density function f can formally be expanded as

f(x) =
∞∑
k=0

ckHek(x)Z(x)

with

ck = 1
k!

∞∫
−∞

f(x)Hek(x) dx,
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this can be used to estimate the density function and hence, also the distribution function. The
truncated version has the form

f(x) =
N∑
k=0

ckHek(x)Z(x)

and following [39], the distribution function can be estimated by

F̂GC
N,n(x) =

N∑
k=0

ĉk

x∫
−∞

Hek(x)Z(y)dy, (7.7)

where
ĉk = 1

k! · n

n∑
i=1

Hek(Xi).

This is the end of the excursion.
The next section deals with the Hermite distribution function estimator on the real half line.

7.3 The Distribution Function Estimator on the Real Half Line
We now consider distributions supported on [0,∞) and introduce the Gauss-Hermite distribution
estimator on the real half line. Furthermore, we calculate the MSE and MISE of the Gauss-Hermite
distribution estimator. Among other things, we will establish that they both directly depend on
MISE

[
f̂N,n

]
.

Two examples for distributions fitting here are the chi-squared distribution and the exponential
distribution. They are both challenging for the Gauss-Hermite estimator as they considerably differ
from the normal distribution for certain parameters. The exponential distribution is even more
challenging as the mode is zero.

In the case of the real half line, following [39], the Gauss-Hermite distribution estimator is
calculated by

F̂H
N,n(x) =

x∫
0

f̂N,n(t) dt,

which leads to

F̂H
N,n(x) =

x∫
0

f̂N,n(t) dt

=
N∑
k=0

√
αkâk

x∫
0

Hk(t)Z(t) dt

=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2k−2m

m!(k − 2m)!
√

2π

x∫
0

tk−2me
−t2

2 dt

=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2k−2m

m!(k − 2m)!
√

2π
2 k

2−m−
1
2γ

(
−m+ k

2 + 1
2 ,
x2

2

)
,

where γ is the lower incomplete gamma function. To summarize, the Gauss-Hermite distribution
function estimator on [0,∞) has the form

F̂H
N,n(x) =

N∑
k=0

âk
√
k!
bk/2c∑
m=0

(−1)m2k−3m− 1
2γ
(
−m+ k

2 + 1
2 ,

x2

2

)
m!(k − 2m)!π 1

4
, x ≥ 0. (7.8)

We now give the asymptotic bias and variance of the Gauss-Hermite distribution estimator.
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7.3.1 Bias and Variance

The next lemma gives the asymptotic behavior of the variance.

Lemma 7.1. Suppose f is supported on [0,∞) and E[|X|2/3] < ∞ for a random variable X with
density function f ∈ L2. Then, we have that

E
[∣∣∣F̂H

N,n(x)− E
[
F̂H
N,n(x)

]∣∣∣2] = Ox

(
N3/2

n

)

uniformly in x as n→∞. In addition,

E
[∣∣∣F̂H

N,n(x)− E
[
F̂H
N,n(x)

]∣∣∣2]→ 0

for N3/2(n)
n
→ 0. End Lemma

For the proof, see Proofs Hermite.
Now, the squared bias can be calculated.

Lemma 7.2. Suppose f ∈ L2 is supported on [0,∞) and E[|X|2/3] < ∞ for a random variable X
with density function f . Then,∣∣∣E [F̂H

N,n(x)
]
− F (x)

∣∣∣2 = Ox

(
N−r+1/2

)
,

if r ≥ 1 derivatives of f exist and
(
x− d

dx

)r
f ∈ L2. End Lemma

For the proof, see Proofs Hermite.
It would be possible to calculate the MSE and MISE with Lemma 7.1 and Lemma 7.2 but this

would lead to worse results than the following. In the next section, we focus on the MSE of the
Gauss-Hermite distribution estimator. One result is that the estimator is MSE consistent.

7.3.2 MSE

The next lemma follows from [39, Proposition 1].

Lemma 7.3. If f is supported on [0,∞) and f ∈ L2, then

MSE
[
F̂H
N,n(x)

]
= E

∣∣∣F̂H
N,n(x)− F (x)

∣∣∣2 ≤ xMISE
[
f̂N,n

]
for fixed x. End Lemma

Proof. As we are on the real half line, it holds that
∣∣∣F̂H
N,n(x)− F (x)

∣∣∣ =

∣∣∣∣∣∣
x∫

0

[
f̂N,n(y)− f(y)

]
dy

∣∣∣∣∣∣ .
With the Cauchy-Schwarz inequality we know that

∣∣∣F̂H
N,n(x)− F (x)

∣∣∣2 ≤
 x∫

0

∣∣∣f̂N,n(y)− f(y)
∣∣∣2 dy

 x∫
0

1dy


= x

 x∫
0

∣∣∣f̂N,n(y)− f(y)
∣∣∣2 dy


≤ x

 ∞∫
0

∣∣∣f̂N,n(y)− f(y)
∣∣∣2 dy

 .
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It follows that

E
[∣∣∣F̂H

N,n(x)− F (x)
∣∣∣2] ≤ xE

 ∞∫
0

∣∣∣f̂N,n(y)− f(y)
∣∣∣2 dy


≤ xE

 ∞∫
−∞

∣∣∣f̂N,n(y)− f(y)
∣∣∣2 dy

 = xMISE
[
f̂N,n

]

holds. End Proof

With [40], we also know that in the case where f has support [a, b], the very similar result

E
[∣∣∣F̂H

N,n(x)− F (x)
∣∣∣2] ≤ (x− a) MISE

[
f̂N,n

]

holds. The proof is the same as the proof for Lemma 7.3 with
x∫
a

1dy = x− a.

The next theorem follows from [39, Theorem 1] and shows the consistency with respect to MSE.

Theorem 7.1. Suppose the support of f is [0,∞) and f ∈ L2. Then, we have that

E
[∣∣∣F̂H

N,n(x)− F (x)
∣∣∣2]→ 0

if N1/2(n)
n
→ 0 as n → ∞ and E[|X|2/3] < ∞. Here, X is a random variable with density function

f . End Theorem

Proof. With the proof of [44, Theorem 2], we know that MISE
[
f̂N,n

]
→ 0 under the given conditions.

Hence, the desired result follows from Lemma 7.3. End Proof

Following from [39, Theorem 2], the next result provides information about the asymptotic
behavior of the MSE.

Theorem 7.2. Suppose f is supported on [0,∞), f ∈ L2, r ≥ 1 derivatives of f exist, and(
x− d

dx

)r
f ∈ L2. If E[|X|2/3] <∞, we have

MSE
[
F̂H
N,n(x)

]
= x

[
O

(
N1/2

n

)
+O

(
N−r

)]

for x ∈ [0,∞). End Theorem

Proof. Under the given conditions, we know with the proof of [44, Theorem 2] that

MISE
[
f̂N,n

]
= O

(
N1/2

n

)
+O

(
N−r

)
.

The theorem follows again with Lemma 7.3. End Proof

To find the asymptotically optimal N(n) with respect to MSE, set N1/2

n
= N−r and solve this

equation for N , which leads to N(n) ∼ n2/(2r+1). This approach is motivated by the fact that
MISE

[
f̂N,n

]
= O

(
N1/2

n

)
+ O (N−r) = O

(
max

(
N1/2

n
, N−r

))
. Now, we have to find the minimum of

this maximum (dark blue in Figure 10) which is found at the intersection (orange) of the two functions
depending on N because the squared bias (bright blue) decreases with growing N while the variance
increases (black). This leads to the following corollary.
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Figure 10: How to find the optimal N .

Corollary 7.1. Suppose that f is supported on [0,∞), f ∈ L2, r ≥ 1 derivatives of f exist,(
x− d

dx

)r
f ∈ L2, and E[|X|2/3] <∞. The asymptotically optimal N for estimating F with respect to

MSE is
Nopt ∼ n2/(2r+1),

which leads to
MSE

[
F̂H
N,n(x)

]
= xO(n−

2r
2r+1 )

for x ∈ [0,∞). End Corollary

For r = 1, the rate that is achieved here is O(n−2/3). Compared to the MSE rate O(n−1) of
the kernel distribution estimator that can be found in Corollary 3.2, this is suboptimal. However,
for r → ∞, the rate approaches O(n−1) under the conditions that r > 1 derivatives exist and(
x− d

dx

)r
f ∈ L2. These conditions hold for the following examples that can be found in [39] and [40].

7.3.3 Examples

Power-Law Distribution An important class of distributions for which the Gauss-Hermite esti-
mator can be used is the class of power-law distributions. The density function is given by

f(x) = α− 1
xmin

(
x

xmin

)−α
,

where α > 1. As xmin > 0 is assumed, f is supported on [xmin,∞) ⊂ [0,∞), f ∈ L2 and all derivatives
of f exist for x ≥ xmin. In the case of α > 2, we have finite mean E[X] <∞.

With
(x−D)rf(x) = α− 1

x1−α
min

(xr + ...+Dr)x−α = O
(
x−(α−r)

)
,

we know that [(x − D)rf(x)]2 = O
(
x−2(α−r)

)
and hence, we must have 2(α − r) > 1 to assure

integrability of [(x−D)rf(x)]2. It follows that r < α− 1
2 and hence, r = dα− 1

2e − 1.
This means that with N1/2(n)

n
→ 0, Corollary 7.1 and Corollary 7.2, we get

MSE
[
F̂H
N,n(x)

]
= xO

n− 2dα− 1
2 e−2

2dα− 1
2 e−1

 ,
and

MISE
[
F̂H
N,n

]
= O

n− 2dα− 1
2 e−2

2dα− 1
2 e−1

 .
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Now, for finite mean, i.e., α > 2, the rate is O(n−2/3) or better. For finite variance, i.e., α > 3, the
rate is O(n−4/5) or better. As α and hence, the number of finite moments goes to infinity, the rate
approaches O(n−1).

Power Law distribution with exponential cutoff The density function of the power law
distribution with exponential cutoff has the form

f(x) = λ1−α

Γ (1− α, λxmin)x
−αe−λx,

where α, λ > 0. The function f is supported on [xmin,∞), xmin > 0. This distribution has similar
properties to a power law distribution before this behavior is overwhelmed by the exponential decay
factor. It helps in modeling the inter-event waiting times of processes arising from human dynamics
(for example waiting times between phone calls).

On [xmin,∞), it is easy to see that r ≥ 1 derivatives of f exist and by induction,(
x− d

dx

)r
f(x) = λ1−α

Γ (1− α, λxmin)

r∑
k=−r

gk(α, λ)x−α+ke−λx,

where gk(α, λ) are polynomial functions of α and γ. Then it holds that
(
x− d

dx

)r
f ∈ L2 because

∞∫
xmin

[(
x− d

dx

)r
λe−λx

]2

dx

=
(

λ1−α

Γ (1− α, λxmin)

)2 r∑
k=−r

gk(α, λ)gl(α, λ)
∞∫

xmin

x−2α+k+le−2λx dx

=
(

λ1−α

Γ (1− α, λxmin)

)2 r∑
k=−r

gk(α, λ)gl(α, λ)Γ (1− 2α + k + l, 2λxmin)
(2λ)1−2α+k+l <∞

for all r ≥ 1. This shows that the conditions hold.

Exponential Distribution The density function of the exponential distribution supported on
[0,∞) is given by

f(x) = λe−λx, λ > 0.
On [0,∞), it is clear that r ≥ 1 derivatives exist and it is easy to show by induction that(

x− d

dx

)r
f(x) =

r∑
k=0

gk(λ)xke−λx,

where gk(λ) are polynomial functions of λ. Then it follows that
∞∫
0

[(
x− d

dx

)r
λe−λx

]2

dx

=
∞∫
0

r∑
k,l=0

gk(λ)gl(λ)xk+le−2λx dx

=
r∑

k,l=0
gk(λ)gl(λ)

∞∫
0

xk+le−2λx dx

=
r∑

k,l=0
gk(λ)gl(λ) (k + l)!

(2λ)k+l+1 <∞
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for all finite r ≥ 1 and hence,
(
x− d

dx

)r
f ∈ L2 and the conditions hold. Thus, the rate of the MSE

for the Hermite distribution estimator approaches O(n−1).
This distribution is especially interesting in a streaming scenario: If the given samples represent

the inter-event waiting time of a Poisson process, this waiting time is exponentially distributed.
We now turn our attention to the MISE of the Hermite estimator on the real half line.

7.3.4 MISE

The MISE is defined by

MISE
[
F̂H
N,n

]
= E

 ∞∫
0

[
F̂H
N,n(x)− F (x)

]2
f(x) dx

 =
∞∫
0

E
[
F̂H
N,n(x)− F (x)

]2
f(x) dx.

Note that we use the density function f as a weighting factor. Then we obtain the following result
that one finds in [39, Proposition 2], which bounds the MISE of the distribution estimator by the
MISE of the density estimator.

Lemma 7.4. If f ∈ L2 is supported on [0,∞), then

MISE
[
F̂H
N,n

]
≤ µMISE

[
f̂N,n

]

for finite mean µ =
∞∫
0

xf(x) dx. End Lemma

Proof. With Lemma 7.3, we have that

MISE
[
F̂H
N,n

]
≤ MISE

[
f̂N,n

] ∞∫
0

xf(x) dx = µMISE
[
f̂N,n

]

for µ <∞. End Proof

The next theorem shows that the Gauss-Hermite estimator on the real half line is MISE consistent.
The theorem follows from [39, Theorem 3].

Theorem 7.3. For f ∈ L2 supported on [0,∞) with mean µ <∞, we get

MISE
[
F̂H
N,n

]
→ 0

for N1/2(n)
n
→ 0 as n→∞. End Theorem

Proof. From [44, Theorem 1] we know again that MISE
[
f̂N,n

]
→ 0 and the desired result follows

from Lemma 7.4. For positive random variables, the fact that E[|X|2/3] <∞ follows from E[X] <∞
and the Lyapunov inequality

(E[|X|s])1/s ≤
(
E[|X|t]

)1/t

for 0 < s < t. End Proof

The next theorem, which follows from [39, Theorem 4], gives the asymptotic behavior of the MISE.
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Theorem 7.4. Let f be supported on [0,∞), f ∈ L2, r ≥ 1 derivatives of f exist, and
(
x− d

dx

)r
f ∈

L2. Then

MISE
[
F̂H
N,n

]
= µ

[
O

(
N1/2

n

)
+O

(
N−r

)]
for µ <∞. End Theorem

Proof. This follows from Lemma 7.4 and the proof of [44, Theorem 2], which says that

MISE
[
f̂N,n

]
= O

(
N1/2

n

)
+O

(
N−r

)
under the given conditions that hold with the Lyapunov inequality. End Proof

As before, set N1/2

n
= N−r to find the asymptotically optimal N(n) with respect to MISE, which

leads to N(n) ∼ n2/(2r+1). The next corollary follows.

Corollary 7.2. Let f be supported on [0,∞), f ∈ L2, r ≥ 1 derivatives of f exist, and
(
x− d

dx

)r
f ∈

L2. The asymptotically optimal N for estimating F with respect to MISE is

Nopt ∼ n2/(2r+1),

which leads to
MISE

[
F̂H
N,n

]
= µO(n−

2r
2r+1 )

for µ <∞. End Corollary

Also note here that the rate of the MISE is worse than for the kernel estimator, as can be seen in
Corollary 3.3.

We now prove the almost sure convergence of the estimator.

7.3.5 Almost Sure Convergence

The next theorem gives the asymptotic behavior of the difference between the estimator and the real
distribution function F .

Theorem 7.5. Suppose f ∈ L2 is supported on [0,∞), is r times continuously differentiable, and(
x− d

dx

)r
f ∈ L2 where r ≥ 1. If E[|X|s] <∞, s > 8(r+1)

3(2r+1) and N(n) ∼ n
2

2r+1 , we have
∣∣∣F̂H
N,n(x)− F (x)

∣∣∣→ 0 a.s.

uniformly in x. End Theorem

For the proof, see Proofs Hermite.
The condition s > 8(r+1)

3(2r+1) that has to hold here is always satisfied for s > 16
9 as stated in [44,

Remark 2].
The next section deals with the asymptotic behavior of the Hermite estimator on the real half line.
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7.3.6 Asymptotic Behavior

We now study the asymptotic behavior of the estimator and establish that the limit distribution is
normal as for the estimators before.

Theorem 7.6. For x ∈ (0,∞) with 0 < F (x) < 1 and if f is differentiable in x, we obtain
√
n
(
F̂H
N,n(x)− E

[
F̂H
N,n(x)

])
D−→ N

(
0, σ2(x)

)
,

for n→∞, where σ2(x) is defined as in Theorem 2.1. End Theorem

For the proof, see Proofs Hermite.
The next corollary deals with the asymptotic behavior of F̂H

N,n(x)− F (x). With Lemma 7.2, it is
easy to see that

n1/2
(
F̂H
N,n(x)− F (x)

)
= n1/2

(
F̂H
N,n(x)− E

[
F̂H
N,n(x)

])
+Ox(n1/2N1/4−r/2). (7.9)

This leads directly to the following corollary.

Corollary 7.3. Let m,n→∞. Then, for x ∈ (0,∞) with 0 < F (x) < 1 and with the assumptions
from Lemma 7.2, it holds that

n1/2
(
F̂H
N,n(x)− F (x)

)
D−→ N

(
0, σ2(x)

)
,

if n−1/2N r/2−1/4 →∞. End Corollary

The results above hold in the setting where N = N(n). This means that they are not applicable
to the online estimator defined in Section 7.5. It is, however, possible to say something about the
MSE of the estimator with fixed N . In the present case of support on [0,∞), the online estimators
with fixed N have MSE bounds determined by the integrated squared bias term of MISE

[
f̂N,n

]
(see

Eq. (7.6)). This bias stays the same for fixed N even as n→∞ but the simulation later shows that
the online estimators are still useful.

With this knowledge, we now discuss what is important for the selection of N and which algorithm
can be used to determine it.

7.3.7 Selection of N

The quality of the distribution estimator Eq. (7.8) is related to MISE
[
f̂N,n

]
as can for example be seen

in Lemma 7.3 and Lemma 7.4. According to [39], it is reasonable to minimize the MISE even though
the optimal N is clearly different for the estimation of the density and the distribution function.

In Eq. (7.6), N controls the trade-off between the integrated variance and the integrated squared
bias of the estimated density. Under certain conditions (see [44, Theorem 1]), the integrated variance
term vanishes as n→∞ for N fixed. Hence, the bias term is now of interest. To minimize the bias,
N should intuitively be as large as possible. However, larger N leads to an increase in both processing
time and memory requirements. To find a balance here, one algorithm to find the optimal N is the
Kronmal-Tarter stopping algorithm.

However, in line with [39], the choice of N does not really affect the effectiveness of the algorithm
if N exceeds a certain size.

The next section deals with distributions on the real line.
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7.4 The Distribution Function Estimator on the Real Line
We now take a look at distributions supported on (−∞,∞). Then, the Gauss-Hermite distribution
function estimator, following [40], is

F̂ F
N,n(x) =

x∫
−∞

f̂N,n(t) dt.

Using the definitions of Hk and Z, it follows for x < 0 that

F̂ F
N,n(x) =

x∫
−∞

f̂N,n(t) dt

=
N∑
k=0

√
αkâk

x∫
−∞

Hk(t)Z(t) dt

=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2k−2m

m!(k − 2m)!
√

2π

x∫
−∞

tk−2me
−t2

2 dt

=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2k−2m

m!(k − 2m)!
√

2π
(−1)k−2m2 k

2−m−
1
2 Γ
(
−m+ k

2 + 1
2 ,
x2

2

)
.

We obtain the last equality through integration by substitution. Definining z = t2

2 , which means that
t = −

√
2z because x < 0, we get

x∫
−∞

tk−2me
−t2

2 dt

=

x2
2∫
∞

(
−
√

2z
)k−2m

e−z
1

−
√

2z
dz

= (−1)k−2m−12 k
2−m−

1
2

x2
2∫
∞

z
k
2−m−

1
2 e−zdz

= (−1)k−2m2 k
2−m−

1
2

∞∫
x2
2

z
k
2−m−

1
2 e−zdz.

For x ≥ 0, it holds with similar arguments that

F̂ F
N,n(x) =

x∫
−∞

f̂N,n(t) dt

=
∞∫
−∞

f̂N,n(t) dt−
∞∫
x

f̂N,n(t) dt

=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2k−2m

m!(k − 2m)!
√

2π

 ∞∫
−∞

tk−2me
−t2

2 dt−
∞∫
x

tk−2me
−t2

2 dt


=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2 3
2k−3m− 1

2

m!(k − 2m)!
√

2π
[[

(−1)k−2m + 1
]

Γ1(k,m)− Γ2(k,m)
]

=
N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2 3
2k−3m− 1

2

m!(k − 2m)!
√

2π
[
(−1)k−2mΓ1(k,m)− γ3(k,m)

]
,
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where
Γ1(k,m) = Γ

(
−m+ k

2 + 1
2

)
, Γ2(k,m) = Γ

(
−m+ k

2 + 1
2 ,
x2

2

)
,

and
γ3(k,m) = γ

(
−m+ k

2 + 1
2 ,
x2

2

)
.

Summarizing this, we get

F̂ F
N,n(x) =



N∑
k=0

âk
√
k!
bk/2c∑
m=0

(−1)m2k−3m− 1
2
[
(−1)k−2mΓ1(k,m) + γ3(k,m)

]
m!(k − 2m)!π 1

4
, x ≥ 0,

N∑
k=0

âk
√
k!
bk/2c∑
m=0

(−1)−m+k2k−3m− 1
2 Γ2(k,m)

m!(k − 2m)!π 1
4

, x < 0.
(7.10)

Another possibility is to set
∞∫
−∞

f̂N,n(t) dt = 1 and we achieve

F̂ F
N,n(x) =


1−

N∑
k=0

âk
√
k!
bk/2c∑
m=0

(−1)m2k−3m− 1
2 Γ
(
−m+ k

2 + 1
2 ,

x2

2

)
m!(k − 2m)!π 1

4
, x ≥ 0,

N∑
k=0

âk
√
k!
bk/2c∑
m=0

(−1)−m+k2k−3m− 1
2 Γ
(
−m+ k

2 + 1
2 ,

x2

2

)
m!(k − 2m)!π 1

4
, x < 0.

(7.11)

In the case where the support of f is (−∞,∞), it is not possible to bound the MSE of the
Gauss-Hermite distribution estimator by MISE

[
f̂N,n

]
. This is why the approach used in the section

before for the real half line is not applicable. Hence, a new approach is pursued in [40], which is
presented in the sequel.

We now take a closer look at the MSE and the MISE of the distribution estimator again. We will
also present properties on the convergence behavior and the robustness.

7.4.1 MSE

For the squared bias, the next lemma holds. It follows from [40, Proposition 1].

Lemma 7.5. If f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where r > 2, then

∣∣∣E [F̂ F
N,n(x)

]
− F (x)

∣∣∣2 = O
(
N2−r

)
,

and ∣∣∣E [F̂ F
N,n(x)

]
− F (x)

∣∣∣2 → 0
for N →∞. End Lemma

For the proof, see Proofs Hermite.
The asymptotic behavior of the variance is established in the next lemma, following from [40,

Proposition 2].

Lemma 7.6. Suppose E[|X|2/3] <∞ for a random variable X with density function f ∈ L2. Then,
as n→∞,

E
[∣∣∣F̂ F

N,n(x)− E
[
F̂ F
N,n(x)

]∣∣∣2] = O

(
N5/2

n

)
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uniformly in x. In addition,
E
[∣∣∣F̂ F

N,n(x)− E
[
F̂ F
N,n(x)

]∣∣∣2]→ 0,

if N5/2(n)
n
→ 0. End Lemma

For the proof, see Proofs Hermite.
Now, the two previous results are used to get the asymptotic behavior of the MSE. The theorem

follows from [40, Theorem 1].

Theorem 7.7. If f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where r > 2

with E[|X|2/3] <∞, it holds that

MSE
[
F̂ F
N,n(x)

]
= E

[∣∣∣F̂ F
N,n(x)− F (x)

∣∣∣2] = O
(
N−r+2

)
+O

(
N5/2

n

)

uniformly in x. End Theorem

Proof. With Lemma 7.5 and Lemma 7.6, we know that

MSE
[
F̂ F
N,n(x)

]
=
∣∣∣E [F̂ F

N,n(x)
]
− F (x)

∣∣∣2 + E
[∣∣∣F̂ F

N,n(x)− E
[
F̂ F
N,n(x)

]∣∣∣2]
= O

(
N−r+2

)
+O

(
N5/2

n

)

holds. End Proof

Note that the squared bias decreases with growing N while the variance increases. Hence, with
the same explanation as for Corollary 7.1, the next corollary follows from setting N−r+2 = N5/2

n
.

Corollary 7.4. Suppose f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where

r > 2 with E[|X|2/3] <∞. The asymptotically optimal N for estimating F with respect to MSE is

Nopt ∼ n2/(2r+1),

which leads to
MSE

[
F̂ F
N,n(x)

]
= O

(
n−

2(r−2)
2r+1

)
= o(1)

uniformly in x, where r > 2 was used. End Corollary

Note that the convergence rate is worse compared to Corollary 7.1. On the other hand, the
present rate is uniform. Furthermore, the rate is suboptimal compared to O(n−1) of the smooth
kernel distribution estimator (Corollary 3.2). However, for r � 1, the rate approaches optimal under
the conditions that r > 2 derivatives exist and

(
x− d

dx

)r
f ∈ L2.

We now take a look at the MISE of the Gauss-Hermite distribution estimator.

7.4.2 MISE

The MISE is defined by

MISE
[
F̂ F
N,n

]
=

∞∫
−∞

E
[∣∣∣F̂ F

N,n(x)− F (x)
∣∣∣2] f(x) dx,

where f is again used as a weight function.
The next theorem gives the asymptotic behavior of the MISE and follows directly from Theorem 7.7.
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Theorem 7.8. Suppose f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where

r > 2. If additionally, E[|X|2/3] <∞, we have

MISE
[
F̂ F
N,n

]
= O

(
N−r+2

)
+O

(
N5/2

n

)
.

X is again a random variable with density function f . End Theorem

Setting N−r+2 = N5/2

n
and solving the equation for N , the next corollary follows.

Corollary 7.5. Suppose f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where

r > 2 with E[|X|2/3] <∞. The asymptotically optimal N for estimating F with respect to MISE is

Nopt ∼ n2/(2r+1),

which leads to
MISE

[
F̂ F
N,n

]
= O

(
n−

2(r−2)
2r+1

)
= o(1)

uniformly in x. End Corollary

As in the [0,∞) case, the N in the theorems above depends on n. This is not the case in the
algorithm in Section 7.5. Here, we cannot compare the MSE and the MISE of F̂ F

N,n to MISE
[
f̂N,n

]
.

But Eq. (7.20) implies that for large and fixed N and r � 1, the Gauss-Hermite distribution estimator
is approximately unbiased with bias O(N−r/2+1). Eq. (7.21) says that the variance is O

(
N5/2

n

)
, which

goes to zero for n→∞. Hence, for fixed and large N and r � 1, the MSE approximately approaches
zero for n→∞. The same follows for the MISE.

We now focus on the almost sure convergence of the estimator.

7.4.3 Almost Sure Convergence

The next theorem gives the asymptotic behavior of the difference between the estimator and the real
distribution function F .

Theorem 7.9. Suppose f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where

r > 2. If E[|X|s] <∞, s > 8(r+1)
3(2r+1) and N(n) ∼ n

2
2r+1 , then we have

∣∣∣F̂ F
N,n(x)− F (x)

∣∣∣ = O
(
n−

r−2
2r+1 log n

)
a.s.

uniformly in x and ∣∣∣F̂ F
N,n(x)− F (x)

∣∣∣→ 0 a.s.

uniformly in x. End Theorem

For the proof, see Proofs Hermite.
The condition s > 8(r+1)

3(2r+1) that has to hold here is always satisfied for s > 16
9 as stated in [44,

Remark 2].
The next theorem shows the almost sure convergence when N(n) is a random variable with values

in N. N(n) could be a measurable function of Xi, i = 1, .., n, and thus the theorem could be applied
for a data-driven estimator of N(n) under certain conditions. One such condition is that N(n)

n
2

2r+1
→ 0

with r > 0.
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Theorem 7.10. Suppose f ∈ L2 is r times continuously differentiable and
(
x− d

dx

)r
f ∈ L2 where

r > 2. If N(n)→∞ a.s. and
∞∑
n=1

P
(
N(n)
nγ

> ε

)
<∞, ε > 0, i.e., N(n)

nγ
→ 0 a.s. with 0 < γ < 6/17,

we get ∣∣∣F̂ F
N,n(x)− F (x)

∣∣∣→ 0 a.s.

uniformly in x. This applies specifically if N(n)

n
2

2r+1
→ 0 a.s. End Theorem

For the proof, see Proofs Hermite.
We now take a closer look at the asymptotic behavior of the estimator.

7.4.4 Asymptotic Behavior

As for the Hermite estimator on the real half line, we now study the asymptotic behavior of the
estimator and establish that the limit distribution is normal again.

Theorem 7.11. For x ∈ (−∞,∞) with 0 < F (x) < 1, we get that
√
n
(
F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

])
D−→ N

(
0, σ2(x)

)
for n→∞ if f is differentiable in x. End Theorem

For the proof, see Proofs Hermite.
The next corollary deals with the asymptotic behavior of F̂ F

N,n(x)− F (x). With Lemma 7.5, it is
easy to see that

n1/2
(
F̂ F
N,n(x)− F (x)

)
= n1/2

(
F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

])
+Ox(n1/2N1−r/2). (7.12)

This leads directly to the following corollary.

Corollary 7.6. Let m,n → ∞. Then, for x ∈ (−∞,∞) with 0 < F (x) < 1, it holds with the
assumptions of Lemma 7.5 that

n1/2
(
F̂ F
N,n(x)− F (x)

)
D−→ N

(
0, σ2(x)

)
for n−1/2N r/2−1 →∞. End Corollary

We now talk about the robustness of the estimator that can be measured with the so-called
influence function.

7.4.5 Robustness

A very important aspect of an estimator is its performance if there exists contamination of the data,
i.e., outlying observations. One way to measure this is the influence function (see [48]) that gives the
effect of an infinitesimal contamination at a particular point, x′, on the estimator, standardized by
the mass of the contamination (see [49]).

Assume a functional T (x, F ), evaluated at a point x and distribution F , is given. Then the
influence function is defined by

IF(x, x′;T, F ) = lim
ε→0

T (x, (1− ε)F + εδx′)− T (x, F )
ε

.

The distribution δx′ is defined by P(Y = x′) = 1 for a random variable Y ∼ δx′ .
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The empirical influence function is defined by

IF(x, x′;T, Fn) = lim
ε→0

T (x, (1− ε)Fn + εδx′)− T (x, Fn)
ε

,

where Fn is the EDF. For a linear functional, the equality

lim
n→∞

IF(x, x′;T, Fn) = IF(x, x′;T, F ) a.s.

holds. This is not true in general.
Now, the gross-error sensitivity, defined by

sup
x′
|IF(x, x′;T, F )|,

gives an upper bound on the asymptotic bias of the estimator caused by contamination by outliers. If
this number is finite, the maximal influence on the value of the estimator that an outlier at x′ can
have, is bounded. If the estimator is of the form T (x, Fn), it is said to be bias-robust or B-robust if

sup
x′
|IF(x, x′;T, F )| <∞ and sup

x′
|IF(x, x′;T, Fn)| <∞

for all n ∈ N.
In the sequel, we give bias-robustness results for the Hermite estimator for finite N , the smooth

kernel distribution function estimator, and the Gram-Charlier A distribution function estimator given
in Eq. (7.7). The results can be found in [40].

Lemma 7.7. The Hermite distribution estimator Eq. (7.10) for fixed N is bias-robust. End Lemma

For the proof, see Proofs Hermite.

Lemma 7.8. The kernel distribution estimator Fh,n(x) that is defined in Eq. (3.1) is bias-robust.
End Lemma

For the proof, see Proofs Hermite.

Lemma 7.9. The Gram-Charlier A distribution function estimator given in Eq. (7.7) is not bias-
robust. End Lemma

For the proof, see Proofs Hermite.
We now quickly interpret the last three lemmas. The bias-robustness of the Hermite estimator

was only shown for finite N and not for N →∞. Thus, the result here is weaker than that for the
kernel estimator where we proved bias-robustness for all h including h→ 0. The last lemma, however,
shows for a closely related distribution estimator with a finite number of terms that the property
shown in Lemma 7.7 is not trivial.

The next section gives an algorithm for sequential calculation. For the considered estimators, N
is fixed and constant.
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7.5 Algorithm for Sequential Calculation
Following [39], we now give the definition of an algorithm that outputs the distribution functions in
Eq. (7.8), Eq. (7.10) and Eq. (7.11) after getting a new sample without the need for recalculating the
whole estimator. This is possible because the coefficients âk in Eq. (7.4) can be updated with each
new observation without recalculating the entire sum. The resulting algorithm has the following form.

1. For k = 0, ..., N , initialize â(1)
k = hk(X1), where X1 is the first observation.

2. For a new observation Xi, update â(i−1)
0 , ..., â

(i−1)
N with

â
(i)
k = 1

i

[
(i− 1)â(i−1)

k + hk(Xi)
]
.

3. Plug these updated coefficients into Eq. (7.5) Eq. (7.8), Eq. (7.10) and Eq. (7.11) to get the
updated estimates.

The second step that updates the coefficients is constant O(1) and does not depend on the number of
previous observations. As both the density and the distribution function do not explicitly depend on
the observations, updating them is also O(1).

We used a fixed and constant N , which means that the density function estimator is biased. This
leads to a biased distribution function estimator that is, however, sequential.

We now talk about a way to improve the Hermite estimator.

7.6 Standardizing
It is intuitive that the truncated Gauss-Hermite estimator yields better results if applied to standardized
random variables. This means that we transform the random variable X with mean µ and standard
deviation σ to

X̃ = X − µ
σ

.

There are two approaches to use the Hermite estimator on the standardized data. The first one is to
change the data and adapt the distribution and density function. Then, this new distribution function
is estimated. The second approach is to change the estimator. In this case, the true distribution
function to be estimated stays the same. In the present case this means that the Hermite polynomials
are shifted and scaled appropriately.

The idea for the following adaptions that are also used in the simulation was gained in [50].
The first approach is used for the Hermite estimator on the real line. The density function

transforms to
f̃(x̃) = σf(σx̃+ µ)

and the distribution function to
F̃ (x̃) = F (σx̃+ µ).

These are the new functions to be estimated.
For the Hermite estimator on the real half line we use the second approach. In this case we only

scale and do not shift, i.e., X̃ = X−µ
σ

but set µ = 0 later on, to make sure that no negative data arises
that the estimator could not deal with. Note that if the support is far away from zero, some shifting
could still be necessary. This holds for example for the power-law distribution in Section 7.3.3. In
most cases, xmin is known so that the shifting can be done by setting xmin to the desired value. The
truncated density gets the form

f̃(x̃) =
N∑
k=0

akhk(x̃),
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where

ak =
∞∫
−∞

hk(x̃)f̃(x̃)dx̃ =
∫ ∞
−∞

hk(x̃) · σ · f(σx̃+ µ)dx̃ =
∫ ∞
−∞

hk

(
z − µ
σ

)
· f(z)dz.

Hence, the ideal estimated coefficient would be

âk = âk(µ, σ) = 1
n

n∑
i=1

hk

(
Xi − µ
σ

)
,

but in general, mean, and variance are unknown. An alternative is to use estimators that lead to a
biased coefficient âk. Still, standardizing improves the quality of the fit in many cases. Then, the
original truncated density is of the form

f(x̃) = 1
σ
f̃
(
x̃− µ
σ

)
= 1
σ

N∑
k=0

akhk

(
x̃− µ
σ

)

and the estimator is
f̂N,n(x̃) = 1

σ

N∑
k=0

âkhk

(
x̃− µ
σ

)
.

Integrating this expression leads to

F̂H
N,n(x)

=
x∫

0

f̂N,n(t) dt

= 1
σ

N∑
k=0

√
αkâkk!

bk/2c∑
m=0

(−1)m2k−2m

m!(k − 2m)!
√

2π

x∫
0

(
x̃− µ
σ

)k−2m
e
−( x̃−µσ )2

2 dx̃

=


1
σ

N∑
k=0

âkk!
bk/2c∑
m=0

W1(k,m) (γ1(k,m)− γ2(k,m)) , x ≤ µ,

1
σ

N∑
k=0

âkk!
bk/2c∑
m=0

W2(k,m)
(
(−1)k−2mγ1(k,m) + γ2(k,m)

)
, x > µ,

where
W1(k,m) = (−1)k−m2k−3m− 1

2

m!(k − 2m)!π 1
4
, W2(k,m) = (−1)m2k−3m− 1

2

m!(k − 2m)!π 1
4
,

and

γ1(k,m) = γ

−m+ k

2 + 1
2 ,

(
µ
σ

)2

2

 , γ2(k,m) = γ

−m+ k

2 + 1
2 ,

(
x−µ
σ

)2

2

 .
We now show how it is possible to update estimates of the mean µ and the variance σ2 with every

new sample.
The mean can be calculated by

µ̂1 = X1

µ̂k = 1
k

((k − 1) µ̂k−1 +Xk) , k ≥ 2.
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With [51], the following algorithm can be used to estimate the standard deviation.

M1 = X1,

S1 = 0,

Mk = Mk−1 + xk −Mk−1

k
,

Sk = Sk−1 + (xk −Mk−1) (xk −Mk) ,

σ̂k =
√

Sk
k − 1 , k ≥ 2.

These are online algorithms, which means that the standardizing must not be seen as a preprocessing
step but rather as a part of the online algorithm. The need of a preprocessing step would make the
online use of the estimator impossible.
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7.7 Proofs Hermite
We need the following lemmas for the proofs of Section 7.

Lemma 7.10. This lemma follows from [52, Lemma 1] which says that in every point x where f(x)
is differentiable,

lim
N→∞

N∑
k=0

akhk(x) = f(x)

holds. For f ∈ Lp, p > 1, this convergence holds for almost all x ∈ R. End Lemma

Lemma 7.11. With [44, Eq. (12)], it holds that
N∑
k=0

E
[
(âk − ak)2

]
= O

(
N1/2

n

)

for E[|X|2/3] <∞. End Lemma

Lemma 7.12. As can be found in the proof of [44, Theorem 4], it can be shown that
N∑
k=0

(âk − ak)2 = O(n−2r/(2r+1) log n) a.s.

for E[|X|s] <∞, s > 8(r + 1)/3(2r + 1). End Lemma

The next lemma follows from [40, Lemma 4] and is used a lot in the sequel.

Lemma 7.13. It holds that
x∫

−∞

|hk(t)| dt ≤ 2c1(k + 1)−1/4 + 12d1(k + 1)1/2

with positive constants c1 and d1. End Lemma

Proof. This proof follows the proof of [40, Lemma 4]. We know with [43, Theorem 8.91.3] that

max
|x|≤a

hk(x) ≤ ca(k + 1)−1/4,

max
|x|≥a

xλ|hk(x)| ≤ da(k + 1)s

for positive constants ca, da depending only on a and s = max
(
λ
2 −

1
12 ,−

1
4

)
, where λ = 1 + b, b > 0.

It follows that
x∫

−∞

|hk(t)| dt ≤
∞∫
−∞

|hk(t)| dt

=
−1∫
−∞

|hk(t)| dt+
1∫
−1

|hk(t)| dt+
∞∫
1

|hk(t)| dt

=
1∫
−1

|hk(t)| dt+ 2
∞∫
1

|hk(t)| dt

≤ 2c1(k + 1)−1/4 + 2d1(k + 1)5/12+b/2
∞∫
1

t−1−b dt

= 2c1(k + 1)−1/4 + 2d1

b
(k + 1)5/12+b/2,
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where the last equation follows from
∞∫
1
t−1−b dt = 1

b
, b > 0. To get the desired result, we set

b = 1
6 . End Proof

A very similar lemma holds for the [0,∞) case.

Lemma 7.14. It holds that
x∫

0

|hk(t)| dt ≤ 2xcx(k + 1)−1/4

with a positive constant cx depending on x. End Lemma

Proof. With the inequalities from the lemma above we know that
x∫

0

|hk(t)| dt ≤
x∫
−x

|hk(t)| dt

≤
x∫
−x

cx(k + 1)−1/4 dt

= 2xcx(k + 1)−1/4

holds. End Proof

Now, we turn our attention to the proofs of this section.

Proof of Lemma 7.1. This proof is similar to the proof of [40, Proposition 2]. It holds with the
Cauchy-Schwarz inequality that

∣∣∣F̂H
N,n(x)− E

[
F̂H
N,n(x)

]∣∣∣2 =

∣∣∣∣∣∣
x∫

0

N∑
k=0

âkhk(t) dt−
x∫

0

N∑
k=0

akhk(t) dt

∣∣∣∣∣∣
2

≤
N∑
k=0

(âk − ak)2 ·
N∑
k=0

∣∣∣∣∣∣
x∫

0

hk(t) dt

∣∣∣∣∣∣
2

.

For the second term we know with Lemma 7.14 that
N∑
k=0

∣∣∣∣∣∣
x∫

0

hk(t) dt

∣∣∣∣∣∣
2

≤
N∑
k=0

 x∫
−x

|hk(t)| dt
2

≤
N∑
k=0

(
2xcx(k + 1)−1/4

)2

= Ox

(
N∑
k=0

(k + 1)−1/2
)

= Ox(N).

We get

E
[∣∣∣F̂H

N,n(x)− E
[
F̂H
N,n(x)

]∣∣∣2] ≤ Ox (N)
N∑
k=0

E
[
(âk − ak)2

]
(7.13)

= Ox

(
N3/2

n

)
(7.14)

with Lemma 7.11. End Proof
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Proof of Lemma 7.2. This proof follows the proof of [40, Proposition 1]. We know with Lemma 7.10
and E [âk] = ak that

∣∣∣E [F̂H
N,n(x)

]
− F (x)

∣∣∣ =

∣∣∣∣∣∣E
 x∫

0

N∑
k=0

âkhk(t) dt
− x∫

0

∞∑
k=0

akhk(t)) dt

∣∣∣∣∣∣
≤

x∫
0

∞∑
k=N+1

|akhk(t)| dt

=
∞∑

k=N+1
|ak|

x∫
0

|hk(t)| dt.

With Lemma 7.14, it holds that
∞∑

k=N+1
|ak|

x∫
0

|hk(t)| dt ≤ 2xcx
∞∑

k=N+1
|ak|(k + 1)−1/4

≤ 2xcx
∞∑

k=N+1
|bk+r|(k + 1)−1/4−r/2,

where a2
k ≤

b2
k+r

(k+1)r follows from [41, Theorem 1] and bk is the k-th coefficient of the expansion of(
x− d

dx

)r
f(x) which is in L2 by assumption. Hence,

∥∥∥(x− d
dx

)r
f(x)

∥∥∥2
=
∞∑
k=0

b2
k by Parseval’s theorem.

We know with the Cauchy-Schwarz inequality that
∞∑

k=N+1
|bk+r|(k + 1)−1/4−r/2 ≤

√√√√ ∞∑
k=N+1

b2
k+r ·

√√√√ ∞∑
k=N+1

(k + 1)−1/2−r

≤
∥∥∥∥∥
(
x− d

dx

)r
f(x)

∥∥∥∥∥ ·
√√√√ ∞∑
k=N+1

(k + 1)−1/2−r

and it follows that
∞∑

k=N+1
|ak|

x∫
−∞

|hk(t)| dt ≤ 2xcx ·
∥∥∥∥∥
(
x− d

dx

)r
f(x)

∥∥∥∥∥ ·
√√√√ ∞∑
k=N+1

(k + 1)−1/2−r.

With [53, 25.11.43] we know with constants ei, i = 1, 2, 3, that
∞∑

k=N+1
(k + 1)−1/2−r =

∞∑
k=0

(k +N + 2)−1/2−r = ζ(1
2 + r,N + 2)

≤
∞∑
k=1

e1N
1/2−r−2k + e2N

1/2−r + 1
2N

−1/2−r

= e1
N1/2−r

N2 − 1 + e2N
1/2−r + 1

2N
−1/2−r

≤ e3N
−r+1/2,

where ζ is the Zeta-function and hence
∣∣∣E [F̂H

N,n(x)
]
− F (x)

∣∣∣ ≤ ∞∑
k=N+1

|ak|
x∫

0

|hk(t)| dt = Ox

(
N−r/2+1/4

)
, (7.15)

which completes the proof. End Proof
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Proof of Theorem 7.5. We follow [40, Theorem 3]. Note that∣∣∣F̂H
N,n(x)− F (x)

∣∣∣ ≤ ∣∣∣E [F̂H
N,n(x)

]
− F (x)

∣∣∣+ ∣∣∣F̂H
N,n(x)− E

[
F̂H
N,n(x)

]∣∣∣ .
We use results from the full Hermite estimator here. They give asymptotic behavior that is worse
than what we would get from the half Hermite estimator but are uniform in x. For the first part it
holds with the proof of Lemma 7.5 and N(n) ∼ n

2
2r+1 that

∣∣∣E [F̂H
N,n(x)

]
− F (x)

∣∣∣ ≤ x∫
0

∞∑
k=N+1

|akhk(t)| dt ≤
x∫

−∞

∞∑
k=N+1

|akhk(t)| dt = O
(
N−r/2+1

)
= O

(
n−

r−2
2r+1

)
.

The second term can be written as

∣∣∣F̂H
N,n(x)− E

[
F̂H
N,n(x)

]∣∣∣2 ≤ N∑
k=0

(âk − ak)2 ·
N∑
k=0

∣∣∣∣∣∣
x∫

0

hk(t) dt

∣∣∣∣∣∣
2

≤
N∑
k=0

(âk − ak)2 ·
N∑
k=0

 x∫
−∞

|hk(t)| dt
2

,

where we used part of the proof of Lemma 7.1. It follows that

∣∣∣F̂H
N,n(x)− E

[
F̂H
N,n(x)

]∣∣∣ = O(N)

√√√√ N∑
k=0

(âk − ak)2 = O(N) ·O(n−r/(2r+1) log n) = O(n−
r−2

2r+1 log n) a.s.,

where we used a result from the proof of Lemma 7.6 and Lemma 7.12. The theorem follows
directly. End Proof

Proof of Theorem 7.6. This proof takes some ideas from the proofs of [17, Theorem 2]. For fixed
N it holds that

F̂H
N,n(x)− E

[
F̂H
N,n(x)

]
=

x∫
0

N∑
k=0

âkhk(t) dt−
x∫

0

N∑
k=0

akhk(t) dt

=
x∫

0

N∑
k=0

[
1
n

n∑
i=1

hk(Xi)
]
hk(t) dt−

x∫
0

N∑
k=0

akhk(t) dt

= 1
n

n∑
i=1

 x∫
0

TN(Xi, t) dt−
x∫

0

N∑
k=0

akhk(t) dt


= 1
n

n∑
i=1

Yi,N ,

where
TN(x, y) =

N∑
k=0

hk(x)hk(y)

and

Yi,N =
x∫

0

[
TN(Xi, t)−

N∑
k=0

akhk(t)
]

dt, i ∈ {1, ..., n}.

The Yi,N are i.i.d. random variables with mean 0. Define γ2
N = E[Y 2

1,N ]. We use the central limit
theorem for double arrays (see [33], Section 1.9.3) to show the claim.

Defining

An = E
[
n∑
i=1

Yi,N

]
= 0 and B2

n = Var
[
n∑
i=1

Yi,N

]
= nγ2

N ,
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it says that ∑n
i=1 Yi,N − An

Bn

D−→ N (0, 1)

if and only if the Lindeberg condition

nE[I(|Y1,N | > εBn)Y 2
1,N ]

B2
n

→ 0 for n→∞ and all ε > 0

is satisfied. It holds for n→∞ that ∑n
i=1 Yi,N − An

Bn

D−→ N (0, 1)

⇔
∑n
i=1 Yi,N√
n · γN

D−→ N (0, 1)

⇔
√
n

γN

(
F̂H
N,n(x)− E

[
F̂H
N,n(x)

])
D−→ N (0, 1)

⇔
√
n
(
F̂H
N,n(x)− E

[
F̂H
N,n(x)

])
D−→ N

(
0, σ2(x)

)
,

which is the claim of Theorem 7.6. The last equivalence holds because of the following. We have to
calculate γ2

N which is given by

γ2
N = E


 x∫

0

TN(X1, t) dt−
x∫

0

N∑
k=0

akhk(t) dt
2


= E


 x∫

0

TN(X1, t) dt
2
− 2

x∫
0

N∑
k=0

akhk(t) dt · E
 x∫

0

TN(X1, t) dt
+

 x∫
0

N∑
k=0

akhk(t) dt
2

.

(7.16)

The first part is the only part where we do not know the asymptotic behavior. Hence, we now take a
closer look at this part. With [54, Eq. (A8)], which only holds on compact sets, we know that

E


 x∫

0

TN(X1, t) dt
2
 = lim

P→∞

P∫
0

 x∫
0

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr

=
∞∫
0

 x∫
0

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr

=
x∫

0

 x∫
0

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr +
∞∫
x

 x∫
0

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr,

(7.17)
where M =

√
2n+3+

√
2n+1

2 . The inner integral can be written as

x∫
0

sin(M(r − t))
π(r − t) dt =

Mr∫
M(r−x)

sin(l)
πl

dl

and with the fact that for M →∞, we get

Mb∫
Ma

sin(l)
πl

dl→


1, a < 0 < b,

0, 0 < a < b,

0, a < b < 0,
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it follows with Eq. (7.17) for n→∞ (which implies M →∞) that

E


 x∫

0

TN(X1, t) dt
2
→ x∫

0

f(r) dr = F (x). (7.18)

In Section 12.2, it is explained in detail why it is possible to move the limit M → ∞ inside the
integral. Then, plugging Eq. (7.18) in Eq. (7.16) and using the fact that we know limits of the other
parts from Lemma 7.10, it holds for n→∞ that

γ2
N → F (x)− 2F (x)2 + F (x)2 = σ2(x). (7.19)

Now, we have to show that asymptotic normality actually holds. In our case the Lindeberg condition
has the form

E
[
I(|Y1,N | > ε

√
nγN)Y 2

1,N

]
γ2
N

→ 0 for n→∞ and all ε > 0.

This is what has to be shown to prove the theorem. Writing the expected value as an integral, we get

∞∫
0

I

∣∣∣∣∣∣
x∫

0

[
TN(r, t)−

N∑
k=0

akhk(t)
]

dt

∣∣∣∣∣∣ > ε
√
nγN

 x∫
0

[
TN(r, t)−

N∑
k=0

akhk(t)
]

dt
2

f(r) dr.

With the arguments from above, the left side of the inequality in the indicator function is bounded
by a constant, depending on x, for large n. Using this result, we get for large n that

E
[
I(|Y1,N | > ε

√
nγN)Y 2

1,N

]
γ2
N

≤ I(cx > ε
√
nγN)

E
[
Y 2

1,N

]
γ2
N

= I
(

cx√
nγN

> ε

)
→ 0,

where cx is a constant depending on x, which proves the claim. End Proof

Proof of Lemma 7.5. This proof follows the proof of [40, Proposition 1]. We know with Lemma 7.10,
E [âk] = ak that

∣∣∣E [F̂ F
N,n(x)

]
− F (x)

∣∣∣ =

∣∣∣∣∣∣E
 x∫
−∞

N∑
k=0

âkhk(t) dt
− x∫

−∞

∞∑
k=0

akhk(t)) dt

∣∣∣∣∣∣
≤

x∫
−∞

∞∑
k=N+1

|akhk(t)| dt

=
∞∑

k=N+1
|ak|

x∫
−∞

|hk(t)| dt.

With Lemma 7.13, it holds that

∞∑
k=N+1

|ak|
x∫

−∞

|hk(t)| dt ≤ 2c1

∞∑
k=N+1

|ak|(k + 1)−1/4 + 12d1

∞∑
k=N+1

|ak|(k + 1)1/2

≤ 2c1

∞∑
k=N+1

|bk+r|(k + 1)−1/4−r/2 + 12d1

∞∑
k=N+1

|bk+r|(k + 1)1/2−r/2,
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where a2
k ≤

b2
k+r

(k+1)r follows from [41, Theorem 1] and bk is the k-th coefficient of the expansion of(
x− d

dx

)r
f(x) which is in L2 by assumption. Hence,

∥∥∥(x− d
dx

)r
f(x)

∥∥∥2
= ∑∞

k=0 b
2
k by Parseval’s

theorem. We know with the Cauchy-Schwarz inequality that
∞∑

k=N+1
|bk+r|(k + 1)−1/4−r/2 ≤

√√√√ ∞∑
k=N+1

b2
k+r ·

√√√√ ∞∑
k=N+1

(k + 1)−1/2−r

≤
∥∥∥∥∥
(
x− d

dx

)r
f(x)

∥∥∥∥∥
√√√√ ∞∑
k=N+1

(k + 1)−1/2−r

and it follows that
∞∑

k=N+1
|ak|

x∫
−∞

|hk(t)| dt ≤ 2c1

∥∥∥∥∥
(
x− d

dx

)r
f(x)

∥∥∥∥∥
√√√√ ∞∑
k=N+1

(k + 1)−1/2−r

+ 12d1

∥∥∥∥∥
(
x− d

dx

)r
f(x)

∥∥∥∥∥
√√√√ ∞∑
k=N+1

(k + 1)1−r.

With [53, 25.11.43] we know with constants ei, i = 1, ..., 6, that
∞∑

k=N+1
(k + 1)−1/2−r =

∞∑
k=0

(k +N + 2)−1/2−r = ζ
(1

2 + r,N + 2
)

≤
∞∑
k=1

e1N
1/2−r−2k + e2N

1/2−r + 1
2N

−1/2−r

= e1
N1/2−r

N2 − 1 + e2N
1/2−r + 1

2N
−1/2−r

≤ e3N
−r+2,

and
∞∑

k=N+1
(k + 1)1−r =

∞∑
k=0

(k +N + 2)−1/2−r = ζ(r − 1, N + 2)

≤
∞∑
k=1

e4N
2−r−2k + e5N

2−r + 1
2N

1−r

= e4
N2−r

N2 − 1 + e5N
2−r + 1

2N
1−r

≤ e6N
−r+2,

where ζ is the Zeta-function and hence∣∣∣E [F̂ F
N,n(x)

]
− F (x)

∣∣∣ ≤ ∞∑
k=N+1

|ak|
x∫

−∞

|hk(t)| dt ≤ cN−r/2+1 = O
(
N−r/2+1

)
, (7.20)

which completes the proof. End Proof

Proof of Lemma 7.6. We follow the proof of [40, Proposition 2]. It holds with the Cauchy-Schwarz
inequality that

∣∣∣F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

]∣∣∣2 =

∣∣∣∣∣∣
x∫

−∞

N∑
k=0

âkhk(t) dt−
x∫

−∞

N∑
k=0

akhk(t) dt

∣∣∣∣∣∣
2

≤
N∑
k=0

(âk − ak)2 ·
N∑
k=0

∣∣∣∣∣∣
x∫

−∞

hk(t) dt

∣∣∣∣∣∣
2

.
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For the second term we know with Lemma 7.13 that

N∑
k=0

∣∣∣∣∣∣
x∫

−∞

hk(t) dt

∣∣∣∣∣∣
2

≤
N∑
k=0

(
2c1(k + 1)−1/4 + 12d1(k + 1)1/2

)2

= O

(
N∑
k=0

(
(k + 1)−1/4 + (k + 1)1/2

)2
)

= O

(
N∑
k=0

k + 1
)

= O
(
N2
)
.

We get

E
[∣∣∣F̂ F

N,n(x)− E
[
F̂ F
N,n(x)

]∣∣∣2] ≤ O
(
N2
) N∑
k=0

E
[
(âk − ak)2

]

= O

(
N5/2

n

)
(7.21)

with Lemma 7.11. End Proof

Proof of Theorem 7.9. We follow [40, Theorem 3]. Note that∣∣∣F̂ F
N,n(x)− F (x)

∣∣∣ ≤ ∣∣∣E [F̂ F
N,n(x)

]
− F (x)

∣∣∣+ ∣∣∣F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

]∣∣∣ .
For the first term it holds with Lemma 7.5 that∣∣∣E [F̂ F

N,n(x)
]
− F (x)

∣∣∣ = O
(
N−r/2+1

)
= O

(
n−

r−2
2r+1

)
= O

(
n−

r−2
2r+1 log n

)
.

The second term can be written as

∣∣∣F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

]∣∣∣ ≤ O(N)

√√√√ N∑
k=0

(âk − ak)2 = O(N) ·O(n−r/(2r+1) log n) = O(n−
(r−2)
2r+1 log n) a.s.,

where we used a result from the proof of Lemma 7.6 and Lemma 7.12. The theorem follows
directly. End Proof

Proof of Theorem 7.10. This proof follows the proof of [40, Theorem 4]. As we will use the lemma
of Borel-Cantelli later, we first take a look at

∞∑
n=1

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε
)

=
∞∑
n=1

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε : N(n) > cnγ
)
P(N(n) > cnγ)

+
∞∑
n=1

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε : N(n) ≤ cnγ
)
P(N(n) ≤ cnγ)

with a constant c. With the assumption that
∞∑
n=1

P
(
N(n)
nγ

> ε

)
<∞, the first part is clearly finite.

For the second part it holds with Markov’s inequality for p ∈ [1,∞) that

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε
)
≤ ε−pE

∣∣∣∣∣∣
x∫

−∞

N∑
k=0

(âk − ak)hk(t) dt−
x∫

−∞

∞∑
k=N+1

akhk(t) dt

∣∣∣∣∣∣
p .
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Now, with |f + g|p ≤ 2p−1(|f |p + |g|p), the Hölder inequality, Lemma 7.13 and the proof of Lemma 7.5,
we get

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε
)

≤ ε−p2p−1
(

N∑
k=0

E[|âk − ak|p]
)
·

 N∑
k=0
|

x∫
−∞

hk(t) dt|
p
p−1

p−1

+ ε−p2p−1

∣∣∣∣∣∣
x∫

−∞

∞∑
k=N+1

akhk(t) dt

∣∣∣∣∣∣
p

≤ ε−p2p−1b1

(
N∑
k=0

E[|âk − ak|p]
)
·
(

N∑
k=0

(k + 1)
p

2(p−1)

)p−1

+ ε−p2p−1N−
rp
2 +p

with positive constants b1, b2. With [55, 1. Summary], it holds that

E [|âk − ak|p] = n−pE
[
|
n∑
i=1

(hk(Xi)− ak)|p
]
≤ Fpn

−p/2−1
n∑
i=1

E [|hk(Xi)− ak|p] ,

where Fp is only depending on p. Then, with maxx |hk(x)| ≤ C(k + 1)−1/12,

E [|âk − ak|p] ≤ Fpn
−p/2−1

n∑
i=1

E [|hk(Xi)− ak|p]

≤ Fpn
−p/2−1

n∑
i=1

E

|hk(Xi)|+
∞∫
−∞

|hk(x)|f(x) dx
p

≤ 2Fpn−p/2(k + 1)−p/12.

Using this result, we get

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε
)

≤ ε−p2p−1b′′3

(
N∑
k=0

n−p/2−1
n∑
i=1

E[|hk(Xi)− ak|p]
)
·
(

N∑
k=0

(k + 1)
p

2(p−1)

)p−1

+ ε−p2p−1N−
rp
2 +p

≤ ε−p2p−1b′3n
−p/2

N∑
k=0

(k + 1)−p/12(N + 1) 3
2p−1 + ε−p2p−1N−

rp
2 +p

≤ ε−p2p−1b3n
−p/2N−p/12+1N

3
2p−1 + ε−p2p−1N−

rp
2 +p.

Then, conditioning on N(n) ≤ cnγ, we get
∞∑
n=1

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε
∣∣∣N(n) ≤ cnγ

)
≤ ε−p2p−1

∞∑
n=1

[
d1n

p(− 1
2 + 17

12γ) + d2n
pγ(1− r2)

]

and hence, for 0 < γ < 6
17 , p can be chosen so that

∞∑
n=1

P
(∣∣∣F̂N(n) − F (x)

∣∣∣ > ε : N(n) ≤ cnγ
)
P(N(n) ≤ cnγ) <∞.

With the Borel-Cantelli theorem, we know that
∣∣∣F̂N(n) − F (x)

∣∣∣ > ε only holds for finitely many n so
that

∣∣∣F̂N(n) − F (x)
∣∣∣→ 0. End Proof
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Proof of Theorem 7.11. This proof is similar to the proof of Theorem 7.6. For fixed N it holds
that

F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

]
= 1
n

n∑
i=1

Yi,N ,

where
TN(x, y) =

N∑
k=0

hk(x)hk(y)

and

Yi,N =
x∫

−∞

[
TN(Xi, t) dt−

N∑
k=0

akhk(t)
]

dt, i ∈ {1, ..., n}.

The Yi,N are i.i.d. random variables with mean 0. Define γ2
N = E[Y 2

1,N ]. We use the central limit
theorem for double arrays (see [33], Section 1.9.3) to show the claim.

Defining

An = E
[
n∑
i=1

Yi,N

]
= 0 and B2

n = Var
[
n∑
i=1

Yi,N

]
= nγ2

N ,

it says that ∑n
i=1 Yi,N − An

Bn

D−→ N (0, 1)

if and only if the Lindeberg condition
nE[I(|Y1,N | > εBn)Y 2

1,N ]
B2
n

→ 0 for n→∞ and all ε > 0

is satisfied.
It holds for n→∞ that ∑n

i=1 Yi,N − An
Bn

D−→ N (0, 1)

⇔
∑n
i=1 Yi,N√
n · γN

D−→ N (0, 1)

⇔
√
n

γN

(
F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

])
D−→ N (0, 1)

⇔
√
n
(
F̂ F
N,n(x)− E

[
F̂ F
N,n(x)

])
D−→ N

(
0, σ2(x)

)
,

which is the claim of Theorem 7.6. The last equivalence holds because of the following. We have to
calculate γ2

N which is given by

γ2
N = E


 x∫
−∞

TN(X1, t) dt−
x∫

−∞

N∑
k=0

akhk(t) dt
2


= E


 x∫
−∞

TN(X1, t) dt
2
− 2

x∫
−∞

N∑
k=0

akhk(t) dt · E
 x∫
−∞

TN(X1, t) dt
+

 x∫
−∞

N∑
k=0

akhk(t) dt
2

.

(7.22)
Again, the first part is the only part where we do not know the asymptotic behavior. Hence, we deal
with this now. With [54, Eq. (A8)], which only holds on compact sets, we know that

E


 x∫
−∞

TN(X1, t) dt
2
 = lim

P→∞

P∫
−P

 x∫
−∞

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr.
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With similar arguments as in the proof of Theorem 7.6 we get for n→∞ (which implies M →∞ )
that

E


 x∫
−∞

TN(X1, t) dt
2
→ x∫

−∞

f(r) dr = F (x).

To maintain the reading flow, the proof for this has been moved to Section 12.3.
Hence, plugging this in Eq. (7.22) and using the fact that we know the limits of the other parts

from Lemma 7.10, it holds for n→∞ that

γ2
N → F (x)− 2F (x)2 + F (x)2 = σ2(x). (7.23)

Now, we have to show that asymptotic normality really holds. In our case the Lindeberg condition
has the form

E
[
I(|Y1,N | > ε

√
nγN)Y 2

1,N

]
γ2
N

→ 0 for n→∞ and all ε > 0.

This is what has to be shown to prove the theorem. Writing the expected value as an integral, we get

∞∫
−∞

I

∣∣∣∣∣∣
x∫

−∞

TN(r, t) dt−
x∫

−∞

N∑
k=0

akhk(t) dt

∣∣∣∣∣∣ > ε
√
nγN

 x∫
−∞

TN(r, t) dt−
x∫

−∞

N∑
k=0

akhk(t) dt
2

f(r) dr.

The left side of the inequality in the indicator function is bounded and with the same arguments as
in the proof of Theorem 7.6, we get

E
[
I(|Y1,N | > ε

√
nγN)Y 2

1,N

]
γ2
N

→ 0,

which proves the claim. End Proof

Proof of Lemma 7.7. We follow the proof of [40, Proposition 3] again. The Gauss-Hermite
estimator with fixed N can be represented as

T (x, Fn) =
∞∫
−∞

 x∫
−∞

N∑
k=0

hk(t)hk(y) dy
 dFn(t),

where Fn is the EDF because
∞∫
−∞

 x∫
−∞

N∑
k=0

hk(t)hk(y) dy
 dFn(t) =

x∫
−∞

N∑
k=0

hk(y)
−∞∫
−∞

hk(t) dFn(t) dy

=
x∫

−∞

N∑
k=0

hk(y)âk dy = F̂ F
N,n(x).

With the same arguments it can be shown that

T (x, F ) =
∞∫
−∞

 x∫
−∞

N∑
k=0

hk(t)hk(y) dy
 dF (t) = F (x).

Define
dN(t, y) =

N∑
k=0

hk(t)hk(y).
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Now, the empirical influence function is

IF(x, x′;T, Fn) = lim
ε→0

1
ε

 ∞∫
−∞

 x∫
−∞

N∑
k=0

hk(t)hk(y) dy
 d((1− ε)Fn + εδx′)(t)

−
∞∫
−∞

 x∫
−∞

N∑
k=0

hk(t)hk(y) dy
 dFn(t)


= lim

ε→0

1
ε

(1− ε)
∞∫
−∞

x∫
−∞

dN(t, y) dy dFn(t) + ε

x∫
−∞

dN(x′, y) dy

−
∞∫
−∞

 x∫
−∞

dN(t, y) dy
 dFn(t)


=

x∫
−∞

dN(x′, y) dy −
∞∫
−∞

 x∫
−∞

dN(t, y) dy
 dFn(t).

With the same reasoning, it holds that

IF(x, x′;T, F ) =
x∫

−∞

dN(x′, y) dy −
∞∫
−∞

 x∫
−∞

dN(t, y) dy
 dF (t).

We know with Lemma 7.13 that∣∣∣∣∣∣
x∫

−∞

dN(t, y) dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

−∞

N∑
k=0

hk(t)hk(y) dy

∣∣∣∣∣∣
≤

N∑
k=0
|hk(t)|

x∫
−∞

|hk(y)| dx

≤
N∑
k=0

u1(k + 1)−1/12(k + 1)−1/4 +
N∑
k=0

v1(k + 1)−1/12(k + 1)1/2,

where we used the inequality max
x
|hk(x)| ≤ C(k+1)−1/12 for C > 0 that can be found in [43, Theorem

8.91.3]. This shows that the gross-error sensitivities are finite and the lemma follows. End Proof

Proof of Lemma 7.8. This proof follows the proof of [40, Proposition 4]. The kernel estimator can
be written as

T (x, Fn) =
∞∫
−∞

 x∫
−∞

1
h
K
(
t− y
h

)
dy
 dFn(t)

and the distribution function as

T (x, F ) =
∞∫
−∞

 x∫
−∞

1
h
K
(
t− y
h

)
dy
 dF (t)

=
x∫

−∞

 ∞∫
−∞

1
h
K
(
t− y
h

)
dy
 f(t) dt = F (t),

because the integral over K is one. With similar arguments as in the proof before we get

IF(x, x′;T, Fn) =
x∫

−∞

1
h
K

(
x′ − y
h

)
dy −

∞∫
−∞

 x∫
−∞

1
h
K
(
t− y
h

)
dy
 dFn(t),
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IF(x, x′;T, F ) =
x∫

−∞

1
h
K

(
x′ − y
h

)
dy −

∞∫
−∞

 x∫
−∞

1
h
K
(
t− y
h

)
dy
 dF (t).

Now, with
∞∫
−∞

K(x) dx = 1, both influence functions are bounded by two so that the kernel estimator
is bias-robust. End Proof

Proof of Lemma 7.9. This proof follows [40, Proposition 5]. The Gram-Charlier distribution
estimator Eq. (7.7) has the representation

T (x, Fn) =
∞∫
−∞

 x∫
−∞

N∑
k=0

1
k!Hek(t)Hek(y)Φ(y) dy

 dFn(t)

as
∞∫
−∞

 x∫
−∞

N∑
k=0

hk(t)hk(y) dy
 dFn(t) =

x∫
−∞

N∑
k=0

−∞∫
−∞

1
k!Hek(t)Hek(y)Φ(y) dFn(t) dy

=
x∫

−∞

N∑
k=0

ĉkHek(y)Φ(y) dy = F̂GC
N,n(x).

Analogously,

T (x, F ) =
∞∫
−∞

 x∫
−∞

N∑
k=0

1
k!Hek(t)Hek(y)Φ(y) dy

 dF (t) = F (x).

Then it holds with the same arguments as above that

IF(x, x′;T, Fn) =
N∑
k=0

 1
k!Hek(x′)

x∫
−∞

Hek(y)Φ(y) dy −
∞∫
−∞

x∫
−∞

1
k!Hek(t)Hek(y)Φ(y) dy dFn(t)

 ,
and

IF(x, x′;T, F ) =
N∑
k=0

 1
k!Hek(x′)

x∫
−∞

Hek(y)Φ(y) dy −
∞∫
−∞

x∫
−∞

1
k!Hek(t)Hek(y)Φ(y) dy dF (t)

 .
The second term is bounded because of [43, Theorem 8.91.3] and

x∫
−∞

|Hek(y)Φ(y)| dy =
x∫

−∞

2− k2
∣∣∣∣∣∣Hk

(
y√
2

)
e−

y2
2

√
2π

∣∣∣∣∣∣ dy

=

x√
2∫

−∞

2− k2
∣∣∣∣∣Hk(z)e

−z2

√
π

∣∣∣∣∣ dz
≤ d1(k + 1)−1/12

√
k!π−1/4

∞∫
−∞

e−
z2
2 dz = d2 <∞.

Then, ∣∣∣∣∣∣
∞∫
−∞

x∫
−∞

1
k!Hek(t)Hek(y)Φ(y) dy dF (t)

∣∣∣∣∣∣ ≤ d2
1
k!

∞∫
−∞

|Hek(t)|f(t) dt <∞
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and ∣∣∣∣∣∣
∞∫
−∞

x∫
−∞

1
k!Hek(t)Hek(y)Φ(y) dy dFn(t)

∣∣∣∣∣∣ ≤ d2
1
k!

∞∫
−∞

|Hek(t)| dFn(t) = d2
1
k!

n∑
i=1
|Hek(Xi)| <∞.

Now, since Hek(x′) is unbounded, the gross-error sensitivities are not bounded and the proof is
completed. End Proof
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8 Comparison
In the following, the main results of this thesis are summarized and used to compare the different
estimators.

The properties of the estimators are summarized in two tables on pages 98 and 99. The assumptions
in the third column of the first table have to be fulfilled for the theoretical results to hold. If there
are extra assumptions for one specific result, they are written as a footnote. For more details, please
take a look at the respective part in the thesis.

It is important to always make sure that the situation fits to compare different estimators. A
comparison between the Bernstein estimator and the Szasz estimator for example only makes sense
when the density function on [0, 1] can be continued to [0,∞) so that Assumption 6.1 holds. Of
course it is also possible to use the Szasz estimator for distributions where F is continuous on [0,∞)
and f is not. Then, the theoretical results do not hold anymore but convergence is still given. But we
know that the Bernstein estimator is always better as it has zero bias and variance for x = 1, while
the Szasz estimator has the continuous derivative

d

dxF̂
S
m,n(x) = m

∞∑
k=0

[
Fn

(
k + 1
m

)
− Fn

(
k

m

)]
e−mx

(mx)k
k!

and cannot approximate a non-continuous function that well. This can be seen in Figure 11. It is
obvious that the behavior of the Szasz estimator in the point x = 1 of the Beta(2, 1)-distribution is
worse. This can also be seen later in the simulation in Section 9.
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Figure 11: The behavior of the Szasz estimator in the point x = 1 for n = 500.

For the Hermite estimators, the properties f ∈ L2 and
(
x− d

dxf
)r
f ∈ L2 only have to hold on

the considered interval (see for example Section 7.3.3). Hence, they can be used for smaller intervals
than what they were designed for.

The EDF and the kernel distribution estimator can be used on arbitrary intervals. However, note
that the asymptotic results for the kernel estimator hold under the assumption that the density
occupies (−∞,∞). Hence, if the support is bounded, the results do not hold for the points close to
the boundary. For an approach to improve this boundary behavior, see [8] for example.
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Some Observations In the following, some important observations regarding the theoretical
comparison are listed. It is notable that for the asymptotic order, h = 1/m for the Bernstein estimator
is always replaced by h2 for the Kernel estimator. Also, the results for the Szasz estimator are the
same as for the Bernstein estimator with the exception that the orders are often not uniform.

There are some properties that some or all of the estimators have in common. Regarding the
deficiency, we found out that the Bernstein estimator, the kernel estimator, and the Szasz estimator all
outperform the EDF with respect to MSE and MISE. All of the estimators convergence a.s. uniformly
to the true distribution function, and the asymptotic distribution of the scaled difference between
estimator and the true value always coincide under different assumptions.

However, there are of course also many differences between the estimators that are addressed
now. For the Bernstein estimator and the Szasz estimator, the order of the bias is worse than that of
the kernel estimator. For the Szasz estimator, the order is not uniform. The order of the Hermite
estimator on the real half line depends on x. This is not the case for the estimator on the real line.
On the other hand, the order for the estimator on the real line is worse.

For the variance, the orders of the Bernstein estimator and the Szasz estimator are the same as
for the EDF and the kernel estimator but are not uniform. The Hermite estimator on the real line is
worse than the estimator for the real half line but uniform. Their orders are both worse than that of
the other estimators.

The optimal rate of the MSE is n−1 for the first four estimators in the table, two of them uniform
and the others not. The rates of the Hermite estimators are worse but for r → ∞, the rates also
approach n−1. This is very similar for the optimal rates of the MISE.
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9 Simulation
In this section, the estimators defined in this thesis are compared in a simulation study.

For the kernel distribution estimator, the Gaussian kernel is chosen. Let Φ be the standard normal
distribution function. Then, the estimator is of the form

Fh,n(x) = 1
n

n∑
i=1

Φ
(
x−Xi

h

)
. (9.1)

The simulation consists of four parts. In the first three parts, the estimators are compared by
their MISE on different intervals. To be specific, these three parts are:

1. Comparison on [0, 1], MISE
[
F̂n
]

= E

 1∫
0

(
F̂n(x)− F (x)

)2
dx
,

2. comparison on [0,∞), MISE
[
F̂n
]

= E

 ∞∫
0

(
F̂n(x)− F (x)

)2
· f(x) dx

,
3. comparison on (−∞,∞), MISE

[
F̂n
]

= E

 ∞∫
−∞

(
F̂n(x)− F (x)

)2
· f(x) dx

,
where F̂n can be any of the considered estimators. In the fourth part, the asymptotic normality of the
estimators is illustrated for one distribution. The details for each part as well as the most important
results are explained later.

All of the estimators except for the empirical distribution function (EDF) have a parameter in
addition to n. For these estimators, the MISE is calculated for a range of the parameters, which are
given in Table 1.

Estimator Abbr. Parameters
EDF Fn -
Kernel Fh,n h = i/1000, i ∈ [2, 200]

Bernstein F̂m,n m ∈ [2, 200]
Szasz F̂ S

m,n m ∈ [2, 200]
Hermite Half F̂H

N,n N ∈ [2, 60]
Hermite Full F̂ F

N,n N ∈ [2, 60]

Table 1: The range of the respective parameters.
We obtain a vector of MISE-values for each estimator. Searching for the minimum value in this vector
provides the minimal MISE and the respective optimal parameter.

The different sample sizes that are used are n = 20, 50, 100, and 500.
Every MISE is calculated by a Monte-Carlo simulation with M = 10, 000 repetitions. To be

specific, let
ISE

[
F̂
]

=
∫

[F̂ (x)− F (x)]2 (·f(x)) dx (9.2)
and with M pseudo-random samples, the estimate of the MISE is calculated by

MISE
[
F̂
]
' 1
M

M∑
i=1

ISEi[F̂ ], (9.3)

where ISEi is the integrated squared error calculated from the ith randomly generated sample.
For the Hermite estimators, the standardization explained in Section 7.6 is used. In this simulation,

we do not estimate the parameters µ and σ as we already know the true parameters.
We now explain the different parts and the results.
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Figure 12: Plot of the considered estimators for n = 20 and n = 500.

9.1 Comparison on [0, 1]
For the comparison on the unit interval, all of the estimators except the Hermite estimator on the
real line are compared while estimating a distribution function on [0, 1]. This is the largest interval
where all of the estimators are defined. For the Hermite estimator on the real half line, both the
non-standardized and the standardized estimators are compared.

The distribution used here is the Beta(3, 3)-distribution. It fulfills all the assumptions for the
different estimators: F, f, f ′ are continuous and bounded on [0, 1], it can be expanded so that the
assumption for the Szasz estimator holds, and f ∈ L2,

(
x− d

dx

)r
f ∈ L2 holds for the Hermite

estimator.
In Figure 12, it is illustrated how the distribution function for n = 20 and n = 500 is estimated

for all of the estimators. It is obvious that with more samples, the estimation quality increases. Note
that the illustration only captures the result for one sample and cannot be seen as a general behavior
of the estimators.

0 50 100 150 200

0.
00

35
0.

00
45

0.
00

55
0.

00
65

Parameters m resp. h*10^3

M
IS

E

EDF

Kernel

Bernstein

Szasz

0 50 100 150 200

0.
00

02
0

0.
00

03
0

0.
00

04
0

Parameters m resp. h*10^3

M
IS

E

EDF

Kernel

Bernstein

Szasz

Figure 13: MISE over the respective parameters in [2, 200] for n = 20 and n = 500.

In Figure 13, the MISE of four of the estimators is plotted over the respective parameters in the
interval [2, 200] for n = 20 and n = 500. The results are very similar for all of the four sample sizes:
the Bernstein estimator is always better than the others. This makes sense as it is designed for the
unit interval. The EDF has of course the worst MISE and the optimal MISE-values for the Szasz and
Kernel estimator are very close.
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Figure 14: MISE over the respective parameters in [2, 60] for n = 20 and n = 500.

Figure 14 shows the comparison of the other estimators to the Hermite estimators for n = 20
and n = 500. It is obvious that in this case, the standardization does not help for n = 20. For more
samples, the MISE of the normalized estimator decreases a lot quicker, which means that the sum
can be truncated earlier.

n EDF Kernel Bernstein Szasz Hermite Half Hermite Normalized
Beta(3,3) 20 5.45 3.66 3.37 3.79 3.48 7.08

50 2.15 1.59 1.49 1.64 1.68 2.82
100 1.07 0.83 0.79 0.85 0.83 1.4
500 0.21 0.18 0.18 0.2 0.18 0.29

Table 2: The MISE ·10−3-values for the interval [0, 1].

Table 2 shows the optimal MISE ·10−3-values for all of the estimators, depending on the number
of samples. All of the properties that were explained above can also be seen here.
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9.2 Comparison on [0,∞)
Of course, the comparison of the estimators on [0,∞) means that the Bernstein estimator cannot be
used anymore. As for the comparison on the unit interval, we omit the Hermite estimator on the real
line.

For comparison, the exponential distribution with parameter λ = 2 is chosen. This distribution
fulfills the assumption for the Szasz estimator and the Hermite estimator, see Section 7.3.3.
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Figure 15: Plot of the considered estimators for n = 20 and n = 500.

An example of the different estimators can be seen in Figure 15 for n = 20 and n = 500. It is
obvious that the Hermite estimators do not approach one, which is due to the truncation.
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Figure 16: MISE over the respective parameters in [2, 200] for n = 20 and n = 500.

As in the case of the unit interval, the Szasz estimator designed for the [0,∞)-interval behaves
best with respect to MISE. This can be seen in Figure 16. The minimal MISE-value of the Szasz
estimator is always lower than that of the other estimators, also for the cases n = 50 and n = 100
that are not shown here.
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Figure 17: MISE over the respective parameters in [2, 60] for n = 20 and n = 500.

Figure 17 makes clear that the standardization of the Hermite estimator works better here than
in the part for the unit interval, even for small sample sizes. This could be due to the fact that
scaling makes a bigger difference in this case than in the unit interval. Note that even though the
estimator gets better through standardization, the Hermite estimator is still worse than all of the
other estimators (except the EDF) with respect to MISE.

n EDF Kernel Szasz Hermite Half Hermite Normalized
Exponential(2) 20 8.29 6.09 5.3 8.68 7.57

50 3.3 2.71 2.41 5.61 3.58
100 1.68 1.47 1.32 4.6 2.26
500 0.34 0.32 0.3 3.73 1.15

Table 3: The MISE ·10−3-values for the interval [0,∞).

Table 3 shows all the MISE ·10−3-numbers of the optimal MISE for the considered estimators.
The properties explained above can be found here as well.
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9.3 Comparison on (−∞,∞)
Here, the most important task is to compare the two Hermite estimators Eq. (7.10) and Eq. (7.11) on
the real line. They are called Hermite Full estimator and Hermite Full second estimator respectively
in the sequel. Both of them are standardized as described in 7.6.

The distribution used here is the Laplace distribution with parameters µ = 3, b = 2.
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Figure 18: Plot of the considered estimators for n = 20 and n = 500.

In Figure 18, the considered estimators are plotted again for n = 20 and n = 500 for one example.
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Figure 19: MISE over the respective parameters in [2, 60] for n = 20 and n = 500.

In Figure 19, it can be seen that the second estimator works better, especially for large parameters,
where the MISE curve increases less quickly. Both of them oscillate, particularly for smaller sample
sizes, which is not a desirable property. Note, however, that for small parameter values, the Hermite
estimator seems to achieve better MISE-values than the kernel estimator.

n EDF Kernel Hermite Second Hermite Second
Laplace(3,2) 20 8.34 6.61 6.66 6.21

50 3.36 2.72 2.95 2.82
100 1.64 1.35 1.48 1.45
500 0.33 0.3 0.31 0.31

Table 4: The MISE ·10−3-values for the interval (−∞,∞).

Table 4 shows the MISE ·10−3-values again. As before, the properties explained above can also be
found in the table.
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9.4 Illustration of the Asymptotic Normality
The goal here is to illustrate the asymptotic normality

√
n
(
F̂n(x)− E

[
F̂n(x)

])
D−→ N

(
0, σ2(x)

)
of the different estimators, where F̂n can be any of the estimators. The expression can be rewritten as

F̂n(x) D−→ N
(
E
[
F̂n(x)

]
,
σ2(x)
n

)
.

This representation is used in the plots below for a Beta(3, 3)-distribution in the point x = 0.4 for
n = 500. The value is F (0.4) = 0.32. In Figure 20, the result can be seen. The red line in the plot
shows the distribution function of the normal distribution. Furthermore, the histogram of the value
p = F̂n(0.4) is illustrated. The parameters used for the estimators are derived from the optimal
parameters calculated in the simulation.
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Figure 20: Illustration of the asymptotic normal distribution.
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10 Conclusions
In the introduction, it was explained why distribution function estimation is an important topic
in statistics. Here, we give a short summary of the findings of this thesis and talk about practical
applications as well as further research recommendations.

Findings and contributions In this thesis, many properties of the considered estimators such
as the asymptotic behavior, MSE, MISE, and deficieny were explained and derived. It turned out
that the estimators often have properties in common. But there are of course many differences as
well. This was discussed in Section 8, where the estimators were compared theoretically and it was
explained in which cases it makes sense to compare them. In Section 9, the results of a simulation
study were presented. In the simulation, all of the estimators were compared on different intervals
with respect to MISE. As expected, the estimator designed for a specific interval also had the best
behavior there. Furthermore, the asymptotic normality that was proven before for all of the estimators
was illustrated.

The most important contribution of this thesis is the Szasz estimator. While the idea is similar
to the Bernstein estimator, it allows estimating distribution functions on the real half line. In the
theoretical comparison as well as in the simulation study, the Szasz estimator compared very well to
the other estimators. Especially on the matching interval [0,∞), the simulation study showed a clear
advantage of the Szasz estimator with respect to the MISE-quality.

Another contribution of this thesis is that the asymptotic normality of the two Hermite distribution
estimators was proven. To the best of my knowledge, this is the first proof of this property for the
Hermite distribution estimators. Asymptotic normality is an important property that can make the
handling of an estimator easier. This is due to the fact that the properties and the behavior of a
gaussian variable are well understood.

Practical applications Distribution function estimation can be used everywhere, where data is
collected and properties about the data are of interest. This is for example the case in the finance
sector. Another example where data is collected is in the medical sector. A data set could give the
number of days a treatment takes to heal patients. With distribution function estimation it would be
possible to estimate the probability that the treatment takes less than a week.

With the inverse transform sampling that was explained in the introduction, it is even possible to
produce more samples than the given ones. Hence, the sample set of the treatment days could be
expanded without testing further patients.

The estimators are restricted to different intervals. The Bernstein estimator for example is
restricted to [0, 1]. It can be applied to all data sets that have an upper and a lower bound. An
example is the temperature of water, which always lies between zero and 100 degrees under normal
circumstances. The Szasz estimator is restricted [0,∞). Here, data that can be used has to have a
lower bound. This could be the price of an expensive product. It can never be negative but it is not
possible to set an upper bound. For estimators on (−∞,∞), the data that can be used need not have
any bounds at all. This holds for the rate at which the stock market changes. It can rise and fall
arbitrarily.

Recommendations for further research As mentioned in Section 3, the kernel estimator shows
undesired behavior at the boundary. For the Bernstein estimator, it was established on page 18 that
the asymptotic behavior gets better the closer we get to the boundary. Hence, it would be interesting
to study the behavior of the Szasz estimator and the Hermite estimator on the half line close to
the boundary x = 0. It would also be interesting to apply boundary correction techniques in the
simulation and compare the MISE results with the non-corrected estimators.
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12 Appendix

12.1 Bernstein Basis Polynomials
The Bernstein basis polynomials of degree m are defined by

Pk,m(x) =
(
m

k

)
xk(1− x)m−k

for k = 0, ...,m. We set Pk,m = 0 for k < 0 or k > m.
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Figure 21: Bernstein basis polynomials of degree one and two.
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Figure 22: Bernstein basis polynomials of degree three.

The simple cases are the Bernstein basis polynomials of degree 1

P0,1(x) = 1− x
P1,1(x) = x,

degree 2

P0,2(x) = (1− x)2

P1,2(x) = 2x(1− x)
P2,2(x) = x2,
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and degree 3

P0,3(x) = (1− x)3

P1,3(x) = 3x(1− x)2

P2,3(x) = 3x2(1− x)
P3,3(x) = x3.

The following properties and their proofs can be found in [56].

Recursive Definition
The polynomial Pk,m can be written as a convex combination of Pk,m−1 and Pk−1,m−1

Pk,m(x) = (1− x)Pk,m−1(x)− xPk−1,m−1(x).

With this it can be shown that Bernstein Polynomials are non-negative.

Partition of Unity
The k + 1 Bernstein polynomials of degree m form a partition of unity, i.e.,

m∑
k=0

Pk,m(x) = 1.

Power Basis
A Bernstein polynomial can be written as

Pk,m(x) =
m∑
i=k

(−1)i−k
(
m

i

)(
i

k

)
xi

from which it follows that

xk =
n−1∑
i=k−1

(
i
k

)
(
m
k

)Pi,m(x).

Derivatives
The derivative of a Bernstein polynomial of degree n can be written as

∂

∂x
Pk,m(x) = m(Pk−1,m−1(x)− Pk,m−1(x))

for k = 0, ...,m.
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12.2 Details for the Proof of Theorem 7.6
We explain here, why it is possible to exchange limit and integral in the proof of Theorem 7.6. We
first observe that for x 6= 0,

− 1
π|x|

− 1
2 ≤

x∫
0

sin(l)
πl

dl ≤ 1
π|x|

+ 1
2 .

It follows that  x∫
0

sin(l)
πl

dl
2

≤
(

1
π|x|

+ 1
2

)2

.

Hence, for r ∈ {0, x},  Mr∫
M(r−x)

sin(l)
πl

dl


2

≤
(

1
π|Mx|

+ 1
2

)2

and for the rest, Mr∫
M(r−x)

sin(l)
πl

dl


2

=

Mr∫
0

sin(l)
πl

dl −
M(r−x)∫

0

sin(l)
πl

dl


2

≤
(

1
π|Mr|

+ 1
2

)2

+ 2
(

1
π|Mr|

+ 1
2

)(
1

π|M(r − x)| + 1
2

)
+
(

1
π|M(r − x)| + 1

2

)2

.
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Figure 23: Illustration of the bounds for M = 300, x = 1.

In Figure 23, the two bounds calculated above are illustrated. The orange line is the bound for
r ∈ {0, x} and the green line is the bound for the rest. The only critical parts are close to r = 0 and
r = x, where the function attains its maximum. It is obvious that the maximum value is given by(

1
π|Mrmax|

+ 1
2

)2

+ 2
(

1
π|Mrmax|

+ 1
2

)(
1

π|M(rmax − x)| + 1
2

)
+
(

1
π|M(rmax − x)| + 1

2

)2

,
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where the function attains the maximum value in rmax. Now, for M ≥M0, this is bounded by(
1

π|M0rmax|
+ 1

2

)2

+ 2
(

1
π|M0rmax|

+ 1
2

)(
1

π|M0(rmax − x)| + 1
2

)
+
(

1
π|M0(rmax − x)| + 1

2

)2

.

The part O(N− 1
2 ) in Eq. (7.17) is very small for large M ≥M0 and does not change the fact that the

function is bounded. We call the bound dx. This is a function that is integrable because∫ ∞
0

dxf(r)dr = dx <∞.

With the dominated convergence theorem, it is possible to move the limit over M inside the integral.
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12.3 Details for the Proof of Theorem 7.11
We show the fact that was omitted in the proof of Theorem 7.11. The task is to show

E


 x∫
−∞

TN(X1, t) dt
2
→ x∫

−∞

f(r) dr = F (x).

With [54, Eq. (A8)], which only holds on compact sets, we know that

E


 x∫
−∞

TN(X1, t) dt
2
 = lim

P→∞

P∫
−P

 x∫
−∞

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr

=
∞∫
−∞

 x∫
−∞

sin(M(r − t))
π(r − t) +O(N−1/2) dt

2

f(r) dr.

For the inner integral it holds that
x∫

−∞

sin(M(r − t))
π(r − t) dt =

∞∫
M(r−x)

sin(l)
πl

dl

and similar to the proof of Theorem 7.6, it holds that
∞∫

M(r−x)

sin(l)
πl

dl→

1, r < x,

0, r > x.

We get that

E


 x∫
−∞

TN(X1, t) dt
2
 =

x∫
−∞

 x∫
−∞

sin(M(r − t))
π(r − t) +O(N−1/2) dt

︸ ︷︷ ︸
→1

2

f(r) dr

+
∞∫
x

 x∫
−∞

sin(M(r − t))
π(r − t) +O(N−1/2) dt

︸ ︷︷ ︸
→0

2

f(r) dr → F (x).

It is again possible to exchange the limit and the integral here. The arguments are very similar to the
arguments in Section 12.2 with

− 1
π|x|

≤
x∫

−∞

sin(l)
πl

dl ≤ 1
π|x|

.

This shows the claim.
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13 Notation

• Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x) empirical distribution function based on n observations

• Bernstein estimator

– Pk,m(x) =
(
m
k

)
xk(1− x)m−k Bernstein basis polynomial

– Lm = Lm(x) =
m∑
k=0

P 2
k,m(x)

– Rj,m = m−j
∑∑

0≤k<l≤m
(k −mx)jPk,m(x)Pl,m(x)

– fh,n(x) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
Kernel density estimator with kernel K based on n observa-

tions with bandwidth h

– Fh,n(x) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
Kernel distribution estimator with K(t) =

t∫
−∞

K(u)du based

on n observations with bandwidth h

– F̂m,n(x) =
m∑
k=0

Fn

(
k

m

)
Pk,m(x) Bernstein estimator with m Bernstein polynomials based

on n observations

– Bm(F ;x) = Bm(x) =
m∑
k=0

F

(
k

m

)
Pk,m(x) Bernstein polynomial of order m of F

– iL(n, x) = min
{
k ∈ N : MSE[Fk(x)] ≤ MSE

[
F̂m,n(x)

]}
– iG(n) = min

{
k ∈ N : MISE[Fk] ≤ MISE

[
F̂m,n

]}
– b(x) = x(1− x)f ′(x)

2
– σ2(x) = F (x)(1− F (x))

– V (x) = f(x)
[

2x(1− x)
π

]1/2

– C1 =
1∫

0

σ2 dx

– C2 =
1∫

0

V (x) dx

– C3 =
1∫

0

b2(x) dx

– Notation used in Section 5.7

• Bh,m(x) =
m∑
k=0

Fh,n

(
k

m

)
Pk,m(x)

• Bias∗
[
F̂m,n(x)

]
= Bh,m(x)− Fh,n(x)

• Var∗
[
F̂m,n(x)

]
= 1
n

 m∑
k=0

Fn

(
k

m

)
P 2
k,m(x) + 2

∑∑
0≤k<l≤m

Fn

(
k

m

)
Pk,m(x)Pl,m(x)− F̂ 2

m,n(x)

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• MSE∗
[
F̂m,n(x)

]
= Var∗

[
F̂m,n(x)

]
+ Bias∗

[
F̂m,n(x)

]2
• m̂ = dargmink∈In MSE∗

[
F̂m,n(x)

]
e Locally optimal m as calculated in Eq. (5.17)

• ˆ̂m = dargmink∈In MISE∗
[
F̂m,n

]
e Globally optimal m as calculated in Eq. (5.18)

• Szasz estimator

– Vk,m(x) = e−mx
(mx)k
k!

– LSm(x) =
∞∑
k=0

V 2
k,m(x)

– RS
j,m(x) = m−j

∑∑
0≤k<l≤∞

(k −mx)jVk,m(x)Vl,m(x)

– Sm(F ;x) =
∞∑
k=0

F

(
k

m

)
e−mx

(mx)k
k! =

∞∑
k=0

F

(
k

m

)
Vk,m(x)

– f̂Sm,n(x) = m

n

∞∑
m=0

B
(n)
k,me

−mx (mx)k
k!

– F̂ S
m,n(x) =

∞∑
k=0

Fn

(
k

m

)
e−mx

(mx)k
k!

– bS(x) = xf ′(x)
2

– V S(x) = f(x)
[
x

π

]1/2

– CS
1 =

∞∫
0

σ2e−axf(x) dx

– CS
2 =

∞∫
0

V S(x)e−axf(x) dx

– CS
3 =

∞∫
0

(bS(x))2e−axf(x) dx

– iSL(n, x) = min
{
k ∈ N : MSE[Fk(x)] ≤ MSE

[
F̂ S
m,n(x)

]}
– iSG(n, x) = min

{
k ∈ N : MISE[Fk(x)] ≤ MISE

[
F̂ S
m,n(x)

]}
• Hermite estimator

– Hk(x) = (−1)kex2 dk

dxk e
−x2 = k!

bk/2c∑
m=0

(−1)m
m!(k − 2m)!(2x)k−2m Hermite polynomial

– hk = (2kk!
√
π)−1/2e

−x2
2 Hk(x) normalized Hermite function

– Hek(x) = 2− k2Hk

(
x√
2

)
Chebyshev-Hermite polynomials

– Z(x) = 1√
2π
e−

x2
2

– αk =
√
π

2k−1k!
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– ak =
∞∫
−∞

f(x)hk(x) dx

– fN(x) =
N∑
k=0

akhk(x) =
N∑
k=0

√
αk · akHk(x)Z(x)

– âk = 1
n

n∑
i=1

hk(Xi)

– f̂N,n(x) =
N∑
k=0

âkhk(x) =
N∑
k=0

√
αk · âkHk(x)Z(x) Gauss-Hermite density estimator

– F̂H
N,n(x) =

x∫
0

f̂N,n(t) dt Gauss-Hermite distribution estimator on the real half line

– F̂ F
N,n(x) =

x∫
−∞

f̂N,n(t) dt Gauss-Hermite distribution estimator on the real line

– IF(x, x′;T, F ) = lim
ε→0

T (x, (1− ε)F + εδx′)− T (x, F )
ε

influence function evaluated at a point
x and distribution F



REFERENCES 117

References
[1] R. Lockhart, “The Basics of Nonparametric Models.”

[2] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,” The Annals
of Mathematical Statistics, vol. 27, no. 3, pp. 832–837, Sep. 1956.

[3] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals of
Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, Sep. 1962.

[4] A. Gramacki, Nonparametric Kernel Density Estimation and Its Computational Aspects, ser.
Studies in Big Data. Springer International Publishing, 2018.

[5] H. Yamato, “Uniform Convergence of an Estimator of a Distribution Function,” Bull. Math.
Statist., vol. 15, no. 3, pp. 69–78, Mar. 1973.

[6] C. Kim, S. Kim, M. Park, and H. Lee, “A Bias Reducing Technique in Kernel Distribution
Function Estimation,” Computational Statistics, vol. 21, no. 3, pp. 589–601, Dec. 2006.

[7] C. Shalizi, “Estimating Distributions and Densities,” Nov. 2009.

[8] S. Zhang, Z. Li, and Z. Zhang, “Estimating a Distribution Function at the Boundary,” Austrian
Journal of Statistics, vol. 49, no. 1, pp. 1–23, Feb. 2020.

[9] G. S. Watson and M. R. Leadbetter, “Hazard Analysis II,” 1964.

[10] A. Azzalini, “A Note on the Estimation of a Distribution Function and Quantiles by a Kernel
Method,” Biometrika, vol. 68, no. 1, pp. 326–328, Apr. 1981.

[11] M. C. Jones, “The Performance of Kernel Density Functions in Kernel Distribution Function
Estimation,” Statistics & Probability Letters, vol. 9, no. 2, pp. 129–132, Feb. 1990.

[12] S. Bernstein, “Démonstration Du Théorème De Weierstrass Fondée Sur La Calcul Des Probabil-
ités,” p. 3, 1912.

[13] G. J. Babu, A. J. Canty, and Y. P. Chaubey, “Application of Bernstein Polynomials for Smooth
Estimation of a Distribution and Density Function,” Journal of Statistical Planning and Inference,
vol. 105, no. 2, pp. 377–392, Jul. 2002.

[14] V. S. Videnskii, “Papers of L.V. Kantorovich on Bernstein Polynomials,” Vestnik St. Petersburg
University: Mathematics, vol. 46, no. 2, pp. 85–88, Apr. 2013.

[15] R. A. Vitale, “A Bernstein Polynomial Approach to Density Function Estimation,” 1975.

[16] A. Leblanc, “Personal Communication,” Feb. 2020.

[17] A. Leblanc, “On Estimating Distribution Functions Using Bernstein Polynomials,” Annals of the
Institute of Statistical Mathematics, vol. 64, no. 5, pp. 919–943, Oct. 2012.

[18] A. Leblanc, “Chung–Smirnov Property for Bernstein Estimators of Distribution Functions,”
Journal of Nonparametric Statistics, vol. 21, no. 2, pp. 133–142, Feb. 2009.

[19] G. G. Lorentz, Bernstein Polynomials, 2nd ed. New York, N.Y: Chelsea Pub. Co, 1986.



REFERENCES 118

[20] A. Leblanc, “On the Boundary Properties of Bernstein Polynomial Estimators of Density and
Distribution Functions,” Journal of Statistical Planning and Inference, vol. 142, no. 10, pp.
2762–2778, Oct. 2012.

[21] N. L. Hjort and S. G. Walker, “A Note on Kernel Density Estimators with Optimal Bandwidths,”
Statistics & Probability Letters, vol. 54, no. 2, pp. 153–159, Sep. 2001.

[22] A. Leblanc, “A Bias-Reduced Approach to Density Estimation Using Bernstein Polynomials,”
Journal of Nonparametric Statistics, vol. 22, no. 4, pp. 459–475, May 2010.

[23] J. L. Hodges and E. L. Lehmann, “Deficiency,” The Annals of Mathematical Statistics, vol. 41,
no. 3, pp. 783–801, Jun. 1970.

[24] M. Falk, “Relative Efficiency and Deficiency of Kernel Type Estimators of Smooth Distribution
Functions,” Statistica Neerlandica, vol. 37, no. 2, pp. 73–83, 1983.

[25] S. Dutta, “Distribution Function Estimation Via Bernstein Polynomial of Random Degree,”
Metrika, vol. 79, no. 3, pp. 239–263, Apr. 2016.

[26] S. Dutta, “Local Smoothing for Kernel Distribution Function Estimation,” Communications in
Statistics - Simulation and Computation, vol. 44, no. 4, pp. 878–891, 2013.

[27] N. Altman and C. Léger, “Bandwidth Selection for Kernel Distribution Function Estimation,”
Journal of Statistical Planning and Inference, vol. 46, no. 2, pp. 195–214, Aug. 1995.

[28] F. Ouimet, “Complete Monotonicity of Multinomial Probabilities and Its Application to Bernstein
Estimators on the Simplex,” Journal of Mathematical Analysis and Applications, vol. 466, no. 2,
pp. 1609–1617, Oct. 2018.

[29] W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed., ser. A Wiley
Publication in Mathematical Statistics. New York: Wiley, 1965.

[30] N. Cressie, “A Finely Tuned Continuity Correction,” Annals of the Institute of Statistical
Mathematics, vol. 30, no. 3, pp. 435–442, Dec. 1978.

[31] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables, 9th ed., ser. Dover Books on Mathematics. New York, NY:
Dover Publ, 1964, oCLC: 935935300.

[32] P. Billingsley, Probability and Measure, 3rd ed., ser. Wiley Series in Probability and Mathematical
Statistics. New York: Wiley, 1995.

[33] R. J. Serfling, Approximation Theorems of Mathematical Statistics, 1980, oCLC: 959994695.

[34] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Springer Science
& Business Media, May 2009.

[35] F. Merlevède, M. Peligrad, and E. Rio, Bernstein Inequality and Moderate Deviations Under
Strong Mixing Conditions. Institute of Mathematical Statistics, 2009.

[36] O. Szasz, “Generalization of S. Bernstein’s Polynomials to the Infinite Interval,” Journal of
Research of the National Bureau of Standards, vol. 45, Sep. 1950.

[37] W. Gawronski and U. Stadtmueller, “On Density Estimation by Means of Poisson’s Distribution,”
Scandinavian Journal of Statistics, vol. 7, Jan. 1980.



REFERENCES 119

[38] P. Hall, “A Unified Approach to the Correction of Normal Approximations,” SIAM Journal on
Applied Mathematics, vol. 43, no. 5, pp. 1187–1193, Oct. 1983.

[39] M. Stephanou, M. Varughese, and I. Macdonald, “Sequential Quantiles Via Hermite Series
Density Estimation,” Electronic Journal of Statistics, vol. 11, no. 1, pp. 570–607, 2017.

[40] Stephanou, “On the Properties of Hermite Series Based Distribution Function Estimators,” 2020.

[41] G. G. Walter, “Properties of Hermite Series Estimation of Probability Density,” The Annals of
Statistics, vol. 5, no. 6, pp. 1258–1264, 1977.

[42] A. Jmaei, Y. Slaoui, and W. Dellagi, “Recursive Distribution Estimator Defined by Stochastic
Approximation Method Using Bernstein Polynomials,” Journal of Nonparametric Statistics,
p. 15.

[43] G. Szegö, Orthogonal Polynomials. American Mathematical Society, 1959.

[44] W. Greblicki and M. Pawlak, “Hermite Series Estimates of a Probability Density and Its
Derivatives,” Journal of Multivariate Analysis, vol. 15, no. 2, pp. 174–182, Oct. 1984.

[45] S. Blinnikov and R. Moessner, “Expansions for Nearly Gaussian Distributions,” Astronomy and
Astrophysics Supplement Series, vol. 130, no. 1, pp. 193–205, May 1998.

[46] J. Puuronen and A. Hyvärinen, “Hermite Polynomials and Measures of Non-Gaussianity,” in
Artificial Neural Networks and Machine Learning – ICANN 2011, ser. Lecture Notes in Computer
Science, T. Honkela, W. Duch, M. Girolami, and S. Kaski, Eds. Berlin, Heidelberg: Springer,
2011, pp. 205–212.

[47] H. F. Davis, Fourier Series and Orthogonal Functions / Harry F. Davis, 1963.

[48] F. R. Hampel, “The Influence Curve and Its Role in Robust Estimation,” Journal of the American
Statistical Association, vol. 69, no. 346, pp. 383–393, 1974.

[49] F. R. Hampel, Robust Statistics: The Approach Based on Influence Functions, 1st ed. New
York: Wiley-Interscience, Mar. 2005.

[50] M. Stephanou, “Personal Communication,” Feb. 2020.

[51] B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,”
Technometrics, vol. 4, no. 3, pp. 419–420, Aug. 1962.

[52] W. Greblicki and M. Pawlak, “Pointwise Consistency of the Hermite Series Density Estimate,”
Statistics & Probability Letters, vol. 3, no. 2, pp. 65–69, 1985.

[53] “DLMF: NIST Digital Library of Mathematical Functions,” https://dlmf.nist.gov/.

[54] E. Liebscher, “Hermite Series Estimators for Probability Densities,” Metrika, vol. 37, no. 1, pp.
321–343, Dec. 1990.

[55] S. W. Dharmadhikari and K. Jogdeo, “Bounds on Moments of Certain Random Variables,” The
Annals of Mathematical Statistics, vol. 40, no. 4, pp. 1506–1509, Aug. 1969.

[56] K. I. Joy, “Bernstein Polynomials,” On-Line Geometric Modeling Notes.



14 ERKLÄRUNG 120

14 Erklärung
Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig
und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert
oder mit Abänderungen entnommen wurde, sowie die Satzung des KIT zur Sicherung guter wis-
senschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.

Ort, den Datum

uxdvc
Bleistift


	Introduction
	The Different Estimators

	Empirical Distribution Function
	Kernel Estimation
	Asymptotic Behavior
	Asymptotically Optimal h with Respect to MSE
	Asymptotically Optimal h with Respect to MISE

	Function Estimation With Bernstein Polynomials
	Bernstein Distribution Function Estimation on [0,1]
	General Properties
	Bias and Variance

	Asymptotic Behavior
	Asymptotically Optimal m with Respect to MSE
	Asymptotically Optimal m with Respect to MISE
	Difference of the Distribution Estimator to the Density Estimator
	Deficiency
	Another Way to Choose the Optimal m
	Local Choice of m
	Global Choice of m
	Asymptotic Properties
	Simulation

	Properties of Pk,m
	Proofs Bernstein

	Szasz Distribution Function Estimation on Half Line
	General Properties
	Bias and Variance

	Asymptotic Behavior
	Asymptotically Optimal m with Respect to MSE
	Asymptotically Optimal m with Respect to MISE
	Deficiency
	Properties of Vk,m
	Proofs Szasz

	Hermite Distribution Function Estimation
	Hermite Polynomials
	Gauss-Hermite Expansion
	Density Estimation
	Gram-Charlier Series of Type A

	The Distribution Function Estimator on the Real Half Line
	Bias and Variance
	MSE
	Examples
	MISE
	Almost Sure Convergence
	Asymptotic Behavior
	Selection of N

	The Distribution Function Estimator on the Real Line
	MSE
	MISE
	Almost Sure Convergence
	Asymptotic Behavior
	Robustness

	Algorithm for Sequential Calculation
	Standardizing
	Proofs Hermite

	Comparison
	Simulation
	Comparison on [0,1]
	Comparison on [0,)
	Comparison on (-,)
	Illustration of the Asymptotic Normality

	Conclusions
	Acknowledgements
	Appendix
	Bernstein Basis Polynomials
	Details for the Proof of Theorem 7.6
	Details for the Proof of Theorem 7.11

	Notation
	Erklärung



