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A B S T R A C T   

The projected increase of the world’s population and the sustainability challenges the agricultural sector is facing, call for the enhancement of multi-functionality in 
agriculture in order to simultaneously provide food while meeting environmental targets. 

Here, we use the Functional Land Management (FLM) framework to assess the supply of and the demand for soil functions to inform agri-environmental policy for 
Udalo, a mountainous site in the Philippines. As many emerging communities in developing nations, Udalo is on the cusp of rapid development due to the con
struction of a major road increasing its accessibility and attractiveness for land investment. 

We assessed the supply of four soil functions in relation to six land-use types and four slope categories. The function “productivity” was assessed by interviews with 
128 farmers, “habitat for biodiversity” by a vegetation survey, and “soil conservation” and “water conservation” via a literature review. 

The demand for functions was first assessed from the “top-down” policy perspective via interviews and reviews of policy targets, then complemented by integrating 
the local “bottom-up” demands for functions. These were assessed by applying a Q methodology, providing insights in the prioritisation of functions from the 
perspective of 22 local actors. Maps of supply and demands were generated for each function: supply maps by overlaying land use and slope category, top-down 
demand maps from administrative zoning/land-use plans, and bottom-up demand maps from local actors designation of geomorphological areas. 

Our results revealed contrasting demands for functions, as well as a heterogeneous spatial distribution of supply and demands. Discrepancies emerged (i) between 
supply and demand, (ii) between bottom-up (local) demands and the top-down (policy driven) demand, and (iii) among local actors perspectives. 

Our study indicates that discrepancies are not necessarily conflicting, but can uncover pathways for defining compromises, representing attainable policy entry 
points. Not one single development model can meet the needs of every stakeholder; however, a combination of land uses and management strategies can meet 
divergent interests and allow for optimisation of functions. This integrative approach of FLM provides a socially embedded biophysical analysis and is a valuable tool 
for the design of customized land-use and agri-environmental policies.   

1. Introduction 

1.1. Methodological approaches for assessing foodscapes 

With the global population projected to grow to 11 billion people by 
2100 (United Nations, 2015a), the demand for food is estimated to rise 
by 60–80% in 2100 (Depenbusch and Klasen, 2019), likely leading to 
increased land-use changes and competition for land (Runyan and 
Stehm, 2019). At the same time, humanity is facing a global ecological 
crisis, with the earth’s biocapacity being exceeded for the past 40 years, 
resulting in natural resources depletion and to a situation of global 

overshoot (Mancini et al., 2017). Agriculture finds itself at the cross
roads of these two global challenges: it has itself a considerable footprint 
and, at the same time, has to cope with new environmental constraints 
such as climate change, access to water, decline of soil fertility, loss of 
arable land, as well as economic constraints such as high price volatility 
and access to market. 

In 2015, the United Nations formulated the 17 universal Sustain
ability Development Goals, as a blueprint to frame the international 
policy agenda for 2030 (United Nations, 2015b). Governments are now 
tasked to set transition pathways and implementation schemes, with a 
focus on efficient use of resources, including the land resource (United 
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Nations, 2012), underlining the need for tools that can adequately guide 
land management and land-use policy formulation to meet those goals. 

Land-use dynamics are marked by both biophysical and socio- 
economic dimensions, which are brought together in the concept of 
“foodscapes”. We refer to Lowitt and Mackendrick’s definition of “a 
foodscape”, based on the consideration of humans as integral compo
nents of complex ecosystems, and on the social-ecological interactions 
that compose the local food system (Lowitt, 2014). Foodscapes desig
nate all places and spaces of a given territory, that relate to food 
(MacKendrick, 2014). In this way, we define foodscapes as “food sys
tems within landscape settings of natural resources”, representing a 
physical-biological-sociologically integrated system with multiple 
components, drivers and webs of relations, which strongly condition 
socio-economic dynamics, and have a major impact on the territory’s 
environment and natural resources. Apprehending foodscape dynamics 
requires approaches that can capture this complexity. However, most of 
the existing methods for assessing foodscapes have thus far been either 
based on biophysical approaches such as the Functional Land Manage
ment (FLM) framework, or sociological approaches such as Q method
ology (QM). 

The FLM framework was developed to assess the demand and supply 
of land-based ecosystem services, also referred to as “soil functions” 
(Schulte et al., 2014). It is well suitable to monitor the dynamics of 
foodscapes through the lens of productive agricultural lands. The FLM 
framework is useful for agri-environmental policy formation, as it helps 
identify discrepancies between supply and demand of/for soil functions, 
as well as land-use scenarios that optimize the suite of soil functions 
while minimizing trade-offs (Schulte et al., 2015; Coyle et al., 2016). 
However, the approach has been critiqued for its reliance on top-down 
assessments of the demand for soil functions, based on policy targets, 
which may fail to capture the diversity of local demands by the terri
tory’s actors. 

QM is a socio-analysis methodology allowing for the assessment of 
stakeholders’ perspectives, while helping developing mutual under
standing on key issues. Initially used in psychology research and 
behavioural sciences (Watts and Stenner, 2005; McKeown and Thomas, 
2011), it provides a structured representation of stakeholders’ view
points on a specific topic, by establishing a typology of perceptions. It is 
a valuable method to reveal divergent and convergent interests, that can 
be used to help find consensus among multiple actors (Nijnik et al., 
2014). In fact, QM makes use of “insiders’ views” (Pereira et al., 2016), 
providing key information based on local inputs and site-specific 
knowledge. This quantitative and qualitative approach includes 
“human subjectivity” while treating the collected information statisti
cally (Jaung et al., 2016). 

1.2. Research objectives 

This paper aims at refining the FLM framework to a more integrative 
approach to assess soil functions and foodscape dynamics. Through the 
example of Udalo, a remote agricultural community in the Philippines, 
we assess both the (top-down) policy demand and the local (bottom-up) 
demands for soil functions, in order to provide tailored agri- 
environmental policy recommendations. Udalo, is on the cusp of rapid 
economic development, resulting from the construction of a new road 
that will provide access to and from the nearby urban and suburban 
centres. As such, Udalo reflects numerous contemporary examples of 
rapid rural development in developing nations, and is representative for 
so many emerging communities. An integrative approach is essential to 
assess land-use systems in a changing socio-economic environment. In 
fact, the demands put on the land may vary across stakeholders (e.g. 
between government and local actors of the territory), and infrastruc
ture development can alter stakeholders demand for agricultural pro
duction, resulting in changes in land use and management, in turn 
affecting the capacity of the land to fulfil multiple functions (Zawadzka 
et al., 2017; Alphan, 2018). 

In our assessment of the supply of, and the (top-down and bottom- 
up) demands for soil function, we focus on four soil functions: (i) pri
mary productivity, (ii) habitat for biodiversity, (iii) soil conservation, 
and (iv) water conservation. These functions are central for addressing 
the sustainability challenge of increasing production in the face of a 
growing population, while preserving Udalo’s outstanding natural re
sources and mitigating high erosion risks (MGADI, 2008a; Wagner et al., 
2015; DENR, MGADI, 2017). “Primary productivity” refers to the pro
duction of food, fibre and fuel (Schulte et al., 2015; Coyle et al., 2016) 
while the functions “soil conservation” and “water conservation” refer to 
soil erosion control (Fu et al., 2011), i.e. the ability of the land to 
regulate water flow by favouring infiltration and limiting surface 
run-off, thereby preventing erosion. The function “habitat for biodi
versity” is defined as the ability of the land to support species diversity, 
thus sustaining ecosystem functioning by supporting and reinforcing 
other functions (European Commission, 2015; Kaiser-Bunbury et al., 
2017). 

2. Materials and methods 

2.1. The study site: Udalo at a crossroads 

Udalo is a coastal and mountainous area of Mindoro island, in the 
Philippines (Fig. 1). Over half its land is classified as “very steep slopes” 
(>50% slope), and nearly three quarters are qualified as “steep” to “very 
steep” (>18% slope) with no terraces built to ease access or limit erosion 
(DENR, MGADI, 2017). Agriculture and fishery constitute the main 
livelihood in the area, since alternative sources of income and employ
ment opportunities barely exist (MGADI, 2008a). Hence, subsistence 
farming is prevalent, mainly composed of fire-fallow cultivation systems 
(or “swidden agriculture”) on hills and mountain-sides (Wagner et al., 
2015). Commercial products include copra (dried coconut flesh for oil 
industries), wet-rice, cash-crops such as cassava and sweet potato, 
construction materials (Imperata cylindrica grass, bamboo, palm, 
lumber), cattle, and charcoal. The latter five, along with former inten
sive logging and small-scale talc mining, partly explain the loss of forest 
cover since the 1960’s (Wagner et al., 2015). Meanwhile, the contri
bution of swidden agriculture to deforestation is subject to ongoing 
debate (Amacher et al., 1998; Lasco et al., 2001; Padoch and 
Pinedo-Vasquez, 2010; Wangpakapattanawong et al., 2010; Mukul 
et al., 2016). Representative of the rest of the country, the land tenure 
situation in the region is complex and unclear, with the majority of the 
population considered as illegal settlers, having no formal access to land 
(Dingkuhn and Yap, unpublished data). The proximity to bigger cities 
(Batangas, Manila) and touristic places (Puerto Galera) makes Udalo 
very attractive to new settlers and tourists. The ambition by the local 
government to develop tourism in the area is likely to lead to de
mographic growth (DENR, MGADI, 2017) and increased real-estate in
vestment, resulting in competition for land in the years ahead. The 
connection to the road network can provide an opportunity for stimu
lating development and modernization (e.g. by providing access to new 
markets, employment opportunities, technology and education, and by 
attracting external capital). However, unregulated development also 
presents risks of social disruption and increased inequities, as well as 
over-exploitation and depletion of natural resources (Trousdale, 1999; 
Erni, 2006; Bacior and Prus, 2018). 

2.2. Methodological approach 

Using the example of Udalo, we refined the FLM concept by taking 
into account not only the supply and the policy-oriented (“top-down”) 
demand for soil functions, but also the diversity of local (“bottom up”) 
demands. We employed the classical FLM approach (Schulte et al., 2014, 
2015) to assess the supply and top-down demand (see Sections 2.3 and 
2.4, respectively). In this approach, the supply of soil functions is framed 
by combinations of land use and locally relevant pedo-morphological 
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discriminants (Schulte et al., 2014; Coyle et al., 2016; Pinillos et al., 
2020); while the demand for soil functions is commonly quantified 
through socio-economic indicators representative of local, national or 
international policies (e.g. Schulte et al., 2015; Schulte et al., 2019; 
Pinillos et al., 2020). We refined this approach by assessing the 
bottom-up demands via a QM application (see Section 2.4). 

First, a literature review and key-informant interviews were con
ducted in order to (i) identify the relevant metrics that describe spatial 
variation in the supply of soil functions; (ii) identify the policy targets 
used to determine the top-down demand; and (iii) determine geomor
phological areas to which the local actors can refer to, in order to assess 
their expectations from the land (i.e. for the assessment of the bottom-up 
demands). Interviewees included: local experts from University of the 
Philippines Los-Ba~nos (UPLB), the Philippine Council for Agriculture, 
Aquatic and Natural Resources Research and Development (PCAARD), 
the International Rice Research Institute (IRRI) and the World Agro
forestry Centre (ICRAF – Philippines); officers of Local Government 
Units (LGUs), namely from the Department of Agriculture (DA) and the 
Department of Natural Resources and Management (DENR); and com
munity leaders: the Mayor and officers of the Municipal Government of 
Abra de Ilog (MGADI), the village Captain and Councillors (village scale 
Government Units), Indigenous People’s Chiefs, the Chairman of the 

local farmers organization, and religious leaders. 

2.3. Supply of soil functions 

The supply for soil functions was assessed based on two parameters: 
land use and pedo-morphological conditions. For the creation of our 
local “Soil Functions Matrix” (Schulte et al., 2014; Coyle et al., 2016), 
we selected six land-use types and four slope categories (Fig. 2) as the 
most representative discriminants. For the Atlantic climate zone of 
Europe, Coyle et al. (2016) selected the natural drainage status of the 
soil as the dominant soil characteristic determining soil functionality, 
reflecting the excess rainfall in that region of the world, based on the 
review by Schulte et al. (2012). Due to the climatological and geological 
conditions of our study site, which is characterised by high annual 
rainfall and high rainfall intensity as well as steep inclinations, this 
parameter was not suited for a soil functionality assessment here. 
Instead, numerous studies from the Philippines and other zones of the 
humid-tropics strongly link soil properties, as well as soil erosion and 
surface run-off, to slope steepness (Briones, 2010; Asmamaw and 
Mohammed, 2013; Labri�ere et al., 2015; Boongaling et al., 2018). We 
therefore modified this approach (congruent with Schulte et al., 2015) 
and selected the slope of the terrain (in combination with land use) as 

Fig. 1. Study site location (barangay Udalo, municipality of Abra de Ilog, Occidental Mindoro, Philippines; map data ©2019 Google.  

Fig. 2. Land-use map (left) and slope category map (right) of Udalo. Maps were derived from original land-use and slope maps from the Department of Environment 
and Natural Resources (DENR). (NGP: National Greening Program). 
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the main determining factor of the supply of soil functions in the region. 
The effect of the slope discriminant on the supply of each function was 
informed by literature. The complete narratives constructed for the 
assessment of the supply of all four functions are presented in Appendix 
S1. 

2.3.1. Productivity 
We assessed agricultural productivity in terms of the median gross 

production (GP) of each land-use type as a proxy-indicator for produc
tivity on a per area basis (ha), similar to Pinillos et al. (2020). GP refers 
to the total yield per hectare (regardless of its use), multiplied by the 
market price of the commodity in 2017. “Low”, “medium low”, “me
dium high” and “high” productivity classes were attributed to each 
land-use type based on their relative standing compared to the median. 
The GP data was obtained by a survey conducted in 2017, during which 
128 farmers were interviewed (Appendix S2), representing 21% of the 
recorded farmers of the study site. Farmers were randomly selected 
(using the random selection function in CALC open-licensed software) 
from the municipality’s list of households engaged in agriculture (2015 
data). When household heads were not to be found in their homes, their 
relatives were interviewed instead, or the neighbouring household 
engaged in agriculture. The GP of the degraded forest was based on the 
results of swidden-fallow systems, for which we summed the GPs of 
charcoal, cassava, banana and upland rice. Data could not be collected 
for the reforestation zone subject to the National Greening Program 
(NGP), due to the early stage of the program which had not yielded any 
benefit yet, and neither for the closed forest due to haphazard extrac
tions from the forest by the local communities in scattered locations. 

2.3.2. Biodiversity 
The function “habitat for biodiversity” was expressed in terms of a 

composite index of the capacity of each land-use type to provide habitat 
for biodiversity. A vegetation survey was conducted in 2018 in order to 
complete a vegetation analysis conducted by Wagner in 2013 (Wagner 
et al., 2015). The vegetation cover of a plot of each land-use type was 
assessed (except for the reforestation area and the closed forest). On 
each plot, ranging from 256 m2 to 1024 m2, every species present and its 
scientific name was recorded, as well as its group (tree, shrub or weed) 
and the tree canopy-cover rate. The composite index was obtained by 
summing up the z-scores of the variables “species richness” (the number 
of species present), “tree species richness” (the number of tree species 
present), and “tree canopy cover abundance” (tree canopy coverage 
rate). These three variables were summed in order to capture not only 
the relative habitat richness of the different land-use types (through 
species richness), but also the biological conditions and related habitats 
provided by trees specifically (through tree species richness and tree 
canopy coverage rate), as trees and their understorey vegetation 
constitute important and different habitats from non-woody plants 
(Rosenvald and L~ohmus, 2008; Ebeling et al., 2018; Gottschall et al., 
2019; Zheng and Chen, 2019). 

The effect of the swidden-fallow secondary forest dynamics on the 
supply of the function “habitat for biodiversity” was modelled by 
calculating average rates of increase or decrease of the aforementioned 
variables throughout different stages of regrowth, derived from vege
tation surveys conducted on three plots: (a) clear cut, (b) at 15 years of 
regrowth and (c) at 25 years of regrowth. This allowed for the deter
mination of the average species richness, tree species richness, and 
canopy cover abundance of the of the secondary forest/swidden system 
(Appendix S1.2). 

2.3.3. Soil and water conservation 
The supply of the functions “soil conservation” and “water conser

vation” were qualitatively assessed based on narratives constructed from 
literature, complemented with highlights from the key-informant in
terviews and on-site observations (Appendix S1.3). 

2.4. Demands for soil functions 

2.4.1. Top-down demand 
Analogous to the original FLM approach, the top-down demand for 

the aforementioned functions was assessed using policy targets as 
proxies, considering that the top-down demand is reflected in the reg
ulatory environment (Staes et al., 2018; Schulte et al., 2019; Pinillos 
et al., 2020). 

For the functions “habitat for biodiversity”, “soil conservation” and 
“water conservation”, policy targets from the municipal Ecological 
Profile (MGADI, 2008a), the Comprehensive Land-Use Plan (MGADI, 
2008b), and administrative zoning from the latest Forest Land-Use Plan 
(DENR, MGADI, 2017) were combined with outcomes from the 
key-informants interviews. This allowed for the characterization of 
zones with different policy priorities such as strict protection zones, 
open access forests, disposable alienable zones, grazing and haying areas 
(Appendix S3). For soil and water conservation we also took highly 
erodible areas into account, such as steep slopes (>18%), very steep 
slopes (>50%) and river banks (Table 1 and Appendix S3). 

As motorways and accessibility to landscape resources determine 
land use and its spatial distribution (Alphan, 2018), we used accessi
bility and public infrastructure development (distance from the road and 
from the sea shore), as a proxy to determine the top-down demand for 
productivity (Pinillos et al., 2020). In fact, major public infrastructures 
such as roads significantly enhance productivity and reduce production 
costs, thereby increasing the demand put on the land (Teruel and Kur
oda, 2004, 2005; Llanto, 2013, 2016). 

2.4.2. Bottom-up demands 
The bottom-up demands for soil functions were assessed by con

ducting a QM (Watts and Stenner, 2005; Peter Walder, 2018) with a 
group of 22 local actors, in order to determine their expectations from 
the land. The participants were sourced from three main different social 
groups of the study site: “Farmers”, “Landowners and traders”, “Gov
ernment agencies and local organizations”. Care was taken that the 
participating farmers were representative of the area’s diversity of 
production and agricultural practices, of the different geographic loca
tions, and of the ethnic diversity of the study site. We formulated 24 
statements (Q-statements), relating to different geomorphological areas 
of the study site, and to local actors’ expectations from these areas in 
terms of delivery of the four focal functions (Appendix S4). In this step, 
the determination of geomorphological areas was aimed at character
izing areas of the landscape to which local actors can easily refer to. 
Considering the fact that some participants were illiterate and/or un
familiar with scientific terminologies, experts’ jargon, or maps and 
administrative zoning designations, we chose areas and terms that the 
locals themselves use when talking about their landscape. This way, we 
harnessed local perceptions of the landscape, as increasingly recom
mended in landscape planning and management (H€ochtl et al., 2007; 
Fagerholm and K€ayhk€o, 2009; ESF - European Science Foundation, 
2010; Ramirez-gomez et al., 2013; Fairclough et al., 2018; Fagerholm 
et al., 2019), which facilitates local-level, spatially specific discussions 
between stakeholders and better integration of outcomes at a local level 
(Fagerholm et al., 2019). 

The same actors were then asked to rank the statements in a grid 
following a quasi-normal distribution, according to the level of impor
tance/priority they attributed to each statement (Hermans et al., 2012; 
Hermelingmeier and Nicholas, 2017). The ranking results were analysed 
using the “Q-method package” on R open-licensed software (Jaung et al., 
2016): a correlation matrix was established and a factor analysis 
(principal component analysis) was executed with the focus of 
inter-correlations on participants (Q-sorts), rather than on traits 
(Q-statements), which is characteristic of QM (Pereira et al., 2016). In 
fact, the measuring criteria in QM is “the psychological significance of 
each statement for each individual” (McKeown and Thomas, 2011), 
hence the statements themselves are less important than their relative 
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importance in the eyes of the participants (Pereira et al., 2016). Based on 
the Kaiser-Guttman criterion (eigenvalue exceeding 1) (Jaung et al., 
2016; Pereira et al., 2016), we retained three factors to run the principal 
component analysis, and reduce the data (Q-sorts) into components 
(factors or cluster). 

Subsequently, a varimax rotation provided the factors’ loadings, 
which determined the clusters’ compositions (i.e. which participants 
were grouped into which clusters). The calculation of z-scores and the 
analysis of distinguishing and consensus statements (Appendix S4.1), 
coupled with an analysis of the most extreme factor-scores (Appendix 
S4.2), allowed us to characterise the clusters and establish a typology of 
local actors’ perspectives, i.e. of different types of demands for soil 
functions. In order to map the spatial distribution of these bottom-up 
demands, we derived legend classes from the way each cluster ranked 
the Q-statements. The declination of the local demands into “high”, 
“medium high”, “medium low” and “low” classes was obtained by 
ordering the statements’ z-scores (of each cluster) in descending order, 
and grouping them into quartiles (Table 1). 

2.5. Mapping supply and demands 

Subsequent to the assessment of the supply, the top-down demand 
and the bottom-up demands of/for the four soil functions and their 
categorization into “low”, “medium low”, “medium high” and “high” 
classes (Table 1), the outputs were mapped using QGIS software, in 
order to compare their spatial distribution. 

The supply maps were generated by overlaying land-use and slope 
category maps (Fig. 2). The top-down demand maps were derived from 
administrative zoning/land-use plans. The bottom-up demand maps 
were generated from the local actors’ designation of geomorphological 
areas (derived from the Q statement and the QM results). The procedure 
and criteria that determined the legend classes and their corresponding 
geographic areas are summarized in Table 1. 

3. Results 

3.1. The classical FLM approach: supply and top-down demand for soil 
functions 

The soil functions supply matrix reveals great variability in the de
livery of the focal soil functions, as well as antagonisms between func
tions (Fig. 3 and Appendix S1). Overall, our results disclose low 
productivity levels for all land-use types, except for grassland, while the 
supply of the functions “biodiversity”, “soil conservation” and “water 
conservation” is more heterogeneous. 

The functions “soil conservation” and “water conservation” appear 
to be strongly correlated and presented quasi-identical rates of supply, 
hence they were merged into one function. On the other hand, antago
nistic relations can be observed between “productivity” and the three 
other functions (“biodiversity”, “soil conservation”, “water conserva
tion”). For example, grasslands (used for grazing and haying for roofing 
materials) are the most productive land uses, while they are “poor” 
suppliers of all other functions, as opposed to the closed forest next to 
the eastern boundary of the study area, which supplies high levels of 
biodiversity. This antagonistic relation can be observed in nearly all 
land-use systems, except for wet-rice production, which is characterised 
by rather low levels of biodiversity and productivity and a relatively 
high potential for soil and water conservation (Fig. 3). 

The supply of productivity and biodiversity is not strongly influenced 
by slope, while soil and water conservation decrease on steep slopes and 
very steep slopes (for coconut plantations and secondary forest areas). In 
fact, the slope discriminant was applied to the function “soil conserva
tion” and “water conservation”, but not to the functions “biodiversity” 
and “productivity”, due to lack of data and poor evidence from 
literature. 

The outcomes of the classical FLM approach, i.e. the assessment of 
the supply and the top-down demand for soil functions, show contrast
ing spatial distributions (Fig. 4). In fact, when comparing the supply of 

Fig. 3. Soil Functions Matrix depicting the supply of productivity, biodiversity and soil & water conservation in relation to land use (columns) and slope category 
(rows). As supply for water and soil conservation are strongly correlated and presented quasi-identical results, they were merged into one function. 
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soil functions to the demand from the policy context, discrepancies be
tween supply and demand are striking for the functions “biodiversity”, 
“soil conservation” and “water conservation”. Whilst half of Udalo is 
officially classified as a “protection zone”, with a high demand for the 
aforementioned functions, this aggregate demand is only fully met by 
the remaining closed forest. Moreover, the highest demand for produc
tivity is concentrated in the most accessible areas, which are located 
along the coast and following the main path (meant to become the future 
road), while these areas show a rather low production potential. Further 
details of the supply and top-down assessment results are provided in 
appendices S1 and S3. 

3.2. Contrasting bottom-up demands for soil functions 

The results of the QM reveal important heterogeneity in (bottom-up) 
demands for soil functions among local actors, as illustrated by the 

resulting typology of three clusters, that represent distinct expectations 
from the land (Figs. 5 and 6). Cluster 1, composed of seven Q-sorts 
(participants), predominantly attributed high scores to statements 
relating to soil conservation and, to a lesser extent, to productivity, and 
was thus attributed the name of “Soil Conservationists”. The second 
group, of six Q-sorts, associated highest ranks to statements relating to 
water conservation and, at a lesser extent to soil conservation and pro
ductivity, and was thus, named the “Water Conservationists”. Cluster 3, 
composed of 4 Q-sorts, assigned high scores to statements relating to all 
four functions, and was thus named the “Multi-Functionalists”. Although 
statements relating to soil conservation and productivity obtained the 
highest z-scores computation, this cluster is the only one having 
attributed maximum scores to statements referring to the function 
“biodiversity” (Fig. 5). The factor scores and their corresponding z- 
scores, as well as distinguishing-consensus statements are shown in 
appendices S4.1 and S4.2, respectively. 

Fig. 4. Supply maps (on the left) and top-down demand maps (on the right) for soil functions. White polygons indicate missing data.  
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The bottom-up demand maps from the three clusters disclose how 
this heterogeneity of demands is spatially distributed (Fig. 6). First, the 
output maps clearly illustrate the typology of each cluster, with a high 
demand for soil conservation being prevalent on the Soil Conserva
tionists demand maps, a high demand for water conservation being 
prevalent on the Water Conservationists demand maps, and a high de
mand for biodiversity preservation being prevalent on the Multi- 
Functionalists demand maps. Secondly, the results reveal areas of con
trasting demands, but also areas of convergence. For example, there is a 
consensus between the clusters on a high demand for soil conservation 
on slopes and ridges, as well as for biodiversity conservation on slopes. 
Moreover, a high demand for productivity was attributed to mountain 
sides (slopes) by cluster 1 (the Soil Conservationists) and cluster 3 (the 
Multi-Functionalists), along with river sides for cluster 3, and ridges for 
cluster 1 and cluster 2 (the water Conservationists). In contrast, the 
demand for water conservation shows the greatest degree of heteroge
neity among clusters, with high demand concentrated along river sides 
for cluster 1; on slopes, ridges and close to the sea for cluster 2; and on 
ridges and remote inaccessible areas for cluster 3. Finally, divergence 
(and some convergence) also occur between local demands and top- 
down demand (Figs. 4 and 6). For example, cluster 2 aligns with high 
top-down demand for productivity next to the sea shore. Furthermore, 
areas of high top-down demand correspond with the areas of high de
mand for soil conservation of the “Soil Conservationists” group (cluster 
1). The same applies for high demand for water conservation and the 
“Water Conservationists” (cluster 2), and for the “Multi-Functionalists” 
(cluster 3) regarding high demand for biodiversity. 

4. Discussion 

4.1. Assessing the supply and demand for soil functions 

Our results suggest that the supply and demands for soil functions is 
not only linked to land use and the local geomorphological character
istics of land, but is also greatly influenced by context-specific social and 
economic drivers that shape farm practices and behaviour (Kleinman 
et al., 1995). These include the farmers’ personal objectives, market 
prices and value chains developments, land tenure situations, i.e. the 

degree of land security/insecurity (Neef, 2001; Yirga, 2008; Dube and 
Guveya, 2013), power distributions (Baynes et al., 2016) and institu
tional regulatory frameworks (Mattison and Norris, 2005) (Appendices 
S1 and S3). Our outcomes also expose clear antagonisms between the 
supply of the selected soil functions, especially between primary pro
ductivity and the three other functions. 

The complexity of land-use patterns in Udalo makes the assessment 
of the supply of soil functions a challenging task. In particular, the 
secondary forest, which is an area of fire-fallow cultivation, is a dynamic 
system comprising vegetation patches at various growth stages and of 
various exploitation scales (from small subsistence patches, to larger 
patches for commodity production), including clear cuts for charcoal 
production, diversified agroforestry systems and regenerating forest 
patches. As a result, its ability to supply soil functions presents great 
variability between patches, and had to be considered as an average 
representation. Charcoal production for instance, which is the main 
commodity produced from the degraded forest, is driven by high market 
demand, as it is extensively used as cooking fuel (Inzon et al., 2016; 
Martinico-Perez et al., 2018). External demand for charcoal is stimu
lated by poor and challenging enforcement in the area, in contrast to 
nearby municipalities where the national ban on logging, and thus on 
charcoal production (Republic of the Philippines, 1975) is more easily 
enforced as a result of greater accessibility and visibility (DENR officer, 
pers. comm., March 2017). 

Large imbalances between supply and top-down demand for 
ecological functions (biodiversity, soil and water conservation) man
ifested themselves on erosion-prone terrains. The generally poor supply 
of soil functions in these areas is of concern and reveals a need for in
tegrated conservation efforts. Low productivity in the lowlands, despite 
more favourable agronomic conditions and high top-down demand, may 
reflect an under-utilised potential for sustainable intensification of some 
production systems. Enhancing productivity in these areas could alle
viate the concentration of high production systems on erosion-prone 
terrains, reducing the farmers’ dependence on uplands, thereby 
reducing the magnitude of antagonisms between productivity and 
ecological functions in these areas. 

4.2. Diversity of visions and interests: convergence and compromise 

The study allowed for an inner view of Udalo’s foodscape, recog
nizing local actors’ representations and expectations from land. Local 
(bottom-up) demands for soil functions, in particular for productivity, 
were mostly high on mountain ridges and slopes within the existing 
degraded forest. This could be explained by the important income 
generating potential of grasslands on mountain ridges, and by the fact 
that mountain sides (slopes) with low agronomic potential are the only 
lands accessible to many farmers. In fact, a substantial part of the 
farming population doesn’t have any formal access to land, but is 
tolerated by private land-owners, or in the case of public land by the 
local government, to practise fire-fallow cultivation on mountain sides 
for subsistence and, to some extent, for commercial purposes. 

In contrast to the top-down productivity targets and the common 
perception that easily accessible lands would be kept for production, all 
clusters attributed a low demand for productivity in areas close to paths 
and habitations, implying that these would be prioritized for other 
purposes. A possible explanation could be the frequent adoption of 
illegal practices by farmers such as logging, fire-fallow systems, grass
land burning to stimulate regrowth (Republic of the Philippines, 1975), 
leading them to adopt a “strategy of discretion” by cultivating in areas 
that are not too remote for accessibility ease, but not too visible and 
accessible neither to remain relatively unnoticed. 

The QM analysis revealed heterogeneity in the demands for soil 
functions, as well as a variety of local perceptions/conceptions of these 
functions and their utility. For example, for “the Soil Conservationists” 
(cluster 1), the demand for water conservation is highest along river 
sides where most annual crop lands are concentrated. In other words, 

Fig. 5. Resulting clusters from the Q methodology showing contrasting ex
pectations from land. For each cluster, the z-scores of statements that obtained 
high factor scores (¼2 or 3) were categorized by the functions they relate to and 
were summed up to show the comparative importance of the various functions 
for each cluster. 
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this group attributed a high demand to areas where water is extracted 
for human use (irrigation, domestic use), while “the Water Conserva
tionists” (cluster 2), attributed a high demand for water conservation in 
areas where water damage occurs (run-off, erosion, land-slides), 
resulting in a high demand for this function on slopes, mountain 
ridges and near the sea shore. Finally, for “the Multi-Functionalists” 
(cluster 3), the highest demand for water conservation is concentrated in 
remote areas and mountain ridges, at the watershed and sub-watershed 
basin boundaries, i.e. in areas playing a major role in rebuilding water 
stocks (Viviroli et al., 2007). 

Biodiversity is an outstanding, yet threatened, resource in the region 
(Wagner et al., 2015; Heaney et al., 2018), while its “functionality” or 
“utility” to human communities, namely for agricultural production, 
appears to be less recognized by the inhabitants than soil conservation 
and water conservation. The fact that the dominant perspectives of the 
local actors clusters match the top-down policy targets, suggests that a 
fraction of the inhabitants share the same concern/interest as the gov
ernment or, in other words, that the spatial distribution of the top-down 
demand for most soil functions makes sense to only some of the local 
actors. These differences in perceptions and understanding of the utility 
of these functions, and how they are delivered, underlines the impor
tance of adequate communication and sensitization from the top down 
about the purpose of conservation programs and policy targets, in order 

to be better understood by the inhabitants. This also suggests that hin
drances to compliance and to adoption of sustainable land management 
practices may not only be due to disagreements or divergent interests, 
but also to misconceptions and miscommunication. This illustrates the 
importance of including local stakeholders (views) in defining and 
designing land-use policies, in order for policy targets to “make sense” to 
the actors of the territory. 

Overall, soil conservation appears to be a prevailing concern to local 
actors (with a computed maximum factor scores in QM of 22), followed 
by productivity and water conservation (computed maximum scores of, 
respectively, 13 and 10), while less importance was assigned to biodi
versity (computed maximum scores as low as 3). Local concerns about 
soil erosion reflect actual ecological issues on the study site (Wagner 
et al., 2015; DENR, MGADI, 2017), while clean water availability was 
not reported to be an issue until recently (Farmers’ Organization 
Chairman, pers. comm., April 2018; Village Councillors, pers. comm., 
April 2018). However, inhabitants have reported recent cases of water 
shortage during the dry season (Hosingco et al., 2016; DENR, MGADI, 
2017; Farmers Organization Chairman, pers. comm., March 2018), 
while participants expressed their concern about the future preservation 
of water resources, in the face of projected demographic growth and 
urbanization. Finally, all three QM clusters converge on a high demand 
for soil conservation on slopes, which also aligns with the top-down 

Fig. 6. Bottom-up demands for soil functions per cluster as derived from the Q methodology typology.  
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demand. This is an important finding, as it can be a stepping stone for 
the implementation of adapted agri-environmental incentives or soil 
conservation programs, in which diverging actors have converging 
interests. 

4.3. Challenges for the foodscape 

Our study reveals a number of challenges for the foodscape of Udalo, 
namely substantial imbalances between supply and demand for soil 
functions. Low yields and poor value of cropland products, in particular 
rice and coconut (Appendix S1), do not cover the high demand for food 
and fibre in the lowlands. Thus, improved technical results and devel
oping value chains will be key to meet the growing demand, in partic
ular the demand for staple food (MGADI, 2008a). As put forth by Labao 
et al. (2017), diversification and access to associated equipment would 
contribute to address chronic food shortages in the area. Therefore, on 
the one hand connection to the road network represents a great op
portunity by facilitating access to technology, knowledge transfer, and 
outreach to new market opportunities. However, the antagonistic rela
tion between productivity and other functions must be considered, 
hence the need to identify and incentivize adapted pathways towards 
the sustainable intensification of lowland cropping systems, i.e. 
increasing productivity without hindering the supply of other soil 
functions (Foreseight, 2011; Schulte et al., 2014), while avoiding crop
land expansion in the context of agricultural land scarcity. In fact, 
agricultural land scarcity in the Philippines (Lasco et al., 2001; Coxhead 
et al., 2002; Verburg et al., 2006) makes the option of agricultural 
expansion the least desirable development scenario, while “land inten
sification” based on increased activity and inputs (Schulte et al., 2014), 
has to be considered along with ecological risks (e.g. erosion increase 
and water quality alteration). Moreover, land intensification requires 
financial resources to purchase inputs, and thus would be accessible to 
only a small fraction of Udalo’s farmers. Therefore, better-suited 
development pathways towards agricultural sustainability in Udalo 
are offered by (1) resource-use efficiency strategies, with more efficient 
input-use and greater linkage to research and development (Schulte 
et al., 2014), and (2) agroecological intensification relying on the use of 
ecological processes and agroecological practices (Wezel et al., 2014, 
2015; Wezel and Francis, 2017; Mockshell and Villarino, 2019) and 
(sometimes) high labour inputs (Castella and Kibler, 2015; Timmer
mann and F�elix, 2015). 

Imbalances of supply and demand also occur for biodiversity and soil 
and water conservation within the grasslands and the degraded forest on 
slopes. Nonetheless, these areas are important providers of fibre and 
food, with a high local demand for productivity. Therefore, the high top- 
down demand for soil, water and biodiversity conservation in these 
areas, should not necessarily rule out their simultaneous use for primary 
production. Indeed, Padoch and Pinedo-Vasquez (2010) argue that the 
potential of swidden agriculture to contribute to natural capital pres
ervation and/or regeneration, due to generally high levels of biodiver
sity, should be recognized as a land sharing conservation strategy as 
opposed to a “land-sparing/intensive agriculture strategy”. While pol
icies aim to reducing forest dependency of poor and resource-reliant 
upland farmers, land sharing strategies afford them greater adaptive
ness by providing “dynamic livelihood portfolios”, i.e. multiple sources 
of food and commodities that evolve as the forest composition evolves 
(Dressler et al., 2016). 

Indeed, although swidden areas (degraded forest) show distinct signs 
of erosion (Wagner et al., 2015), a recent study conducted in the 
Philippines demonstrates that smaller but higher number of agricultural 
patches, separated from each other by riparian buffers, show meaningful 
reduction of surface runoff and sedimentation (Boongaling et al., 2018). 
Yet, Mertz et al. (2009) showed that swidden systems are rapidly being 
converted to/by other land uses, in the cases of Udalo seemingly towards 
larger and more permanent cultivation plots with cassava, coconut and 
charcoal as major productions. As swidden areas comprise the largest 

agricultural land use in Udalo, it is of utmost importance that upcoming 
land-use changes are prevented from translating into the opening of 
large aggregated patches on slopes, thereby exacerbating erosion 
(Boongaling et al., 2018). Following the same reasoning, there is po
tential to divide the highly erosive grasslands on mountain ridges 
(Wagner et al., 2015) into smaller patches, for example by integrating 
zones of shrubs and trees. At the same time, the remaining closed forest 
should be a priority protection zone on the model of land sparing, as it is 
currently the only land use that provides high levels of biodiversity and 
soil/water conservation, including on very steep slopes (Figs. 3 and 4). 
Lastly, the NGP reforestation zone, a former attempt to improve func
tionality of grassland soils, shows only moderate multifunctionality 
(Figs. 3 and 4) that could be improved by increasing the diversity of tree 
species, and by replacing exotic with indigenous species (Kaiser-Bun
bury et al., 2017) while considering the potential of root reinforcement 
and tree placement on the slope (Cohen and Schwarz, 2017). When 
combined, these adjustments should enhance the capacity of the 
ecosystem to provide habitats for biodiversity, to prevent soil erosion, 
and to contribute to higher productivity of orchards and wild fruit trees 
through improved pollination (Kaiser-Bunbury et al., 2017). 

Considering the complexity of land-use systems, along with the di
versity of the interests and visions of actors, we have demonstrated that 
a combination of land-use systems and management strategies are 
required to optimize soil functions supply in the Udalo foodscape, and 
reach greater agricultural and resource-use sustainability in a changing 
socio-economic environment. This implies that a unique model of 
development cannot provide a complete answer to achieve agricultural 
sustainability in the area, but that complementary tailored land-use and 
land management strategies can, to some extent, meet divergent 
interests. 

4.4. The integrative FLM approach: potential, limits and improvement 

The FLM framework enables the assessment of multifunctionality in 
agriculture through the quantification and spatial representation of the 
supply and demand for soil functions. As such, it allows for identification 
of antagonisms in the supply of soil functions and of regional imbalances 
between supply and demand. In combination with QM to assess local 
demands for soil functions, discrepancies in demands can be identified 
amongst groups of local actors, as well as between (top-down) policy- 
driven demands and local (bottom-up) demands. 

Hence, this combination of methods allowed us to refine the FLM 
framework to a more integrative approach to assess, not only soil 
functions, but also foodscape dynamics, as it considers the perspectives 
of the local actors, which are part of the food-system. It constitutes an 
innovative assessment approach aimed at informing the design of 
tailored agri-environmental policies, by capturing spatial diversity 
(heterogeneous spatial distributions), as well as social diversity (con
trasting perspectives) in the demands for soil functions, allowing for the 
prioritisation of zones of intervention for the optimisation of soil 
functionality. 

The combined methodologies allowed us to elucidate compromises 
and convergence regarding the demands for soil functions, and thus to 
identify entry points for interventions. Nonetheless, the application of 
the multi-method also presents challenges. Firstly, the assessment of soil 
functions supply may be hindered by lack of comprehensive and 
consistent datasets. Secondly, the collection of qualitative data requires 
the availability of skilled moderators, as well as a sufficient level of trust 
from the actors towards the researcher(s) and the moderators. 

This study was the first of its kind, in which the refined FLM 
framework was trialled. For future applications, the statements of the 
QM, used to build the bottom-up demand maps, could refer to 
geographic areas that correspond to the top-down demand zones, in 
order to facilitate comparison between top-down and bottom-up de
mands. Therefore, visuals such as pictures/maps of the areas could be 
used instead of written statements, in order to avoid naming the areas by 
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their zoning designation (e.g. “protection zone”) and risking to influence 
the participants’ judgement. This implies that all participants can relate 
to a map of their landscape, and that the area and delimitation of each 
zone “makes sense” to them (i.e. presents sufficient homogeneous 
characteristics in their eyes to be represented as one relatively homo
geneous unit). 

We acknowledge that the use of proxies, although combined with 
land use and soil/land characteristics (here slope), may not capture all 
the complex factors that influence the supply of soil functions. For future 
applications we recommend the use of elevation or slope position in 
addition to slope steepness as a discriminant in the supply matrix. 
Numerous studies from the Philippines and other regions of the world 
directly relate erosion (i.e. soil and water conservation) to slope steep
ness (Wezel et al., 2002; Asio et al., 2009; Briones, 2010; Asmamaw and 
Mohammed, 2013; Birhanu et al., 2019) which, in turn, influences 
land-use choices (Li et al., 2013; Birhanu et al., 2019). However, it could 
be argued that the productivity and the biodiversity of land may be 
determined more by its topographic position (lower mid-slope or higher 
mid-slope position), its location (accessibility, elevation), and its historic 
cropping frequency than by slope inclination per se (Wezel et al., 2002; 
Collins et al., 2008; Liu et al., 2009; Fu et al., 2011; Asmamaw and 
Mohammed, 2013; Campera et al., 2020). 

Furthermore, the proxy-indicator choices may be refined. For future 
applications, the use of composite-indexes (including several variables) 
may constitute more accurate indicators than single proxies to assess the 
spatial variability of the supply of soil functions. For instance, it is the 
limited accuracy of using a single proxy to assess “habitat for biodi
versity” that prompted us to use a composite-index instead, combining 
species richness, tree species richness and canopy cover. 

Similarly, soil texture, soil infiltration capacity, and/or slope steep
ness could constitute a composite index for the function soil/water 
conservation. Finally, the top-down demand for productivity could be 
refined by combining the proxy “distance from the road and from the sea 
shore” with administrative zoning (e.g. exploitable areas, limited-access 
areas, protected areas). 

5. Conclusion 

Through the example of Udalo, we refined the FLM framework, by 
combining it with QM, to assess the bottom-up demands for soil func
tions. This multi-method approach, combining a primarily biophysical 
assessment method (FLM) with a socio-analysis method (QM), facilitates 
the integrative and inter-disciplinary assessment of the functionality of 
foodscapes. Our results reveal large discrepancies at various levels: be
tween the supply and demand of/for soil functions, between top-down 
and bottom-up demands, and among local actors’ expectations and 
representations. We show that discrepancies are not necessarily con
flicting, but can uncover pathways for defining compromises, and that 
consensuses/synergies also occur, pointing towards attainable policy 
entry points. By taking multiple levels of diversity into account (di
versity in space and diversity among people), we demonstrate that a 
unique development model cannot be an answer to multiple levels of 
heterogeneity, but that a combination of land uses and management 
strategies can, to some extent, meet divergent interests and allow for 
optimisation of soil functions. Because it provides a socially embedded 
biophysical analysis, this innovative assessment approach constitutes a 
valuable tool for the design of customised land-use and agri- 
environmental policies. However, further research is needed to refine 
the choice of proxy-indicators and of the discriminant parameter of the 
soil functions supply matrix. Further applications are needed to scale-up 
the method, and to adapt the refined framework to other socio-economic 
contexts and pedo-climatic zones. 
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H€ochtl, F., Ruşdea, E., Schaich, H., Wattendorf, P., Reeg, T., Konold, W., H€ochtl, F., 
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