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Herein, we report the synthesis of the enantiomers of trinorbornane, a tetracyclic saturated hydrocarbon with
the chemical formula C;;H;4. The preparation of these rigid carbon scaffolds was enabled by the successful chiral
separation of its tricyclic precursor, thus allowing the enantiomers to be synthesized through a reductive radical
cyclization reaction. Assignment of the absolute conformation of the enantiomers was achieved through VCD
experiments. Further, we report an alternative cyclization procedure providing access to hydroxyl and phenyl

sulfone functionalized trinorbornanes.
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Introduction

Hydrocarbons are of fundamental interest to chemists
and the adjacent fields.'* Carbon-based skeletons
are not only key for the diversity of molecular
structures on our planet, the structural integrity
combined with the chemical inertness of saturated
polycyclic hydrocarbons makes them ideal building
blocks to control the spatial arrangement of functional
subunits with applications ranging from model
compounds®! over catalysts’® to even pharmaceuti-
cally active compounds.'

Inspired by the exploration of the chemical space
with computational tools by the group of Jean-Louis
Reymond, we became interested in so far neither
isolated nor synthesized intriguing scaffolds.”®! Within
the subset of C,; derivatives, we were fascinated by
the particular appealing highly symmetric framework
of trinorbornane (tetracyclo[5.2.2.0"°.0*°lundecane, 1),

Supporting information for this article is available on the
WWW under https://doi.org/10.1002/hlca.202000019

for which we recently reported the successful syn-
thesis as racemate.”) Its C,-symmetric framework
consisting of three superposed norbornane units
(displayed in red, blue and yellow in Figure 1 for 1-S,)
is an example of axial chirality and both enantiomers
(1S,,4S,6R,75,9R)-tetracyclo[5.2.2.0'°.0*°Jundecane  (1-
S.) and (1R,4R,6S,7R,9S)-tetracyclo[5.2.2.0"°.0*’Junde-
cane (1-R,) are displayed in Figure 1.

Fascinated by perspective of obtaining these
aesthetically pleasing cage hydrocarbons with the
chemical formula C;;H;s as pure enantiomers, suitable
methods for the preparation of these rigid saturated
hydrocarbons lacking chromophores were investi-

1-S, 1-R,

Figure 1. Structure of the enantiomers of trinorbornane 1-S,
and 1-R,.
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gated. Further, alternative cyclization methods were
sought, which could thus enable substituted deriva-
tives of this tetracyclic carbon scaffold to be accessed.

Results and Discussion

The separation of the enantiomers 1-S, and 1-R, on a
preparative scale through chromatographic means
was deemed difficult due to the lack of both, polar
groups interacting with the solid phase and chromo-
phores needed for the detection of the separated
samples. To further increase the challenge, the vola-
tility of these compounds restricts the choice of liquid
phase significantly. As more promising strategy, the
chiral separation of the racemic brexane!'®'" deriva-
tive 1-(2-(phenylsulfonyl)ethyl)tricycle-[4.3.0.0*°]non-7-
ene (2), which is formed in an intramolecular Diels-
Alder reaction, was considered. As the chiral informa-
tion responsible for the formation of either 1-S, or 1-R,
should already be present in the corresponding
brexane precursors 2-S and 2-R, respectively, their

SO,Ph

A SO,Ph  PhO,S
— +
/ \

A 2-S 2-R

Mg/MeOH
1-S; 1-R,

Scheme 1. Racemic mixture of sulfone 2 formed through Diels-
Alder reaction of the in situ generated intermediate A and the
proposed synthesis of the enantiomers of 1 through reductive
cyclization of the corresponding enantiomers of 2 after chiral
separation.

Mg/MeOH
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separation might enable the subsequent individual
synthesis of enantiopure 1-S, and 1-R, (Scheme 1).

Indeed, we found that using CHIRALPAK® IG column
with MeCN (further parameters are given in the
Supporting Information on p. 3) as the mobile phase
allowed the preparative separation of the enantiomers
(15,4R,6S5,9R)-1-[2-(phenylsulfonyl)ethyl]tricyclo
[4.3.0.0*°]non-7-ene (2-S) and (1R4S,6R,95)-1-[2-(phe-
nylsulfonyl)ethylltricyclo[4.3.0.0*°Inon-7-ene (2-R). The
following reductive radical cyclization of the obtained
enantiomers was performed using Mg in methanol as
a single electron reduction system.!">=" This reprodu-
cible and preparatively simple method provided 1-S,
and 1-R, in 23% and 20% yield of isolated product,
respectively. The lower yield for this transformation
can be explained by the unavoidable losses of these
volatile compounds during removal of the solvents.
From the product distribution observed by GC it is
estimated that approximately 50% of the formed
tetracyclic target compound could be isolated, even
though utmost precautions were undertaken.

As hypothesized, it seems that the preorganization
of the carbon scaffold of 2 distorts the quaternary
carbon bridgehead such, that the ethyl sulfonyl
benzene moiety is placed closer to the distal sp?
carbons, thus allowing this traceless radical reaction to
proceed regiospecifically (Scheme 2). Hence, reductive
cyclization reaction of 2 yields the distally bridged
structure of 1 as the sole cyclization product together
with the uncyclized side product 3 in a 5:4 ratio as
determined by GC. It is noteworthy that dimeric
trinorbornane species, isolated as side product of the
radical reaction in the synthesis of racemic
trinorbornane,”” were not observed using the here
reported single electron reduction protocol.

To facilitate the isolation of the individual enan-
tiomers 1-S, and 1-R, by column chromatography
(CQ), further derivatization of the double bond present
in the uncyclized side products 3 was considered. For
this mean, the crude mixtures were subjected to
oxidizing conditions, thus increasing the polarity of
the side product by formation of the epoxide and

1-S, 1-S, 3-S

Scheme 2. Proposed mechanism of the reductive cyclization on the example of 2-S forming 1-S, after in total two single electron
reduction steps. The observed uncyclized side 3-S is formed by either reduction or hydrogen abstraction of 3-S°.
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therefore allowing an efficient isolation of the satu-
rated hydrocarbons 1-S, and 1-R, by CC followed by
sublimation.

The enantiomeric purity of the isolated compounds
1-S, and 1-R, was evaluated through chiral-GC. The
analysis of the chromatograms obtained from the
previously prepared racemate and the newly isolated
products clearly reveal the successful isolation of the
enantiomers of 1 (Figure 2).

The small molecular size and the high rigidity of
this saturated hydrocarbon scaffold prompted inves-
tigation of the enantiomers through vibrational circu-
lar dichroism (VCD) spectroscopy.’™ Reliable assign-
ment of the absolute configuration of 1-S, and 1-R,
was achieved by the widely accepted method of
comparing the calculated and measured VCD spectra
of the chiral structures.!'® Theoretical prediction of the
IR and VCD spectrum of 1-S, was obtained using the
B3PW911"7 '8 functional and a 6-311+ +G(d,p)!"”
basis set. The experimental IR and VCD spectra of 1-S,
and 1-R, were measured in CD,Cl, (0.90 and 0.78 m,
resp.). The results of the analysis of compounds 1-S,
and 1-R, are shown in Figure 3. The calculated and
measured spectra of 1-S, stand in close agreement to
each other, thus allowing unambiguous assignment of
the absolute configuration of the isolated enantiomers
1-S, and 1-R,. Again, due to the strict regioselectivity
of the reductive cyclization, the assignment of the
absolute configuration to the trinorbornanes, also
allowed the retrospective assignment of the enantiom-
ers of the open brexane derivative 2-S and 2-R.

—— Racemate
—1-S,

0.8 —A1-R,

0.6 4

0.4

Rel. Intensity [a.u.]

0.2

T T
36.0 36.5 37.0 375
Retention Time [min]

Figure 2. Overlaid chiral-GC chromatograms of the racemic
mixture of 1 (black) and the two enantiomers 1-S, and 1-R, in
blue and red, respectively.
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Figure 3. IR (top) and VCD (bottom) spectra of trinorbornane
(1). Calculated spectra for 1-S, enantiomer are shown in black
and the measured spectra for the 1-S, and 1-R, are displayed in
blue and red, respectively.

Having achieved the separation of the enantiomers
2-S and 2-R, alternative methods for the cyclization
step were investigated, to access functionalized trinor-
bornanes. It was found that subjecting 2-R to epoxid-
izing conditions using in situ generated dioxirane!”’
formed the oxiranes 4-endo and 4-exo in 4:6 ratio
(Scheme 3). Treatment of the mixture containing both
isomers with butyl lithium (BuLi) at 0°C in THF
afforded the functionalized trinorbornane derivative 5
after five minutes in 28 % over two steps together with
4-endo, which is sterically not suited for the cyclization
step. Further, the addition of a stoichiometric amount
of BuLi was crucial to prevent epimerization at the a-
sulfonyl carbon of the formed product 5 containing
seven stereogenic centers. Desulfonylation of com-
pound 5 using Mg/MeOH allowed the isolation of the
enantiomerically pure hydroxy-functionalized trinor-
bornane 6 in 76 % yield after CC.
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2-R 4-exo 4-endo
b)
@ ¢) PhO,S @
OH OH
6 5

Scheme 3. Route for the synthesis of functionalized trinorbor-
nanes via epoxide opening reaction. Conditions: a) Oxone,
KHCO; acetone, CH,Cl,, H,0, r.t, 24 h; b) BulLi, THF, 0°C, 5 min;
¢) Mg, MeOH, r.t, 2 h.

Conclusions

We report the chiral separation of the brexane
derivatives 2-S and 2-R through preparative chiral
HPLC, which enabled the preparation of enantiomeri-
cally pure trinorbornanes 1-S, and 1-R, under reduc-
tive cyclization conditions using Mg/MeOH as a
reproducible and convenient single electron reduction
system. The absolute configuration of the obtained
enantiomers was unequivocally assigned by compar-
ison of their recorded and simulated VCD spectra. The
excellent agreement between the theoretical and
experimental results can be attributed to the rigidity
of the tetracyclic scaffold of 1. With the enantiopure
precursors 2-S and 2-R in hands, alternative cyclization
methods to functionalized trinorbornanes were devel-
oped. As first examples the synthesis of the enantio-
merically pure and functionalized trinorbornanes as
either hydroxyl and phenylsulfone substituted 5 or the
hydroxy functionalized derivatives 6 are reported.

Experimental Section
Experimental Method

The racemate 2 was synthesized according to the
previously reported procedure.” Chiral separation of
the 2 was achieved by chiral HPLC (CHIRALPAK® IG
column) using MeCN as mobile phase. IR and vibra-
tional circular dichroism (VCD) spectra were recorded
on a Bruker PMA 50 accessory coupled to a Tensor 27
Fourier transform infrared spectrometer. A photoelastic
modulator (Hinds PEM 90) set at |/4 retardation was
used to modulate the handedness of the circular
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polarized light. Demodulation was performed by a
lock-in amplifier (SR830 DSP). An optical low-pass filter
(<1800 cm™") in front of the photoelastic modulator
was used to enhance the signal/noise ratio. Solutions
of 23 mg and 26 mg of 1-R, and 1-S,, respectively, in
200 ul CD,Cl, were prepared and measured in a
transmission cell equipped with CaF, windows and a
200 pm spacer. The pure solvent served as the
reference and was subtracted from the VCD spectra of
pure enantiomers to eliminate artifacts. For both
enantiomers and the reference, ca. 24000 scans at
4 cm™! resolution were averaged.

Computational Method

Density functional theory (DFT) as implemented in
Gaussian?'’ was used to calculate the structure and
the corresponding IR and VCD spectra. The calcula-
tions were performed using the B3PW91!'7'8 fyunc-
tional and a 6-311+ +G(d,p)"” basis set. Prior to the
calculation of the spectra all degrees of freedom were
completely relaxed. IR and VCD spectra were con-
structed from calculated dipole and rotational
strengths assuming Gaussian band shape with a half-
width at half-maximum of 4 cm™'. Frequencies were
scaled by a factor of 0.977. All calculations were
performed for the gas phase species.

Synthetic Procedure

(15,,45,6R,7S,9R)-Tetracyclo[5.2.2.0"°.0*°Jundecane
(1-S,). To a solution of 2-S (230 mg, 0.797 mmol,
1.0 equiv.) in dry MeOH (23 mL) was added activated
Mg turnings (968 mg, 39.9 mmol, 50.0 equiv.) under Ar
atmosphere. The mixture was sonicated for 5 min and
the onset of the exothermic reaction was observed by
the evolution of gas. The reaction came to reflux and
was stirred at room temperature (in case the reaction
became too vigorous the reaction mixture was cooled
with a water bath) until all the Mg turnings were
consumed (1-2 h). After cooling to room temperature,
all the volatiles were transferred by bulb-to-bulb
distillation into a flask cooled with N, (l). The
remaining methanol was removed by distillation
through a Vigreux column. To the residue was added
acetone (6 mL), water (10 mL), Oxone® (980 mg,
1.59 mmol, 2.0equiv) and NaHCO; (670 mg,
7.97 mmol, 10.0 equiv.). The reaction was stirred for 16
h at room temperature. The mixture was extracted
with pentane (3x10 mL) and the combined organic
layers were washed with water (3x10 mL), brine and
dried over anhydrous Na,SO,. The solvent was
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removed by distillation through a Vigreux column. The
residue was purified by column chromatography (SiO,,
pentane) followed by sublimation yielding the title
compound 1-S, as white solid (26.6 mg, 0.179 mmol)
in 23% yield. [alp® = 4 136.9 (MeCN).

(1R,,4R,6S,7R,9S)-Tetracyclo[5.2.2.0"¢.0*°]unde-
cane (1-R,). The title compound was prepared analo-
gously to the 1-S, enantiomer described above
yielding 1-R, as a white solid (23.0 mg, 0.155 mmol) in
20% yield. [a]p?° = —136.7 (MeCN).

(1R.3R,4R,5R,6S5,7R,95)-3-(Phenylsulfonyl)
tetracyclo[5.2.2.0"%.0*°Jundecan-5-0l (5) and 4-
endo. To a solution of 2-R (49.9 mg, 0.173 mmol,
1.0 equiv.) and NaHCO; (73.4 mg, 0.865 mg, 5 equiv.)
in acetone (2 mL) and water (2 mL) was added Oxone
(79.8 mg, 0.260 mmol, 1.5 equiv.) and stirred at room
temperature for 16 h. The acetone was removed under
reduced pressure and the residue diluted with AcOEt
(5 mL). The organic phase was washed with water (1 x
5 mL), brine (2x5 mL), dried over anhydrous Na,SO,
and evaporated under reduced pressure. The obtained
residue containing 4-exo and 4-endo was dissolved in
dry THF (2mL) and BuLi (0.071T mL, 0.68 mL,
1.00 equiv.) was added dropwise at 0°C. After 5 min,
the reaction was quenched by the addition of sat. aq.
NH,Cl and the aqueous layer was extracted with AcOEt
(2x5 mL). The combined organic layers were dried
over anhydrous Na,SO, evaporated under reduced
pressure and purified by column chromatography
(SiO,; cyclohexane/AcOEt 2:1) yielding 5 as a colorless
oil (15.4 mg, 51.1 pmol, 30%) and 4-endo as a colorless
oil (26.7 mg, 87.8 umol, 51 %).

Data of Compound 5: R; (cyclohexane/AcOEt 2:1;
Vis. KMnO,) 0.25. 'H-NMR (500 MHz, (Dg)acetone):
7.95-7.88 (m, 2 H, H-14); 7.78-7.71 (m, 1 H, H-16);
7.70-7.63 (m, 2 H, H-15); 3.92 (d, J=3.5, 1 H, OH);
3.85-3.78 (m, 1 H, H-5); 3.39 (dd, J=8.9, /=44, 1 H, H-
3); 2.27-2.21 (m, 1 H, H-9); 2.23-2.17 (m, 1 H, H-7);
215 (d, J=1.7, 1 H, H-4); 2.06-2.00 (m, 1 H, H-2b);
2.03-1.97 (m, 1 H, H-8b); 1.96-1.90 (m, 1 H, H-6); 1.80
(ddd, 2J=13.7,°J=8.9, “J=0.8, 1 H, H-2a); 1.68 (t, J=
1.3, 1 H, H-11b); 1.68-1.62 (m, 1 H, H-10a); 1.66-1.57
(m, 1 H, H-10b); 1.51-1.45 (m, 1 H, H-11a); 1.17-1.09
(m, 1 H, H-8a). *C-NMR (126 MHz, (D¢)acetone): 140.60
(C-13); 134.32 (C-16); 130.15 (C-15); 129.21 (C-14);
75.73 (C-5); 67.30 (C-3); 60.51 (C-1); 57.44 (C-6); 51.67
(C-4); 48.93 (C-9); 38.89 (C-7); 32.46 (C-11); 29.19 (C-8);
27.66 (C-2); 25.67 (C-11). HR-ESI-MS (pos.): 327.1025
(Cy7H50NaO5S ™, [M+Nal'; calc. 327.1027).
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Data of Compound 4-endo: R; (cyclohexane/AcOEt,
2:1) 0.45. '"H-NMR (500 MHz, (Dg)acetone): 7.93-7.88
(m, 2 H, H-13); 7.76-7.69 (m, 1 H, H-15); 7.68-7.60 (m,
2 H, H-14); 3.29-3.25 (m, 1 H, H-2); 3.18-3.12 (m, 2 H,
H-11); 3.13-3.12 (m, 1 H, H-2); 2.19-2.11 (m, 1 H, H-1);
2.09-2.02 (m, 1 H, H-4); 1.97-1.95 (m, 1 H, H-8); 1.94-
1.81 (m, 2 H, H-10); 1.57-1.46 (m, 2 H, H-6a/7a); 1.43-
1.27 (m, 2 H, H-6b/7b); 1.14 (ddd, 2J=12.0,°J=6.0,*) =
2.0, 1 H, H-9b); 1.09-1.04 (m, 1 H, H-9a). *C-NMR
(126 MHz, (Dg)acetone): 140.85 (C-12); 134.24 (C-15);
130.05 (C-14); 128.77 (C-13); 54.45 (C-2); 53.74 (C-11);
53.60 (C-3); 49.93 (C-4); 48.18 (C-5); 44.13 (C-1); 40.56
(C-8); 32.90 (C-7); 30.95 (C-6); 30.51 (C-9); 27.81 (C-10).

(1R,4R,5R,6S,7R,9S)-Tetracyclo[5.2.2.0"5.0*°1un-
decan-5-ol (6). A mixture of 5 (154 mg, 51.1 umol,
1.0 equiv.) and activated Mg turnings (50 equiv.) in dry
MeOH (4 mL) under Ar was sonicated for 5 min. After
onset of the exothermic reaction, the mixture was
stirred at room temperature until all Mg was con-
sumed. The remaining MeOH was removed under
reduced pressure, and the residue was partitioned
between sat. ag. NH,Cl and TBME. The aqueous layer
was extracted with TBME (2x5 ml), dried over
anhydrous Na,SO, and evaporated under reduced
pressure. The residue was purified by column chroma-
tography (SiO,, cyclohexane/AcOEt, 1:1) yielding 6 as
a colorless solid (6.61 mg, 40.3 pmol, 79%). R
(cyclohexane/AcOEt, 1:1; Vis. KMnO,) 0.4. 'H-NMR
(500 MHz, (Dg)benzene): 3.58 (dd, J=5.7, 1.7, 1 H, H-5);
2.24-222 (m, 1 H, H-7); 213-2.08 (m, 1 H, H-8b);
1.73-1.70 (m, 1 H, H-6); 1.67-1.65 (m, 1 H, H-4); 1.64-
1.59 (m, 1 H, H-11b); 1.54-1.49 (m, 2 H, H-3a,H-2a);
1.47-144 (m, 2 H, H-9, H-2b); 1.44-1.41 (m, 1 H, H-
11a); 1.40-1.37 (m, 1 H, H-10a); 1.34-1.29 (m, 1 H, H-
10b); 1.26-1.21 (m, 1 H, H-3b); 1.15-1.12 (m, 1 H, H-
8a); 0.42 (s, 1 H, OH). "*C-NMR (126 MHz, (D¢)benzene):
76.68 (C-5); 60.83 (C-1); 57.95 (C-6); 50.81 (C-9); 50.04
(C-4); 37.95 (C-7); 32.89 (C-11); 29.93 (C-8); 29.85 (C-3);
25.82 (C-2); 24.73 (C-10). HR-ESI-MS (pos.): 187.1091
(Cy1HigNa™, [M+Na]™; calc. 187.1093).

Acknowledgements

The University of Basel team thank the Swiss National
Science Foundation (Grant no. 200020-178808) for
financial support. M. M. acknowledges support by the
111 project (90002-18011002). The authors thank
Patrick Zwick for measuring the optical rotation.

www.helv.wiley.com (5 of 6) €2000019

© 2020 The Authors. Helvetica Chimica Acta Published by Wiley-VHCA AG


www.helv.wiley.com

0

scs

Swiss Chemical

Society

Author Contribution Statement

L. D. B. performed the synthesis, isolation, charac-

terizations of all compounds and wrote the manu-
script, T. B. performed the VCD analysis (experiments
and calculations) and M. M. supervised the work and
co-wrote the manuscript.

References

(1]

(2]

(3]

(4]

[10]

(111

H. Hopf, ‘Classics in Hydrocarbon Chemistry: Syntheses,
Concepts, Perspectives’, Wiley-VCH, Weinheim, 2000.

T. P. Stockdale, C. M. Williams, ‘Pharmaceuticals that con-
tain polycyclic hydrocarbon scaffolds’, Chem. Soc. Rev.
2015, 44,7737-7763.

G. M. Locke, S. S. R. Bernhard, M. O. Senge, ‘Nonconjugated
Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material
Sciences and Bioorganic and Medicinal Chemistry’, Chem.
Eur. J. 2019, 25, 4590-4647.

V. Kozel, C.-G. Daniliuc, P. Kirsch, G. Haufe, ‘C3-Symmetric
Tricyclo[2.2.1.0*%]heptane-3,5,7-triol’, Angew. Chem. Int. Ed.
2017, 56, 15456-15460; Angew. Chem. 2017, 129, 15659-
15663.

R.N. Warrener, D.N. Butler, R. A. Russell, ‘Fundamental
Principles of BLOCK Design and Assembly in the Produc-
tion of Large, Rigid Molecules with Functional Units
(Effectors) Precisely Located on a Carbocyclic Framework’,
Synlett 1998, 566-573.

K. M. Pietrusiewicz, K. Szwaczko, B. Mirostaw, |. Dybata, R.
Jasinski, O. M. Demchuk, ‘New Rigid Polycyclic Bis(phos-
phane) for Asymmetric Catalysis’, Molecules 2019, 24, 571.
J-L. Reymond, L.C. Blum, R. van Deursen, ‘Exploring the
Chemical Space of Known and Unknown Organic Small
Molecules at www.gdb.unibe.ch’, Chimia 2011, 65, 863-
867.

T. Fink, J.-L. Reymond, ‘Virtual Exploration of the Chemical
Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4
Million Structures (110.9 Million Stereoisomers) and Analy-
sis for New Ring Systems, Stereochemistry, Physicochem-
ical Properties, Compound Classes, and Drug Discovery’, J.
Chem. Inf. Model. 2007, 47, 342-353.

L. D. Bizzini, T. Miintener, D. Haussinger, M. Neuburger, M.
Mayor, ‘Synthesis of trinorbornane’, Chem. Commun. 2017,
53,11399-11402.

A. Nickon, A. G. Stern, ‘Efficient syntheses of brexane and
homobrexane monofunctionalized at C-2', Tetrahedron
Lett. 1985, 26, 5915-5918.

A. Nickon, H.R. Kwasnik, C.T. Mathew, T.D. Swartz, R.O.
Williams, J. B. DiGiorgio, ‘Synthesis and structure proof of

Helv. Chim. Acta 2020, 103, e2000019

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[20]

[21]

HELVETICA

C-2 and C-4 monofunctionalized brexanes and brendanes’,
J. Org. Chem. 1978, 43, 3904-3916.

A.C. Brown, L.A. Carpino, ‘Magnesium in methanol:
substitute for sodium amalgam in desulfonylation reac-
tions’, J. Org. Chem. 1985, 50, 1749-1750.

G.H. Lee, E.B. Choi, E. Lee, C.S. Pak, ‘An efficient
desulfonylation method mediated by magnesium in
ethanol’, Tetrahedron Lett. 1993, 34, 4541-4542.

G.H. Lee, I. K. Youn, E.B. Choi, H.K. Lee, G.H. Yon, H.C.
Yang, C.S. Pak, ‘Magnesium in Methanol (Mg/MeOH) in
Organic Syntheses’, Curr. Org. Chem. 2004, 8, 1263-1287.
L. A. Nafie, T.A. Keiderling, P.J. Stephens, ‘Vibrational
circular dichroism’, J. Am. Chem. Soc. 1976, 98, 2715-2723.
D. Kurouski, ‘Advances of Vibrational Circular Dichroism
(VCD) in bioanalytical chemistry. A review’, Anal. Chim. Acta
2017, 990, 54-66.

A.D. Becke, ‘Density-functional thermochemistry. Ill. The
role of exact exchange’, J. Chem. Phys. 1993, 98, 5648-
5652.

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh, C. Fiolhais, ‘Atoms, molecules, solids,
and surfaces: Applications of the generalized gradient
approximation for exchange and correlation’, Phys. Rev. B
1992, 46, 6671-6687.

R. Ditchfield, W.J. Hehre, J.A. Pople, ‘Self-Consistent
Molecular-Orbital Methods. IX. An Extended Gaussian-Type
Basis for Molecular-Orbital Studies of Organic Molecules’, J.
Chem. Phys. 1971, 54, 724-728.

Y. Gaoni, ‘New bridgehead-substituted 1-(arylsulfonyl)
bicyclo[1.1.0]butanes and some novel addition reactions of
the bicyclic system’, Tetrahedron 1989, 45, 2819-2840.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennuc-
ci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnen-
berg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starover-
ov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. lyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.
Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O.
Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox,
Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT,
2009.

Received January 26, 2020
Accepted February 20, 2020

www.helv.wiley.com

(6 of 6) 2000019

© 2020 The Authors. Helvetica Chimica Acta Published by Wiley-VHCA AG


www.helv.wiley.com

