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Abstract

We show the local wellposedness of biharmonic wave maps with initial data
of sufficiently high Sobolev regularity and a blow-up criterion in the sup-norm
of the gradient of the solutions. In contrast to the wave maps equation we use
a vanishing viscosity argument and an appropriate parabolic regularization in
order to obtain the existence result. The geometric nature of the equation is
exploited to prove convergence of approximate solutions, uniqueness of the
limit, and continuous dependence on initial data.

Keywords: biharmonic wave maps, local wellposedness, vanishing viscosity,
parabolic regularization
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1. Introduction

Let (N, g) be a smooth Riemannian manifold which we assume to be isometrically embedded
into some Euclidean space RE. Biharmonic wave maps are critical points u : R" x [0,T) — N
of the (extrinsic) action functional
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T
B(u) = 7/ Ol — | Auf? dxds. (.
2 0 RY(
These maps model the movement of a thin, stiff, elastic object within the target manifold N.
The Euler-Lagrange equation of ® has been calculated in [6] (in the case N = S’ C R/*1)
and in [13] (for arbitrary N) and it is given by

Pu+Au L T,N  onR"x|[0,7). (1.2)

In particular, if the manifold N has non-vanishing curvature, the condition (1.2) is rewritten as
a nonlinear partial differential equation

3,214 + A= N (u,u,, Vu, VZu, VSM), (1.3)

where N is a nonlinear expression of the indicated derivatives of u. It is explicitely given in
(2.1). We also note that the following energy

1
E(u) = / B2 + | Auf? dx
2 Jpn
is (formally) conserved up to the existence time.
In the flat case N = R (or any affine subspace), the condition (1.2) reduces to the free
evolution of a system of decoupled (or linearly coupled) biharmonic wave equations

Ou+ Au =0, (14

which appear in the elasticity theory of vibrating plates. Here, requiring the parametrization of
a thin plate, the bending energy of the elastic plate involves integrated curvature terms of the
plate’s surface. Hence, in the case of sufficiently stiff material, the potential energy in (1.1)isa
reasonable approximation of the elastic energy. We refer to the classical book of Courant and
Hilbert [2, chapters 4.10, 5.6] for more information.

Semi-linear evolution problems related to (1.4) without a geometric constraint, such as

OMu+ A’u A+ mu + |u|”'u =0, (1.5)

have been thoroughly studied. For instance, if m > 0 and 1 + % <p< Zifj, global existence
and scattering of solutions of (1.5) has been proved by Pausader in [12], as conjectured by
Levandosky and Strauss.

A well-studied hyperbolic geometric evolution problem is the wave maps equation
Ou = m*PA(u)(Ou, dgu)  onR" x R, (1.6)

which arises as the Euler-Lagrange equation of a first order analogue of the action (1.1) with
constraint u € N. Here, [1 = 83 — A is the d’ Alembert operator, m is the Minkowski metric
and A(u) is the second fundamental form of the embedded manifold N. The Cauchy problem
for (1.6) has been studied intensively as a model for the subtle interplay of nonlinear disper-
sion, gauge invariance and singularity formation. In particular, we refer to the global regular-
ity theory achieved by novel renormalization techniques of Tao in [17] and [18], see also the
survey article by Tataru [19]. In the energy-critical dimension n = 2 a proof of the threshold
conjecture on the question of blow-up versus global regularity and scattering is given by
Sterbenz and Tataru in [16].

A different but related model is the Schrodinger maps problem foramap u : R* x R =+ N
into a Kahler manifold N. This is the Hamiltonian flow for the Dirichlet energy of u induced
by the (symplectic) Kihler form on N. For N = S? the Hamiltonian equation reads as
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O =u X Au on R" x R, (1.7)

and attracted a lot of attention in the past decades. We refer to the global regularity results
for N=S?and n >2 by Bejenaru, Ionescu, Kenig and Tataru in [1] and for homogeneous
spaces N and large dimension by Nahmod, Stefanov and Uhlenbeck in [11]. While different,
the methods in both cases exploit the geometric nature of the Schrodinger maps flow by the
choice of a suitable frame system along a solution.

In sharp contrast, there is very little literature on the bi-harmonic wave maps (1.2), as dis-
cussed below. The main goal of this paper is the proof of the following local wellposedness
result for the Cauchy problem corresponding to (1.2) in Sobolev spaces with sufficiently high
regularity. We stress that it is difficult to employ the energy method for high regularity solu-
tions of (1.2) since N explicitly depends on the third order derivatives V3u and the energy
contains only Au. We will overcome this difficulty by exploiting the geometric constraints of
solutions. From now on, let N be a compact Riemannian manifold, isometrically embedded
into R,

Theorem 1.1.  Let ug,u; : R" — R satisfy ug(x) € N and uy (x) € TN for a.e. x € R
as well as

(Vug,uy) € H1(R") x H*"2(R")

for some k € N with k > 5] + 2. Then the following assertions hold:
(a) There exists a maximal existence time

Tin = Tu(uo,ur) > T = T([|[Vuo| g1, 1 || g—2) >0

and a unique solution u : R" x [0,T,,) — N of (1.2) with u(0) = ug, Ou(0) = uy, and
u—ug € C°([0,T,,), H*(R")) N C'([0, T,,), H**(R")).

(b) For Ty € (0,T,,) there exists a (sufficiently small) radius Ry > 0 such that for all initial
data (vo,v1) as above that satisfy

I| (e, 1) — (V07V1)||Hk(R")><H"—2(R") < Ro,

the unique solution v : R" x [0, T,,(vo,v1)) — N exists on R" x [0, Ty]. Further, for such
initial data the map (vo,vi) — (v(t),0v(t)) is continuous in H*(R") x H*=2(R") for
te [O,Yb}

(c) If T,y < oo, then

T
|19+ )l a5 =ox. (18)
0

In particular, for smooth initial data uo, u; : R" — RE withug(x) € N and uy (x) € TN
Sfor x € R" having compact supp(Vuy) C R" and supp(u;) C R”, there exist T,, > 0 and
a smooth solution u : R" x [0,T,,) — N of (1.2).

It is worthwhile to remark that both uo and u(¢) do not necessarily belong to L?(R") and it is
only the difference of these two functions which is contained in this space. We further mention
that the lower bound k > | 4] + 2 ensures the existence of L° bounds for du € H*"*(R")
from Sobolev’s embedding. This is necessary in order to establish our energy estimates in the
following sections.
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The first, second and fourth author have recently shown in [6] that there exists a global
weak solution of (1.2) for initial data in the energy space H?> x L? in the case N = §' C RI*!,
In [6] a crucial ingredient is a conservation law which allows to construct the desired solution
as a weak limit of a sequence of solutions of suitably regularized problems. The derivation of
this conservation law relies on the fact that the action functional @ is invariant under rotations
in the highly symmetric setting N = ', and this argument does not apply to arbitrary target
manifolds N.

Moreover, the third author has shown energy estimates for biharmonic wave maps in low
dimensions n = 1,2 in [13]. When combining this result with the above blow-up criterion
(1.8), he then obtained the existence of a unique global smooth solution of (1.2) for smooth
and compactly supported initial data. This results extends earlier work of Fan and Ozawa [5]
for spherical target manifolds.

A local well-posedness result as in theorem 1.1 is standard for second-order wave equa-
tions with derivative nonlinearities such as wave maps. It can be found for example in the
books of Shatah and Struwe [14] and Sogge [15]. In contrast to this case, our nonlinearity
N (u) depends on the third spatial derivative of u which cannot directly be controlled by the
energy of (2.1) that only contains second order spatial derivatives. In our proof we use the
geometric nature of the equation in several crucial steps in order to be able to rewrite this
expression in terms of derivatives of lower order.

Concerning the continuous dependence of the solution on the initial data, as the nonlinear-
ity VV(u) depends on third spatial derivatives, no Lipschitz estimate in the norm H* x H*=2is
expected from the energy method (as we observe e.g. from the a priori estimates in section 6)
and we cannot apply a fixed point argument. In comparison to semi-linear wave equations with
derivative nonlinearities (such as wave maps), this makes the well-posedness problem for
(1.2) more involved.

We briefly note that our result applies to an intrinsic version of a biharmonic wave map.
The functional ® has an intrinsic analogue ¥ defined by

T
W(u) = %/0 /Rn|8,u|2—|(Au)T|2dxds, (19)

where (Au)? = P,(Au) is the tension field of a smooth function u : R" x [0,T) — N. In
contrast to ®, the functional ¥ is independent of the embedding of N — RE. Since the Euler—
Lagrange equation differs only by lower order terms (see (2.2) in section 2 below), we can
prove the existence of local unique intrinsic biharmonic wave maps with initial data as in
theorem 1.1. However, we do not have a result for initial data with (only) covariant deriva-
tives in L2,

In the following, we briefly outline the structure of the paper. In section 3, we use a van-
ishing viscosity approximation and solve the corresponding Cauchy problem for the damped
problem

Ofu+ A*u—eAdu L T,N, ¢ € (0,1].

In order to obtain a limiting solution for (1.2) as € ™\, 0, we prove a priori energy estimates
which are uniform in € in section 4. As a by-product we obtain the blow-up criterion in theo-
rem 1.1. The existence part in theorem 1.1 is then shown in section 5, and in section 6 we
prove that the solutions are unique. Finally we establish the continuity of the flow map in
section 7.
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2. Notation and preliminaries

In this section and in the following we will write C for a generic constant only depending
on N, n and k, and often also < ... instead of < C (- - ). In order to obtain the explicit form
of (1.2), we use the fact that there exists some dp > 0 and a smooth family of linear maps
P, : R — RE for dist(p, N) < & such that

P,:REST,N, peN,

is an orthogonal projection onto the tangent space T,N. The Euler-Lagrange equation (1.2)
can thus be written as

Ofu+ A*u = (I — P,)(0Mu + A%u).
Exploiting that u takes values in N, we have

O*u+ A’u = dP,(us, u;) + dP,(Au, Au) + 4dP,(Vu, V Au) + 2dP,(Vu, V2u)
+ 2d°P,(Vu, Vu, Au) + 4d*P,(Vu, Vu, V’u)
+ d*P,(Vu, Vu, Vu, V)
—: N (u), 2D

where the tensors &P are explicitly described below.
We briefly remark that, compared with the right hand side of (2.1), the Euler—Lagrange
equation for the intrinsic biharmonic wave maps problem (1.9) differs by

P, (dP,(Vu,Vu) - d*P,(Vu, Vu,-)) + P,(div(dP,(Vu, Vu) - dP,(Vu,"))).
(2.2)
The projectors P, are derivatives of the metric distance (with respect to N) in RE, i.e.

1 . .
p=m(p)+ EVp(dlstz(p,N)), P, =d,m(p), dist(p,N) < do. (2.3)

Moreover, if p € RE is sufficiently close to N, then 7 has the nearest point property, i.e.
|7(p) — p| = inf,en |¢ — pl, and hence

dm, =dr(p) = d(m*(p)) = dm_,dm,.

Therefore P, : RF — Ty (p)N is well-defined. Using cut-off functions we extend the identity
(2.3), and thus also the equation P, = d,7(p), to all of REL. Moreover, all derivatives of P,
are bounded on R”. In this way one can investigate (2.1) without restricting the coefficients
a priori. Further, for [ € Ny we denote by d'P,, the derivative of order / of the map P,, which
is a (I + 1)-linear form on RL. For the coefficients in the standard coordinates in RE we write

: 0 0
(@P)y,,..q = T ﬂ(f’p)i(”)-

We now derive (2.1) from the condition (1.2) for smooth solutions u : R™ x [0,7) — N. Note
that we use the sum convention, i.e. the same indices in super-/subscript means summation.
Since du € T,N, we infer the identity

(1 = P)(@OFu))* = (5 — (P)1)(07u') = O(&F — (Pu)})(Drud') + (O Pu ) O D™
= (dPu)fn‘latula,u’"

2274



Nonlinearity 33 (2020) 2270 S Herr et al

fork=1,...,L.Because of Vu € T,N, we also obtain
(1 - Pu)(A“)]k =0" (55 - (Pu);()(axaul) + (8mPu)§axaulaxaum
= (dP,)},, 0% u' O; u",
and hence
[(1 = P)(A%u)] = A((dP.)y 0" u' O ™) + 0 ((dPu)y At Oy u™)
—+ (dP,,)fnJ(é“‘* Au)o, u™.
The symmetry of the indices then implies
(I = P) (D))" = (dPy)f 4, 1,07t O " 040
+2(dP,)} , 0r, O U 0% O, u" + (dP,)} , Aul Au"
+2(d*Py)y 5, 1,0 U0, u" Au” + 4(aP,)} | O Aul o, u"
+ 4(d*P,)y 4, 1,0 U0, 0" u" O u”.
We briefly state the expressions from (2.2) in coordinates, i.e.
[Pu(dPu(Vu, Vi) - d*Py(Vu, Vi, -))] = Zj(Pu)jI-dpu(Vu, Vi) + (d2P, )y Os, kO U™,
[Pu(div(dp,(Vu, Vu) - dP,(Vu, )] = > (PL)jo* (dPu(Vu, Vu) - (dP,)y; O, u¥)

J

for/=1,...,L. In the following we use the shorthand Vky « Veu for (linear combinations
of) products of partial derivatives of the components u’ of u for I = 1, ..., L. Here the partial
derivatives are of order k; € N and k, € N, respectively. With this notation we can rewrite
equation (2.1) as

Ofu + N*u = dP,(ug, u;) + dP,(V*ux V?u) + dP,(V3u x Vu)
+ d*P,(Vu* Vux Vu) + d’P,(Vu x Vux Vu* Vu).
The Leibniz formula implies the following identity.

Lemma 2.1. Form € N and [ € Ny we have

VIdP) =Y Y APV sk V), 2.4)
J=1 ZL{:I my=m—j

m

In order to include the case m = 0 in the lemma, we will use 3 ° ;1 . for the sum in
(2.4) or similar formulas. The calculation of derivatives V(N '(«)) and V(N (1) — N'(v))
for sufficiently regular u,v : R" x [0, 7] — RE and m € Ny has been included in appendix A,
employing the x-convention. The results from appendix A will be used frequently throughout
the paper. In the following sections, we also need a version of the classical Moser estimate,

see e.g. [20, chapter 13].

Lemma 2.2. Let Lk e N and o, ...,a; € Nj satisfy Zi:l |cvi| = k. There exists C >0
such that for all fi,....fi € Co(R") N H*(R") we have

1_le lel

i
il
IDfi - Dfill s < CTTWfill= ™ IWfillE - 2.5)
i=1
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In particular,

1 i
Dy - Dfille < €Y [T Wllze (WAllge + -+ Wille) - (2.6)

=1 i

3. Existence for the parabolic approximation

Since N (1) = N (u, u;, Vu, V*u, V3u), energy estimates for the operator 9> + A? are not suf-
ficient to show the existence of a solution of (2.1). Instead, we use the damped plate operator

O* + A% — A9,

with £ € (0, 1] fixed, as a regularization. More precisely, we prove the existence of a solution
u® : R" x [0,T.] — N of the Cauchy problem

{8,2145 (x, 1) + A% (x,1) — eAOu (x,1) L TyeunN,  (x,1) € R" x [0,T¢],

u®(x,0) = up(x), uf(0,x) = u(x), x e R,
G.1)

where ug, uy : R" — R” satisfy ug(x) € N and u; (x) € T,o()N for a.e. x € R" as well as
(Vug,u;) € H(R") x H*"*(R")

for some k € N with k > 5] + 2. In the following we mostly drop the super-/subscript € and
write (u, T) instead of (u°, T.). We note that the condition in (3.1) reads as

O?u+ A%u — eAdu = N(u) — (I — P,)(Adu). (3.2)
Using u(t,x) € N, we can expand

e(I — P,)(Adu) = ed®P,(ur, Vu, Vu) + £2dP,(Vu,, Vu) + edP,(u;, Au).
(3.3)

We thus study the regularized problem

OPu+ AN%u — eAdu = N (u) — ed*P,(u;, Vu, V) — £2dP,(Vu,, Vu) — edP,(ur, Au)
=: N (u).

We next solve (3.4) without the geometric constraint, recalling that only u(t) — ug € L*(R").

3.4)

Lemma 3.1. Lete € (0,1) and take up,u; : R" — R™ with ug(x) € N and u (x) € T,y()N
Jor a.e. x € R" such that

(VM(), M]) S Hk_] (Rn) X Hk_z(Rn)

for somek € Nwithk > | 4] + 2. Then (3.4) has a unique local solutionu : R" x [0,T.] — R-
satisfying u(0) = ug, u;(0) = uy, and

u—uy € C°([0,T.], H*(R")) N C' ([0, T.], H*"*(R")) N H' (0, To; H* 1 (R™)).
(3.5)

In addition,

Vu € L*(0, T-; H(R")) (3.6)
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and there exists a constant C < oo such that for 0 < t < T,
k—2 2 k 2 ! i1 2 t - )
IV 2@l + [V @)l +s/0 19 u(s)] ds+5/0 IV us)[7, ds
t
<c(// VA2 () - V42 deds + [Tl fa s + 2 ). 3.7)
0 n

Before we prove lemma 3.1, we reduce the problem to functions in L? by setting
v(x, 1) = u(x, 1) — up(x). We thus rewrite (3.4) as

0 0
ov+av=(, o). vo=(1). (8
where U = <V> and f(U) is defined through
Vi

£(U) : = N+ ug) — ed*Pyiy(vi, V(v + up), V(v + up))

— €2dPy 14y (VVi, V(v + 1)) — €dPyi g (vis A(v + 1g)) — Aug.
(3.9)

Further the operator Ay : H*(R") x H*=2(R") D D(A;) — H*(R") x H*=2(R") is given by

0 I
A= <A2 EA) . D(A) = H2(R) x H*(R"). (3.10)

Since the operators A extend each other we drop the subscript . It is well known that —A
generates an analytic C'-semigroup {S.(¢) }/>o, see e.g. [3, proposition 2.3] for the case k = 2.
Using also standard parabolic theory, see e.g. [8, proposition 0.1] and [10, proposition 1.13],
we obtain a first linear existence result with some extra regularity.

Lemma 3.2. Let r € Ny, u; € H(R"), and g € C°([0,T], H(R")). Then there exists a
unique solution U of the linear equation

U + AU = (2), U(0) = <O>, @3.11)

uj

satisfying
UeL*0,T;H™ x H2(R") N C°(0, T; H x H'(R")) N H' (0, T; H x H'(R")).

We remark that the solution of (3.11) is given by

Ut) = 5.(1) (51) + /OtSE(t— ) (g&) ds. (3.12)

We quantify the above result by the following higher-order energy estimates.

Lemma 3.3. Let r € Ny, g € C°([0,T], H'(R")), uy € H''(R"), and up : R" — RE with
Vug € H3(R"). Then v from lemma 3.2 satisfies

T T
Vel + ()72 + € / I7ve($) | s ds + € / IV (v + 1) (5)|[ 32 ds
0 0

1 (7 2
<C(1+T) (g/ ||g(s) + A%ug|[3,, ds + [[eer [ +\|vu0||§,,+z) (3.13)
0
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for0 <t < T, and

2
2 ds

T
I9 0l + 1950l + = [ 97200
0

t
< C( —/ / V" (g(s) + A%ug) - V" Av,dxds + [Juy 31 + [ Vuto][ 32 )
o Jm
(3.14)

Proof. Writing U = (v,v,) in lemma 3.2, the function u = v + uyq fulfills

8314 + A%u — eAdu = g + Nuy (3.15)

in L2(0, T; H"(R")). We first differentiate (3.15) of order V/ with I € {0, ..., r}. Testing with
—V'Au, € L,%x and integrating by parts in x, we derive

d d

5 [V uOl + 3 V)] + 2 [ V2]
(3.16)

C

< Ve + 2%)[ + 5 [V )]

which makes sense for a.e. t. (Here and below we use the duality (H', H~!) in intermediate
steps.) We then absorb the last term by the left-hand side and integrate the inequality in 7.

To control the second summand with € in (3.13), we test the differentiated version of (3.15)
by eV!A%u. Here we proceed similarly as before, where we integrate the term

T
€ / V!0Mu - V' A*udxds
0 R”

by parts in ¢ and x before aborbing it.
It remains to estimate the L2-norm of v,(¢) and the H?-norm of v(¢). These inequalities fol-
low by testing the equation with u, and using the fact that

||“_“0||L;>°L2 < TH”rHL,OOLZ- O

Proof of lemma 3.1. We aim at constructing a solution U € C°([0, T], H* x H*=2), but
due to A%ug € H*=* we have f.(U) € C°([0, T}, H*=*), which is insufficient for an applica-
tion of lemmas 3.2 and 3.3 in a fixed point argument for v.

We thus approximate uo by uy € C*°(R",RE) for § > 0 such that supp(Vug) C R" is com-
pact with

uy — upae. and Vul — Vugin H~'(R") as § — 0F. (3.17)

Defining f. 5 as above with g instead of ug, we obtain f. 5(U) € C°([0, T], H*~3(R")). For
the data (1, u;) we now prove the existence of a fixed point for the operator v + S(v) defined

through
<8i9(8)> = 5.(1) (fl) + /0 "S- s) (fe’éo(v)> ds, (3.18)
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which acts on the space
Br(T) := {v e C°([0, T], H*) N C' ([0, T], H*"?) | v(0) = 0, v(0) = uy,
Wl 2= Ivellpe gz + IVl pepe + [V 0+ 15)] <R},

Lo Hk—1

for parameters R > 0 and T € (0, 1) fixed below and the metric given by

Vi = vall gy = i = vall oo e + 101 = Ovall oo e Vi v2 € Br(T).
Let ¢ € (0,1) be fixed. We will show that the map

S: BR(T) — BR<T)
is strictly contractive with respect to ||- HB(T) if we choose R = Rsand T = Ts with

R = 31V -+ ) = 3RS,

2
Ts = 1min \k/§, ! < c
°T2 V3 ) C1+3RE,)2 C2 1+ 6RY, )2 (3.19)

for a constant C depending only on N, n, and k. To show this statement, we have to prove the
estimates

¢ k

ISO)s < ST+ 191 vl + 78 s+ s (3.20)
~ é? 1 k ~11k ~

IS0) = SE)lscry < T4+ Il + 1515) I = Tl (321)

for v, v € Bg(T). To employ the inequality (3.13) for r = k — 3, we need to bound the norms
2 - 2
[N=(0(1) + )]s and [[NE(o(2) + ug) = Ne(5(0) + 1) || s

by C(1+ HkaB) vz and C(1 + ||v||];3 + ||\7le;) [[v = ¥l g(r)> respectively. This is done by
means of lemma A.1 and corollary A.4 combined with a careful application of the Moser esti-
mate in lemma 2.2. We give the relevant details below in section 4 in the proof of the a priori
estimate and in section 6 for the uniqueness since these parts require more thought. In this way
we obtain in the fixed point v = S(1?) satisyfying

5112 5112 o 5 2 T 5 5\ 12 2
12 s + 1 e 2 [ Ol dste [ VO +up)e ds SRS (3.22)
0 0

In particular, v° € L?(0, T(;;I{k“) NH'(0,Ts; H1).
We next define Ry, R and T > 0 in the same way as Ry s, Rs and T using u instead of ug
and the Ry instead of RY. Thus,

Ros — Ry, Rs— R, Ts; =T asé— 0"

For sufficiently small 6 >0 we have Ts5 > %7‘ =:T and |Ryos — Ro| < Ry. Hence
vo R x [0, T] — RE is well defined and ||v5||B S CR for a constant C > 0. Observe that
for sufficiently small 8, 6" > 0, the differences vé( ~ 9" and o’ — &v‘s, solve (3.11) with the
nonlinearity

NP +ud) = NV +ud ) + A2 (ud — ud ) € ([0, T), H*3).
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Similar to the proof of the Lipschitz estimate (3.21), lemma 3.3 then yields the bound

2 Ts 5 5 2 Ts
s +€/0 vi(s) —v; (s) e ds + 6/0

T /112 ~ ,
<C(1+ R Hw‘ -~ H +Cog ng Vi ’
€ B(T)

’ ! ’ 2
Hv‘s—v‘s V(V‘S—v‘s)—}—V(ug—u‘s)H ds
H

2

1

Hence, if T = T(¢) is sufficiently small, as § — 0 the functions v° tend to a function
ve o, T),H) n c'([o,T), H* ) nH' (0, T; H* 1)

with V(v + ug) € L*(0, T; H*), where the limits exist in these spaces. In particular, (v,v;) is a
solution of (3.8) and u = v + ug solves (3.4). Moreover, by (3.13) the function u =10 + ug
satisfies inequality (3.7), and therefore this estimate also holds for u since uf — u, strongly
in C°([0, T, H*=%) and N (u®) — N (u) strongly in L?(0, T; H*~?) because of corollary A.4
and lemma 2.2.

For the uniqueness of v, we note that, for a second solution v, the functions w = v — v and
w; = v; — ¥, solve (3.11) with the nonlinearity N (v + ug) — N (¥ + up) € C°([0, T), H*=3).
Lemma 3.3 then yields the estimate

2 T <112
v =¥l < €1+ R*) v = ¥llgry - (3.23)

(Note that u( from the lemma is different, namely uy = 0.) Hence, if 7T is sufficiently small, we
obtain v = v and thus u = v 4 ug is unique. [
We next show that the above solution actually takes values in the target manifold.

Proposition 3.4. Let <€ (0,1) and take up,u; :R" — RL with uy(x) €N and
u(x) € Tyy(x)N for a.e. x € R" satisfying

(Vuo, Ml) S Hkil(Rn) X Hkiz(]Rn)
for some k € N with k > | 5| 4 2. Then there exists a maximal existence time T ,, € (0, 00]
and a unique solution u € R" x [0, T.,,) — N of (3.1) with u(0) = ug, Ou(0) = u,

u—ug € C°[0,T-,,), H) N C'([0, Te ), H2) N H}, ([0, Tz ), HH(RY))

and Vu € L2, ([0, T.,), H*(R")) which satisfies (3.7) for t € [0, T-).

loc

Proof. Fixe € (0,1). Letu : R" x [0, T] — RE be the solution of (3.4) constructed in lem-
ma 3.1. We first show that u(x,#) € N for x € R" and 7 > 0 small enough. Since

(0, 1], H*) — C°(R" x [0,T])
and uy € N a.e. on R”, there exists a time 7' € (0, T] such that for € [0, T] the distance

[[dist(u(r), N[ < sup [u(x, 1) —uo(x)| < [|u(t) = uol|

x€R

is so small that # = 7(u) is well-defined. We then let w=1u —u and we note that
w(0) = 9,w(0) = 0. Calculating
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8,2’ = dwuatzu + d27ru(u,, u),
Aw, = dm,Au; + &> (Auyuy) + 2d°7,(Vuy, Vu) + d>m,(Vu, Vi, uy),
A% = dm, A%u + d* o, (Au, Au) + 4d* T, (Vu, VA) + 2d°70,(Vu, Vi)
+2d%7,(Vu, Vu, Au) + 4d°w,(Vu, Vu, Vu)
+ d47ru(Vu, Vu, Vu, Vu),

we conclude that
(P + A? — eAd)w = drm, ((af F A2 sA@,)u) N () — N (u)
= dm, (N (u)) € TaN.

Next, we note that

Wy = ((w - I)(u)) = (dry — Du, L TaN.

t

By testing the above equation for w by wy, it follows

1 1
0= |w,|2dx+8,f/ |Aw|2dx—|—5/ |Vw,|*dx = 0.
2 Rn 2 Rn Rn

This fact implies that w; = 0 and hence w = 0, which means that u € N.

The claimed uniqueness follows similarly to the end of the proof of lemma 3.1. Finally, we let
T..n > T be the supremum of times 7’ > 0 such that we have a solution u : [0, T'] x R" — N
of (3.1) with u(0) = ug, u(0) = u,

u—uy € C([0, T, H)n C'([0, '], H**) nH' (0, T"; H*~'(R"))
and Vu € L*(0,T'; H*(R")) which satisfies (3.7) on [0, T"]. O

Remark 3.5. We remark that up to now we fixed € € (0, 1). Since the constants in the up-
per bound in estimates such as (3.22) are of order O (5’1), we have to prove € independent
estimates in the next section.

4. The a priori estimate

We now prove an a priori estimate for the solution u° : R" x [0, T.,,) — N of the equation
OMuf + A*uf — eAOu® L T,eN onR" x [0,T.,,) 4.1

given by proposition 3.4 with & € (0, 1) and initial data uo, u; : R" — RE such that uy(x) € N
and u; (x) € T,y)N forae. x € R" as well as

(Vug,u;) € H(R") x H*"2(R")

for some k € N with k > | 5] + 2. As before we write u instead of u°, and we fix a number
T < T, . Moreover, (3.7) says that
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”Vk_zu,(t)

2 . 2 ekt 2
o+ Va0l e [V o]0

t
< / / VA2 N () — (I — P)(Auy)] - V2w deds + |V 2ur |2 + | Vool (42)
0 JR»

fort € [0, T]. We recall that the summand with € on the right-hand side is well defined because
of (3.3).

In the following, we often make use of the relations A («) L T,N and u, € T,N which hold
since u(x,1) € N for a.e. (x,) € R" x |0, T]. In particular, N (u) = (I — P,)N (u). Using this
fact, we first write

VRN @)V 2 = Y V(I = Py« V™ (N () VE 7,

my Fmy=k—2
my >0

+ VE2(N () (I — P,)VF 2,
Z V(I — P,) * V"™ (N (1)) V2,

my+my=k—2
my >0

— ) VEEW(w)+ V(I = P)IVPu

I+l =k—2
;>0

=L +h,

where the second equality follows from the Leibniz formula

0=V =Pu]= Y V(I =P *Vou + (I = P)V 2w

(4.3)

I 4l=k—2
>0
4.4
In (4.2) we thus split
VE2(N () — (I — P)(Aw)) - V¥ 2u, dx
Rn
= [ V¥ N@W) V5 %udx—e | V(I - P)(Aw)) - V" %u, dx
Rn Rll
k=2 k=2 4.5)
:/ Ildx+/ Izdxfe/ V(T = Py)(Awy)) - V" 2u, dx.
n Rn ]:Rn
We start by estimating
/ Ildxg Z ”le(l_Pu)*vmz(N(u))HLzHvk_zutHLz~
! my+my=k—2
my >0
Lemma 2.1 yields the identity
my _ _
Vm](I—Pu) — _Z Z deu(Vkl_‘—lu*"'*ka_‘_lu), 4.6)
=1 Z/:l fi=mi—j
which implies the pointwise inequality
my - -
VI =P S Y VAT VR, (4.7)

J=US k= —j
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On the other hand, lemma A.1 allows us to bound |V (N (u))| pointwise (up to a constant)
by terms of the form

[V ] [ [[900[V0| 4 [V920] |V 20]  [VE | V]

4.8)

|ty gy, [|Vk‘+1u||Vk2+1u||Vk3+2uH, 4.9)

[V | [ ] [0 [V | VS | TR )], (4.10)
wherei=1,...,myand m; +---+m; +k, +--- = my — i are as in lemma A.1. Moreover,

in the case i = 0 (where no derivatives fall on the coefficients) the terms are of the form
V9V + V520V 4 (V5 VH,
TR [ R 42,
[ [ |

where k; € Ny and k; + k» + - - - = m,. Note that my < k — 3 since m; > 0. In the following
we use the notation (4.8)—(4.10) for all five cases, setting i = 0 for the latter three.
Combining the above considerations with lemma 2.2, we can now estimate the norm

V™ (I = P )V™ (N ()]l 2 »
where we distinguish five cases according to the terms in the brackets in (4.8)—(4.10).

Case 1: VFu, » V*u,
We use lemma 2.2 with

fi=Vu, ..., f;=Vu, i1 =Vu, ..., fixi=Vu, fixiv1 = ts, firiv2 = Uy,
and derivatives of order
ki 4kttt k bk =my Ay —i—j=k—2— (i+)).
Employing also Young’s inequality, it follows
H|vi'+1u| TR \Vﬁ”“uHVk‘u,HV"zu[HLZ
S (O IVl Nl + (U IVl Nl oo ) V0l eamiey + Nt i)

k—1 k—1
S (U [1Vullpoe + loarllpoe ) IVl v A e 2)-

The other cases will be treated similarly. Note that here and in the following the L norms and
especially ||u/|; « are bounded by our choice of k.
Case 2: Vh+2y« vht2y

Here it is exploited that m; > 0 in I} due to the cancellation from (4.4). This time lemma
2.2 is applied with f; = --- = fi1;42 = Vu and derivatives of order
ki + Ak 4tk koA 2=m Am 2 —i—j=k—(i+j)<k—1

since j > 0 by (4.6). We estimate

99 [V P [ 2 2

12

i+j+1 k—1
S IVl EZ VUl s £ U+ [Vl [Vl e -
iy
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Case 3: Vht3yx Vhtly

As in the previous case, C(1 + | Vul[t") || Vul| s dominates

199 [ 7 [V

23
Case 4: Vhtly« Vietly « Vho+2y,

We apply lemma 2.2 to the functions f; = - - - = fi1,43 = Vu with derivatives of order

ki kit 4tk otk l=m Am A+l —i—j=k—1— (i+]),

leading to the bound

199 [ 974 [ [ 42|
L
i+j+2 k
SO IVul P NIVullgpaeiey S A [Vl po0) [V e
]
Case 5: Vhtly s Vhtly 5 Vhtly 4 Vhitly
We now use lemma 2.2 with f; = -+ = f;1;14 = Vu and derivatives of order
ki + kit 4k ko ks ke =my my—i—j=k—2—(i+)).
Hence, we have
99 (5[ [V R |
L
S DIVl Z 1 Vulleaiey < (U [Vl L) [Vl -
iy
Summing up the five cases, we infer
k=1 k—1
Il S (T IVallpee 4 el ) UVl s 4 e e2)- .11
Next, in I, from (4.5) we integrate by parts in order to conclude
/ Lhdr= Y VES3(N () % [V = P,)VEu,] dx
" o =t=2 R
1>
> / VSN (w) % [VI (1 = PV ] d
L Hl=k—2 v R"
>0
=N+
These terms are estimated by
LIS D VN @)l [V = P VR,
et 4.12)
>0
BIs D0 IV W), V00 = PV
vl (4.13)
>0
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We control || V¥=3(A/(u))]|,, by terms of the form (4.8)~(4.10) in the L? norm, obtaining as

above

[

[V W @) S (1 1Vl + ) AVl ger + il 2)-

Equation (4.6) and lemma 2.2 further imply

L+1
[V = PV 52 Z 197l [V | Vo]
Z,J =h+1-j
k—1
S+ ||VMHL°C + el ) IV atll v+ el u2)

where my + -+ +m; + L =k — 1 —i < k— 2. Similarly, we have

Hvll I— P vl2+1 Lz < Z Z H|vfh1+1u| . |Vl’7l,+1u‘|vlz+lur|HLz
Jj=1 Z Im,—l]—j
S A Va5 A+ ol IV g+ ot
bylemma?2.2withm; +---+m;+ L +1=k—1—1i<k—2,sincel; > 0. The above three
inequalities yield
2k—1 2k—1 2 2
12l S (04 [ Vullpe ™+ e ) Vil =+ [Juellzp—2).- (4.14)

Finally, for the regularization term, we observe

—e [ 9 P (A = < /R L P ()T d

<OV = P Al + 5 (94 w7

In view of (3.3), to bound || V¥=3[(I — P,)(Auw,)] |, it suffices to estimate

2

[V ] e [0 | [[ 9 0, [ V5 ]+ [V || V5220 Hiz , (4.15)

[IAAGRa7 R |V';'i+lu||Vk‘u,||Vk2+lu||Vk3+1u|Hiz , (4.16)

where my +---+mi+ki+hk+1=k—2—i and my +---+m+ki+kr+ks=k—3—1,
respectively. As before, lemma 2.2 implies the inequalities

_ _ 2
|||Vm1+1u| - |vmz+1u| [|Vk1+1ul||vkz+1u| + ‘vklut”ka“rzu” ||L2 win
2(k—2 2(k—2 2 2 .
S A+ IVulFE 4 742 el ez + 1Vt s
197 o [ ] 55 5 ]
(4.18)

S A+ IValFE 4 a2 Nl o + 11V 7).
Putting together (4.11), (4.14), (4.17) and (4.18), we arrive at the inequality

/ V2N () — (I — P,)(Auy)) - V2, dx
€ o2
S+ Vall + a7 ) IV ullgees + lluelle-z) + 3 V" ]| -
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Subtracting the last term on both sides of (4.2), for ¢ € [0, T] we conclude
t
IV 2+ 9ol + 5 [ 19wl s

t
2k 2k 2 2 _ 2 2
S AR\ T T P PR R s AR A
(4.19)
It remains to bound the lower order terms. Testing (4.1) by u, € T,N, we infer

t
||ut(r)|\iz+||Au(t)|\iz+e/ [Vu(s) |7 ds = [lu]]7> + [[Auoll;» . (4.20)
0

Since also

d
T |vu|2dx</ |u,|2dx+/ | Aul* dx,
t ]Rn ]Rn n

it follows

t
IVu(®)z < 1 VuolZ +/0 18u(s) 172 + ur(s)l172 ds

= IVuollZ: + t(lln |72 + | duo] 72) “21)
for t € [0, T]. The other derivatives are treated via interpolation, more precisely
; 2 1 2(1—1) 2(k—1—1
Vi, S|V ]| 27 IVl 1=2,.. k=2,
L2 k=2 || e
V|2 S V20|27 (el , l=1,... k=3,

12 « 20=2) 2k=D
[Vl S IV5| 277 Aul S, 1=3,.. k-1

Estimate (4.19) and the above inequalities lead to the core estimate

t
€
e () s + V() s + 5 / IV2,(s) [ 2 dis

t
2k 2k 2 2
S / [+ 19wl + ) IVl + alls)] s

4.22
+ (L4 T) (w72 + | Vuolzu—r),  t€[0,7] 422
for solutions of (3.1) and T < T ,,. Using Gronwall’s lemma we also obtain
sup. ([ (1) -2 + V()71
t€[0,7]
(4.23)

T
< C(1+ 1) (Jlurl[fpms + | Vaol ) exp ( [ nwus + |\u,\|i’;>ds) .
0

At least for small times we want to remove the dependence on u on the right-hand side of
(4.22) and thus we introduce the quantity

alt) = V()2 + | 8u(@) |2 + || V4u(0)|[5 + @)% + |72 0

fort € [0, T.,,). We observe that «(t) is equivalent to the square of the Sobolev norms appear-
ing in (4.22). Since the solutions to (3.1) are (locally) unique, our reasoning is also valid for
any initial time #y € (0, T¢,,)- The estimates (4.19), (4.20) and (4.21) thus imply
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am—am)gg/u+a@ﬂmgm

to

By the above arguments, the function « is differentiable a.e. so that

%a(r) < C(1+ a()"a(r) (4.24)

fora.e.0 < 1y <t < T . We now proceed similarly to [7], where regularization by the (intrin-
sic) biharmonic energy has been applied in order to obtain the existence of local Schrodinger
maps.

Lemma 4.1. Let €€ (0,1) and take data ug,u;:R"™ — RE with ug(x) €N and
uy(x) € Tyyx)N for a.e. x € R" satisfying

(Vug,uy) € HY(R") x H*"2(R") for some k € N with k > L%J +2.
Let T.,, >0 be the maximal existence time of the solution u® :R" x [0,T.,,) = N
of (3.1) with u®(0) =uy and Ou®(0) = uy from proposition 3.4. Then there is a time
To = To(||Vuo|| =1, |u1]| ge—2) > O such that Te , > To for all € € (0, 1).

Proof. Lete € (0,1)and 7 € [0, Tc ;). We write u = u. From (4.24) we infer

9 a _ Y e 425
B\ 1rat) " (T+aha S (4.25)

With ap = «(0) it follows

ot)f cr % ag
< < (1 +4Ctk)—20
TTa0d ¢ (Trab) 0+ ab)
k

o) < (1 +4Ctk)af + 4Ctkal ok

for0 <t < ﬁ, and hence

a(H)f < 2(1 4+ 4Ctk)af < 3af

8Ck
oo () |z + V() |31 < colleet [z + | Vet |l ) (4.26)

for0 << & min{1, ﬁ} =: Tp. Since « and the Sobolev norms are equivalent, we infer
0

for ¢ € [0, min{T. ,, To}) and some constant ¢y = co(k,n) > 0.

We now assume by contradiction that T, < Ty for some (fixed) € € (0, 1). We apply the
contraction argument in the proof of lemma 3.1 for the initial time #y € [0, 7.,,) and data
(u(to), us(to)) in the fixed-point space B,(T) with radius

k
= 3r(10)* 1= 3 (1Vu(t0) e+ + )= )
Since 1ty < Ty, estimate (4.26) yields the uniform bound

r(to) < v/2eo([lullip—2 + | Vol 7-1)'/? =2 2.
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As a result, the time

2
1 . V3—1 € €

T := — min - = ——, = ~
4 V3 C2(1 4 3¢)2" C2(1 + 6¢f)?

is less or equal than the time T for B,(T) in (3.19). Therefore, the solution can be uniquely
extended to [0, #p + 77 in the regularity class of proposition 3.4. For o > T, ,, — T this fact
contradicts the maximality of T ,, showing the result. O

5. Proof of the main theorem

We now combine the existence result from proposition 3.4 with lemma 4.1. Thus, there exists
a solution u® : R" x [0, To] — N of (3.1) for each e € (0,1), where T > 0 only depends on
[|Vuol| -1 and ||uy | e—2. From (4.26) and the inequality

[|u® — L‘O”L[OOLg <To ”“zEHL,DOLg >

we extract a limit u : R" x [0, To] — RE as e — 07 of the solutions ulsm ] in the sense
-To

* * — * — .
Vi SV, uf —uy > u— up, and V2 zuf A vh~2y, in L>(0, TO;LZ),

where 1 <} < kand 0 < I, < k. (Here and below we do not indicate that we pass to subse-
quences.) In particular,
u— uy € L(0, To; H*) N W>°(0, Ty; H*?)

and (Vu, O,u) is weakly continuous in H*! x H*=2, We first assume k > 4 (which is no
restriction if n > 2). Estimating the nonlinearity similarly to section 4, we also deduce from
(3.3) and (4.26) that 8?u¢ € C°(]0, Ty, H*=*) is uniformly bounded as e — 0F. Compactness
and Sobolev’s embedding further yield

V3uf — V3uin C°([0, Ty), L2 .(R™)), 5.0)
Ou® — O, u — u, Vut — Vu, V*u® — V?u locally uniformly on R" x [0, T). '

More precisely for o € (0, 1) and v¢ = u® — ug, our a priori estimates and [9, proposition
1.1.4] imply uniform bounds (in €) in the spaces

Ve c CaHk72a’ Avars c CaHk7172o¢’ VZVE c CaHk7272a’ (9;\/6 c CaHk7272a.
5.2)

As a result, u takes values in N. Moreover, since (4.22) and (4.26) give

| IVeva o as

2k 2k 2 2
S (To(1+ s + [Vatollge) + 1) (e e + Vol )

and k > 3, we infer that eAdu® — 0 in L?.. Combining this fact with (5.1) and recalling
(3.4), we conclude

N-(uf) = N(u) in L; (R" x [0, Ty)).

In the case n = 1 and k = 3 we obtain the convergence N (u®) — N (u) in the sense of the
duality (H', H™') because we still have

(5.3)
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Vit = Vu, V2 = Vu, Ou® — du

locally uniformly, as well as V3u® — V3u and Vou® — Vouin C°([0, Tp], H,,!)as e — 0.

Summing up, we have constructed a local solution u:[0,7p] x R" = N of (2.1)
with u(0) = up and Ou(0) = u; such that (Vu, du) is bounded and weakly continuous in
kal % Hk72.

In lemma 6.1 it will be shown that such a solution is locally unique. We recall from the
proof of proposition 4.1 that the solution u : R" x [0,7) — N for some T > 0 can be extended
if im sup,_, 7 (|[Vu(?)|| =1 + ||us(7)||zp—2) < 00. There thus exists a maximal time of exist-
ence Ty, € (Tp, o0] of u with

lim sup(||Vu(t)|| -1 + (1) || jp—2) =00 if T, < c0.

t—T,

Arguing as in section 4, we establish the energy equality

t
V]l + |92, = 2 / / V2 (N (1)) - V*2u, drds
0 JR 5.4)

[V ol 4+ [V

for ¢ € [0,T,,). (The integral is well-defined in view of the cancellation of one derivative in
(4.3).) However, in contrast to the approximations u°, the solution « has only k weak spatial
derivatives (and O,u has k — 2). For this reason, when deriving (5.4) we have to replace one
spatial derivative by a difference quotient. The details are outlined in appendix C.

We conclude that the highest derivatives V¥~2u,, V*u : [0,T,,) — L? are continuous,
employing their weak continuity and that the right-hand side of (5.4) is continuous in ¢. The
continuity of the lower order derivatives can be shown as in the next section, so that

u—ug € C°[0,T,,), H) N C'([0, T,,), H*?)

as asserted. Finally, following the proof of the a priori estimate in section 4 we can derive the
blow-up criterion (1.8), see appendix C.

To show theorem 1.1 it thus remains to establish the uniqueness statement and the continu-
ous dependence on the initial data, which is done in the next sections 6 and 7.

6. Uniqueness

Lemma 6.1. Ler u,v:R" x [0,T] = N be two solutions of (1.2) with initial data
uo : R* = N and u; : R" — RE such that u; € T,,N on R" and

(Vuo, ul) S Hk_] (Rn) X Hk_z(Rn)
for some k € Nwith k > | 5] + 2. Also let

u—ug, v—ug € L=(0,T; H'(R")) N W>(0, T; H 2 (R")).
Then U,

or] V| [0.7]°

Proof of lemma 6.1. We derive the uniqueness statement from a Gronwall argument based
on the equality
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dl1

dtZ/ Vi + [Vwide = | VIV (@) = N () - Viwde, (6.1

Rn
forw=u—v,1€{0,...,k—3}andr € [0, T), which is a consequence of (2.1). Setting
2 2
E@) = |lw@) v + [we ()35 »

we want to prove

d

e <cl+ Va7 + Nuellzs + [Vl + [villzm—)E@)  (6.2)
for t € [0, T]. We first estimate (6.1) in the case / = k — 3. Since u and v map into N, we have
N(u) = (I — P,)(N(u)) and analogously for v. It follows

N@) =N@) = (I —P)Nu) — (I —-P,)N()

= (Py = PN (u) + (I = P,)(N (u) = N (v)),

and hence

VB3N () = N3)) - V3w, = V3 (P, — PON ()] - V3w,
+ V(= PN () = N()] - V7w,

In this way, we can avoid that all derivatives fall on V3w. We next write
VP = PON ()] - V2w = (P = POV N @) Vg
+ Z vh (P, — Pu)] * vh N (u)] - V3w, = I + b

I+l =k—3
1;>0

Observe that

/’1dx<llwllpo IVN @ [[9wllo

We then control ||Vk SN (u || ;2 using lemma 2.2 as above for the a priori estimate (4.22).
Further, lemma A.2 implies that f]R,, I, dx is bounded by terms of the form

Il [[197 ] (97l VEN @) V4w 63)
(i PP v v Y Y vy Y v %1 64

where my,...,mjand hy, ..., hj_; are as in lemma A.2. In (6.3) we then estimate as above in
the a priori estimate. For (6.4), it suffices to control terms of the form

[V [ | [ Ry [ ] O ) [V [V ]
(6.5)

where [|Vk‘ u || V*u,| - -] is given as in the nonlinearity N (u) and the orders m; ...,m;,
my,...,m;, and ki, k, . . . are as used before. To apply lemma 2.2, as above we choose
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fi=w, L =Vh, ....fi=Vhi_i,fix1 =Vu,....fir; = Vu,

and fiyj 1, fitj+2, - - - according to the respective terms in N (u). We can thus estimate (6.5)
in L? by

= kzmiﬂ e T
HW“LOO ||WH ;+ ||W||L°° ||W||Hk—1—i—/

(U Va7 + IV e =+ [Ivelli2)
S Il (U IVl + llall ez + 19907+ [l ),
noting that /; >0, j > land i 4+ j < k — 2. We continue by computing

VAR = PN () = N )] - V2w,
= VW) -N )~ POV w3 VI P # VE (N ()N (1) - Vo,

I+l =k—3
>0

= VW) =NO)VPu=Pu] = Y VW) =N (1) -V = P)][xVEw,
+ Y VII=P)*VEN () — N(¥) - V0w, = i+ L+ T

I+l =k—3
;>0

where the second equality is a consequence of
(I—=Pyw,={—Pu,=[(I—P,)— (I —P,)us = (Py, — Py)y.
We use integration by parts to treat [ J; dx and [ J, dx. Here we assume that k > 4. (If k =3

the estimate becomes easier and we only employ integration by parts for dP, (V3w x Vu) in
the difference N (u) — A/ (v).) It follows

/ Jidv=- / VN )~ N VR Pu d

/ = S0 [ TN @) = N [ - )« Vi,

I+l =k—3 JR”
11>0

+ V(I = P,)* V2w, d.
We first bound

/R @ S [N ) MO [V~ P,

Corollary A.3, lemmas A.2 and 2.2 yield
[V IV () = N ()]

2 S (Wl + lwills)
(L [ Vullgeos + Nl s + IV + vl

95200 = Pl s (05 I+ s+ O+

The integrals of J, and J3 are treated similary. Summing up, we obtain

RIV" Swil VA W de S E) (1 + [ Valljos + Nualls—a + 99070 + [Ivelles).
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We can similarly derive the estimate (integrating dP, (V3w x Vu) by parts)

d
G o, Wil o+ 1A de S EOQ + IVallgios + s + 191 + el

Interpolation on the left-hand side then yields

d
£0 S EO+ Vu)llis + lar(Ollzges + V901 + w00 [ica)-

By assumption, we have £(0) = 0 and

2% 2% 2% 2%
S}(l)lf;](HVMU)HHH + ()i + Vv lger + (Vi) [[2) < 0,
refo,

so that £ = 0 on [0, T] as asserted. O

7. Continuity of the flow map

We now prove that the solutions of the Cauchy problem for (1.2) depend continuously on
the initial data. As seen in the previous section, the difference u — v of two solutions « and v
satisfies estimates in which one loses a derivative compared the a priori bounds such as (4.22)
for the solutions u and v themselves. To deal with this problem, we apply the Bona—Smith
argument, which is outlined e.g. in [21] (for the Burgers equation) and in [4] (for the KdV
equation); see also the references therein.

Let T,, be the maximal existence time of the solution u with initial data (uo, u; ) from theo-
rem 1.1. Fix Ty € (0, T,,,). Take data (vo, v1) as in the theorem satisfying

[l (w0, u1) — (vo, vi) |l scrt—= < R (7.1)

for some R > 0. (We note that we have to assume ug — vy € L? in order to establish the a
priori estimate for the difference of the solutions as in the section 6.) We use regularized data
(ud,ud) and (v§,v9) in the sense of lemma B.1 from appendix B, where § € (0, §*] for some
§* > 0 depending on N. The corresponding solutions are denoted by u® and v°. They satisfy
the regularity assertions of part (a) of theorem 1.1 for all k > | 5] + 2. It is crucial that the a
priori estimates for u#® and v° are uniform in §. We split u — v into

ufv:u7u5+u57v‘s+v‘s*v
and bound each of the differences in H* x H*=2.

In order to estimate u#® — u and v° — v, we use the geometric structure (as before in sec-
tion 6). It allows us to fix a (small) parameter 6 > O for which the differences are small in
H* x H*=2, This can be done uniformly for (vo,v;) in a certain ball around (uo, u; ). For fixed
§, one can then estimate u® — v employing their extra regularity, but paying the price of a
large constant (arising from the small parameter §). We can control this constant, however, by
choosing a small radius R > 0 in (7.1).

We start with some preparations concerning the cancellations caused by the geometric
constraints. As in section 6, we have
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N (@) = N(u) = (Pu = Pys )N () + (I = P)N () = N (w),

(I—P)W’ —u); = Py — P)u’. 72)

We then calculate (again similar to section 6)
/ VEHN(u®) = N(w)) - VE2(u® — u), dx
- / (Pu — P ) V2N ()] - V52 — ), dx

+ Z /n VI[P — P)] *x VEN(u0) - VE2(u® — u), dx

I+l =k—2
;>0

+ > /V"I P,)* V2N W) = N(u)] - V¥ 2 (u’ — u),dx

I+l =k—
1;>0

VA2 N @d) = N(w)] - (I = Po)V*2(u® — u), dx. (7.3)

R»

Using integration by parts and (7.2), the last term is rewritten as
/ Vk—Z[N(ué) —N(M)] . (I _ pu)vk—Z(ué _ u)tdx

= 3 [ VW) - NV R VR ) d

Iy 1y =k—
=Y [N - N @] (P P Vel e
I+l =k—1 "
— | VN @) — N(w)] - (Pus — PVl d, 74
Rn

which is well defined by the higher regularity of u°. Technically this has to be established by
difference quotients as in appendix C, however we omit the details here. The advantage of
estimating u® — u is that the bad terms (with respect to the regularity of u)

||‘7k 2]\[

will be bounded by the regularized initial data from lemma B.1. Their norm will grow as
§ — 0™ in a controlled way. Moreover, when estimating (7.3) and (7.4), these bad terms only
appear in the products

Wy and [V (1.5)

I = o V42N @) ||V" W =)o
=l o [V N C) = NG [V ]2

Here the decay of Hu5 — uH [ 880 — 0T will compensate the growth in (7.5). We now carry
out the details in several steps.
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Step 1. Since Ty < T,,, we have the bound

sup ([[Vu(t)||pu—r + Jue(0)]| p2) =1 € < 0.
t€10,To]

Lemma B.1 allows us to fix a parameter 0] € (0, 0*| depending on (u, u; ) such that

| (Vug, uf)]| <3C)2 (7.6)

Hk—1x gk—2
forall § € (0,41]. We let § € (0,8}] and also R < C/2in (7.1). Hence
1790 vl < (Tt ) s + R < 3C/2, a7

[(Vvh. 8

Heretheconstant Cy > lisgivenby (B.6)andwehavechosen0 < R < min{1,C/(4Cy)} =: Ro.
We define a time 7y > 0 as in lemma 4.1, replacing «(0) there by a multiple of C. We then

< (Vi ul . +2CoR < 2C. (7.8)

)HH"*‘ X Hk=2 )HH"*‘ X Hk—

combine the uniform a priori bound (4.26) for the approximate solution to the e—problem
for v on |0, TQ] with (7.7). Likewise one treats u’ and v? using (7.6) and (7.8), respectively.

Following the existence proof in section 5, we then see that the solutions Uz Yoz, uiﬁ E
-To -To .7y

and vjﬁ] exist on [0, Ty). Proceeding as in sections 4 and 6, we further obtain a constant
~ 10 ~
C = C(N,k,Ty) > 0 such that

2 2 ol 2 2
[N A 17 o [ v/ A oY AR (7.9)
I3+ Vel < CUVVOllm + 101171, (7.10)
i = V3 + llite = vellm—s < Cllttg — vollgpm + ller — vi[3m—2) (7.11)

on [0, Ty) and for orders m € {2,...,k — 1}. Analogously, u’ and v satisfy the estimates (7.9)
respectively (7.10), and the differences u — u®, v — v* and u® — v° fufill (7.11) with the same
constant C independent of § € (0, 6*]. For the regularized data we can replace here k by k + 1,
deriving

190 e 1 s < CAT s+ [l )

. (7.12)
199 e+ 112 0 < CAT8 s+ [ )
Step 2. Estimating (7.3) and (7.4) as in section 6, we derive
d
< (= o= [ ) < € [l = 0| [[V42N )| |92 0 = )
+Clu— u6||LOOHVk*3(N(u‘5)—N(u)) L V"’lufHLz

+ (|l = |+ [ — w2

for some C = C(N, C, C ) > 0. The nonlinearities are treated as in sections 4 and 6. Using also
(7.9), (7.11) and (7.12), we then conclude
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=+ =)
< C = s (U 9 1 ) Ol + )
+ Cllu =t || s (4 IVl gimr + V0 et + e g+ 100 =) [[ 6] | s
€=+ — )
< o~ s + [l = )+ 98+ )
4 Clle =+~ )

on [0, Ty). Gronwall’s inequality and lemma B.1 thus yield

sup ([Ju—u® |5 + s = [ )
t€[0,To]

CTy

< P

Vo

(0 = s+ s = ) + € o = 3+ o — ) = o)

as § — 0T. In view of our a priori bounds, we can estimate v — v in the same way. Here we
have to split the initial values, obtaining

sup. ([lv = [+ [lve = -2

1€[0,70]
CT,
< 7(;)(”‘}0 - VgHHI\—l + ”Vl - V(ISHHk—.%) + C(HVO o Vgsz + ”Vl B V(ISH;J)
CT,
< 7;(||”0 | ey + = | + (a0 = ud [+ e = [2)
0 g = vl + i = vllocs + 58 = s+ [ =8l )
NG} & " " .

+ C(luo — vollZe + Ny = villucs + [Jud — V3| + [ = v3|[s)-

Lemma B.1 now implies that

sup. ([ = s+ [lve =372 )

1€[0,To]
CT,
< U=+ o =)+ €l =+ s = w5
CTy 5
—JR+ CR:.
+\/3 +

On the regularized level, we use the coarse estimate
C -
sup ([|u® =7\ + luf =9 [ue ) < —=Tollvd = e + [V = s)
t€[0,7o] \/g
+ (= vl + sd = vE 1)
VZ)

Sinceu —v=u—u’ +u® —v% +1v°% — v, it follows

R+ CR%.
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t:[g%] (flw = VI3 + Nl = villp— ) < W(HMO = [+ [leer = [ )

+ Clao = a5+ o = )

(7.13)
Now take n € (0,C/2] and r; € (0,7]. We first fix § = 6, = §;(r1) € (0, 1] and then choose
Ry = R1(d1) € (0, Ry] such that for all R € (0, R;] we have

2 2
sup (flu = vllge + llur = villp—z ) <o <. (7.14)
IG[O,T(]]

In the above reasoning we now replace (ug, u;) with corresponding solution u by data (i, it)
with solution # that satisfy the same assumptions as (vo,v1). The function & thus fulfills the
same a priori estimates as v and also (7.14). Moreover, we assume that

[ (fto, 1) — (vo, vi) | < R (7.15)
for some radius R > 0. We can then repeat the above arguments replacing u by it. The result-
ing regularization parameter b depends on i, and thus also the upper bound R; = R, (6y) for
the radii in (7.15). For given 0 < 7; < 1), we infer

sup ([la — V||121k + i — Vr||?1k—2) ShsT (7.16)
1€10,7]

provided that 0 < R < Ry in (7.15).
Step 3. In the case Ty > Ty the proof is complete. Otherwise we repeat the same argument
starting from

sV, ul") = (o), u(To))  and (5", 0{)) = (v(To), vi(To)).
Observe that (7.14) yields

(946”1

<t (Tl

<3C/2.
Hk—1x Hk—2 Hk—1x gk—2

For a sufficiently small §} € (0,*] and all 6 € (0, 8], we derive
a 1
|7 @)%, @™y Ty, 6Py

as in (7.6) and (7.8). Based on these bounds we can repeat the arguments of Steps 1 and 2 on

<2C
Hk—l ><H1‘_2

Hk—1x Hk—2
the interval [Ty, min{27Tp, To}] =: J;. However we have to replace the bound (7.1) involving
R by (7.14) which yields

18, uly = 80, V) e < 1.
Let r, € (0,7). Lemma B.1 allows us to fix a parameter § = d, = §,(r2) € (0, 03] such that
(jfb 1 1 1 1
7 Ul = o) s 1" = () )
1 1 1 1
+ Ol = g e+ Nl = () ) < a4
As in (7.13) we then obtain
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Vo

sup (|Ju—vzp + iy — villzu—z ) < r2/4+ /4 + n+Cri<rn<n
tey

if we choose r;, and hence R, small enough. .
Again we can argue in the same way for it instead of u, replacing r;, §; and R by 7;, §; and
R. For given 0 < 7, < 1), we thus obtain

) A ) A CTo. o . _ .
sup ([|it — vl + it — Vt”[z.[k—z) S iafd+ )b+ —20 + CIF < 7y < 1)

if 7 and R are small enough.

Step 4. The previous step can be repeated m times until mTy > To. We set Ry = R(C/2) (with
n = C/2) and use the resulting radius R = R(#) for the contunuity at ii, concluding the proof
of the continuous dependence and thus of theorem 1.1.
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Appendix A. Derivatives of the nonlinearity

In this section we assume u, v : R" x [0, T] — RE are smooth maps. The calculations hold if u
and v are sufficiently regular to apply the Leibniz formula (e.g. with weak derivatives in L?).
Lemma 2.1 and the Leibniz formula imply the following substitution rule.

LemmaA.1. Letl € N. Then we have

VIN (W) =1 + 0>+ J5,

where the terms J;, Jo, and J; are of the form (with k;,m; € Np)

Ji=Y dT P (V" e V) VO Uk Vw4 VI Ry 4 VI vy
()

with (x) : 0 < m < [, Ziz:l ki=1—m, j=min{l,m},...,m, 21{21 mpy=m—j;
J= Zdj+2Pu(Vm‘+lu Koo VL) [WR Ty 5 TRty o W12y
()
with (x) : 0 < m < [, Z?zl ki=1—m, j=min{l,m},...,m, Zl{:l mgy=m-—j;
Jz = Zdj+3Pu(Vm‘+]u* ok VL) [R5 VR s VR Ty TR
(%)
with () : 0 <m <1, Yo ki=1—m, j=min{l,m},...,m, S_ m=m—j.
The following lemmata are used to prove the existence of a fixed point in section 3 and the

uniqueness result in section 6.
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LemmaA.2. Letme N, k€ Ny, andw =u—v. Form > 2 we have

m
VNP, —d'P) =" > (a7, — TP (V" L VT )

j=1 my+---+mj=m—j

+3 3T At (v vt o)

J=2 mi+-+m=m—j

m
+>0 YT @t (wm vty vty vty

J=2 my+---+mi=m—j

m
w30 ST R (L ey Oy, (A.D)
J=2 mi+---+mij=m—j

and form =1

V(d*P, — d'P,) = (d*P, — d*P,)(Vu) + d*P,(Vw). (A2)
Proof. The result follows from subtracting the expansion in lemma 2.1 for d*P,

vm(dka) = Z Z derkPV(vm1+lv* . *vmj+1v)’

j=1 my+---+mj=m—j

from the same expansion of V" (d*P,). Then subsequently adding and subtracting the inter-
mediate terms in the formula above gives the result. O

Corollary A.3. Letm € N, k € Ny, and w = u — v. Then we have
V" [(dP, — dP,)(u; - u, + Viux Viu + Vux Vu)]
= > (@F'P = a7 P (VI V) (VR + VR,
(*)

+ VA2 5 VR T2y 4 VRT3 5 Viey)

+ 3 P (VI VI ) (VR Vo,
(%)

+ VA2 5 VR 2y 4 VR 3y 5 VEoy)

+ Y d P (VL vy W) (VR x VR,
(%)

+ VA2 5 VR 2y 4 VI3 5 VEu),

where (x):j=1,...,mandmy +---+mi+k +ky=m—j, and (xx):j=2,...,mand m;
+ -+ m;+ ki + ky = m — j. Likewise we have
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V" (P, — d*P,)(Vu* Vu* Vu)]
= > (d7PP, = d7TPP) (VM VT ) (VI e VB e VR )
()
+ 3 @R (VM V) (VR e VR e V)
(%)

+ Y @ (VL vy, O (VR e VR TR 2y
(x%)

where(x) :j=1,...,mand my + - +mj+ ki +k + ks =m —jand (xx) : j = 2,...,m and m;

+---+m;+ ki +ky + ks = m — j. Further
V" [(d*P, — &’P,)(Vux Vu* Vux Vu)]

(d73P, — d7PP) (V™ ., VT ) (VAT ke VR e W Ty o R L)

()

+ E dBP (VM vy, ) (VR e VR TR Ry

(%)

+ Y AP (VL Ve ) (VA e VR VR e VR L)

(%)

where we sum over (x) :j=1,...,mand m; +---+mj+ ki +ky+ ks + ks =m—j, (%x):

j:2,...,mandm1+--~+mj+k1+k2+k3+k4:m—j.
Also, the case m = 1 is similar.

Proof. The assertions are consequences of the Leibniz rule and lemma A.2.
Corollary A.4. We have form € N, m > 2 and w = u — v that

V(N (u) =N ()
is a linear combination of terms of the form

(d TP, — a7 P (V™M . VT ) (VR x VERu,

+ VA2 5 VRT2y 4 VR Vi),
P (VT e, VR Ry T ) (VR o+ VR

+ VA2 5 VRt 4 VR, szu),
(@ 2P, — d72P) (V" V) (VI ok VT VR 2y,
dPP2P (VM e, VT g ) (VI e VR ok V),
(3P, — d’ 3P (VM T, V) (VR 5 Ry 5 TR Ty o TR,
d7PP (VT e, VT Ry VT ) (VI e Ry TR VR ),
PP (VT V) (VR x VR, 4 VR VR 2R

+ VW x VeR 4+ VI P h« Vow), he {uv},

d7PP (VM Ty, V) (VR VR Ry 5 VR,

+ VI Ry VR Ry 5 V),
dIPP, (VM V) (VI s TRy x VI Ry o VR ),
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where j ki, ky, ks, ks, my,...m; and hohy, ... hi_y € {u,v} are as above in corollary A.3.
Also, we have a similar (but simpler) statement for m = 1.

Proof. We write, according to the definition of A (u) in (2.1),

N(u) = N®v) = (dP, — dP,)(u; - u; + V*ux Vu + V3ux Vu)
+ (d*P, — d*P,)(Vu* Vu* V*u) + (d*P, — d®P,)(Vu x Vu x Vu x Vu)
+ dP,(w; - u,+v,-wt+Vw*Vu+Vv*Vw+V3w*Vu+V3v*Vw)
+ d* P (Vw * Vux V2u+ Vv x Vw« V2u 4+ Vv x Vv x V2w)

+d*Py(Vw * Vux Vux Vu+ Vv Vw* Vux Vu
+ Vv x Vv Vw* Vu + Vv Vv Vv x Vw).

Then, we use corollary A.3 for the first three terms in the sum above. For the latter three, we
use lemma 2.1 and the Leibniz rule. O

Let e € (0, 1). We recall from (3.4) the definition
Ne(u) = N(u) — ed*P,(u;, Vu, Vu) — €2dP,(Vu;, Vu) — edP,(u;, Au).

Lemma A.5. For m € Ny the derivative V" (N (u)) compared to V"™ (N (u)) contains the
additional terms
AP (VM s e VT ) (VR % VR 2y VR, 5 VR ) and

AP (VM sk VT ) (VR U VR % VT,

with j,mi,...,mj, ki, ky, ks similarly to lemma A. 1.
Further V™(N¢(u)) — V"™(Nz(v)) compared to V"™ (N (1)) — V" (N (v)) contains addi-
tional terms of the form
(P, — d7T P (VM . VT ) (VR u, VR 2y 4 VAL, 5 Rty
AP (VM I ) (VR g« VR VR« VR ),
(d7F2P, — d72P ) (V"™ o V) (VR x VR VR Ty,
d2p, (Vv e T ) (VR x VR ok VR T ), and
ap (VM V) (VR x VR p YRy o R
+ VR b« VR 2y 1 VR o VR he {u,v),
AP (VM ) (VR x VR R VR R,
+ VR (hy); % VR py 5 VB L),

withw =u—vand jomy,...,mj ki, ko, ks, hy, ..., hj_y similarly to corollary A.4.

The implicit constants may depend on ¢ here.

Appendix B. Approximation of the initial data

In this section we construct certain approximations of initial data in order to conclude continu-
ous dependence of the solution on the initial data. As in the previous sections, take functions
ug,u : R" — RE with ug € N, uy € T, N a.e. on R”, and
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(Vuo,ul) € Hk_](Rn) X Hk_z(Rn).
for some k > | 5] +2 with k € N.

Lemma B.1. Let the functions (uo, u1) be as above. Then there is a number §* = §*(N) > 0
such that for § € (0, 6] there exist maps ug, u‘f € C>°(R",RE) such that Vug, u‘f € H" for all
m €N, u) € N and ul € TgN on R" which satisfy

wp—uy € L and |jug — uf|,, < Cod, (B.1)

| (Vud,uf) — (Vi ur) || s s = 0(V3) as 6 — 0T, (B.2)

H(wg,u‘f) — (Vuo,ul)HHk,lek,z =o(l) asd— 0T, (B.3)
1

(Vg ) || g < Co (B.4)

for a constant Co = Co(||Ppl| o » [Vt g » |ur || ge—2) = 1. Further let (vo,vy) be as above
b
with uy — vo € H*(R") and

[l (w0, u1) — (vo, vi)ll s < R

for some R > 0. Then for § € (0,0*] we have

1
[V D) || < Co(1 +Rk)%, (B.5)
([ (ud ) = (5D s e < Co(L + RY) || (10, 1) = (0, vi) | g - )

Proof. We choose the caloric extension for regularization, i.e. we consider 7s * uy and
ns * u; where

x2

ns(x) = (4m0) " 2e” %, §>0, xR,
and T(0)f = ns = f is the heat semigroup. Since u; € C)(R") and uy € C3(R") by assump-

tion, the convolution is well defined for u( and u;. Moreover, 75 * ug tends to ug and ns * u; to
u; uniformly as 6 — 0%, as well as

V(ns * ug) — Vg in Hk_l(R"), 7§ * u; — up in Hk_z(R”) asd — 0.
The uniform convergence yields
dist(ug * n5(x),N) < |ug * n5(x) —up(x)] =0  as § — 0T (B.7)

uniformly in x € R”". Hence, if § > 0 is small enough we can define

u = 7(ug *n5) and  ul = Py, (1 * 1)

Recall that 7 is the nearest point map and that Py, (41 * 15) € TugN by definition of the
projector P and ug . Especially we have
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Jup (x) — o * 15 (x)| = dist(ug * m5 (x), N) < uo(x) — uo * 15 (x)],
Jup (x) — o (x) | < 2luo(x) — ug * 175 (x)|

for x € R". We further note that 13 and u¢ are smooth maps and that we have the uniform
convergence

ug — Up, u‘f — U

as & — 0T by construction of ug (and the mean value theorem for u‘f). Assertion (B.1) follows
from

1 6
5/0 (Aug) *nsds

H(s_l(uo*na—uo)HLz = S [Auolly2 s

12

by Young’s inequality for the convolution. Since Vil = Pyyun; (Vi) * 15), we further have
to treat the terms

Puo*ﬂé((VMO) * 776) - vMO = Puo*ng((vuo) *Ms — vM()) + (Puo*n5 - Puo)vblo,
Pugins (1 % M5) — ty = Pyguns (1 % 15 — 1) + (Puguns — Puy )1

We start by estimating (by means of the mean value theorem for P)

1Pugens (Vito) * 5) = Vuol| 2 < N[Pugrns (Vaao) % 05 = Vo) 12 + | (Pugsns — Pug) Vo[ 12

<5 (0(1) T IVuoll ) ,
LDO

where 5 (1o * 75 — ug) — Aug uniformly as § — 07 since ug € Cj(R"). Similarly, employing
lemmas 2.1, 2.2 and A.2 as before, we see

||vk72(Puo*ﬂ5((vu0) * 775) - VMO)HLz

S Z [Hvl' (Pugsns) - V2 (Vo) * ns — Vuo)|| ;o + || V" (Pugsns — Puo) - v12+1u0||L2}
[ ——

1
g(uo * 15 — Uo)

S (14 | Vaollgez + [[(Vato) 5 1 ls—2) | (Vato) 5 115 — Vit 2
_ k _
+ 8 [[V* ol (167" ato 15 — o)
<o(Ve)  as 6 — 0t

Here we also use [9, proposition 2.2.4]. Interpolation and an analogous argument for uJ in
H*=3 then allows us to conclude (B.2). Assertion (B.3) is shown in the same way, with o(1)

instead of o(+/4) in the upper bound. For (B.4), we compute

||vk(Puo*7]5((v“0) * 776))||L2
S Z Hvll (Pugsns) * (VIZHMO * 776)||L2 + HPMO*TIJV(VI(”O * 775)HL2

I+l =k
;>0

k
< (14 [ Vaollges) [ Vatoll s + (| Pugrns V (Va0 ) | 2
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as before. The last term is bounded via

| Pugens V (Vuo % m5)|| 5 < |[(VEuo) % V(ns) |, S f Vo[ -1

again by Young’s inequality. Similarly, the term V*~1u is estimated in L*(R"). The above
reasoning also shows (B.5) if we choose the constant C > 0 suitably. In order to prove (B.6),
similarly as above we compute

|t = voll > S llms (o — vo)ll 2 S lluo = voll2 -

by the mean value theorem and Young’s inequality. Writing

Puo*n& ((vuo) * 775) to*ms ((VVO) * 775)
= Puo*né((vuo) *1s — (VVO) * 775) + (Puo*% - Vo*na)((VVO) * 77(5)

we deduce

IV (Pugens (Vo) #115) = Puysns ((Vv0) % 15)) I 2

’S Z Hvll (Pu()*n,;) ' vlz((VMO) *Ms — (VVO) * 775)HL2
L+bh=k—1

+ Z Hvll (Puo*’f]é - PV(]*W&) ' (VZZ-HVO) * 775HL2
L+lh=k—1

k
S 1+ [[Vaolfj—r + 1Vvolljms) Vit = Vvoll s + [[VEvo|[ 12 lluo — voll e
k
< (1 + [V [5ps + R [ Vg — Vv [t + [V vol [, llto = voll
S (14 | Vuglju—r + RY) ([ Vit — Vvo|gecs -

The claim (B.6) then follows by interpolation and a proper choice of Cy > 0. Finally the es-
timate for

u(ls - v<15 = Puo*ﬂs (ul *Ms — Vi * 775) + (Puo*ms - PVO*"']E)(Vl * 775)

works similarly. O

Appendix C. Establishing the identity (5.4)
For f,g € H'(R"),h € Randi € {1,...,n} we set
: 1
D) = 1 (Fx+ eh) — £().
Observe that D} (fg)(x) = (Dif)(x)g(x + eih) + f(x)(D},g)(x). Since we only use the prod-

uct rule integrated over x € R" and g(- + he;) — g strongly in H' as h — 0, we drop the
h-dependence in g(- + ¢;h) in the following calculation.
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Let u be the solution of (2.1) obtained in section 5. We compute

e (A RN A P B / DIV (1= PN (w)) - DLV* " d

= / D, (V'(I — P,) « VE37IN (w)) - DLV*3u, dx
R~

~
|
w

= /D;;(vl(l—Pu)*vk—3—’N(u)).D;;vk—3u,dx
R

n

+ / Di(I — P)V* N (u) - DLV 3 u, dx + / DL (V*S3N (w) - (I — P,)DL YV u,) dx

+ / VSN () - DL(DL(T — P,V u,) dx
Z vk SN (u) - (DL (V!(I = P) % V) de =: [ Ti(u)dx,
Rn

where the second identity follows from (I — P,)u, = 0. For a fixed time 7 € [0, T},), the regu-
larity of u yields the limit

lim s Ty (u() dx =) 8 A, (VI — P,) % V* 37N () - V30,1, dx
- / AP (D, V3N () - V530, 1 dx
/ VAN (1) - 0y, (AP (Ou, VFuy)) dx
+Z / VESN(u) - 0F (VI = P,) « V3 ) dx

=: /n T'(u(t)) dx.

Here we also used that
/ D (VSN (u) - (I — P)DLV Su)dx -0 ash — 0

by Gauss’ theorem. Estimating as in section 4, we derive

/ Tiu(r) dx\ S (1 V() g+ 5 ) P s - )

fort € [0, T]and T < T),. In the limit 2 — O it follows

IV 307, + || V< o}

2 = [t st 9400+ 7 D

by dominated convergence. The right-hand side is continuous in 7, and hence the highest
derivatives V*u,, V¥=2y : [0,T,,) — L? are continuous, since we already know their weak
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continuity. Finally, summing over i = 1,...,n and estimating 7%(x) as in section 4, we con-
clude the blow-up criterion from (1.8) for the solution u.

References

[1] Bejenaru I, Ionescu A D, Kenig C E and Tataru D 2011 Global Schrodinger maps in dimensions
d > 2: small data in the critical Sobolev spaces Ann. Math. 173 1443-506
[2] Courant R and Hilbert D 1953 Methods of Mathematical Physics. Vol. 1 (New York: Interscience)
[3] Denk R and Schnaubelt R 2015 A structurally damped plate equation with Dirichlet~-Neumann
boundary conditions J. Differ. Equ. 259 1323-53
[4] Burak Erdogan M and Tzirakis N 2016 Dispersive Partial Differential Equations: Wellposedness
and Applications (Cambridge: Cambridge University Press)
[5] FanJ and Ozawa T 2010 On regularity criterion for the 2D wave maps and the 4D biharmonic wave
maps Current Advances in Nonlinear Analysis and Related Topics (GAKUTO Int. Ser. Math. Sci.
Appl. vol 32) (Tokyo: Gakkotosho) pp 69-83
[6] Herr S, Lamm T and Schnaubelt R 2020 Biharmonic wave maps into spheres Proc. Am. Math. Soc.
148 787-96
[7] Kenig C, Lamm T, Pollack D, Staffilani G and Toro T 2010 The Cauchy problem for Schrédinger
flows into Kéhler manifolds Discrete Contin. Dyn. Syst. 27 389-439
[8] Lasiecka I and Triggiani R 2000 Control Theory for Partial Differential Equations: Continuous and
Approximation Theories. 1 (Cambridge: Cambridge University Press)
[9] Lunardi A 1995 Analytic Semigroups and Optimal Regularity in Parabolic (Basel: Birkhiduser)
[10] Lunardi A 2018 Interpolation Theory 3rd edn (Pisa: Edizioni della Normale)
[11] Nahmod A, Stefanov A and Uhlenbeck K 2003 On Schrodinger maps Commun. Pure Appl. Math.
56 114-51
[12] Pausader B 2007 Scattering and the Levandosky—Strauss conjecture for fourth-order nonlinear
wave equations J. Differ. Equ. 241 237-78
[13] Schmid T 2018 Energy bounds for biharmonic wave maps in low dimensions CRC 1173-Preprint
2018/51, Karlsruhe Institute of Technology (https://doi.org/10.5445/IR/1000088929)
[14] Shatah J and Struwe M 1998 Geometric Wave Equations (Providence, RI: American Mathematical
Society)
[15] Sogge C D 2008 Lectures on Nonlinear Wave Equations 2nd edn (Boston, MA: International Press)
[16] Sterbenz J and Tataru D 2010 Regularity of wave-maps in dimension 2 + 1 Commun. Math. Phys.
298 231-64
[17] Tao T 2001 Global regularity of wave maps. I. Small critical Sobolev norm in high dimension Inz.
Math. Res. Not. 6 299-328
[18] Tao T 2001 Global regularity of wave maps. II. Small energy in two dimensions Commun. Math.
Phys. 224 443-544
[19] Tataru D 2004 The wave maps equation Bull. Am. Math. Soc. 41 185-204
[20] Taylor M E 2011 Partial Differential Equations III. Nonlinear Equations 2nd edn (New York:
Springer)
[21] Tzvetkov N 2006 Ill-posedness issues for nonlinear dispersive equations Lectures on Nonlinear
Dispersive Equations (GAKUTO Int. Ser. Math. Sci. Appl. vol 27) (Tokyo: Gakkotosho) pp
63-103

2305


https://doi.org/10.4007/annals.2011.173.3.5
https://doi.org/10.4007/annals.2011.173.3.5
https://doi.org/10.4007/annals.2011.173.3.5
https://doi.org/10.1016/j.jde.2015.02.043
https://doi.org/10.1016/j.jde.2015.02.043
https://doi.org/10.1016/j.jde.2015.02.043
https://doi.org/10.3934/dcds.2010.27.389
https://doi.org/10.3934/dcds.2010.27.389
https://doi.org/10.3934/dcds.2010.27.389
https://doi.org/10.1002/cpa.10054
https://doi.org/10.1002/cpa.10054
https://doi.org/10.1002/cpa.10054
https://doi.org/10.1016/j.jde.2007.06.001
https://doi.org/10.1016/j.jde.2007.06.001
https://doi.org/10.1016/j.jde.2007.06.001
https://doi.org/10.5445/IR/1000088929
https://doi.org/10.1007/s00220-010-1062-3
https://doi.org/10.1007/s00220-010-1062-3
https://doi.org/10.1007/s00220-010-1062-3
https://doi.org/10.1155/S1073792801000150
https://doi.org/10.1155/S1073792801000150
https://doi.org/10.1155/S1073792801000150
https://doi.org/10.1007/PL00005588
https://doi.org/10.1007/PL00005588
https://doi.org/10.1007/PL00005588
https://doi.org/10.1090/S0273-0979-04-01005-5
https://doi.org/10.1090/S0273-0979-04-01005-5
https://doi.org/10.1090/S0273-0979-04-01005-5

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Biharmonic wave maps: local wellposedness in high regularity﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Notation and preliminaries
	﻿﻿3. ﻿﻿﻿Existence for the parabolic approximation
	﻿﻿4. ﻿﻿﻿The ﻿﻿a priori﻿﻿ estimate
	﻿﻿5. ﻿﻿﻿Proof of the main theorem
	﻿﻿6. ﻿﻿﻿Uniqueness
	﻿﻿7. ﻿﻿﻿Continuity of the flow map
	﻿﻿﻿Acknowledgments
	﻿Appendix A. ﻿﻿﻿Derivatives of the nonlinearity
	﻿Appendix B. ﻿﻿﻿Approximation of the initial data
	﻿Appendix C. ﻿﻿﻿Establishing the identity (﻿5.4﻿)
	﻿﻿﻿References﻿﻿﻿﻿


