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Abstract

We propose a camera model for cameras with hypercentric lenses. Because of their geometry, hypercentric lenses allow to
image the top and the sides of an object simultaneously. This makes them useful for certain inspections tasks, for which
otherwise multiple images would have to be acquired and stitched together. After describing the projection geometry of
hypercentric lenses, we derive a camera model for hypercentric lenses that is intuitive for the user. Furthermore, we describe
how to determine the parameter values of the model by calibrating the camera with a planar calibration object. We also apply
our camera model to two example applications: in the first application, we show how two cameras with hypercentric lenses can
be used for dense 3D reconstruction. For an efficient reconstruction, the images are rectified such that corresponding points
occur in the same image row. Standard rectification methods would result in perspective distortions in the images that would
prevent stereo matching algorithms from robustly establishing correspondences. Therefore, we propose a new rectification
method for objects that are approximately cylindrical in shape, which enables a robust and efficient reconstruction. In the
second application, we show how to unwrap cylindrical objects to simplify further inspection tasks. For the unwrapping, the
pose of the cylinder must be known. We show how to determine the pose of the cylinder based on a single camera image and
based on two images of a stereo camera setup.

Keywords Camera model - Hypercentric lens - Pericentric lens - Camera calibration - Stereo - Rectification - 3D-reconstruction

1 Introduction

Hypercentric lenses (sometimes also called pericentric lenses)
provide a converging view of an object ([10, Chapter
10.3.9], [1,17], [2, Chapter 3.4.6], [14, Chapter 4.2.14.1]).
This allows imaging the top and the sides of an object with
a single view. Therefore, hypercentric lenses are especially
useful for certain inspection tasks, for which otherwise mul-
tiple cameras would have to be used to cover the object’s
surface to be inspected or the object would have to be rotated
in front of a single camera to obtain multiple views. The use
of a single camera image has additional advantages: no image
stitching is necessary and problems caused by the different
perspectives obtained from multiple cameras are avoided.
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An example is shown in Fig. 1. Here, the print on the
label of a bottle shown in Fig. 1a must be inspected. The
camera was mounted above the bottle with a perpendicu-
lar view down onto the object, as illustrated in Fig. 1b. The
entrance pupil of a hypercentric lens lies in front of the lens.
The object is placed between the entrance pupil and the front
of the lens. In this setup, objects that are closer to the cam-
era appear smaller in the image. Figure 1c shows the image
obtained by a camera with a hypercentric lens. The bottle’s
cap is imaged in the center and the entire label is visible and
imaged as a circular ring. Unfortunately, this is achieved at
the expense of severe perspective distortions of the object in
the image.

Sometimes, hypercentric lenses are used as long stand-off
borescopes [17]. An example is shown in Fig. 2, where the
internal screw thread of the pipe joint shown in Fig. 2a must
be inspected. The camera is mounted above the pipe joint
such that the center of the entrance pupil lies inside the top
bottle neck of the pipe joint, as illustrated in Fig. 2b. There-
fore, in this setup, the entrance pupil is located between the
object to be inspected and the front of the lens. Objects that
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Fig.1 Using a hypercentric lens to image the top and the side of a bot-
tle. To inspect the label of the bottle (a), a camera with a hypercentric
lens is mounted above the bottle (b). The bottle is placed between the
entrance pupil and the front of the lens. This results in a converging
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Fig.2 Using a hypercentric lens to image the internal screw thread of
a pipe joint. To inspect the screw of the pipe joint (a), a camera with a
hypercentric lens is mounted above the pipe joint such that the entrance

are closer to the camera appear larger in the image. To obtain
a sharp image, usually the focus distance of the lens must
be increased beyond the entrance pupil by adding a spacer
between the lens and the camera [17]. In contrast to standard
borescopes, this setup allows a larger distance between the
object and the camera, which makes the placement of a suit-
able light source easier. Since in this case hypercentric lenses
behave like conventional (entocentric) lenses, the conven-
tional camera models for entocentric lenses can be applied.
Therefore, we will not handle this case in our paper.

To obtain accurate measurements from images that are
acquired by a camera with a hypercentric lens, it is neces-
sary to calibrate the camera, i.e., to determine the parameters
of the interior orientation of the camera, including parameters
that model lens distortions. Furthermore, camera calibration
is necessary whenever metric 2D or 3D measurements are
to be derived from images. Finally, because of the severe
perspective object distortions that are present in many typi-
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(d)

view of the object. ¢ Image of the bottle taken with a hypercentric lens.
d Image of the bottle taken with a conventional perspective lens (for
comparison)

(d)

pupil lies inside the top bottle neck of the pipe joint (b). ¢ Image of the
pipe joint acquired with a hypercentric lens. d Image of the pipe joint
acquired with a conventional perspective lens (for comparison)

cal applications of hypercentric lenses, images are typically
unwrapped before further inspections are applied. To achieve
a highly accurate unwrapping, the camera must be calibrated
as well.

In this paper, we describe a camera model for cameras with
hypercentric lenses and show some example applications.
In Sect. 2, we first describe the geometry of a hypercentric
lens, followed by a description of how to model hypercentric
lenses in Sect. 3. The calibration process is described in
Sect. 4. In Sect. 5, we discuss how to perform 3D stereo
reconstruction with hypercentric lenses. Finally, in Sect. 6
we present two methods for unwrapping images of cylindri-
cal objects, one for images that were acquired with a single
camera and one that is based on the 3D reconstruction.

Our main contribution is a camera model for cameras with
hypercentric lenses. A second contribution is an epipolar rec-
tification method for transforming a stereo image pair that
was acquired by two opposing cameras with hypercentric
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Fig. 3 Geometry of an entocentric lens. O; and O; are two different
object positions; F and F’ are the focal points of the lens at a distance
of f from the principal planes P and P’, respectively; the nodal points
N and N’ are the intersections of the principal planes with the optical
axis; AS is the aperture stop; ENP is the entrance pupil; IP is the image

lenses into standard epipolar geometry. Rectifying images to
standard epipolar geometry is a prerequisite to achieve the
most efficient disparity estimation. Our rectification method
is optimized for approximately cylindrical objects, since we
consider it the main application of hypercentric lenses to
inspect approximately cylindrical objects.

2 Geometry of hypercentric lenses

An assembly of lenses can be regarded as a single thick
lens [14, Chapter 4.2.11]. In the following, we assume that
lenses have the same medium, e.g., air, on both sides of the
lens.

Figure 3 shows the thick lens model of an entocentric
lens, which is the most common type of lenses. The model
is characterized by the principal planes P and P’, which
are perpendicular to the optical axis, and the focal points F
and F’, which lie on the optical axis at distances f from P
and P’, respectively. The intersections of the principal planes
with the optical axis are the principal points. For lenses that
have the same medium on both sides of the lens, the principal
points coincide with the nodal points N and N’.

To correctly describe the projection properties of a lens,
it is essential to model the aperture stop of the lens [26].
The aperture stop restricts the diameter of the cone of rays
that is emitted from the object and imaged sharply in the
image plane [14, Chapter 4.2.12.2]. The virtual image of the
aperture stop by all optical elements that come before it (i.e.,
lieleft of itin Fig. 3) is called the entrance pupil. Analogously,
the virtual image of the aperture stop by all optical elements
that come behind it (i.e., lie right of it in Fig. 3) is called the
exit pupil [26]. The rays that pass through the center of the
aperture stop are called chief rays. They also pass through

P ENP P’ AS 1P

1 L

plane. For simplicity, only the chief rays are displayed. In this setup, the
image /| of O is in focus, while the image I of O is blurred. Note
that the entrance pupil lies between the objects and the image plane.
Therefore, the image of O, is larger than the image of O

the center of both pupils [26] (for the entrance pupil, this is
indicated by the dashed lines in Fig. 3).

The position of the aperture stop in a lens crucially influ-
ences the projection properties of the lens. Essentially, the
aperture stop filters out certain rays in object space [26]. For
an entocentric lens, the aperture stop is positioned between
the two focal points of the lens as shown in Fig. 3 [14, Chap-
ter 4.2.12.4]. This causes the entrance pupil to lie between
the object and the image plane. Consequently, objects that
are closer to the camera appear larger in the image. Entocen-
tric lenses provide a diverging view of objects because rays
in object space that are converging or parallel to the optical
axis are filtered out by the aperture stop.

Figure 4 shows the thick lens model of a hypercentric lens.
In comparison with the model shown in Fig. 3, the only dif-
ference is the position of the aperture stop. For hypercentric
lenses, the aperture stop is placed behind the image-side
focal point. This causes the entrance pupil to lie in object
space [26]. If an object is placed between the entrance pupil
and the lens, as in Fig. 1, objects that are closer to the cam-
era appear smaller in the image. Hypercentric lenses provide
a converging view of objects because rays in object space
that are diverging or parallel to the optical axis are filtered
out by the aperture stop. Therefore, the diameter of hyper-
centric lenses must be significantly larger than the diameter
of the imaged objects. If an object is placed before the
entrance pupil, as in Fig. 2, a hypercentric lens behaves like
an entocentric lens, i.e., objects that are closer to the camera
appear larger in the image. However, in contrast to entocen-
tric lenses, the entrance pupil is outside the lens, which makes
it useful for applications where the inside of objects must be
inspected, as in Fig. 2. As mentioned above, conventional
camera models for entocentric lenses can be applied in this
case.
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Fig. 4 Geometry of a hypercentric lens. O and O, are two different
object positions; F and F’ are the focal points of the lens at a distance
of f from the principal planes P and P’, respectively; the nodal points
N and N’ are the intersections of the principal planes with the optical
axis; AS is the aperture stop; ENP is the entrance pupil; IP is the image
plane. For simplicity, only the chief rays are displayed. In this setup, the

For the sake of completeness, it should be mentioned that
there is a third type of lenses in which the aperture stop is
placed exactly at one of the focal points. These lenses are
called telecentric lenses. Depending on whether the aperture
stop is placed at the object-side or image-side focal point,
such a lens is called image-side telecentric or object-side
telecentric, respectively [26]. Object-side telecentric lenses
provide an orthographic projection because rays in object
space that are diverging or converging are filtered out by the
aperture stop and only rays that are parallel to the optical
axis pass through. Consequently, the entrance pupil moves
to infinity. Analogously, for image-side telecentric lenses,
the exit pupil moves to infinity. Hence, only rays that are
parallel to the optical axis in image space can pass the
aperture stop, which is useful for digital sensors to avoid
pixel vignetting [26]. In bilateral telecentric lenses, both the
entrance and the exit pupil are located at infinity [14, Chapter
4.2.12.4]. They are often preferred over object-side telecen-
tric lenses because of their higher accuracy [26].

In [26], it is shown that modeling lenses with the pinhole
model is insufficient because real lenses have two projection
centers: the centers of the entrance and exit pupil. Further-
more, the ray angles in image space and object space differ
in general. However, it is also shown in [26] that it is valid
to apply the pinhole model to cameras in which the image
plane is perpendicular to the optical axis (i.e., for cameras
with non-tilt lenses). In this case, the projection center of
the pinhole model corresponds to the center of the entrance
pupil, which is also the relevant projection center for mod-
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image /| of O is in focus, while the image I, of O3 is blurred. Note that
the objects lie between the entrance pupil and the image plane. There-
fore, the image of O, is smaller than the image of O;. (Note that the
lower part of the drawing has been cut off since it contains no additional
information)

eling the pose of the camera. For tilt lenses, however, it is
essential to model two separate projection centers [26].

Some practical aspect should be considered when set-
ting up an inspection system with hypercentric lenses. As
indicated before, one of the most important use cases of
hypercentric lenses in machine vision applications is the 360
degree inspection of an object with a single image. By choos-
ing a lens with a diameter that is significantly larger than the
diameter of the object to be inspected, we ensure that the
lines of sight hit the object’s surface under an angle that is
not too small. Smaller angles result in higher perspective dis-
tortions, or, when considering stereo applications, in a lower
reconstruction accuracy. Whether a lens is suitable for a spe-
cific object can be derived from the maximum viewing angle,
the working distance, and the position of the entrance pupil
(sometimes called the convergence point) [17]. These data
are often given by the manufacturer in the specification of
the lens.

3 Model for cameras with hypercentric
lenses

In this section, we will describe a camera model for hyper-
centric lenses. We require that the model and its parameteri-
zation are intuitive for the user and result in intuitive camera
poses.

A comprehensive overview of camera models is given
in [28]. To the best of our knowledge, there is no prior art that
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Fig. 5 Camera model for a hypercentric lens. (xx, yk, zx) denotes the
camera coordinate system and (xy, y,) denotes the image plane coordi-
nate system

presents a camera model designed for hypercentric lenses.
There exist generalized camera models, like local or dis-
crete ones [28]. They have a higher descriptive power but
have more parameters than lens-specific global models. Their
advantage is that the exact projection geometry of the lens
does not need to be known. Unfortunately, they often require
interpolation, which limits the accuracy that can be achieved
when applying these models. Furthermore, it is desirable to
always use the simplest (i.e., with fewest parameters) model
that appropriately and accurately describes reality.

Our camera model is visualized in Fig. 5. Because hyper-
centric lenses have a projection center, it is obvious to use
a central perspective lens model (in contrast to non-central
camera models [28]). As discussed in [26], the relevant pro-
jection center for modeling the pose of a camera is the
entrance pupil. Therefore, we define the center of the entrance
pupil as the origin of the coordinate system of a camera. Fur-
thermore, it is desirable that entocentric and hypercentric
lenses behave identically with respect to the camera coordi-
nate system. Therefore, we define the z axis of the camera
coordinate system to point along the optical axis in the view-
ing direction. The xy plane of the camera coordinate system
is assumed to be parallel to the image plane with the x axis
being parallel to the horizontal axis of the sensor. Because
the objects lie between the entrance pupil and the front of the
lens, points in object space have a negative z coordinate. This
ensures that objects with smaller z coordinates are closer to
the camera and appear smaller in the image. Furthermore,
because the principal point in this model has a negative z
coordinate, the principal distance must be negative as well.

The derivation of the camera model is based on the
descriptionin [27, Chapter 3.9] and [26]. Although we restrict
ourselves to cameras with non-tilt lenses, the described
model can easily be extended to cameras with tilt lenses, as
described in [26]. Because our camera model for hypercentric
lenses is based on the model presented in [26], the remainder
of this section will include a summary of this model. Mod-

ifications or extensions, which are especially necessary for
hypercentric lenses, will be explicitly mentioned.

The practical experiments in this paper cover setups of
at most two cameras. However, we derive a generic model
that can be applied to a multi-view stereo setup case. In [6],
the underlying camera model of [27, Chapter 3.9] was suc-
cessfully applied to a multi-view setup with 40 cameras.
Therefore, we do not expect any practical problems in the
multi-view case for hypercentric lenses as well.

Suppose we have a multi-view stereo setup with n, cam-
eras. For the calibration, we acquire n, images of a calibration
object in different poses with each camera. Each pose !/
(I =1, ..., n) of the calibration object describes a transfor-
mation from the coordinate system of the calibration object to
the coordinate system of camera k (k = 1, ..., n¢). Because
of the requirements stated above, for hypercentric lenses, the
origin of the calibration object has a negative z coordinate in
the camera coordinate system. Let p, = (xo, Yo, zo)—r be a
pointin the coordinate system of the calibration object at pose
[. Instead of modeling the transformation of p into each cam-
era individually, we define a reference camera (e.g., camera
1) and transform p, into a point p; in the coordinate system of
the reference camera by applying a rigid 3D transformation:

P =Ripp, +1, (H

where R; is a rotation matrix and #; = (#x, #1,y, z‘l,z)—r is
a translation vector. The rotation matrix is parameterized
by Euler angles R; = Ry (a;)Ry(B)R;(y1). We decided to
choose this rotation parameterization because Euler angles
are intuitive for the user. They also allow to easily exclude
single rotation parameters from the optimization. For exam-
ple, if the mechanical setup ensures with high accuracy that
the calibration target is parallel to the image plane, we should
seta; = Py = 0 and the camera calibration should keep these
parameters fixed [27, Chapter 3.9.4.6].

In the next step, the point p; is transformed into the coor-
dinate system of camera k by applying

Pi =R + 1, @

where the rotation matrix R; and the translation vector £
describe the relative pose of camera k with respect to the
reference camera. Note that the transformation in (2) can be
omitted if we only calibrate a single camera.

In the next step, the point p; = (xz, Y. zx) | is projected
into the image plane:

X ¢ (x
(-5 G ®
Yu 2k \Vk
with the principal distance c¢. Note that in order to fulfill
the above requirements for intuitive model parameters and
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camera poses, the principal distance must be negative for
hypercentric lenses. This is also clear from (3): To ensure
that x,, and x; as well as y, and y; have identical signs, ¢ and
Z; must also have the same sign. Because zx is negative, ¢
must also be negative.

To model lens distortions, the undistorted point (x,, yu)T
is then distorted to a point (xq, y¢) " . By analogy with [26],
we support two distortion models: the division model [3,8,
13,15,16] and the polynomial model [4,5].

In the division model, the undistorted point is computed
from the distorted point by using

Xu 1 X4
- 4
<)’u) 1+ Krg <)’d) ’ @

with rg = xg + yg. One advantage of the division model is
that it can be inverted analytically:

()= () .
ya) 141 —der2 \0u/)’
with 2 = x2 + y2 and the lens distortion parameter «.

In the polynomial model, the undistorted point is com-
puted by

xa(1+ Kir} + Korg + K3r)

(xu> _| @ (r2 +2x3) + 2P2xaya) ©
Yu ya(l + K173 + Kord + K3r$)
+@2Pixaya + P2(r3 +2y3))

with the lens distortion parameters K1, K>, K3, Pj, and P;.
Note that the division model only supports radial lens dis-
tortions while the polynomial model additionally supports
decentering lens distortions. One drawback of the polyno-
mial model is, however, that it cannot be inverted analytically.
This results in higher computation times when computing the
distorted point because a numerical algorithm must be used.

In the final step, the distorted point (x4, yd)T is trans-
formed into the image coordinate system:

(xi> _ (xd/sx + Cx) 7)
i ya/sy tey)’
where s, and sy, are the pixel pitch on the sensor and (cy, ¢y) T

denotes the principal point.
Summing up, our camera model consists of:

— The exterior orientation, which models the pose of the
calibration object with respect to the reference camera in
the n, images, represented by the vector e; that contains
the six parameters «y, By, vi, 11 x, 11y, and #; ;. In contrast to
conventional perspective cameras [26], f; ; is negative for
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Fig. 6 Planar calibration object with a hexagonal layout of control
points

hypercentric lenses (the origin of the coordinate system
of the calibration object is in the center of the calibration
object).

— The relative orientation, which models the pose of the n
cameras with respect to the reference camera, each rep-
resented by the vector ry that contains the six parameters
e, Bres Vs tex> te,y> and i ;.

— The interior orientation of the n. cameras, each repre-
sented by the vector iy that contains the parameters c;
k or Ky, K>, K3, P1, P2; sy, Sy, Cx, and ¢, (omitting
the subscripts k for readability reasons). In contrast to
conventional perspective cameras [26], c is negative for
hypercentric lenses.

4 Calibration of cameras with hypercentric
lenses

4.1 Calibration method

The camera calibration is performed by using the planar cali-
bration object (see Fig. 6) introduced in [26] with a hexagonal
layout of control points. See [26] for a discussion of the
advantages of this calibration object.

Let p; (j = 1,...,npy) denote the known 3D coordi-
nates of the centers of the control points of the calibration
object. As described in [26], the calibration object does not
need to be visible in all images simultaneously. However, it
is essential that there is a chain of observations of the calibra-
tion object in multiple cameras that connects all the cameras.
The calibration is performed by minimizing the following
function [26]:
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Here, the variable vy, is 1 if the control point j of the obser-
vation [ of the calibration object is visible in the image of
camera k, and 0 otherwise. &, denotes the projection of a
point p; from world coordinates to the undistorted image
plane, and hence represents Egs. (1), (2),and (3). ;" ! denotes
the projection of a point p j; from the image coordinate sys-
tem back to the undistorted image plane, and hence represents
the inverse of Egs. (7), and (4) or (6), respectively. Minimiz-
ing the error in the undistorted image plane has the advantage
that an arbitrary mixture of distortion models can be cali-
brated efficiently.

The optimization of (8) is performed by using a sparse
implementation of the Levenberg—Marquardt algorithm [11,
Appendix A6]. To obtain the points p j;, subpixel-accurate
edges are extracted [24, Chapter 3.3], [25] at the border of
each imaged control point. Then, ellipses are fitted to the
extracted edges [7] and the p j; are set to the centers of the
ellipses. Note that this introduces a small bias because the
projection of the center of a circle in 3D in general is not the
center of the ellipse in the image. Furthermore, in the case
of lens distortions the projection of a circle in the image is
no longer an ellipse. Both bias effects can be removed as
described in [26].

The optimization of (8) requires initial values for the
unknown parameters. Initial values for the interior orientation
parameters can be obtained or derived from the specification
of the camera and the lens (see [26] for details). Note that
according to Sect. 3, the negative focal length of the lens
must be passed as the initial value for the principal distance.

Initial values for the parameters of the exterior orienta-
tions of the calibration object in each camera can be derived
from the ellipse parameters of the imaged control points [12,
Chapter 3.2.1.2], [13]. Note that according to Sect. 3, the z
value of the translation component must be negative. Because
we are using a planar calibration object, we obtain two possi-
ble poses of the calibration object for each calibration image.
The two poses (R, £1) and (Ry, £) are related by

R; = R|R, () )
=t (10)

From the two poses, the one with a negative translation in z
must be selected.

Finally, initial values for the parameters of the relative
orientations of the cameras can be computed from the initial
values of the exterior orientations.

The calibration algorithm allows to exclude any com-
bination of parameters from the optimization. Note that

Fig. 7 One example of the 25 calibration images. The control points
that could be extracted in the image are visualized by white contours.
For this image, the planar calibration object was rotated such that the
part that appears in the upper image half appears smaller in the image,
i.e., is closer to the camera, than the part that appears in the lower image
half

the principal distance ¢ functionally depends on s, and s,.
Consequently, these three parameters cannot be determined
uniquely. Therefore, in practical applications, sy is typically
left at its initial value [26].

4.2 Experiments

We tested our calibration method with an Opto Engineering
hypercentric lens PC 23030XS with a diameter of 116 mm
and a working distance of 20—80 mm. We attached the lens to
an SVS-Vistek exo834MTLGEC camera with a resolution of
4224 x 2838 pixels, a pixel pitch of 3.1 pm, and a sensor size
of 1in. Because the lens was designed for a 2/3 in. sensor, we
limit all image processing applications to a circular region of
radius 900 pixels in the center of the image.

We acquired 25 images' of the calibration object of Fig. 6
(width: 40mm) under different poses. Figure 7 shows one
example of the 25 images. The calibration converged with
an RMS error of 0.54 pixel for the polynomial lens distortion
model and with an RMS error of 0.68 pixel for the division
lens distortion model. The results of the calibration are shown
in Table 1 for both lens distortion models. Furthermore, we
calculated the standard deviations of the estimated camera

I The 25 calibration images are available as part of the HALCON
software https://www.mvtec.com/products/halcon, for which free eval-
uation licenses can be obtained at https://www.mvtec.com/products/
halcon/now/.
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Table 1 Result of the

calibration of a single camera Polynomial St Division Std.
with a hypercentric lens RMS error (Pixel) 0.5429 0.6784
¢ (m) —0.00773 1.5 x107° —0.00775 1.8 x 107°
sy (um/Pixel) 3.0995 7.6 x 1073 3.0997 9.4 x 107
sy (m/Pixel) 3.1000 0.0 3.1000 0.0
cx (Pixel) 2125.09 0.37 2125.63 0.16
¢y (Pixel) 1398.44 0.37 1400.49 0.16
Kk (m~2) 2255.3 4.7
Ki (m~2) —3555.1 452
K> (m™*) 9.97 x 107 1.2 x 107
K3 (m~%) 8.16 x 102 9.5 x 10
Py (m~ 1 0.0159 0.0084
P, (m™ 1) 0.0600 0.0086

The results and the standard deviations (Std.) are given for the polynomial and for the division lens distortion

models

parameters by inverting the normal equations and applying
error propagation [9, Chapter 4]. The standard deviations are
also shownin Table 1. Note that because we excluded s, from
the calibration, its standard deviation is zero. Because of the
higher number of degrees of freedom of the polynomial lens
distortion model, the RMS error is slightly lower compared to
that of the division lens distortion model. Note that according
to our camera model, ¢ is negative.

The estimated pose of the calibration object of Fig. 7 in the
camera coordinate system is 7, = —3.0mm, 7, = 1.0mm,
t; = —=50.6mm, o =29.7°, 8 =0.3° and y = 2.0°. Note
that according to our camera model, 7, is negative. Further-
more, the value of « indicates that the calibration object was
rotated by approximately 30 ° around its x axis. Because in
this example the x axis points to the right hand side in the
image, the calibration object was rotated such that the part
that appears in the upper image half appears smaller in the
image, i.e., is closer to the camera, than the part that appears
in the lower image half. This is consistent with the real pose
of the calibration object that we used to acquire this image.

From the experiments, we can draw two important con-
clusions: First, the small RMS errors indicate that our model
is able to represent the geometry of a real hypercentric lens
correctly. Second, the resulting pose parameters are intuitive
for the user and consistent with the real setup.

In another experiment, we evaluated the repeatability of
the results and the influence of the number of calibration
images. For this, we randomly selected from the 25 cal-
ibration images a subset of N images and performed the
calibration. We repeated this experiment 500 times and cal-
culated the mean RMS error and the standard deviation of
each resulting camera parameter. Figure 8 shows the results
for N = 5...20. The RMS error, which is approximately
0.5 pixels, slightly increases when increasing the number
of calibration images and converges to approximately 0.54.
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The reason for the slight increase is the ability of the opti-
mization to better equalize measurement errors when only
few observations are available. The standard deviations of
all parameters decrease for increasing number of calibra-
tion images. While this is not surprising, it is interesting to
note that the standard deviation of all parameters decreases
faster with the number of images than we could expect
from a purely statistical point of view. We could expect
the standard deviation to decrease proportionally to N9
for independent measurements [27]. In this example, the
standard deviation of s, decreases roughly proportionally to
N~13, that of ¢ decreases roughly proportionally to N ~!2,
that of ¢, and ¢, roughly proportionally to N~!!, and that of
K1, K>, K3, P1, and P, roughly proportionally to N=L0 TItis
also interesting to note that for N — 25, the standard devia-
tions consistently converge to the values that were obtained
by error propagation (see Table 1).

5 Stereo reconstruction with hypercentric
lenses

To exploit the benefits of hypercentric lenses for stereo recon-
struction, one obvious stereo setup is to place the object to
be reconstructed between two opposing cameras that look at
each other. The setup is illustrated in Fig. 9a. A real setup is
shown in Fig. 9b. With this setup, the complete lateral sur-
face of the object can be reconstructed with a single pair of
images.

5.1 Stereo calibration
To perform the stereo reconstruction, the relative pose of both

cameras must be known. To determine the relative pose of the
cameras, the calibration object must be visible in both cam-
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Fig.8 Mean RMS error and standard deviations (Std.) for the estimated camera parameters (polynomial lens distortion model) when repeating the
camera calibration 500 times with random subsets drawn from the set of 25 calibration images. The number of images N in the subsets were varied

from 5 to 20

Camera 1

Center of entrance
pupil of camera 2

Object to be
reconstructed

=—————=— Transparent plate

Center of entrance
pupil of camera 1

Camera 2

(@ (b)

Fig.9 a Illustration and b realization of a stereo setup with two oppos-
ing cameras with hypercentric lenses. The object to be reconstructed is
placed on a transparent plate between the two cameras and illuminated
by aring light

srrovs
PPP91 157777
pross 2257

Fig. 10 One example stereo image pair of the calibration object. The
control points that could be extracted in both images are visualized by
white ellipses. Additionally, a small square part is enlarged for better
visibility

eras simultaneously. Because of the geometry of the stereo
setup (see Fig. 9), we place the planar calibration object
between both cameras in such a way that it is approximately
parallel to the optical axes and close to the image borders.
Figure 10 shows one example stereo image pair. The centers
of the control points are extracted in each calibration image
by using the method described in Sect. 4.1. The fitted ellipses
of the control points that could be extracted in both images
are also visualized in Fig. 10.

We calibrated the parameters of the interior and relative
orientation of the cameras simultaneously. As the lens dis-
tortion model, we selected the polynomial model. First, we
acquired 25 images of the calibration object in different poses
with each camera separately. Then, we additionally acquired
twelve image pairs of the calibration object in different poses
such that it was visible from both cameras simultaneously.
For the stereo calibration, we minimized (8) over all 74
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images. The calibration converged with an RMS error of
0.92 pixel. The resulting relative pose of the two cameras is
ty =2.7mm, t, = 0.4mm, t;, = —106.2mm, « = 179.8°,
B=0.8°%andy =1.3°.

5.2 Epipolar rectification

To efficiently reconstruct 3D points from two images that
were acquired from two different perspectives, the images
must be rectified by exploiting the epipolar geometry [27,
Chapter 3.10.1.1]. This is typically done by perspectively
transforming the images such that corresponding points
occur in the same row of the rectified images. With this,
the search space of the stereo matching can be reduced to a
1D search along an image row.

For the stereo setup of Fig. 9 with two opposing cameras,
this rectification method would fail because the epipoles,
which are the images of the entrance pupils, lie within the
images. During the rectification, they would be transformed
to infinity. Consequently, the rectified images would become
infinitely large. Note that this problem is not a peculiarity
of using hypercentric lenses. A similar problem arises, for
example, when rectifying images that were obtained at two
different points in time by a forward-moving camera (with a
conventional lens). In this case, the epipoles also lie within
the images. To handle this case, in [23] a method is pro-
posed that rectifies the images onto a cylinder instead of a
plane. In [22], a simpler method is proposed, which rectifies
the images by using polar coordinates around the epipoles.
The method is further improved in [20], where the images
are first transformed by a homography before applying the
polar transformation to reduce image distortions due to per-
spective effects. While these methods also would work for
cameras with hypercentric lenses, the resulting perspective
image distortions often prevent stereo matching algorithms
from robustly establishing correspondences. Figure 11a, b
shows two stereo images of the bottle of Fig. la acquired
with the setup illustrated in Fig. 9. Figure 11c, d shows the
rectified images when applying a rectification that uses polar
coordinates around the epipoles similar to [22]. Note the dif-
ferent perspective distortions of several corresponding parts
of both images. This causes problems during stereo matching.
Further note that the homography approach of [20] tries to
minimize perspective effects for a certain plane in 3D space.
Therefore, applications in which cylindrical objects like the
bottle in Fig. 1 must be inspected would only marginally
benefit from this approach.

Therefore, we propose a new approach to rectify stereo
images of opposing cameras with hypercentric lenses. The
approach is illustrated in Fig. 12. The basic idea is to mini-
mize the perspective distortion differences of both rectified
images for objects that are approximately cylindrical in
shape. This is justified by the fact that with stereo setups
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Fig. 11 a, b Stereo image pair. ¢, d Stereo image pair rectified with
polar coordinates similar to [22]. According to the epipolar geometry,
corresponding points are mapped to the same image row in both recti-
fied images. However, many corresponding image parts show different
perspective distortions in both rectified images, which causes problems
during stereo matching. In d, the image was mirrored horizontally to
obtain the same point order along corresponding image rows

similar to the one shown in Fig. 9, predominantly cylinder-
like objects can be reconstructed.

In the first step, we define a new coordinate system, the
center plane coordinate system (CPCS). The origin of the
CPCS is the center point between the centers of the entrance
pupils of both cameras. The z axis is collinear with the base
line and oriented in the viewing direction of camera 1. Let R
and ¢ be the relative orientation between the two cameras that
transform a point p, in camera 2 to a point p; in camera 1 by
P = Rp,+t. Then, the center ¢ of the CPCS in the coordinate
system of camera 1 is ¢ = %t. The z axis of the CPCS in
camera 1 is given by z. = ¢/||c||. The rotation of the CPCS
around its z axis can be chosen arbitrarily. We set the x axis of
the CPCS to the projection of the x axis of camera 1 into the



A camera model for cameras with hypercentric lenses and some example applications

1023

Center plane

3D epipolar samplin
Equidistant points PP ping
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Center plane Cylinde\r surface
coordinate system

(CPCS)

Image plane Center of entrance Center of entrance
of camera 1 pupil of camera 2 pupil of camera 1
(a)

Fig. 12 Stereo rectification for cameras with hypercentric lenses.
a Points on the surface of a cylinder are sampled in an equidistant
manner by sampling z with an equidistant step width and calculating
the sampled points r along the ray within the center plane, i.e., within
the xy plane of the center plane coordinate system (CPCS). The point

plane z. = 0, i.e, X, = (1 — zgyx, —Zc,xZc,ys —zchzc,z)—r.
Thus, the x axis of the CPCS in the coordinate system of
camera 1 is x, = X/||X.||. Finally, the y axis of the CPCS in
the coordinate system of camera 1 is obtained by the vector
producty. = z¢ X Xc.

In the next step, we generate half planes that are bounded
by the base line. The orientation of a half plane is defined
by the angle ¢ of its intersection with the xy plane and the x
axis of the CPCS (see Fig. 12b). By intersecting the half plane
with the image planes, an oriented epipolar line is obtained
in each image. Different epipolar lines are generated by sam-
pling ¢ within the interval [0, 277). To avoid border effects
in window-based stereo matching approaches, the interval
should be enlarged by half the window height in both direc-
tions and reduced to the interval [0, 277) after the matching.
To maintain the information content of the image, the step
width Ag of the sampling should be chosen such that Ag
approximately results in a 1 pixel displacement in the image
corners.

In the final step, each epipolar line is sampled in the radial
direction. The sampling is performed in the center plane
along the ray that is obtained by intersecting the current half
plane with the center plane. The resulting sampled 3D points
are then projected into the images. To obtain similar perspec-
tive distortions in both rectified images, the sampling cannot
be performed in an equidistant manner along the ray. Instead,
we propose to sample the points such that the surface of a
cylinder is sampled in an equidistant manner. The approach
is illustrated in Fig. 12a. Let z be the distance of a point
on the unit cylinder from the xy plane of the CPCS. When

Cylinder surface

Half plane

Image plane of

camera 2 3D epipolar sampling

(b)

¢ denotes the origin of the CPCS in the coordinate system of camera
1. b Generation of half planes that are bounded by the base line. The
orientation of a half plane is defined by the angle ¢ of its intersection
with the xy plane and the x axis of the CPCS

projecting the point into the xy plane, the distance r of the
projected point from the origin of the CPCS is obtained by

el an

llell =z

Thus, an equidistant sampling on the cylinder surface is
obtained by sampling z with an equidistant step width and
calculating the sampled points along the ray according to
(11). Minimum and maximum values for z can be obtained,
for example, by restricting the image part that should be recti-
fied to a circular ring around the principal point by specifying
the minimum and maximum radius of that ring. Furthermore,
the step width of the sampled z values should be chosen such
that the information content in the rectified images is main-
tained. Note that the computation of r needs to be done only
once because the sampling is the identical for all epipolar
lines.

The resulting sampled points in the xy plane of the CPCS
are projected into the images and the images are rectified
accordingly. Figure 13 shows the result of the rectification.
Note that the perspective distortions in corresponding image
parts are more homogeneous compared to the result obtained
with the approach of [22], which is shown in Fig. 11c, d.

Finally, the rectification mapping can be stored in a look-
up table to efficiently rectify images that were taken with the
same stereo setup.

Note that the proposed epipolar rectification is optimized
for a stereo setup with two opposing cameras as shown
in Fig. 9. It assumes that a standard disparity estimation
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Fig.13 a, b Stereo image pair of Fig. 11a, b rectified with the proposed
approach. According to the epipolar geometry, corresponding points are
mapped to the same image row in both rectified images. Corresponding
image parts show more homogeneous perspective distortion compared
to the result obtained with an approach that uses polar coordinates shown
in Fig. 11c, d. In d, the image was mirrored horizontally to obtain the
same point order along corresponding image rows

method is used to establish correspondences between the
two rectified stereo images. In this case, the proposed recti-
fication provides more homogeneous perspective distortions
for objects that are approximately oriented along the stereo
base line. The rectification causes points to appear approxi-
mately independent of their distance from the camera in the
rectified image. This results in a more robust disparity esti-
mation compared to state-of-the art rectification that uses a
simple polar transformation. It should be noted, however,
that the proposed rectification is not restricted to cylindrical
objects. Even for non-cylindrical surfaces, the proposed rec-
tification will improve the disparity estimation compared to a
polar transformation. Finally, we would like to point out that
for stereo setups with hypercentric lenses and non-opposing
cameras (i.e., cameras for which the angle between the view-
ing directions is typically smaller than 90 degrees), standard
rectification methods can be applied, for example, [27, Chap-
ter 3.10.1.4].

5.3 Stereo matching

The rectified images are used for efficient stereo match-
ing. We compute the disparity image for the rectified
image of Fig. 13a by applying the HALCON operator
binocular_disparity_ms [19] and filling up holes in
the disparity image by applying a harmonic interpolation with
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(b)

Fig. 14 a Subpixel-precise disparity image of the rectified image of
Fig. 13a. b 3D stereo reconstruction with texture mapping

the HALCON operator harmonic_interpolation[19].
The resulting subpixel-precise disparity image is shown in
Fig. 14a.

To evaluate the benefit of our proposed epipolar rectifi-
cation of Sect. 5.2, we also applied the stereo matching to
the images of Fig. 1lc, d that were rectified by applying
a polar transformation around the epipoles, similar to [22].
Furthermore, we applied a consistency check [27, Chapter
3.10.1.8] as follows: We computed the disparity not only
from the first to the second rectified image but also from
the second to the first image. The disparity value for a pixel
was accepted as correct only if both directions resulted in
the same value. For the images that were rectified by using
the polar transformation, 25.1 % of the pixels passed the con-
sistency check. For the images that were rectified by using
our proposed method, 57.5 % of the pixels passed the con-
sistency check. This clearly demonstrates the benefit of our
proposed method, which results in a higher stereo matching
robustness.

5.4 Stereo reconstruction

Based on the disparity image, we reconstruct the 3D geom-
etry of the object. For each pixel in the first rectified image,
the image coordinates in the original image are computed.
Furthermore, for each pixel in the first rectified image, the
corresponding point in the second rectified image is com-
puted by adding the calculated disparity value of that pixel.
For the corresponding point in the second rectified image, the
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image coordinates in the original image are computed. The
computation of the original image coordinates can be done
either analytically or by storing the original image coordi-
nates for each pixel in the rectified images. In the latter case,
the original image coordinates for the second image must
be interpolated if the disparity values were computed with
subpixel precision.

Two corresponding points in the original image planes
with the two optical centers of the cameras define two optical
rays. The reconstruction of the 3D position is obtained by
intersecting the two optical rays in 3D space.

Figure 14b shows the result of the 3D stereo reconstruc-
tion. For visualization purposes, we mapped the gray values
of the original images to the reconstructed 3D points. For
each reconstructed 3D point, the gray value was selected
from the image with higher local contrast.

6 Unwrapping of objects

Many machine vision inspection tasks can be simplified by
unwrapping the images of cameras with hypercentric lenses.
For example, if the text on the label of the bottle in Fig. 1
should be read by using OCR, the cylindrical surface of the
text label should be unwrapped into a plane. To unwrap the
cylindrical surface, it is necessary to know the pose of the
cylinder with respect to the camera(s). In the following, we
will describe two methods that can be used to determine the
pose of the cylinder.

6.1 Unwrapping with a single camera

The first method uses the image of a single camera to estimate
the pose of the cylinder and unwrap the image. The pose of a
circle with respect to a calibrated camera can be determined
from its perspective projection if the radius of the circle is
known [21]. Therefore, to determine the pose of the cylinder,
itis sufficient to determine the pose of one of its circular cross
sections.

In the example of Fig. 1, we can easily determine the
contour of the circular ground plane of the bottle in the image.
For this, we extract the subpixel-accurate edge at the border of
the imaged bottle [24, Chapter 3.3], [25] and fit an ellipse to
the extracted edges [7]. The fitted ellipse is shown in Fig. 15.
Because we know the diameter of the bottle, we can use the
approach of [21] to determine the pose of the circle with
respect to the camera. From the perspective projection of a
circle, the pose of the circle cannot be determined uniquely.
Therefore, we obtain two possible circle poses. In our setup,
the z axis of the camera was approximately parallel to the
symmetry axis of the bottle. Therefore, we compute the angle
of the normal vector of both circles with the z axis of the
camera and select the circle pose with the smaller angle.

TExo
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g .
P ahedn L

Fig. 15 Two extracted ellipses (white) of the circular ground plane
(large ellipse) and the circular screw cap (small ellipse) of the bottle
that are used to determine the pose of the cylindrical surface of the text
label
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Fig. 16 Result of the cylinder unwrapping of the image of Fig. 15 with
a single camera

To improve the accuracy, we determine the pose of a sec-
ond circle. For the second circle, we use the top planar part
of the circular screw cap of the bottle, of which we also know
the diameter. The fitted ellipse is also shown in Fig. 15. From
the two possible circle poses, we again select the correct one
as described above. Finally, the axis of the cylinder of the
text label is obtained as the line defined by both 3D circle
centers.

An alternative and more general way to resolve the ambi-
guity of the circle poses is to pair each of the two possible
solutions of the first circle with each of the two possible
solutions of the second circle. The two correct ones are char-
acterized by being parallel.

With the pose of the cylinder, the image of Fig. 15 can be
unwrapped. The result is shown in Fig. 16.

The proposed unwrapping of objects with a single camera
assumes that the shape of the object is known precisely. Even
though the object in the presented example was a cylinder,
the unwrapping can be done with other developable surfaces
as well (a cone, for example), as long as the pose of the object
can be determined.
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Fig. 17 Cylinder (dark gray) robustly fitted to the reconstructed 3D
points
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Fig. 18 Result of the cylinder unwrapping of the images of Fig. 11a, b
with a stereo camera setup

6.2 Unwrapping with a stereo camera setup

The second unwrapping method uses the two images of a
stereo camera setup to estimate the pose of the cylinder and
unwrap the image. In this case, we robustly fit a cylinder to
the reconstructed 3D points that were obtained as described
in Sect. 5.4: we minimize the sum of square distances of the
points from the cylinder surface by using the Levenberg—
Marquardt algorithm [11, Appendix A6]. Outliers in the
reconstructed 3D points are suppressed by using the Tukey
weight function [18]. Figure 17 shows the reconstructed 3D
points with the fitted cylinder.

With the pose of the cylinder, the images of Fig. 11a, b
can be unwrapped. The results are shown in Fig. 18.
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Fig. 19 a, b Stereo image pair of an AA alkaline battery. ¢, d Rectified
stereo images. d, f Result of the unwrapping

For a second example, we applied our method to the stereo
images of an AA alkaline battery with a height of about
50mm and a diameter of about 14 mm (see Fig. 19). Again,
we rectified the acquired stereo images, performed the 3D
reconstruction, fitted a cylinder to the reconstructed points,
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and finally unwrapped the stereo images by using the cylinder
pose.

Similar to the unwrapping with a single camera, also the
proposed unwrapping with a stereo camera setup can be
extended to other developable surfaces: If the true object
shape is known (as in the example), the object pose might be
obtained by fitting the shape to the reconstructed 3D points.
In case of an unknown object shape, the surface of the object
might be determined by triangulating the reconstructed 3D
surface points, for example.

7 Conclusion

We have proposed a camera model for cameras with hyper-
centric lenses that is intuitive for the user. We showed that
it is useful to assume a camera model that behaves identi-
cally to the model of an entocentric lens with respect to the
camera coordinate system. In contrast to cameras with ento-
centric lenses, however, for hypercentric lenses the objects lie
between the projection center and the image plane. Therefore,
the z coordinates of objects in the camera coordinate system
are negative. Furthermore, the principal distance ¢ must be
negative as well. We also showed how to calibrate cameras
with hypercentric lenses by using a planar calibration object.

From the experiments, we can draw two important conclu-
sions: First, the small RMS errors of the calibration indicate
that our model is able to represent the geometry of a real
hypercentric lens correctly.

Second, the resulting pose parameters are intuitive for the
user and consistent with the real setup.

We also applied our camera model to two example appli-
cations: in the first application, we showed how two cameras
with hypercentric lenses can be used for dense 3D reconstruc-
tion. For an efficient and robust reconstruction, we proposed a
novel rectification method for objects that are approximately
cylindrical in shape. In the second application, we showed
how to unwrap cylindrical objects to simplify further inspec-
tion tasks. For this, we described two methods to determine
the pose of the cylinder: based on a single camera image and
based on two images of a stereo camera setup.

It is important to note that the camera model for hyper-
centric lenses that we proposed in Sect. 3 is general. The
same holds for the calibration procedure that we proposed
in Sect. 4, which is additionally general with regard to the
number of cameras. Furthermore, it allows the calibration of
a system of cameras with mixed lens types (hypercentric and
entocentric, for example). In contrast, the epipolar rectifica-
tion that we proposed in Sect. 5.2 is optimized for a stereo
setup with two opposing hypercentric cameras as shown in
Fig. 9.

The proposed camera model is available in the machine
vision software HALCON, version 18.05 and higher [19].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
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