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We compute four-loop corrections to the Higgs boson gluon vertex, including finite top quark mass
effects. Analytic results are presented which serve as a building block for the next-to-next-to-next-to-
leading order corrections to Higgs boson production at the Large Hadron Collider at CERN.
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Introduction.—The precise measurement of the standard
model Higgs boson properties is a major focus of the
physics program of the Large Hadron Collider (LHC) at
CERN. A crucial quantity in this context is the total cross
section for Higgs boson production in proton-proton
collisions. There are several mechanisms which contribute
to the cross section. The largest contribution is from the
gluon-gluon fusion process [1] despite it being loop
induced. It is thus important to have precise control over
its higher-order quantum corrections.
Leading order (LO) corrections to the process gg → H

were considered 40 years ago [2] and next-to-leading order
(NLO) corrections were computed at the beginning of the
nineties, first in the infinite top quark mass approximation
[3,4] and shortly after exactly in mt [5]. (The analytic two-
loop virtual corrections are known from [6–8].) About ten
years later the first next-to-next-to-leading order (NNLO)
results became available [9–11] in an effective-theory
framework where the top quark is integrated out. It took
a further ten years to compute corrections in mH=mt and
estimate the finite-mt effects. Several expansion terms of
the Higgs-gluon form factor were computed in [12,13] and
subsequently an approximation method was developed to
treat also the real-radiation contribution [14–17]. Recently,
three-loop corrections to the Higgs-gluon vertex with a
massive quark loop have been obtained by combining
information from the large-mt and threshold expansions
with the help of a conformal mapping and a Padé
approximation [18]. For the subset of three-loop diagrams
which contain a closed light-quark loop, even analytic
results are available [19]. The next-to-next-to-next-to-lead-
ing order (N3LO) corrections to gg → H within the

effective-theory approach have been computed in
Refs. [20,21]. At this order in perturbation theory no
finite-mt corrections are available. In this Letter we
provide the first step to close this gap and compute the
finite-mt effects of the virtual N3LO corrections. Note that
the gg → H vertex diagrams only depend on the Higgs
boson and top quark masses. Thus, it is promising to
consider an expansion for large mt which is expected to
show good convergence properties since the expansion
parameter ρ ¼ m2

H=m
2
t ≈ 0.5 is sufficiently small. Both at

NLO and NNLO it has been shown that three expansion
terms are adequate to obtain results which, from the
phenomenological point of view, are equivalent to an
exact calculation [12,13].
In this work we concentrate on the numerically dominant

contributions from diagrams in which the Higgs couples to
a top quark loop. Note that although the Yukawa coupling
is small, diagrams in which the Higgs couples to a bottom
quark loop are parametrically enhanced by large loga-
rithms. For example, the LO contribution is proportional to
m2

b=m
2
H log2ðmb=mHÞ and thus bottom quark corrections

should be included at lower orders.
Calculation.—The LO contribution to Higgs boson

production in gluon fusion is mediated by the one-loop
diagram shown in Fig. 1. Correspondingly NkLO correc-
tions are obtained from (kþ 1)-loop vertex corrections also
shown in Fig. 1. In this Letter, we compute the four-loop
corrections.
The amplitude for gg → H can be parametrized as

A ¼ A0 hðρÞ δabðq1 · q2 gμν − qν1q
μ
2Þ; ð1Þ

where q1 and q2 are the momenta of the external gluons
with polarization vectors εμðq1Þ and ενðq2Þ, respectively,
and a and b are adjoint color indices.A0 consists of various
coupling factors and mass parameters and is given by

A0 ¼ TF
2αsðμÞ
3vπ

; ð2Þ
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where TF ¼ 1=2, v is the vacuum expectation value, and

αs ≡ αð5Þs is defined with five active quark flavors. The
function hðρÞwith ρ ¼ m2

H=m
2
t contains the top quark mass

dependence. It has the following expansion in the strong
coupling constant:

hðρÞ ¼
X
n≥1

�
αsðμÞ
π

�
n−1

hðnÞðρÞ; ð3Þ

where the leading term is given by

hð1ÞðρÞ ¼
�
μ2

m2
t

�
ϵ

Γð1þ ϵÞ
�
1þ 7þ 7ϵ

120
ρ

þ 2þ 3ϵþ ϵ2

336
ρ2 þOðρ3Þ

�
; ð4Þ

with ϵ ¼ ð4 − dÞ=2, where d is the space-time dimension.
We apply projectors which independently project on the

prefactors of gμν and qν1q
μ
2 [cf. Eq. (1)] and treat the

corresponding expressions independently. In the course
of the calculation the intermediate expressions are different,
however, the final results are equal (up to an overall sign)
which is a welcome check for our calculation.
We apply an asymptotic expansion [22] in the limit

m2
t ≫ q1 · q2 ¼ m2

H=2. This decomposes each Feynman
diagram into a number of so-called “hard subgraphs”which
have to be expanded in their external momenta. Afterwards,
they appear as an effective vertex in the “cosubgraph”
which is obtained from the original Feynman diagram after
contracting all lines present in the hard subgraph to a point.
From the technical point of view this leads to massive
vacuum integrals up to four-loop order and massless vertex
integrals, up to three-loop order, where only one external

leg is off shell. Both types of integrals have been studied in
the literature [23–31].
We organize our calculation such that the vacuum

integrals are computed first. This requires that we solve
tensor integrals since the integrand in general contains
scalar products between the loop momenta of the vacuum
integral and q1 or q2 or the loop momenta of the subsequent
massless integration. Up to two-loop order there are general
algorithms which treat tensor integrals of an arbitrary rank
[32]. At three and four loops we have implemented tensor
integrals up to rank eight, which is sufficient to obtain
expansion terms up to ρ2.
The application of the asymptotic expansion leads to a

separation of the scales, at the price that the number of
integrals to be computed is increased drastically; we have to
consider around 40 × 106 three- and four-loop vacuum
integrals and 1 × 106 one- to three-loop massless form-
factor integrals. Because of the expansions in external
momenta, many of the propagators are raised to relatively
high powers. Similarly, the massless vertex integrations
involve integrals with high powers of numerators.
We perform the reductions to master integrals with the

help of FIRE [33] and use symmetry relations from LiteRed

[34]. The combined size of the integral tables (as FORM

tablebases) is about 25 GB. All master integrals are
available in analytic form, both for the vacuum integrals
[26] and the massless vertices [29].
The diagrams are computed by TFORM [35] jobs, each

using four workers and requiring 20 GB of memory. The
total wall time required by these jobs to compute the ρ0, ρ1,
and ρ2 terms of the expansion is approximately 6, 50, and
860 days, respectively.
The renormalization of the ultraviolet (UV) poles is

straightforward. We first renormalize αs and mt in the MS
scheme and the external gluon fields in the on-shell
scheme. We then transform the MS mass to the on-shell
scheme and decouple the top quark from the running of αs;

our final result is expressed in terms of αð5Þs . Note that one
has to carefully include higher-order ϵ terms in the on-shell
counterterms and the decoupling relations (see, e.g.,
Refs. [36,37]) since our final result still contains infrared
poles.
There are several checks of our final result. First, we

project on both structures present in Eq. (1) and check that
they are equal up to a global sign. Then, we construct
the leading (ρ0) term independently with the help of the
effective-theory approach, i.e., we use the effective gluon-
Higgs coupling up to four loops [37–40] and the form
factor results from the literature [27,30] to obtain the
amplitude A. Furthermore, the remaining poles after UV
renormalization agree with the predictions provided, e.g., in
Ref. [30,41]. Our three-loop results for the top quark mass
corrections to the form factor agree with Refs. [12,13].
When discussing the structure of the final result it is

advantageous to extract the LO contribution and define

FIG. 1. Sample Feynman diagrams contributing to the process
gg → H at LO, NLO, NNLO, and N3LO. The solid and curly
lines represent top quarks and gluons, respectively. The external
dashed line stands for the Higgs boson.
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F ¼ hðρÞ
hð1ÞðρÞ ¼ 1þOðαsÞ; ð5Þ

where an expansion in ρ and in ϵ on the right-hand side is
understood. Next, we consider logðFÞ since for this
quantity there are simple predictions for the remaining
infrared poles [30,41]. We expect that the pole part of
logðFÞ has no expansion in ρ and that the poles are given by
the massless three-loop Higgs-gluon form factor. Our
explicit results confirm these expectations. We thus define

logðFÞ ¼ logðFÞpoles þ logðFÞfinite; ð6Þ

and find that logðFÞpoles reproduces the results given in
Sec. 6 of Ref. [30]. logðFÞfinite has an expansion in ρ which
we discuss in the remainder of this Letter.
Results.—We perform our calculation using general

color structures for the gauge group SUðNÞ. In order to
present a compact expression we specify the color factors
in the following to their numerical values for QCD. General
expressions, for both the MS and on-shell top quark mass,
can be found in the supplementary material [42]. For
μ2 ¼ m2

t we have for logðFÞfinite in the on-shell scheme

log ðFÞfinite ¼ þαs
π

�
11

4
þ 1

8
π2 −

3

4
l2tH þ 17

135
ρþ 3553

226800
ρ2
�

þ
�
αs
π
Þ2
�
523

108
þ 151

192
π2 −

499

48
ζ3 þ ltH

�
−
155

36
þ 23

48
π2 þ 9

8
ζ3

�
þ l2tH

�
−
151

48
þ 3

16
π2
�
−
23

48
l3tH

þ ρ

�
−
15 765 509

829 440
þ 7

1080
π2 þ 7

540
logð2Þπ2 þ 1909 181

110 592
ζ3 þ

793

10 368
ltH

�

þ ρ2
�
−
1013 177 390 077

234 101 145 600
þ 857

907 200
π2 þ 857

453 600
logð2Þπ2 þ 267 179 777

707 78 880
ζ3 þ

580 759

435 456 00
ltH

��

þ
�
αs
π

�
3
�
−
18 539 405

1 119 744
þ 441 517

62 208
π2 −

11 549 467

82 944
ζ3 −

50 839

311 040
π4 −

1949

576
π2ζ3 þ

39 307

288
ζ5

−
39

8
ζ23 −

193

7560
π6 þ ltH

�
−
322 955

31 104
þ 665

96
π2 −

3043

144
ζ3 −

1801

5760
π4 −

15

16
π2ζ3 −

27

4
ζ5

�

þ l2tH

�
−
587 45

3456
þ 1435

576
π2 þ 25

8
ζ3 −

33

320
π4
�
þ l3tH

�
−
3995

864
þ 23

96
π2
�
−

529

1152
l4tH

þ ρ

�
−
542 872 693 595

3218 890 752
þ 65 743 583

55 987 200
π2 −

4691

9720
logð2Þπ2 − 6788 585 826 089

107 296 358 400
ζ3

−
11 421 210 133

1149603 840
log4ð2Þ þ 11 364 084 757

1 149 603 840
log2ð2Þπ2 þ 244 657 561 171

55 180 984 320
π4 −

11 421 210 133

47 900 160
Li4ð1=2Þ

þ 718 337

9979 200
log5ð2Þ − 718 337

5 987 520
log3ð2Þπ2 þ 46 111 267

239 500 800
logð2Þπ4 − 10 073

25 920
π2ζ3 −

3 254 515 597

31 933 440
ζ5

−
718 337

83 160
Li5ð1=2Þ þ

5 327 119

11 197 440
ltH þ 25 639

746 496
l2tH

�

þ ρ2
�
−
1 055 794 361 417 882 487 061

6 681 366 555 210 547 200
þ 4 077 367 559

23 514 624 000
π2 þ 23 157 917 500 539 717 053

117 837 152 649 216 000
ζ3

−
110 153

1 632 960
logð2Þπ2 þ 2 712 037 738 087

2 391 175 987 200
log4ð2Þ − 2 729 355 664 999

2 391 175 987 200
log2ð2Þπ2 − 150 868 470 717 581

229 552 894 771 200
π4

þ 2 712 037 738 087

99 632 332 800
Li4ð1=2Þ þ

46 902 913

202 176 000
log5ð2Þ − 46 902 913

121 305 600
log3ð2Þπ2 − 8 632 107 859

33 965 568 000
logð2Þπ4

−
1 233 223

21 772 800
π2ζ3 þ

49 563 452 909

4 528 742 400
ζ5 −

46 902 913

1 684 800
Li5ð1=2Þ þ

103 150 403 081

658 409 472 000
ltH þ 18 740 929

3 135 283 200
l2tH

��
;

ð7Þ
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where ζn is the Riemann ζ function evaluated at n, Lin
denote polylogarithms, ltH ¼ logðm2

t =m2
HÞ þ iπ and mt is

the top quark pole mass. It is interesting to compare the
finite mt corrections of logðFÞfinite for the various orders is
αs. The numerical evaluation of Eq. (7) for mt ¼ 173 GeV
and mH ¼ 125 GeV gives

logðFÞfinite ≈ at½ð11.07 − i3.06Þ þ 0.07þ 0.004�
þ a2t ½ð22.59þ i13.24Þ þ ð1.02þ i0.13Þ
þ ð0.07þ i0.01Þ�
þ a3t ½ð−73.18þ i51.55Þ þ ð7.61þ i0.85Þ
þ ð0.70þ i0.14Þ�; ð8Þ

where at ¼ αð5Þs ðmtÞ=π. For each order in at we separately
display the ρ0, ρ1, and ρ2 terms inside the square brackets.
One observes that the mass corrections become more
important when going to higher orders in at. At two loops
the ρ1 contribution only amounts to 0.6% of the real part of
the leading term, whereas at three and four loops we have
real contributions of 5% and 10%, respectively. At four-
loop order the ρ2 real contributions are below 1% which
justifies the truncation of the expansion at this order; we
expect that the next term is negligibly small. In all cases the
imaginary parts converge at least as well as the real parts.
If we repeat the same exercise for the MS top quark

mass, m̄t, and set the renormalization scale to μ2 ¼ m̄2
t , we

observe smaller mass corrections; at one, two, and three
loops the ρ1 terms contribute 0.1%, 2.5%, and 1.4%,
respectively, relative to the real part of the ρ0 terms. In
all cases the ρ2 terms are smaller again by a factor of 5
to 10.
For Higgs boson production the central value of the

renormalization scale is often set to μ2 ¼ m2
H=2. Adopting

the on-shell scheme for the top quark mass, this leads to ρ1

real contributions which amount to 0.5%, 34%, and 1.8%
for two, three, and four loops. Note that the large relative
correction at three loops is due to accidental cancellations
which make the leading term (ρ0) quite small at this order.
Conclusions.—In this Letter, we compute finite top

quark mass effects for the production virtual cross section
of the standard model Higgs boson. We expand the four-
loop Higgs-gluon vertex diagrams for mt ≫ mH and show
that three expansion terms are sufficient to obtain precision
results for the physical values of mH and mt. Our result is
the first N3LO calculation of the Higgs production cross
section which incorporates finite top quark mass terms. In
the coming years, the LHC enters the era of precision Higgs
boson physics and quantum corrections such as those
computed in this Letter will become important.
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