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Abstract

In the course of structural component miniaturization, the interest in the material behavior at small scales and underlying physical
mechanisms has significantly grown in the last years. In this context, the consideration of dislocations plays an essential role for
the analysis of the resulting plasticity and dislocation based simulations can give helpful insights into the material evolution. In this
paper, a three-dimensional crystal plasticity continuum formulation is extended by a homogenized, mechanism based dislocation
source model and applied to 〈1 0 0〉 oriented single crystalline microwires under torsion. Fundamental operating principles of the
individual slip systems, their interaction concerning the type of dislocations, relaxation mechanisms as well as the significance for
the local misorientation are studied. Considering the torsion of a 24 µm thick aluminum wire, the spatial distribution of strains and
dislocation densities as well as the resultant local misorientation are shown compared to discrete dislocation dynamics simulations
and experiments. The results show that characteristic spatial distributions of dislocation density over the cross section can be found.
Due to internal dislocation pile-ups, a size effect for small microwires under torsion can be observed.

1. Introduction

Due to the miniaturization of structural components, the
application for wires under torsion expands to small scales.
Screws smaller than a millimeter are used for new smartphones,
shafts of tiny motors reach sizes of a few hundred microme-
ters [40] and drills with a diameter of only few micrometers
are used in medical technology. At micrometer scales, inter-
nal length scales have to be taken into account to capture the
size effect observed for torsional loading [7, 41]. Furthermore,
microwires under torsion are challenging due to complex phys-
ical mechanisms including internal pile-ups of dislocations in
the presence of a linear external stress field and the interaction
of different slip systems that are subjected to different resolved
shear stress fields.

The torsion of microwires has been studied using different
methods to analyze a number of different aspects. This in-
cludes molecular dynamics simulations examining the crystal-
lographic orientation dependency of the deformation mecha-
nisms and homogeneity of the plastic deformation [37, 38], dis-
crete dislocation dynamics (DDD) simulations that were used to
examine the dislocation microstructure evolution and the role
of cross slip [32] as well as the crystallographic orientation and
specimen size dependency of the plastic deformation [26]. Con-
tinuum dislocation analyses were used to study the dislocation
density distribution considering energetic aspects for simplified
artificial slip systems including dislocation nucleation and work
hardening [13], as well as hardening and softening during the
wire torsion and size effects [14]. Gradient plasticity formu-
lations were used to analyze the relation between surface en-
ergy and boundary conditions [10], the plastic spin contribution
[2], as well as the influence of texture on the size effect for

oligocrystalls [3]. Basic theoretical considerations have been
carried out to investigate the size effect at the onset of yielding
and the distribution of stresses and geometric necessary dislo-
cations (GNDs) [18], as well as the role of the accumulation
and pile-ups of GNDs for the size effect [15]. To investigate the
size effect of yielding and plastic flow due to a critical thickness
effect and the role of GNDs, [17] performed experiments with
polycrystalline microwires. For bamboo-structured microwires,
[43] presented experimental results studying the deformation
and misorientation of the structure.

Since plastic material behavior results from the evolution of
the dislocation microstructure, the dislocation production plays
an essential role. Considering several possible source mech-
anisms including Frank-Read sources, truncated sources, and
dislocation nucleation from the surface, the governing source
mechanisms can differ with varying sample size. Resulting
effects on the initiation of yielding or due to the ’starvation’
of mobile dislocations depending on the specimen size were
observed e.g. in experiments [22, 8, 39]. Mathematical and
numerical formulations have been proposed e.g. by [24, 6].
Source models for continuum formulations based on discrete
dislocation mechanisms rely on the dislocation density pro-
duction and additional microstructural information [25], as e.g.
the dislocation velocities, type and length of involved disloca-
tion segments or dimensions and amount of dislocation sources.
Formulations using the nucleation time of a Frank-Read source
have been introduced e.g. by [42, 21]. A model using an evo-
lution parameter derived by discrete simulations is presented in
[16]. However, it has been shown, that an inadequate param-
eterization of continuum models based on the nucleation time
could lead to artificial softening [29]. Therefore, [25] takes into
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account a relaxation potential of the produced dislocations in-
stead of using a rate formulation. An approach following the
theory of critical thickness [5, 4] is realized by [29] for a two-
dimensional bending problem.

In this paper, the three-dimensional continuum dislocation
dynamics (CDD) formulation according to [12, 31] is extended
by a homogenized, mechanism based dislocation source model.
Here, we focus on the averaged representation of disloca-
tion source mechanisms corresponding to Frank-Read sources.
Thus, the consideration of dislocation source activation allows
for an increase of the total number of dislocations averaged
in the continuum in contrast to the solely kinematic increase
of dislocation density based on the increase of dislocation line
length during the evolution of a number of existing dislocations
in the system. We apply the formulation to a fcc microwire with
〈1 0 0〉 orientation under torsion. The fundamental theoretical
considerations and continuum simulations show the operating
principles of the different slip systems including their interac-
tions, relaxation mechanism and impact on the resulting dislo-
cation microstructure and the misorientation of the continuum.
The results are compared to DDD data and experimental inves-
tigations focusing on spatial distributions of dislocation densi-
ties and strains as well as the local misorientation over the wire
cross section and along the wire axis.

2. Methods

2.1. Dislocation density based continuum model

Based on the CDD formulation in [31], we introduce an ex-
tension of this model incorporating a homogenized disloca-
tion source formulation that enables e.g. the analysis of tor-
sion problems from dislocation free initial structures. Although
the basic set of CDD evolution equations is known from [31],
the used formulation including the considered stress interaction
terms and the mobility law is presented in this subsection for a
better readability.

The model incorporates two coupled problems: The elastic
problem calculating the stress field for a given plastic state and
the dislocation problem describing the dislocation evolution for
a given stress field yielding plastic deformation. Therefore, the
distortion tensor Du is decomposed into an elastic part βel and
a plastic part βpl:

Du = βel + βpl. (1)

Based on the assumption of small deformations, the strain ε is
given by the symmetric part: ε = sym Du and can be decom-
posed analogously into an elastic and plastic part: εel = symβel

and εpl = symβpl. The stress-strain relation describes physical
linearity using the Cauchy stress tensor σ = C[ε − εpl]. Here
C describes the elasticity tensor. The macroscopic equilibrium
equation considering body forces fB is given in the continuum
B by

− divσ = fB in B (2)

and complemented by the boundary conditions at the surface
∂B via given displacements uD for the displacements u on

Dirichlet boundaries ∂DB and given traction tN for the applied
traction σn on Neumann boundaries ∂NB. It holds

u = uD on ∂DB , σn = tN on ∂NB

∂DB ∪ ∂NB = ∂B , ∂DB ∩ ∂NB = ∅.
(3)

Considering a slip system s ∈ {1, ..., S }, with the total number
S of considered slip systems (i.e. 12 in the fcc material), the
single slip systems are characterized by their normal vector ms,
their slip direction ds = 1

bs
bs and the line direction of positive

edge dislocations ls = ms × ds forming an orthonormal basis
{ds, ls,ms}. Herein, bs is the Burgers vector of the length bs =

‖bs‖. The plastic shear strains γs on the individual slip systems,
multiplied by the respective Schmid tensor Ms, contribute to
the plastic distortion

βpl =

S∑
s=1

γsMs , Ms = ms ⊗ ds. (4)

The elastic problem is closed by the evolution equation for the
plastic shear strain in the dislocation problem via the Orowan’s
equation [23]

γ̇s = vsbs%s (5)

based on the dislocation velocity vs and the total dislocation
density %s on the individual slip systems. The dislocation mi-
crostructure is described on each slip system by the following
CDD quantities: The total dislocation densitiy %s, the vector of
GND densitiy κs, and the curvature density qs. The vector of
GND density can be written based on its screw and edge part:
κs = κscrew

s ds + κ
edge
s ls. The evolution of these CDD quantities

defining the averaged dislocation state is given as

%̇s = −∇ ·
(
vsκ
⊥
s

)
+ vsqs with κ⊥s = κs ×ms

κ̇s = ∇ × (%svsms)

q̇s = −vs∇ ·
(qs

%s
κ⊥s

)
− As · ∇

2vs + q̇prod
s .

(6)

Here, the curvature density evolution is extended by a produc-
tion term q̇prod

s that enables the model to increase the number of
dislocation loops within the system. For q̇prod

s = 0 the formula-
tion is conservative. Using the closure assumptions introduced
in [12], the dislocation alignment tensor As is given as

As =
1
2

((
%s + ‖κs‖

) κs

‖κs‖
⊗

κs

‖κs‖
+

(
%s − ‖κs‖

) κ⊥s
‖κ⊥s ‖

⊗
κ⊥s
‖κ⊥s ‖

)
. (7)

The dislocation problem is closed by a constitutive law for
the dislocation velocity. Depending on a material specific drag
coefficient B > 0, the effective stress τeff

s and the yield stress τy
s ,

the velocity is defined by

vs =
bs

B
sgn(τeff

s ) max
{
0, |τeff

s | − τ
y
s

}
, τeff

s = τs − τ
b
s . (8)

Here, the effective stress consists of the resolved shear stress on
a slip system τs and the back stress τb

s given by

τs = σ · Ms , τb
s =

Dµbs

%s
∇ · κ⊥s , τ

y
s = aµbs

√√√ S∑
s̃=1

%s̃. (9)
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Here, the resolved shear stress is calculated by the projection of
the stress tensor including dislocation eigenstresses on each slip
system according to [30]. The back stress considers short-range
dislocation stress interaction according to [9, 28] depending on
a material parameter D and the shear modulus µ. Furthermore,
the yield stress accounts for hardening due to the interaction
with forest dislocations from other slip systems within the av-
eraging volume. Here, we consider the classical Taylor yield
stress including a material parameter a > 0 and the shear mod-
ulus µ. The variable s̃ is the index of summation over the in-
dividual slip systems. Following the findings in [33], this is
assumed to be a reasonable approximation for the studies on
high symmetry configurations as presented in the following in
this paper.

2.2. Source Model

We introduce a three-dimensional dislocation source model
based on the production rate of homogenized dislocation loop
structures considering their relaxation potential. The source
model extends the CDD evolution equations by a production
term contributing to the curvature density evolution assuming
that at least one source exists within all averaging volumes.

The dislocation sources on the individual slip systems are
activated locally if the effective stress on the individual slip
system exceeds the respective critical source stress τcrit

s . This
critical source stress is chosen according to [11] as the maxi-
mum dislocation line tension of a Frank-Read source with the
source length ls. Since the information about the exact source
length in the microstructure is missing in the continuum, the
average source length within the averaging volume is assumed
to scale with the average dislocation spacing given inversely
proportional to the square root of %s with a constant factor cFR.
Handling vanishing dislocation densities, a reference value for
the source length lref

s is introduced to limit the source length and
the corresponding critical source stress to a reasonable value
with respect to the averaging volume size. The initiation of
yielding depending on the specimen size were studied among
others in [35, 24, 6, 39] and can be used to determine lref

s refer-
ring to τcrit

s . It holds

τcrit
s =

µbs

ls
, ls = min

lref
s , cFR 1√∑S

s̃=1 %s̃

 , cFR > 0 .

(10)
The basic idea is to consider the effective source activation

and the resulting stress relaxation rather than the single bow-
out process. Therefore, the system relaxation resulting from
the source activation is determined by taking into account the
impact of the local dislocation density production within an av-
eraging volume. The macroscopic ideal plastic material behav-
ior is considered as an upper limit for the production rate in the
system. In the following, the term ”local” is referred to an aver-
aging volume, whereas ”global” is referred to the entire system
considered.

Since the dislocation production rate is globally limited, a
model based on local production rates have to predict the global

effect as the sum of all local activities. However, the local pro-
duction rates are not known a priori, thus a predictor-corrector
approach is used in the following. The local production rates
contribute to the globally expected plastic strain rate based on
the global dislocation production ε̇pl,exp

gl , which is limited by the
norm of the global strain rate ε̇gl = ‖ε̇gl‖. For a considered
system with the volume V we write

1
V

∫∫∫
V

ε̇pl,exp dV = ε̇
pl,exp
gl ≤ ε̇gl =

1
V

∫∫∫
V

ε̇ dV . (11)

Here, the globally expected plastic strain rate due to the global
overall dislocation production is calculated by the volumetric
mean of the globally expected plastic strain rate due to the local
dislocation production εpl,exp. The norm of the global strain rate
is calculated analogously by the volumetric mean of the norm
of the local strain rate ε̇. The local strain rate ε̇ calculated from
the elastic problem can be written by its norm and a Tensor Mext

as
ε̇ = ‖ε̇‖ = ε̇ ·Mext , ‖Mext‖ = 1 . (12)

The globally expected plastic strain rate due to the local dislo-
cation production is calculated by combining equations (4) and
(12) to

ε̇pl,exp =

S∑
s=1

| ξ̇
prod
s γ

exp
s︸   ︷︷   ︸

γ̇
exp
s

sym(Ms) · Mext︸             ︷︷             ︸
Schmid factor

| (13)

using the local dislocation density production rate ξ̇prod
s and the

globally expected plastic shear strain γexp
s per local source acti-

vation on the individual slip systems. The predicted local dislo-
cation production density rate is determined locally by the ratio
of the resulting stress increase over the critical source stress to
the stress relaxation per single source activation ∆τsrc

s as

ξ̇
prod
s =

1
Vsrc ∗

max
{
|τ̇

exp
s |−|τ̇

relax
s |

∆τsrc
s

, 0
}

, |τeff
s | > τ

crit
s

0 , |τeff
s | ≤ τ

crit
s .

(14)

Here, the resulting stress increase is the difference of the rate
for the expected stress increase τ̇exp

s and the stress relaxation
τ̇relax

s of already existing dislocations within the averaging vol-
ume Vsrc. Since dislocation annihilation is neglected in the
present formulation, the production rates are not allowed to be-
come negative. Consequently, the dislocation sources remain
locally inactive if the existing dislocation content within the av-
eraging volume is sufficient to relax the local stress increase.
The expected stress increase on the individual slip systems can
be derived as

τ̇
exp
s = C[ε̇] · Ms. (15)

The stress relaxation of already existing dislocations within the
averaging volume depends on subsequent microstructure evo-
lution and is at this point unknown. Therefore τ̇relax

s is ap-
proximated referring to the current dislocation microstructure
by combining the Orowan’s equation and Hooke’s law as

τ̇relax
s = µvsbs%s . (16)
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In an averaging volume, the relaxation stress contribution of
one single, newly generated dislocation loop can be written as

∆τsrc
s = µ

bs

hsrc = const (17)

using the height hsrc of a dislocation producing averaging vol-
ume.

The globally expected plastic shear strain per local source
activation is calculated based on the mean sheared area Aav

s per
dislocation loop on each slip system as

γ
exp
s =

Aav
s bs

V
. (18)

Simplifying, we assume that the mean area Aav
s potentially be

sheared by the expanding dislocation loop is approximately the
cross section of the considered specimen when the dislocation
loop leaves the continuum at the surfaces. The averaged cross
section assumed for each slip system can be approximated by
the system volume divided by the maximum distance between
two slip planes of a slip system in the structure. Regarding dif-
ferent loading scenarios, it has to be taken into account that a
maximum of only half of the cross section is sheared by a dis-
location loop for torsion and bending due to the linear stress
distribution. Thus, for a geometry and loading depending ap-
proximation of the mean area it can be formulated simplified:

Aav
s = cload V

xgeom · m̃
, cload =


0.5 , torsion, bending
1 , shear, tensile,

and compression.
(19)

Here, xgeom describes the approximated geometric measures,
i.e. length in x-direction, height in y-direction and width in
z-direction for a rectangular envelope of the system. The vector
m̃ = (|mx|, |my|, |mz|)T contains the components of the slip nor-
mal as absolute values and ensures positive contributions to the
scalar product.

Considering the upper limit of the global production rate re-
ferring to equation (11), the predicted local production rates are
adjusted to the physically reasonable production rates ξ̇prod

s,cor ac-
cording to the predictor-corrector approach as

ξ̇
prod
s,cor = min

{
1,

cgeomε̇gl

ε̇
pl,exp
gl

}
ξ̇

prod
s , cgeom > 0 . (20)

Here, the geometric correction factor cgeom takes into account
the actual geometry of the cross section with respect to the vol-
umetric mean value calculated in equation (11). In the follow-
ing, we choose cgeom = 3/4 referring to a circular cross section
of a torsional system. For a detailed derivation see Appendix
B. Using the assumption of forming circular loops in the con-
tinuum, we can formulate the production rate of the curvature
density considering the production of averaged closed loops as
a multiple of 2π orientations as

q̇prod
s = 2πξ̇prod

s,cor . (21)

The production of curvature density by the source model leads
to expanding dislocation loops in the ongoing density evolution.
This can be interpreted analogously to the discrete bow out to
build a dislocation loop out of a Frank-Read source in DDD.
However, the bow out process is neglected in the continuum.
Thus, it has to be remarked, that the production time step has
to be larger than the time step, that a dislocation bow out needs
to form a dislocation loop. Since we want to focus on the dis-
location density generation in the system, we neglect disloca-
tion multiplication by dislocation reactions in the present study.
However, the formulation can be extended by reaction and mul-
tiplication mechanisms straight forward, e.g. by including the
model according to [34].

2.3. Numerical Implementation
The formulation has been implemented into a two-scale nu-

merical framework. Based on the numerical formulation given
in [31], we combine a finite element approach using tetrahe-
drons with linear ansatz functions to solve the elastic prob-
lem and an implicit Runge-Kutta discontinous Galerkin scheme
with full upwind flux and constant tetragonal elements for the
dislocation problem. Simplifying but found to be efficient, we
apply the same mesh resolution for both scales. The time dis-
cretization is realized by an implicit midpoint rule with a fixed
time step.

Regarding the boundary conditions, we assume that the dis-
locations can leave the continuum unhindered on the open
boundaries with the surface normal n. This is described by
Robin-type boundary conditions for the dislocation densities
and a dissipation of the curvature density on the outflow bound-
aries ∂outB. Furthermore, no dislocations are allowed to enter
the system over the surface. This means that the curvature den-
sity on the inflow boundaries ∂inB vanishes. Thus, it holds

vs

(
‖n× ms‖%s + (n× ms) · κs

)
= 0 on ∂B (22)

and

qs = 0 on ∂inB , ∂inB =

{
x ∈ ∂B :

vs

%s
n · κ⊥s < 0

}
∂inB ∪ ∂outB = ∂B , ∂inB ∩ ∂outB = ∅.

(23)

2.4. Considered system
To study the characteristics of the evolving microstructure

in face-centered cubic microwires under torsion the following
system configuration is considered. We investigate a single
crystalline microwire with a length of 48 µm and a radius of
R = 12 µm. The bottom and the top of the wire are subjected
to symmetric torsional loading. The system as well as the cho-
sen discretization is shown in Fig. 1. Regarding the boundary
conditions, there is no restriction for the nodal displacement in
length direction of the wire. Only the center node at the bot-
tom is fixed to prevent rigid body motion. The circumference
surfaces are considered traction free.

Mimicking aluminum, the material is assumed to be isotropic
with a 〈1 0 0〉 crystal orientation characterized by the shear
modulus µ and the Poisson’s ratio ν given in Fig. 1.
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µ = 27 GPa
ν = 0.347
b = 0.286 nm
B = 10−4 ns GPa
D = 0.255
a = 0.35

lre f
s = 0.22 µm

cFR = 1.5
cgeom = 0.75

Fig. 1: Geometry, finite element mesh (170 k elements), and ma-
terial parameters for the microwire under torsion loading.

The length of the Burgers vector b, a material specific drag
coefficient B [20], the backstress parameter D [28], as well as
the material parameter for the yield stress a [19] are chosen
according to the respective references. For the source model,
the reference source length lre f

s [32], the constant cFR (chosen
according to [29]), and the geometric correction factor for the
production density cgeom are also given in Fig. 1.

Based on the loading and the crystal orientation, we want to
analyze the dislocation density evolution on the fcc slip sys-
tems. Fig. 2 shows theoretical considerations of the interplay
of the different slip systems with respect to the applied shear
stress. Looking at the different system orientations, the struc-
ture (see Fig. 2(a)) can be relaxed in two different ways: In
the simplified system, the plastic deformation takes place on
a plane parallel to the load plane yielding the deformation by
plastic slip on this plane, see β

pl
21 and βel

21 in Fig. 2(b). Or,
the plastic deformation can take place perpendicular to the load
plane creating an elastic counterpart to the elastic shear loading,
see βel

12 and βel
21 in Fig. 2(c). Since the strain tensor is calculated

by the symmetric part of the distortion tensor, the two trans-
posed components cancel out.

Due to these relaxation principles, the interaction of the dif-
ferent slip systems can be identified as visualized in Fig. 3 for
torsional loading. Using a cartesian coordinate system, the re-

sulting stress tensor due to torsion consist of two shear stress
components, here τxy and τyz, with a linear distribution over the
structure. Simplifying, slip systems with different slip planes
but same Burgers vector can be combined into one effective
slip system producing the same plastic distortion according to
equation 4. It can be found, that there are two ways (Fig. 3(a)
and (b): A6+B5+C5+D6 and A2+B2+C1+D1) to generate a
counter part for the relaxation (cp. Fig. 2(c)) seeing one tor-
sional stress component. The resulting Burgers vector points
into the direction of the torsion axis and the slip plane normal is
orthogonal to the torsion axis. Furthermore, there are two slip
system combinations (Fig. 3(c) and (d): B4+D4 and A3+C3)
showing a resulting slip plane normal directed in the torsion
axis, transforming the elastic into plastic deformation (cp. Fig.
2(b)) and seeing both torsional stress components. Here, the
neutral axis is rotated by 45◦.

Considering the resulting options for plastic relaxation, a
simplified set of four reduced effective slip systems is exam-
ined. Considering the possible dislocation density evolution on
the reduced effective slip systems leads to a distribution of pure
screw GNDs with opposite sign on slip planes perpendicular
(Fig. 3(c) and (d): B4+D4 and A3+C3) and parallel (Fig. 3(a)
and (b): A6+B5+C5+D6 and A2+B2+C1+D1) to the torsion
axis due to the linear torsional stress field and the resulting pile-
ups. This is consistent to the theoretical considerations for the
analysis of twist boundaries given in [36]. Although we analyze
all twelve slip systems for the microwire in the following, the
considerations of effective slip systems give a theoretical under-
standing of possible relaxation mechanisms in the system.

The plastic distortion resulting from the interplay of all active
slip systems leads to a misorientation of the cross section with
respect to the rotation axis as shown in Fig. 4. For the derivation
of the misorientation from the distortion fields see Appendix D.
It can be observed, that the rotation axes point towards the wire
center for an activation of all four slip systems with the Burgers
vector orthogonal to the torsion axis (A3+B4+C3+D4). How-
ever, looking at the local contribution of specific slip systems,
it can be seen that this leads to a uniform orientation of the ro-
tation axis parallel to the torsion axis over the cross section.

Fig. 2: Two possible relaxation principle are shown ((a)→(b) and (a)→(c)), whereby the deformed structure is drawn in black, the
plastic deformation is shown in gray and the elastic deformation is represented by blue arrows.

Fig. 3: The resulting plastic deformation, see eq. (4), through the combination of different slip systems and the relevant external
stress components for the dislocation velocity, see τs in eq. (9) are shown for a 〈1 0 0〉 crystal orientation and torsional loading.
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Fig. 4: Resulting torsion axes for the interplay of plastic slip on
specific slip systems. The misorientation is characterized by the
rotation axis (purple arrow) and the rotation angle θ. Consider-
ing only the skew symmetric part of the plastic distortion, the
slip systems distortion can cancel out.

3. Results

We study the system of a microwire under torsional load ac-
cording to 2.4. The distributions over a cross section perpen-
dicular to the torsion axis shown in the following are evaluated
at half of the wire length. Curves over the (normalized) radius
are computed by averaging over the circumference for a given
radius at half of the wire length.

3.1. Benchmark system
In order to test the introduced source model, a simple bench-

mark system is considered. The torsional load is given by a wire
distortion of 2.4◦ and the slip systems are examined separately
considering one slip system at a time. For simplicity, we allow
for the dislocation production in one single averaging volumes
only and track the dislocation density evolution out of a single
source activation as shown in Fig. 5 for the slip system B4 and
in Fig. 6 for B5. The produced curvature density leads to an ex-
panding dislocation loop, leaving the continuum at the surface
and piling-up in the middle of the wire according to the neutral
axis of the applied stress field. With respect to the sign of the
stress field, the curvature density resulting from a source activa-
tion can be identified as positive or negative curvature density.
However, the GND pile-ups at the neutral axis can still consist
of e.g. negative screw density on both sides of the neutral axis
as e.g. for slip system B4.

3.2. Relaxation of a constant torsional load
We consider the microwire according to Sec.2.4 and apply a

constant torsional deformation of 1◦ to be relaxed. Here, the
full fcc system is considered with a homogeneous distribution
of sources. Due to the linear stress field, the dislocation density
is produced near the circumferential surface. While a signif-
icant part of the produced density leaves the system over the

Fig. 5: Benchmark system with a single source activation and the evolution of the total dislocation density of the slip system B4. The
top view of the cross section shows the converged GND density consisting of nearly 100% screw density close to the neutral axis.

Fig. 6: Evolution of the total dislocation density of the slip system B5 for the benchmark system. The nearly converged GND density
consist of 34% screw part and 66% edge part.
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Fig. 7: Spatial distribution of the total dislocation densities % at
an early stage of the density production (top left) and in the
relaxed state (top right) as well as the ratio of the slip systems
contributions (bottom left) and the screw and edge part of the
GND density (bottom right) for the relaxed state.

surface (cp. the evolution of a single loop in the Benchmark
system), the evolving dislocation density in the system forms
an inhomogeneous, star-like spatial distribution over the cross
section. Due to the applied stress fields there occur dislocation
pile-ups at the neutral axes of the slip systems, respectively. The
density consists mainly of screw GNDs from the four slip sys-
tems with the Burgers vector orthogonal to the torsion axis as
shown in Fig. 7. Measuring the density production rate for the
different slip systems, the production rate of the slip systems
with a Burgers vector orthogonal to the torsion axis is found to
be three times higher compared to the other systems. The re-
sulting total dislocation density distribution in the cross section
for a crystal orientation rotated by 22.5◦ along the torsion axis
can be found in Fig. E.14 in Appendix E.

The spatial distribution of the dislocation densities, summed
up over all slip systems (% =

∑S
s̃=1 %s̃, κscrew and κedge are calcu-

lated analogously), and the strain components over the radius
are shown in Fig. 8 for the relaxed state. Here, the total dislo-
cation density - consisting mainly of GNDs (about 74 % screw
GNDs and 26 % edge GNDs) - pile up in the middle of the wire
forming a plateau-like distribution with % ≈ 3 µm−2. The re-
sults of the screw GND density can be compared to the density
predicted by the Critical Thickness Theory (CTT) according to
[18]. The computed density in the center of the wire shows sim-
ilar results as the theoretically predicted CTT density, that takes
into account only screw GNDs and considers a surface shear γR

Fig. 8: Spatial distribution of the dislocation densities and strain
components over the radius for the relaxed state compared to
the CTT-prediction shown by dashed lines.

as: κscrew
CTT = 2 γR

Rb . Evaluating the equivalent total strain in the
system, a linear distribution over the radius from εeq|r=0 = 0
up to εeq|r=R = 0.25 % is observed that consists of a plastic
part in the inner region of the wire until a transition point at
about 0.3 r

R . We call the corresponding radius of this transition
point critical radius rcrit in the following. Outside this transition
point, the gradient of the plastic strain is negligible, whereas the
elastic part increases linearly.

We denote the torsion angle at which plastic yielding starts as
critical torsion angle ϕcrit. A comparison of the radial distribu-
tion of the strain and the GND density with CTT for multiples
of ϕcrit is shown in Fig. 9.

Fig. 9: Radial distribution of strain and GND densities compo-
nents compared to the CTT for different torsion angles.

7



The results show, that the transition points of the plastic and
elastic zones in CDD correspond to CTT for smaller loads and
start varying for higher loading. However, the integral of the
elastic strain over the radius (cp. the colored areas in Fig. 9) is
assumed to be constant in CTT once the critical torsion angle
is exceeded. This holds only approximately true for the CDD
results. For an applied torsion angle that is N times the critcial
torsion angle, the CTT predicts a critical radius of rcrit

CTT = (1 −
1
√

N
)R. Accordingly, the critical radius for N ∈ {2, 4, 8} is rcrit

CTT =

{0.29, 0.5, 0.65}R. Similar values are derived for the critical
radius within the CDD computations. These are approximately
{0.28, 0.43, 0.48}R.

3.3. Diameter variation of the microwire

To analyze the influence of the microwire diameter on the
pile-up, we study the system of Sec. 3.2 with a radius varied to
{48, 12, 6, 3} µm. The systems are considered to have the same
aspect ratio of wire radius to wire length and all of them are
loaded with the same torsion angle of ϕ = 1◦. Consequently,
the surface strain γR is identical for all micowires but the strain
gradient increases for smaller microwire radii. We mesh each
system with the same number of elements leading to the same
resolution along the normalized radius r

R . However, this im-
plies a different resolution along the coordinate r. This might
have slight effects on the distribution, but we assume that these
effects are negligible due to the considered backstress term that
corrects the near field of the unresolved mean field stresses ac-

Fig. 10: Spatial distribution of the total dislocation densities % in
the microwire cross section at the relaxed state for microwires
with different radii R under constant torsional load (ϕ = 1◦).

cording to [28]. The reference value for the source length refer-
ring to the critical stress for the source activation and therefore
the start of the yielding is an input variable of the continuum
source model and chosen constant in this study. The impact of
varying lref

s according to experimental findings for different mi-
crowire sizes on the initiation of yielding is shown in Fig. F.15
in Appendix F.

The relaxed dislocation microstructures in the respective
cross section at half of the microwire length are shown for the
different wire radii in Fig. 10. For all microwire radii, the
star-like distribution of the total dislocation density is observed.
However, the amount of density involved increases for smaller
microwire radii. Furthermore, the length of the dislocation pile-
up with respect to the normalized radius increases for smaller
wire radii leading to a broadening of the star-like density for-
mation.

The spatial distributions of the total dislocation density and
the equivalent plastic strain over the normalized radius are
shown in Fig. 11. For comparability, the dislocation density
curves for different microwire radii are normalized with respect
to κscrew

norm = 1.93 γR
Rb according to the experimental findings for

fcc polycrystals under torsion by [1].
Here, similar distributions are observed for wires with a ra-

dius of R = 12 µm and R = 48 µm, whereas the results for mi-
corwires with smaller radii show lower normalized dislocation
densities and smaller equivalent plastic strain gradients near
the center. The resulting normalized torque is measured based
on the stress distribution in the cross section according to Ap-
pendix C as MT

R3 = 123 MPa for R = 48 µm and MT
R3 = 134 MPa

for R = 3 µm.

Fig. 11: Normalized total dislocation density and equivalent plas-
tic strain over the normalized radius for micorwires with differ-
ent radii R under constant torsional load (ϕ = 1◦).
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Fig. 12: Normalized torque and number of produced dislocation
loops depicted over the surface shear for a constant torsional
rate of 0.5

◦

µs .

3.4. Constant torsional rate

To compare the formulation with experimental data from the
literature, the system (diameter of 24 µm) is subjected to a con-
stant strain rate (+0.5

◦

µs ) up to a torsion angle of ϕ = 5◦. Dur-
ing the loading, it can be observed, that the slip systems with
the Burgers vector oriented orthogonal to the torsion axis are
activated earlier than the others. However, finally all slip sys-
tems are activated and show a dislocation density evolution ac-
cording to the high symmetry orientation, see Fig. 12. After
the elastic-plastic transition, the increase of the total amount of
produced dislocation density corresponding to the number of
produced dislocation loops is found to be almost linear.

Considering the local misorientation, the orientation of the
continuum in the neutral axis with respect to its initial configu-
ration as well as the misorientation over the cross sections along
the length of the wire with respect to the respective current aver-
aging volume in the neutral axis are shown in Fig. 13. The sim-
ulation results are derived for a plastic equivalent strain at the
surface of εpl

eq|r=R = 0.2 % (ϕ = 2◦) and compared to experimen-
tal tests according to [43]. The experimental results show two
normalized misorientation maps from cross sections located in
the middle of the respective 〈1 0 0〉 oriented grain of different
twisted bamboo-structured Au microwire specimens with a di-
ameter of 25 µm for a plastic surface shear of γpl

R = 0.4% (cor-
responding to ε

pl
eq|r=R = 0.23 %). Although measured under

the same conditions, the two experimental results differ quali-
tatively. The left experimental result in Fig. 13 shows the high-
est gradients of the misorientation angle near the wire center,
whereas the misorientation angle for the right experimental re-
sult vanishes near the wire center and the highest gradients of
the misorientation angle can be found near the surface. Further
details on the experimental setup are given in [43].

Considering the simulation results for a plastic equivalent
strain at the surface of εpl

eq|r=R = 0.2 % (ϕ = 2◦), the rotation
axes in the cross section at half of the wire length are pointing
towards the center and the highest gradients of the misorienta-
tion angle θ occur near the wire center. In contrast, the rotation
axes align to the torsion axis at the top and the bottom of the

Fig. 13: Simulation results for the misorientation of the contin-
uum in the torsion axis referred to the initial configuration along
the length of the wire (green curve) and misorientation distribu-
tion for different cross sections referred to the respective wire
center, whereby the rotation angle θ is shown in color and the
rotation axis nrot by black arrows. For comparison, experimen-
tal results are shown for the misorientation referred to the re-
spective wire center normalized to the maximal occurring mis-
orientation angle in the cross section.
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wire, shown for the bottom cross section in Fig. 13. Here, the
highest gradients of θ can be found near the surface. Further-
more, it can be found in the simulation that the distributions of
the misorientation angle over the respective cross section show
four axis symmetries.

Tracking the torsion axis from the bottom to the top surface,
it can be observed that the wire center is rotated by about 0.034◦

compared to the initial configuration for the bottom and the top
cross sections. However, the center point of the cross section at
half of the wire length has almost no misorientation compared
to its initial orientation showing a rotation angle of 0.01◦.

4. Discussion

For the analysis of the plastic behavior and the underlying
dislocation evolution of microwires under torsion, a profound
understanding for the relaxation mechanisms and dislocation
behavior on the single slip systems is essential. Therefore, the
presented dislocation based continuum formulation incorporat-
ing a dislocation source model has been applied to single crys-
talline microwires with 〈1 0 0〉 crystal orientation.

It is observed that the slip systems can be divided into two
groups according to the crystal orientation considering the re-
laxation principle (see Fig. 2 and Fig. 3) and the ratio of screw
and edge GND densities in the dislocation pile-ups (see Fig. 5
and Fig. 6). The dislocation density pile-ups in the slip systems
with a Burgers vector orthogonal to the torsion axis (A3, B4,
C3 and D4) consists almost entirely of screw density whereas
for the pile-ups of the other slip systems, the major part consists
of edge density. Thus, the total screw-edge composition of the
GND density is directly linked to the ratio of the amounts of
dislocation density on the different slip systems (see the GND
parts in Fig. 7 with respect to the distribution of the piled up
dislocation densities in Fig. 5 and Fig. 6).

Since the slip systems with the Burgers vector orthogonal
to the torsion axis are affected by both torsional shear stress
components, these slip systems are favored. The results show,
that this can be observed by the higher production rate for the
relaxation problem and the earlier activation for the constant
torsional rate. Therefore, the GND density consists for small
torsional angles mainly of screw denstiy. However, in contrast
to a simple shear or tensile problem, there results a linear stress
distribution in the continuum due to the torsion loading. The
maximum stresses occurring in the system increase even if the
global strain increase is relaxed completely by plastic slip (cp.
the maximum of the elastic strains in Fig. 9). Consequently,
the slip systems with a Burgers vector not orthogonal to the tor-
sion axis are also activated with increasing torsion angle and the
composition of screw and edge parts changes as well as further
quantities, like the spatial distribution of the total dislocation
density or orientation of the rotation axes for the misorienta-
tion.

Due to the torsional loading, the highest stresses occur near
the surface and activate the dislocation source model in this re-
gion according to the introduced formulation. The production-
free area at the beginning of the density evolution, showing a
square shape in the cross section (see Fig. 7), is confined by the

internal limit, at which the critical stress is reached. The bound-
ary line of production-free and production area is parallel to the
neutral axes of the individual slip systems and is also found by
molecular dynamics simulation of twisted, 〈1 0 0〉 oriented Au
nanowires [37]. Although the governing source mechanisms
can differ with varying sample size e.g. due to the activation of
Frank-Read sources, truncated sources, dislocation nucleation
from the surface, or the ’starvation’ of mobile dislocation den-
sity, the continuum representation focus on dislocation sources
mechanisms corresponding to Frank-Read sources to formulate
an averaged model bridging from DDD to CDD representation.
According to the stress field, the dislocations move into the wire
and pile up at the neutral axes of the individual slip systems.
Therefore, the location of dislocation production and accumu-
lation of dislocation density differs on each individual slip sys-
tem for the considered case. Consequently, the critical stress
for the source activation does not change during the simulation
for the chosen system since the source length calculated by the
total dislocation density at the production areas does not exceed
the reference source length.

By the combination of the different slip systems and their
rotated velocity field, a star-like dislocation density distribu-
tion results. The star-like distribution of dislocations is also
found by a discrete dislocation dynamics simulation of 1 µm
thick copper micorwires under torsion for a 〈1 0 0〉 crystal ori-
entation in [26] as shown in Fig. G.16 in Appendix G. Accord-
ing to the dislocation pile-ups at the respective neutral axes on
the individual slip systems, a stable dislocation density distri-
bution occurs not only in the specimen center, but also near the
specimen surface as shown in Fig. 7. This is in contrast to the
critical thickness theory according to [18] and the results of the
continuum dislocation approaches in [13] and [14] assuming
artificial, axially symmetric slip systems. The star-like config-
uration is directly linked to the crystal orientation as shown in
Fig. E.14 in Appendix E for a crystal orientation rotated around
the torsion axis by 22.5◦.

For the relaxed state, a nearly constant total dislocation den-
sity can be observed near the center, which is also found by con-
tinuum dislocation approaches in [13, 14]. Thereby, the amount
of screw GND density in the center for a 24 µm thick microwire
is consistent with the experimental findings for fcc polycrys-
tals under torsion by [1] quantifying the Nye’s factor (ratio of
GND density multiplied with Burgers vector length to the plas-
tic strain gradient) to 1.93. Thus, the empirical calculation can
be used for an estimation of the screw dislocation density in the
microwire center also for single crystals, if the external stresses
dominate over the internal stresses.

The dislocation density produced near the surface moves to-
wards the center causing plastic slip and relaxing the contin-
uum. Consequently, the material near the torsion axis is plas-
tically deformed although the external stress is lower than the
critical source stress. It is remarked, that this is an important
feature of the nonlocal continuum formulation since such a be-
havior can not be captured by local continuum approaches with-
out flux terms.

Due to the stress induced motion of dislocations, it is found
that the radial location of the drop of the total dislocation den-
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sity and the transition point towards an increasing elastic strain
correlates as shown in Fig. 8. The location of this transition
point is consistent to the CTT for small torsion angles [18].
However, the transition of the dislocation densities in the pile-
ups is rather smooth compared to the sharp transition as pre-
dicted by CTT due to the internal stresses.

For the dislocation microstructure, the dislocation density in
the pile-ups is balanced between the external stress field mov-
ing the dislocation density towards the respective neutral axes
of the slip systems and the mean field stresses or backstresses of
the GND density. Thus, the proportion of external and internal
stress contributions plays an important role for the dislocation
distribution and the associated distribution of the plastic slip in
the pile-ups. This yields size effects with respect to a constant
torsional load as shown in Fig. 10 and Fig. 11. The increas-
ing amount of dislocation density for smaller microwire radii
(κscrew

norm ∝
1
R ) can be ascribed to the higher strain gradients for

smaller microwire radii. A size effect due to pile-ups is only ob-
served for microwires with radii smaller than a specific radius -
for the considered case, this is a radius smaller than 12 µm. To
explain the length of the pile-ups for smaller microwire radii,
two different perspectives can be considered: Assuming the
same resolution along the radius r, the same length of the transi-
tion area concerning the drop of the dislocation density (see Fig.
8) takes larger parts of the normalized radius r

R for a smaller mi-
corwire radius R. This effect even increases for decreasing mi-
crowire sizes and leads to larger pile-ups over the normalized
radius. Or, assuming the same resolution along the normalized
radius r

R , the internal stresses increase compared to the con-
stant external stresses for decreasing microwire radii leading to
the larger pile-ups. Since the resulting dislocation microstruc-
ture shows a star-like distribution, the plastic slip is influenced
by the smoothed pile-up not only inside the microwire at the
critical radius rcrit but also near the surface of the microwire.

Comparing the continuum model with DDD results, it is
found that the almost linear slope of the dislocation produc-
tion for a constant torsional rate (see Fig. 12) is consistent to
the DDD simulations of 〈1 0 0〉 oriented single crystalline alu-
minum microwires applied to a constant torsion rate of ϕ̇ =

3
◦

µs in [32]. This underlines the qualitative accordance of the
amount of dislocation production in the introduced continuum
source model for an increasing torsional load.

Regarding experimental analyses of micorwires, most inves-
tigations study the misorientation. The qualitative behavior of
the misorientation angles and rotation axes shown in Fig. 13
is consistent to the theoretical considerations in Fig. 4. In the
cross section of the wire at half of the wire length, where all
four preferred slip system (A3,B4,C3,D4) are dominant, the ro-
tation axes point towards the torsion axis. The center point of
the wire cross section at half of the wire length keeps nearly its
initially orientation. Near the top and the bottom of the wire,
the continuum is locally influenced only by specific slip sys-
tems since the dislocation density is generated near the surface
and move on slip planes, that have a plane normal, which do not
align to the torsion axis for a 〈1 0 0〉 crystal orientation. Thus,
each slip system leaves a respective area ”untouched” for ge-
ometric reasons resulting in an alignment of the rotation axes

to the torsion axis. Since the orientation is uniform in the area
close to the torsion axis, the continuum elements in the torsion
axis show a misorientation compared to its initial configuration
near the top and bottom of the wire. Consequently, an hour-
glass shape can be recognized for the misorientation angle, see
Fig. 13. This effect can occur at geometric boundaries of the
wire but also at transition regions of high and low dislocation
activity. Therefore, it should be noted, that a reduced slip sys-
tems consideration using the four slip systems for the resulting
plastic distortion in Fig. 3 would not be able to capture this
effect.

Comparing the simulations with experimental data, the sim-
ulation results showing the misorientation over different cross
sections along the torsion axis (Fig. 13) reproduce essential
features of the experimental results according to the study pre-
sented in [43]. However, it has to be remarked, that the misori-
entation in the CDD simulation was computed during loading
based on the current plastic distortion, whereas the experimen-
tal data has been determined ex-situ by measuring the remain-
ing plastic deformation of randomly chosen cross sections. Al-
though this could imply significantly different dislocation mi-
crostructures, the presented CDD results and the theoretical
considerations suggest that the differences in the misorientation
over the cross sections in the experimental results could hint to
different regions of slip activity and therefore to a localization
of the plastic slip for the microwire shown on the right in Fig.
13. The asymmetric distribution could be traced back to the
misalignement in the experimental setup as already discussed
in [43]. So for the interpretation of the plastic deformation pro-
cess, the set of rotation axis, rotation angle and misorientation
of the wire center compared to the initial configuration is con-
sidered. An interesting aspect is that the interaction of slip sys-
tems can lead to a (partly) vanishing misorientation since it only
takes the skew symmetric part of the distorsion tensor into ac-
count. Accordingly, the equivalent plastic strain is not directly
linked to the misorientation in all cases.

Although the introduced CDD formulation shows meaning-
ful results compared to DDD and experimental data, it has to
be remarked that the continuum model do not incorporate any
discrete nucleation or multiplication events and just account for
dislocation reactions in an implicit way by accounting for the
resulting strengthening by a dislocation based yield formula-
tion. However, the incorporation of dislocation density based
stress interaction terms, including mean-field stress, backstress
and yield stress, allows for a physical based representation of
the microstructural processes leading to strain hardening in a
homogenized way. This is accompanied by the reduction of
source activity with increasing dislocation density since the re-
solved shear stress including the internal stress interaction af-
fects the productivity of the sources. Furthermore, the pre-
sented continuum source model neglects the reduced mean free
path due to the dislocation pile-up in the calculation of the mean
sheared area Aav

s (cp. cload in equation (19)) and on the the vol-
umetric mean value calculation of the globally expected plastic
strain rate ε̇pl,exp (cp. cgeom in equation (20) according to Ap-
pendix B). Consequently, the consideration of the higher in-
crease of the plastic slip for increasing torsional angles in Fig.
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9 could be enhanced by a more precise calculation of Aav
s and

cgeom. The dislocation density pile-up at the neutral axis as it
is represented in the model due to the internal stress interaction
leads to a size effect with larger pile-ups for smaller microwire
radii. However, an increase of the produced curvature density
for smaller micorwires would not affect the different pile-up
lengths, but shifts the transition point, defined by the critical ra-
dius according to Fig. 8, closer to the surface. Possible model
modifications are an adaption of Aav

s and cgeom or the incorpo-
ration of the resulting plastic shear strain into the calculation of
the globally expected plastic shear strain per local source acti-
vation γexp

s during the running simulation leading to a regulation
of the dislocation density production.

5. Conclusion

In this paper, a three-dimensional crystal plasticity contin-
uum formulation has been extended by a homogenized, mecha-
nism based dislocation source model. This enabled the phys-
ically based analysis of the evolution of the dislocation mi-
crostructure for 〈1 0 0〉 oriented single crystalline microwires
under torsion.

The formulation has been tested by the application to simple
benchmark systems. According to theoretical considerations
and validated by the simulation results, the slip systems for a
microwire with 〈1 0 0〉 crystal orientation can be divided into
two groups with respect to the relaxation principle, the amount
and alignment of the dislocation density on the slip systems,
and the ratio of screw and edge GND densities in the dislo-
cation pile-ups at the neutral axes. It has been found that the
contributions of the individual slip systems affect the resulting
dislocation microstructure in a characteristic way.

For the wires under torsion, the dislocation density is pro-
duced near the surface, driven into the wire according to the
stress field and accumulates in the center of the wire forming an
inhomogeneous, star-like spatial distribution over the cross sec-
tion. Consequently, a characteristic dislocation density distribu-
tion over the full cross section occurs, which is in accordance
to DDD findings. This is a feature that can not be modeled
e.g. by the CTT theory or rotational symmetric models since
dislocation density is located only in the center of the wire in
these formulations. In accordance to the CTT considerations,
the results showed a relaxed continuum area in the center of the
wire and a nearly constant plastic strain near the surface. Due
to the mobility of the dislocation density, the region in the wire
center is plastically deformed although the local stress is lower
than the critical stress for the source activation. The locality of
the transition point is consistent to the CTT for the considered
lower loads. However, it slightly differs for higher loads due to
the impact of the dislocation pile-up length on the considered
source model.

Varying the geometric dimensions of the microwires for a
constant torsional load, an increasing dislocation density due to
increasing strain gradients is observed for decreasing microwire
radii. For microwires with a radius smaller than 12 µm, a size
effect due to the dislocation pile-ups is observed leading to a

broader dislocation density distribution. This causes less plas-
tic slip over the normalized radius for smaller microwire radii,
whereas microwires with a radius larger than 12 µm do not show
such a size effect due to the dislocation pile-ups.

For a constant torsional rate, a linear dislocation production
rate is found, which is consistent to DDD simulations. The the-
oretically predicted inhomgeneity of the misorientation along
the microwire could be confirmed. Thereby, the relevance of
the combination of misorientation angle, rotation axis, and con-
figuration of the reference point for the interpretation of (exper-
imental) results are demonstrated. For the considered loading,
the respective rotation axes of the misorientation in the cross
section at half of the wire length is pointing towards the center.
In contrast, the rotation axes align to the torsion axis at the top
and bottom of the wire uniformly over the cross section due to
local slip activity of specific slip systems caused by geometric
reasons.
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Appendix A. Notation

Scalars are represented by lowercase letters {a, α}, vectors
and second-order tensors by bold letters {a,α,A} as well as
fourth-order tensors by uppercase blackboard bold letters A.
The scalar product is denoted by a · b, the cross product by
a × b, the dyadic product by a ⊗ b and the linear mapping by
A[b]. The absolute value is written as |a|, the L2-Norm as ‖A‖,
the unit tensor as 1, the nabla operator as ∇ and the time deriva-
tion as ȧ. The single slip system are named according to the
Schmid-Boas Notation [27] as listed in Tab. A.1.

No. m d No. m d

1 B5 (111) [1̄10] 7 D6 (1̄11̄) [110]

2 B4 (111) [1̄01] 8 D1 (1̄11̄) [01̄1̄]

3 B2 (111) [01̄1] 9 D4 (1̄11̄) [101̄]

4 C5 (111̄) [1̄10] 10 A6 (1̄11) [110]

5 C1 (111̄) [01̄1̄] 11 A3 (1̄11) [101]

6 C3 (111̄) [1̄01̄] 12 A2 (1̄11) [01̄1]

Tab. A.1: Indication of all twelve preferred slip systems for fcc-
metals using the Schmid-Boas notation.
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Appendix B. Geometric correction factor

The arithmetical average of a linear distribution over a line
is equal to half of the boundary value, whereas the arithmetical
average of a circle with a linear distribution along the radius r
is equal to two third of the boundary value:

Average along a line: εgl =
1
2 ∗R∗ε|r=R

R = 1
2ε|r=R.

Average of a circle: εgl =
π∗R2∗ε|r=R−

1
3 ∗π∗R

2∗ε|r=R

π∗R2 = 2
3ε|r=R.

In the present considerations, the mean value calculation using
the distribution over the cross section is mapped to the mean
value calculation referring to the distribution over the radius.
This motivates a geometric factor of cgeom 2

3 = 1
2 ⇔ cgeom = 3

4
for the global strain calculation by the mean value of the local
strains if the torsion of a circular cross-section is considered. In
contrast to the local strain rate ε̇, the globally expected plastic
strain rate due to the local dislocation production ε̇pl,exp affects
the entire system on the slip plane in radial direction due to the
dislocation motion. Therefore, no geometric factor is needed
for the mean value calculation of the globally expected plastic
strain rate.

Appendix C. Calculated Quantities

The equivalent strain in calculated analogously to the von

Mises stress as εeq =

√
2
3 ‖ε

′

‖ =

√
2
3 ‖ε −

1
3 trace(ε) 1‖.

Taking the aspect ratio of the microwire R
L with a wire length L

into account, the relation between the surface shear γR and the
torsion angle ϕ reads for small torsion angles: γR =

ϕ
L R.

To show the material response independent of the geometric
dimensions, the torque is normalized by the third power of the
wire radius:
Mnorm

T = MT
R3 with MT =

∫
τxy ∗ (z − cz) − τxz ∗ (x − cx) dAy.

Here describes {cx, cz} the position vector of the torsion axis in
the cross section of the wire.

Appendix D. Misorientation from distorsion fields

The infinitesimal rotation tensor W represents the skew sym-
metric part of the distorsion tensor β: W = skw(β) = 1

2 (β−βT ).
Since it consist of three independent components, it can be in-
terpreted as an rotation of the angle α around the normalized
rotation axis nrot = (nrot

x nrot
y nrot

z )T describing the rotation from
the initial configuration into the actual one:

W = α

 0 nrot
z −nrot

y
−nrot

z 0 nrot
x

nrot
y −nrot

x 0

 , α = ‖αnrot‖. (D.1)

The resulting rotation matrix reads

R = cos(α)1 + (1 − cos(α))(nrot ⊗ nrot) + sin(α)
1
α

WT . (D.2)

The misorientation describes the misalignment compared to a
reference configuration, like the initial configuration or the cen-
ter of the wire. Therefore, both the rotation matrix R at each
site and the rotation matrix Rref of the reference continuum are

necessary to calculate the misorientation angle θ between the
considered continuum and the reference continuum:

θ = arccos
(

trace(Rmis) − 1
2

)
, Rmis = RrefR−1 (D.3)

nmis =
1

2 sin(θ)

R
mis
yz − Rmis

zy
Rmis

zx − Rmis
xz

Rmis
xy − Rmis

yx

 . (D.4)

If the reference configuration is identical to the initial configu-
ration, the following relations are valid: Rref = 1, θ = α and
nmis = nrot.

Appendix E. Rotated crystal orientation

The resulting dislocation microstructure for a single crys-
talline fcc microwire described in Fig. 1 under constant torsion
angle of ϕ = 1◦ is shown in Fig. E.14. Here, the 〈1 0 0〉 crystal
orientation described in Tab. A.1 is rotated by 22.5◦ around the
torsion axis.

Fig. E.14: Total dislocation density close to the end of the re-
laxation step. The dislocation density has not reached its equi-
librium state yet, but a star-like dislocation density structure is
already observe-able.

Appendix F. Reference value for the source length

The resulting stress-strain curves for various sample sizes of
single crystalline fcc microwires according to the system shown
in Fig.1 under constant torsional rate (+0.5

◦

µs ) are shown in
Fig.F.15. The reference value for the source length (i.e. lref

s
in equation (10)) is an input parameter of the continuum simu-
lation, which has to be chosen e.g. according to experimental
results, and directly impacts the initiation of yielding in the nu-
merical formulation. Here, for the micorwires with a radius
of R = {12, 6, 3} µm, the reference value for the source length
is chosen to lref

s = {0.32, 0.22, 0.15} µm referring to a critical
source stress of τcrit

s = {24, 35, 49}MPa (according to experi-
mental results presented in [39]).
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Fig. F.15: Normalized torsion moments are plotted versus the sur-
face shear for a varying reference value for the source length
depending on the microwire radius.

Appendix G. Comparison to DDD results

Discrete dislocation dynamics simulation of 1 µm thick cop-
per micorwires under torsion for a 〈1 0 0〉 crystal orientation
showing a resulting star-like distribution of the dislocations.

turn contributes to an additional size effect. The size
effect from the GNDs could be represented by the
size exponent in h100i and h111i pillars without
coaxial dislocations, as shown in Fig. 4. Surpris-
ingly, our DD results show that the size exponent
under torsion is actually smaller than that under
tension at the same size scale, ranging from 0.5 to
1.0.21,49,50 This might be understood by the fact that
plastic deformation in FCC micropillars is governed
by different strengthening mechanisms under uni-
axial loading and torsion, namely, single arm oper-
ation in tension and dislocation pile-up in torsion,
whereas surface nucleation contributes to size
effects under both loading conditions.

Our DD simulation results with the modified
surface nucleation algorithm show orientation-de-
pendent microstructures during torsion. In h110i
oriented pillars, a coaxial dislocation network is
formed after surface nucleation, whereas planar

Fig. 3. (a) Normalized torque versus total surface strain curves, (b) normalized torque versus plastic surface strain curves, and (c) dislocation
density evolution for the 150-nm, 300-nm, 600-nm, and 1000-nm pillars oriented in a h100i direction under torsion. (d) Dislocation microstructure
of a h100i oriented 1-lm pillars before/after the deformation.

Fig. 4. Size dependence of the normalized torque in h110i, h111i,
and h100i oriented micropillars under torsion. Flow stresses from DD
simulations are collected at a surface plastic strain of 0.3%.

Ryu, Cai, Nix, and Gao258

Fig. G.16: Dislocation microstructure evolution of a 〈1 0 0〉 ori-
ented 1 µm pillar extracted from [26]
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lechner, C., Tamura, N., Böhlke, T., Walter, M., Gruber, P., 2015. De-
formation patterns in cross-sections of twisted bamboo-structured au mi-
crowires. Acta Materialia 97, 216–222. URL: https://doi.org/10.
1016/j.actamat.2015.06.012.

15

https://doi.org/10.1007/s11837-015-1692-1
https://link.springer.com/book/10.1007/978-3-662-34532-0
https://link.springer.com/book/10.1007/978-3-662-34532-0
https://doi.org/10.1016/j.jmps.2015.08.012
https://doi.org/10.1016/j.jmps.2015.08.012
https://doi.org/10.1016/j.actamat.2018.11.013
https://doi.org/10.1016/j.actamat.2018.11.013
https://doi.org/10.1088/0965-0393/22/2/025008
https://doi.org/10.1088/0965-0393/22/2/025008
https://doi.org/10.1016/j.ijplas.2019.05.003
https://doi.org/10.1016/j.ijplas.2019.05.003
https://doi.org/10.1088/0965-0393/19/7/074004
https://doi.org/10.1088/0965-0393/19/7/074004
https://doi.org/10.1016/j.commatsci.2018.04.065
https://doi.org/10.1016/j.commatsci.2018.04.065
https://doi.org/10.5445/IR/1000098013
https://doi.org/10.5445/IR/1000098013
https://doi.org/10.1016/S0167-6636(02)00205-3
https://doi.org/10.1016/S0167-6636(02)00205-3
https://doi.org/10.1016/S1359-6454(01)00405-0
https://doi.org/10.1016/S1359-6454(01)00405-0
https://doi.org/10.1021/nl903041m
https://doi.org/10.1021/nl903041m
https://doi.org/10.1016/j.jmps.2010.04.010
https://doi.org/10.1016/j.jmps.2010.04.010
https://doi.org/10.1016/j.msea.2016.03.076
https://doi.org/10.1016/j.msea.2016.03.076
https://doi.org/10.1016/j.ultras.2006.05.064
https://doi.org/10.1016/j.ultras.2006.05.064
https://doi.org/10.1179/175355508X376843
https://doi.org/10.1179/175355508X376843
https://doi.org/10.1016/j.ijplas.2014.04.013
https://doi.org/10.1016/j.actamat.2015.06.012
https://doi.org/10.1016/j.actamat.2015.06.012

	Introduction
	Methods
	Dislocation density based continuum model
	Source Model
	Numerical Implementation
	Considered system

	Results
	Benchmark system
	Relaxation of a constant torsional load
	Diameter variation of the microwire
	Constant torsional rate

	Discussion
	Conclusion
	Acknowledgement
	Notation
	Geometric correction factor
	Calculated Quantities
	Misorientation from distorsion fields
	Rotated crystal orientation
	Reference value for the source length
	Comparison to DDD results

