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Abstract. We discuss the ferromagnetic phase of the planar Kondo lattice model using the bond fermion
technique. For sufficiently small Kondo exchange we find a weakly ferromagnetic phase already for the
weakly doped Kondo insulator. We present the phase diagram of the model and its quasiparticle band
structure in the different phases.

1 Introduction

Heavy Fermions are intermetallic compounds containing
(mostly) Cerium, Ytterbium or Uranium and are charac-
terized by a paramagnetic low-temperature Fermi liquid
phase with the characteristic heavy bands and a Fermi
surface volume corresponding to itinerant 4f or 5f elec-
trons [1,2]. Many of these compounds show magnetically
ordered phases, whereby the ordering transition often is
accompanied by a change of the Fermi surface volume, as
if the f -electrons were to change from itinerant to local-
ized. In many compounds the transition temperature can
be tuned down to zero by external parameters resulting in
quantum critical points, non-Fermi liquid behaviour and
superconducting domes [3–5].

The appropriate model to study Heavy Fermions is the
Kondo lattice model (KLM) which in the presence of a
magnetic field B can be written as

H =
∑
k,σ

εk c
†
k,σck,σ + J

∑
j

Sj · σj

−
∑
j

B · (Sj + σj). (1)

The model is defined on a lattice (in the present work: a
simple cubic planar lattice) of N unit cells, whereby each
unit cell j contains one conduction band (or c) orbital and

one localized (or f) orbital, the operators c†j,σ and f†j,σ cre-
ate an electron with z-spin σ in these orbitals. Moreover,

σj = 1
2 c
†
j,σ τσσ′ cj,σ′ , with τ the vector of Pauli matri-

ces, is the spin operator for conduction electrons, whereas
Sj denotes the spin operator for f electrons, defined in an
analogous way. We will assume from now on that the mag-
netic field is along the z-direction B = Bez. An important
feature of the model is the constraint to have precisely one

a e-mail: robert.eder@kit.edu

electron per f -orbital:∑
σ

f†j,σfj,σ = 1, (2)

which must hold separately for each unit cell j and reflects
the nature of the KLM as the strong-coupling limit [6]
of the periodic Anderson model (PAM). The number
Nc of conduction electrons is variable, we denote their
density/unit cell as nc = Nc/N , the total electron density
then is ne = 1 +nc. Since we will mostly consider electron
densities slightly below 2 we also introduce δ = 2 − ne.
Finally

εk = −2t (cos(kx) + cos(ky)) + 4t1 cos(kx) cos(ky)

(3)

is the dispersion relation of the conduction band, parame-
terized by a nearest-neighbor hopping integral −t and 2nd
nearest neighbor hopping integral t1.

The KLM has been discussed frequently by using the
mean-field (or saddle-point) approximation, where the
exchange term which is quartic in electron operators is
mean-field factorized [7–17]. There have also been many
numerical studies using density matrix renormalization
group calculations [18–22], quantum Monte-Carlo [23],
series expansion [24,25] variational Monte-Carlo (VMC)
[26–29] Dynamical Mean Field Theory (DMFT) [30] or
Dynamical Cluster Approximation (DCA) [31,32].

While antiferromagnetic order is common in heavy
Fermions, there are also some ferromagnetic compounds
such as UGe2, URhGe, UCoGe [33] or UCoAl [34]. These
materials have received considerable attention due to
the coexistence of superconductivity and ferromagnetism
[35]. Ferromagnetism in the KLM or PAM was stud-
ied in the mean-field approximation [36], the Gutzwiller
wave function [37–40], VMC [28,29], DMFT [41–43] and
DCA [43]. In the present manuscript we want to explore
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the possibility of ferromagnetic ordering in the KLM by
using bond fermion theory [44–46]. It was found previ-
ously [47,48] that for the antiferromagnetic phases, bond
fermion theory agrees well with numerical results for the
2D KLM. More precisely, the quite intricate phase dia-
gram in the (J/t, nc) plane obtained from bond Fermion
theory agrees qualitatively with that from VMC [26,27,29]
and DMFT [30], the quasiparticle band structure for the
antiferromagnetic phase of the Kondo insulator – i.e. the
KLM for ne = 2 – and its change with J agree in consider-
able detail with that from DCA [32]. The main deficiency
is that bond Fermion theory appears to have problems
to reproduce energy scales correctly. For example, bond
fermion theory finds the value of Jc below which anti-
ferromagnetic order sets in for the Kondo insulator with
t1 = 0 to be Jc = 2.3 [47], whereas the exact value is
Jc = 1.45 [23]. This is probably not too servere a draw-
back in that even numerical methods have problems to
determine Jc correctly: VMC finds Jc = 1.7 [26], DMFT
finds Jc = 2.2 [30] and DCA gives Jc = 2.1 [32]. However,
these deficiencies have to be kept in mind.

2 Formalism

The basic idea of the bond fermion formalism is to intro-
duce a mapping between a subspace of the Hilbert space
for the true KLM Hamiltonian to the Hilbert space of a fic-
titious system of noninteracting fermions. More precisely,
we define

s̃†j =
cos(Θ)√

2
(c†j,↑f

†
j,↓ − c

†
j,↓f

†
j,↑) + sin(Θ)c†j,↑f

†
j,↑

and

|Ψ0〉 =

N∏
j=1

s̃†j |0〉. (4)

The state s̃†j |0〉 is a superposition of a singlet and the
triplet with Sz = 1, whereby the degree of admixture of
the triplet is determined by the angle Θ. The expectation
value of H in the state |Ψ0〉 is −Nẽ0 with

−ẽ0 = −3J

4
cos2(Θ) +

(
J

4
−B

)
sin2(Θ). (5)

The expectation value of Sz is Nm̃0 with m̃0 = 1
2 sin(2Θ).

For Θ 6= 0 the state |Ψ0〉 thus has a nonvanishing ferro-
magnetic polarization which may be viewed as resulting
from the condensation of triplets into momentum (0, 0)
[49] on a background of singlets.

From now on we consider |Ψ0〉 as the vacuum state
of the bond fermion Hilbert space. The bond fermions
themselves are defined as follows: if the cell j is in the

state f†j,σ|0〉 we consider it as occupied by a hole-like

Fermion, created by a†j,σ, in the bond fermion Hilbert

space, whereas if the cell is in the state c†j,↑c
†
j,↓f

†
j,σ|0〉 we

consider it as occupied by an electron-like Fermion, cre-

ated by b†j,σ. We denote the set of cells occupied by a single

electron (three electrons) by Sa (Sb) and define Ss as the
complement of Sa ∪ Sb (i.e. Ss is the set of cells with two
electrons). The correspondence between the bond fermion
states and the states of the KLM is( ∏

i∈Sa

a†i,σi

) ∏
j∈Sb

b†j,σj

 |0〉
→

( ∏
i∈Sa

f†i,σi

) ∏
j∈Sb

c†j,↑c
†
j,↓f

†
j,σj

( ∏
n∈Ss

s̃†n

)
|0〉.

(6)

It is obvious that in order for this mapping to make sense
the sets of sites Sa and Sb have to be disjunct, which is
equivalent to an infinitely strong repulsion between the

bond particles a†j,σ and b†j,σ in the same cell j. However,

as discussed in reference [47], the density of the a† and
b† Fermions is quite small for J/t > 1 and δ ≤ 0.3 so that
the constraint can be relaxed to good approximation.

To transcribe operators for the physical KLM into ‘bond
fermion language’ we demand that their matrix elements
between the bond Fermion states on the left hand side of
(6) are equal to those of the true KLM operator between
the corresponding KLM states on the right hand side. Due
to the product nature of the KLM states these matrix
elements are easy to evaluate. For example, the electron
creation operators, from which many operators can be
constructed, become

c†j,↑ = −cos(Θ)√
2

(b†j,↑ − aj,↓) + sin(Θ)aj,↑,

c†j,↓ = −cos(Θ)√
2

(b†j,↓ + aj,↑)− sin(Θ)b†j,↑. (7)

Upon Fourier transform and introducing the operator col-

umn vector vk = (bk,↑, a
†
−k,↓, bk,↓, a

†
−k,↑)

T we find the
bond Fermion representation of the kinetic energy

Ht =
∑
k,σ

εk c
†
k,σck,σ →

∑
k

v†kHkvk (8)

whereby

Hk =
εk
2

 c1, −c2, c3, 0
−c2, c2, 0, c3
c3, 0, c2, c2
0, c3, c2, c1

 (9)

with

c1 = 1 + sin2(Θ), (10)

c2 = cos2(Θ),

c3 =
√

2 sin(Θ) cos(Θ). (11)
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The exchange and magnetic-field terms in (1) become

HJ = J
∑
j

Sj · σj −
∑
j

B · (Sj + σj)

→
∑
j,σ

(
ẽ0 −

B

2
sign(σ)

)(
b†j,σbj,σ + a†j,σaj,σ

)
−Nẽ0. (12)

The number of electrons – including the f -electrons can
be expressed as follows: the vacuum state |Ψ0〉 – see (4)
– contains 2N electrons. Since a hole-like bond Fermions
reduces this by one and each electron-like Fermion adds
an additional electron we have

Ne = 2N +
∑
k,σ

(
b†k,σbk,σ − a

†
k,σak,σ

)
=
∑
k,σ

(
b†k,σbk,σ + ak,σa

†
k,σ

)
. (13)

Adding up the terms above we can write down HBF −µN
which obviously is quadratic in the bond fermion opera-
tors – this is the simplification due to the bond Fermion
formulation and this is possible because the exchange term
(12) can be written as a quadratic form. Setting Θ = 0
the 4× 4 matrix Hk in (9) decomposes into two indepen-
dent blocks of dimension 2 × 2, which differ only in the
sign of the off-diagonal element c2. This gives the four
quasiparticle energies

Ek,σ,± =
εk
2
±
√
ẽ2

0 +
(εk

2

)2

− B

2
sign(σ)− µ, (14)

which correspond to the mere spin-splitting of the bands
obtained for B = 0. For Θ 6= 0 there will be an additional
deformation of these bands, so that the bond fermion for-
malism does not just correspond to a spin splitting of the
heavy bands.

The f -electron and c-electron magnetization per site,
mf = 〈Si,z〉 and mc = 〈σi,z〉 become

mf =
1

N

∑
j,σ

(
1

2
sign(σ)− m̃0

)(
b†j,σbj,σ + a†j,σaj,σ

)
−2m̃0,

mc = −m̃0

N

∑
j,σ

(
b†j,σbj,σ + a†j,σaj,σ

)
− 2m̃0. (15)

These expressions show that a ferromagnetic polariza-
tion of the system can come about in two ways: the first
term becomes nonzero due to a polarization of the bond
Fermion bands, the additive constant becomes nonzero
due to the ferromagnetic polarization of the ‘singlet back-
ground’. For small m̃0 – which will be seen to be realized
in most cases – the c-electron polarization is much weaker
than that of the f -electron. This is understandable from

the definition of the a†j and b†j Fermions which correspond
to either 0 or 2 c-electrons in cell j – put another way,

the spin of the bond Fermions is always carried by the
f -electron.

A complication of the bond Fermion calculations which
has been discussed previously [44,45,47] is the fact that
without further provisions the k- and ω-integrated spec-
tral weight in the c-electron Green’s function is not equal
to Nc. The reason simply is the small spectral weight of
the ‘heavy’ band portions. As discussed previously, this
can be fixed by enforcing the consistency by an additional
constraint with Lagrange multiplier λ. The consequence
of this is the replacement εk → εk − λ in (9) and an
additional additive constant +λNc in the Hamiltonian
[44,45,47].

Once we relax the constraint of no double occupancy
implied by (6) the approximate H − µN can be readily
diagonalized by a unitary transformation and we obtain
four bands, denoted by Eν,k, ν = 1 . . . 4, and the result-

ing quasiparticle operators γ†k,ν . Since the transformation

from the b†k,σ and a−k,σ̄ to the γ†k,ν is unitary, the electron

number (13) becomes

Ne =
∑
k,ν

γ†k,νγk,ν , (16)

which shows that in the bond Fermion formalism the f -
electrons always participate in the Fermi surface volume
despite their strictly localized nature.

Moreover is obvious from (9) that the eigenstates of
HBF are mixtures of spin-↑ and spin-↓ bond particles
and thus do not have a definite z-spin. Namely the
first two components of the vector vk obey [Sz, bk,↑] =

[Sz, a
†
−k,↓] = − 1

2 , whereas the two last terms obey

[Sz, bk,↓] = [Sz, a
†
−k,↑] = 1

2 . In the quasiparticle operators
γk,ν these terms are mixed due to the presence of the
matrix elements ∝ c3 in (9). Similarly, the bond Fermion
vacuum |Ψ0〉 in (4) also does not have a definite z-spin.
On the other hand, the weight of components with dif-
ferent z-spin will be peaked around

∑
i〈mf +mc〉 with a

relative width that vanishes in the thermodynamical limit
so that this is not a problem.

Knowing the band structure one can calculate the
ground state energy E0 as a function of the as yet undeter-
mined angle Θ in (4). Θ then is determined by minimizing
E0 as a function of Θ. Since we are working with a discrete
k-mesh and since it turns out that for the ferromagnetic
case very small energy differences are involved we actu-
ally work at a small but finite temperature and instead
minimize the Helmholtz free energy

F = − 1

β

∑
k,ν

log
(
1 + e−βEν,k

)
+ µNe + λNc +Nẽ0.

(17)

We choose T = 0.004 t which results in smooth F (Θ)-
curves for a k-mesh with stepsize π

100 .
Equation (6) shows the main advantage of bond fermion

theory, namely all basis states fulfil the constraint (2)
exactly. On the other hand, it is obvious from the above
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Fig. 1. Free energy (top) and density of bond fermions per
site (bottom) versus Θ for J/t = 2.3, t1 = 0, ne = 1.9. The
free energy for Θ = 0 has been chosen as the zero of energy.

that bond Fermion theory is by nature a strong coupling
theory so that one cannot expect it to reproduce the
energy scale of the single impurity Kondo temperature
TK = W e−1/ρJ , which emerges in the limit of small J/t
(W and ρ are the bandwidth and density of states of the
conduction band). In fact, for J/t→ 0 the density of the
fermions increases strongly [47] so that relaxing the con-
straint of no double occupancy cannot be expected to be
a meaningful approximation anymore.

Further consideration shows that the bond Fermion for-
malism cannot describe a fully polarized ferromagnetic
state, which would correspond to Θ = π

2 . This can be seen
from Figure 1 which shows F as a function of Θ. F ini-
tially increases with Θ, but then bends down sharply at
Θ = π

3 and has a pronounced minimum at Θ = π
2 . At first

glance this appears to indicate that the ground state is
the fully polarized ferromagnetic state but this is incor-
rect. This can be seen from the lower part of the figure,
which shows the density of the bond Fermions

naux =
1

N

∑
k,σ

〈b†k,σbk,σ + a†k,σak,σ〉

as a function of Θ. While this relatively small, naux ≈
0.3, at small Θ, it increases with increasing Θ and then
jumps discontinuously to naux ≈ 3 at Θ = π

3 . Since the
bond Fermions have to obey the constraint that no two of
them can occupy the same site, their density/site cannot
exceed 1 for any physical state. A bond Fermion state with
naux ≈ 3 therefore cannot possibly represent a state of the
Kondo lattice and the minimum at Θ = π

2 is unphysical.
The reason for the jump of naux at Θ = π

3 is that for

B = 0 the energy of a bond fermion, ẽ0, becomes negative
(see Eq. (5)). It therefore becomes energetically favourable
for the system to create bond fermions, which is possible

due to terms like a†m,↑b
†
n,↓, so that the system is ‘flooded

with fermions’. This problem is easily fixed, however, by
restricting the range of Θ to be between 0 and the angle
Θ1, where the Fermion density/site exceeds 1. It turns out
that the minima of F always occur for Θ� Θ1 so this is
more of a formal restriction.

The failure of the bond particle formalism to describe
the fully polarized state is no surprise because by con-
struction it can only describe a state where the f -electrons
participate in the Fermi surface volume, see (16). To inves-
tigate the possibility of the f -electrons ‘dropping out’
of the Fermi surface we need to estimate the energy of
the strongly polarized state where the f -electrons do not
contribute to the Fermi surface volume. We define

|Ψ0〉 =
∏
j

f†j,↑|0〉 ⊗ |FS〉, (18)

where |FS〉 denotes the (spin-polarized) Fermi sea for
the conduction electrons. The Fermi energy thereby is
calculated from the constraint that the total number of
c-electrons be Nc. The exchange term becomes J

2

∑
j σ

z
j

and the quasiparticle bands and Free energy are

Ek,σ = εk ∓
B

2
± J

4
,

F = − 1

β

∑
k,σ

log
(
1 + eEk,σ−µ

)
− NB

2
.

(19)

It is clear that this is a crude estimate so that comparison
of the energy with the Kondo state described by the bond
Fermions has a rather limited significance.

3 Results

We first consider the Kondo state as described by the bond
Fermion theory at B = 0. Figure 2 shows the Helmhotz
free energy F as a function of Θ for different values of J ,
whereby δ = 0.1, t1 = 0. To facilitate the comparison of
the curves, the respective value of F for Θ = 0 has been
chosen as the zero of energy for each J . For J = 2.5 and
J = 2.4 the minimum of F is obtained for Θ = 0 so that
the ground state is paramagnetic (the figure shows only
a small range of Θ but for larger Θ in fact F increases
monotonously up to Θ1). For the smaller values J = 2.3
and J = 2.2 there is a minimum for a nonvanishing albeit
small Θ indicating a spontaneous ferromagnetic polariza-
tion. Apparently there is a rapid increase of Θ from zero
to a value around 0.01π in a small range of J around
J = 2.35. The lowering of F due to the ferromagnetic
polarization is quite small, however, of order 10−4t.

Figure 3 shows the angle Θ which minimizes F as a func-
tion of J for different electron densities and t1 = 0. Also
shown is the f -like magnetization mf , see equation (15)

https://epjb.epj.org/
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Fig. 2. Helmhotz Free energy as a function of the angle Θ for
different J and t1 = 0.0.

Fig. 3. Angle Θ which minimizes F (top) and f -moment mf

(bottom) versus J for different δ = 2 − ne. The value t1 = 0.0.

(the magnitude of the c-like magnetization mc is approxi-
mately 20% of mf as already discussed). Θ is zero for large
J but then increases below a certain Jc which depends on
δ. Below Jc(δ) the increase initially follows the mean-field-
like form Θ ∝

√
Jc − J as well as mf ∝ |Jc − J |, whereby

the increase becomes quite abrupt for δ → 0. Both Θ and

Fig. 4. Full band structure (top) and closeup around the Fermi
energy (bottom) for for J = 2.65 and J = 2.40, δ = 0.2, t1 =
0.0.

mf then show a pronounced bend and increase only slowly
with further decreasing J .

To clarify the reason for this bend, Figure 4 shows the
band structure for δ = 0.2 and the two values J = 2.65
and J = 2.40, which are on opposite sides of the bend,
see in Figure 3. Below Jc(δ) ≈ 2.68 Θ differes from zero.
The spin-degeneracy of the quasiparticle band is lifted and
the Fermi surface – which takes the form of a hole-pocket
around (π, π) for electron densities slightly below ne = 2
– is split into two sheets. Figure 4 does show, however,
that there is not just a uniform split of the two sub-bands
but rather that the dispersion of the two bands is slightly
different. This is precisely the deformation of the bands
due to a finite value of c3 in (9), see the discussion there.
For J = 2.40, on the other hand, the maximum of the
lower band at (π, π) is below µ. This means that one of
the two Fermi surface sheets has shrunk to a zero and
only a single Fermi surface sheet remains. Figure 4 thus
shows that the bend in the Θ-vs.-J and mf -vs.-J curves in
Figure 3 corresponds to the vanishing of one Fermi surface
sheet. For even smaller J the Fermi surface then remains
unchanged and further spin polarization can occur only
via increasing polarization of the singlet background. A
surprising feature is the smallness of mf , which is much

smaller than δ
2 as expected for a fully polarized band of

spin- 1
2 quasiparticles. The reason is that the eigenstates

of the bond Fermion Hamiltonian are not eigenstates of
Sz – see the discussion above. For example, for J = 2.4 –
see the right part of Figure 4 – the weight of the first two
components of vk is 0.53 in the lowest band at k = (π, π)
and 0.47 in the second lowest band. This ratio does not

https://epjb.epj.org/
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Fig. 5. Phase diagram of the Kondo lattice in the J-δ plane
for t1 = 0.2 (bottom), t1 = 0 (center) and t1 = −0.2 (top).

change significantly. Following Kubo [29] we call the phase
with the two split Fermi surface sheets FM0, the one with
only a single Fermi surface sheet FM1 and the one with
polarized f -spins (described by (18)) FM2.

Figure 5 shows the phase diagram in the J-δ plane. Here
we have also included the antiferromagnetic phase, which
has been discussed in reference [47]. The computation of
F for this phase is explained in detail in this paper. For
large J the system is paramagnetic as could have been
expected due to the dominance of the Kondo exchange
term. With decreasing J , magnetic phases become stable
for values slightly above J = 2. Close to δ = 0 antifer-
romagnetism sets in whereas for larger δ ferromagnetic
polarization is favoured. Thereby the phase FM0 – which
has two heavy Fermi surface sheets – is stable only in a
narrow parameter range so that the ferromagnetic phase
mostly corresponds to the phase FM1 where one of the
two Fermi surface sheets has shrunk to a point. The
boundaries for the transitions paramagnetic→FM0 and
FM0→FM1 almost merge for small δ and the point where
they merge shifts to smaller J as t1 changes from positive
to negative. For t1 = 0.2, i.e. the lowest panel of Figure 5,
and for 2.2 ≤ J ≤ 2.4 the data indicate that there is a
tiny but finite range of δ where Θ = 0. This implies that
for the Kondo insulator there is never any ferromagnetic
polarization, as a function of J/t there is always a phase

Fig. 6. Top: Angle Θ which minimizes F , c-like magnetiza-
tion mc (multiplied by a factor of 5) and f -like magnetization
mf versus B. Bottom: energies of the two lowest quasiparti-
cle bands at (π, π) versus B. Parameter values are t1 = 0.2,
δ = 0.1. The left part refers to J = 2.6 the right part to
J = 2.0.

transition from the paramagnetic to the antiferromagnetic
phase. Lastly, the phase FM2 which has fully polarized
f -electrons that do not contribute to the Fermi surface
volume is realized only in a small range for small J and rel-
atively large δ, whereby the range increases as t1 becomes
negative. The latter is to be expected because in the phase
with decoupled f -electrons, (18), the width of the occu-
pied part of the c-electron band structure Ek,σ is larger
for negative t1 (see (3)). It should be kept in mind that the
energy of the FM2 phase is calculated from a different and
rather simplified wave function so that results concerning
this phase have a qualitative nature at best.

Ferromagnetism in the KLM for electron densities in
the range ne = 1.5−1.8 has been observed in numerical
studies [28,29,41–43] as well as in various mean-field calcu-
lations [36–40]. A ferromagnetic ground state with small
magnetic moment for electron densities close to ne = 2
was found by Kubo in a VMC calculation for the peri-
odic Anderson model in a certain parameter range [29].
We proceed to the case B 6= 0 but thereby disregard the
antiferromagnetic phase. The possible destruction of anti-
ferromagnetism by a magnetic field is a subtle issue which
requires a more detailed discussion than is possible here.
Figure 6 shows various quantities plotted versus magnetic
field B for δ = 0.1 and t1 = 0.2. The left and right part
of the figure refer to J = 2.6 and J = 2.2. Inspection of
the phase diagram in Figure 5 shows that for J = 2.6
the system is paramagnetic for B = 0 whereas it is in
the FM1 phase for J = 2.0. The top part of the figure
shows mf and the angle Θ as functions of B, the bottom
parts shows the energies of the two quasiparticle bands at
(π, π). We first consider J = 2.6 (left part of the figure).
With increasing B, Θ initially remains zero, that means
there is no polarization of the spin background, and the

https://epjb.epj.org/
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system responds to the magnetic field by the symmetric
spin-splitting of the otherwise rigid quasiparicle bands,
see (14). Accordingly, mf increases linearly with B. As B
increases, Θ takes on a small but onvanishing value leading
to an abrupt increase of the splitting of the quasiparticle
bands so that the lower band crosses the Fermi level and
the transition FM0→FM1 takes place. Surprisingly the
slope of the magnetization versus B curve increases only
very little because – as already discussed above – for Θ 6= 0
the quasiparticles have mixed spin-↑ and spin-↓ character,
see the Hamiltonian (9). For even higher B, Θ becomes
zero again, the magnetization saturates at mf = δ

2 and
the band splitting increases linearly with B. The upper
quasiparticle band retains its position relative to the Fermi
energy which is necessary to keep the Fermi surface area
constant, whereas the lower band moves away from the
Fermi energy with increasing B. The c-like magnetization
mc follows mf but is substantially smaller. This is because
whereas the f -occupation is fixed to one per unit cell, the
conduction electrons undergo charge fluctuations which
will reduce any kind of ordered moment. Interestingly mc

has the same sign as mf which is to be expected because
the magnetic field favours ferromagnetic polarization of
both, f -electrons and conduction electrons.

We consider J = 2.0 (right part of the figure). There,
the system is in the FM1 phase for B = 0, i.e. the angle Θ
is finite even and there is a small but finite mf . Switching
on B leads to a reduction of Θ, while simultaneously mf

increases. This appears strange at first sight but reduc-
tion of Θ reduces the mixing of the ↑- and ↓-component
of the quasiparticle wave function while at the same time
the magnetic field splits the two spin components. In this
way, the ↓-character of the unoccupied quasiparticle states
in the hole pocket around (π, π) – that means the upper
band in the figure – increases so that that the magneti-
zation increases as well. Once Θ = 0 has been reached,
mf again saturates at mf = δ

2 . The lower part of the
figure shows that during the decrease of Θ the band struc-
ture around (π, π) shows very little change. The system
is already in the FM1 phase for B = 0, where only one
Fermi surface sheet exists any more. The spin polariza-
tion is not achieved by a polarization of the band structure
itself, but by the ‘unmixing’ of the two spin components
in the quasiparticle wave functions.

Figure 7 shows the behaviour of the Kondo phase over a
wider range of B. We consider the case δ = 0.1 and t1 = 0
so that the system is in the FM1 phase for B = 0. Increas-
ing B again leads to a reduction of Θ and an increase
of the magnetization. At B = 0.17, Θ reaches zero so on
from this value of B we have the undeformed but spin-split
quasiparticle bands, whereby the ↑-band - labeled 1 in the
figure – is completely filled, while the ↓-band 2 forms the
hole pocket around (π, π). The Fermi energy now is within
the band 2 and the magnetization is constant because the
size of the hole pocket is determined by the electron den-
sity. At B = 0.345, however, there is a change in the Fermi
surface in that the the ↑-quasiparticle band at (0, 0) –
labeled 3 in the figure – crosses the Fermi energy. This
results in an electron pocket around (0, 0) and the magne-
tization increases rapidly. This behaviour was also found
in mean-field and DCA-calculations [43]. Figure 8 shows

Fig. 7. Angle Θ which minimizes F (top), f -like ordered
moment mf (middle) and energies of the states around the
Kondo gap at k = (π, π) and k = (0, 0) (bottom) versus B.
Here J = 1, δ = 0.1 and t1 = 0.

Fig. 8. Magnetic field value where the electron pocket at k =
(0, 0) starts to form versus J , δ = 0.1.

the magnetic field where the electron pocket starts to form
– i.e. where the band labeled 3 in Figure 8 crosses µ – as
a function of J .

4 Conclusion

In summary we have studied ferromagnetism in the Kondo
lattice model using the bond Femion method. A main

https://epjb.epj.org/
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results is that a ferromagnetic phase with a small ordered
moment can be found already for electron concentrations
close to ne = 2 and at similar values of J where anti-
ferromagnetism sets in. As discussed previously for the
case of the antiferromagnetic phases, the bond Fermion
method may be expected to give reasonable results in this
range of parameters [47]. Numerical studies so far have
not found evidence for this weakly ferromagnetic phase,
with the possible exception of a VMC study for the PAM
[29]. The weakly ferromagnetic phase may be viewed as a
modification of the Kondo phase – in which the f -electrons
do contribute to the Fermi surface volume – with triplets
condensed into momentum (0, 0). The smallness of the
ordered moment also is due to the fact that the condensed
triplets lead to a mixing of the ↑- and ↓-component in
the quasiparticle wave functions. As already mentioned
in the introduction, bond Fermion theory gives more of
a ‘rescaled version’ of reality, that means the absolute
values of J where magnetism sets in are not reproduced
correctly. The exact value where antiferromagnetism sets
in for ne = 2 at t1 = 0 is Jc = 1.45 [23], whereas from
Figure 5 one would estimate Jc = 2.3. It was shown in
reference [47] that when the phase diagram for the antifer-
romagnetic phases is plotted in the (J/Jc, ne)-plane rather
than the (J, ne)-plane, good agreement with VMC could
be achieved and one might expect the same to hold true
for the phase diagrams in Figure 5.

In the present study we did not consider incommen-
surate magnetic order which might win over the ferro-
magnetic phase. On the other hand, in systems with
easy-axis-like magnetic anisotropy such incommensurate
phases may be suppressed and the weakly ferromagnetic
phase be indeed observable.
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40. M.M. Wysokiński, M. Abram, J. Spa lek, Phys. Rev. B 91,
081108(R) (2015)

41. K.S.D. Beach, F.F. Assaad, Phys. Rev. B 77, 205123
(2008)

42. R. Peters, N. Kawakami, T. Pruschke, Phys. Rev. Lett.
108, 086402 (2012)

43. M. Bercx, F.F. Assaad, Phys. Rev. B 86, 075108 (2012)

https://epjb.epj.org/
http://creativecommons.org/licenses/by/4.0


Eur. Phys. J. B (2020) 93: 58 Page 9 of 9

44. R. Eder, O. Stoica, G.A. Sawatzky, Phys. Rev. B 55,
R6109 (1997)

45. R. Eder, O. Rogojanu, G.A. Sawatzky, Phys. Rev. B 58,
7599 (1998)

46. C. Jurecka, W. Brenig, Phys. Rev. B 64, 092406 (2001)

47. R. Eder, K. Grube, P. Wróbel, Phys. Rev. B 93, 165111
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