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Abstract: The headwaters of the Yangtze River are located on the Qinghai Tibetan Plateau, which
is affected by climate change. Here, treamflow trends for Tuotuohe and Zhimenda sub-basins and
relations to temperature and precipitation trends during 1961–2015 were investigated. The modified
Mann–Kendall trend test, Pettitt test, wavelet analysis, and multivariate correlation analysis was
deployed for this purpose. The temperature and precipitation significantly increased for each
sub-basin, and the temperature increase was more significant in Tuotuohe sub-basin as compared to
the Zhimenda sub-basin. A statistically significant periodicity of 2–4 years was observed for both
sub-basins in different time spans. Higher flow periodicities for Tuotuohe and Zhimenda sub-basin
were found after 1991 and 2004, respectively, which indicates that these are the change years of
trends in streamflows. The influence of temperature on streamflow is more substantial in Tuotuohe
sub-basin, which will ultimately impact the melting of glaciers and snowmelt runoff in this sub-basin.
Precipitation plays a more critical role in the Zhimenda streamflow. Precipitation and temperature
changes in the headwaters of the Yangtze River will change the streamflow variability, which will
ultimately impact the hydropower supply and water resources of the Yangtze Basin. This study
contributes to the understanding of the dynamics of the hydrological cycle and may lead to better
hydrologic system modeling for downstream water resource developments.

Keywords: climate change; trend analysis; mann kendall; wavelet; periodicity; Yangtze River;
Qinghai Tibet

1. Introduction

Climate change and its impacts have been evident in the Qinghai Tibetan Plateau over the last
decade [1–5]. The warming rate has been more significant during the last 50 years on the Qinghai
Tibetan Plateau compared to other regions in the world with the same altitude [6–8]. Additionally,
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a slight increase in precipitation was observed in the last 20 years [9]. Climate change may have severe
impacts on regional water resources [10]. The hydrological process in a basin is highly dependent on
the various climatic parameters and their complex interrelations, and streamflow is the non-linear
result of variations in temperature and precipitation in a drainage basin [9]. The headwaters of the
Yangtze River (HWYZ) are located on the central Tibetan Plateau, with a large area covered by glaciers,
permanently frozen soil, permafrost and lakes which include about 88.8 km3 of water [11] According
to Chen, et al. [12], the size and water storage capacity of glaciers and lakes have reduced in the
HWYZ over the last two decades. These reductions will ultimately have severe impacts on dry season
streamflows. Woo, et al. [13] and Xu, et al. [14] found that summer flows will increase due to more
extreme precipitation events, more frequent warm nights, and long heatwaves in the HWYZ. Most
of the studies conducted in this region were related to temperature and precipitation trends [15–22]
and very few investigated linkages with stream flows [4,23,24]. The wavelet method is one of the
most reliable tools for analyzing the variations in the hydrological and climatic components by the
discretization of the time series into different periods and scales. Kuang et al. [23] and Yua, et al. [25]
have used the wavelet method for the investigation of the long-term time series of temperature,
precipitation, and streamflows in the Yangtze River estuary and source regions of the Yellow River.
Runoff seriously impacts the production of food, fiber, and hydro-electricity, and so its trends and
linkages with climatic variables need to be analyzed in further detail. Due to the large quantity of water
stored in this region, a detailed understanding of the linkages between hydro-climatic and streamflow
variability should be established. Therefore, in this study, we explored the trends in precipitation,
temperature and streamflow from 1961–2015 at the sub-basin scale of the HWYZ. We also focused
on the periodic behavior of streamflow, precipitation, and temperature in the sub-basins of HWYZ
during 1961–2015, and the wavelet method was deployed to investigate periodic behavior. Moreover,
multi-variate correlation analysis was used to link the temperature and precipitation with streamflows.
The dominant climatic variable influencing streamflow was also identified for each sub-basin in HWYZ.

2. Material and Methods

2.1. Study Area and Data

At over 6300 km long, the Yangtze River (Changjiang) is the largest and longest river in China
and the third-longest river in the world. The headwaters of the Yangtze River (HWYZ) are situated to
the west of the 6621 m a.s.l high Geladandong Mountain, the principal peak of the Tanggula Mountain
chain on the Qinghai–Tibetan Plateau (QTP), southwest of China (Figure 1). The river flows from west
to east through the provinces of Qinghai, Tibet, Sichuan, Yunnan, Hubei, Hunan, Jiangxi, Anhui, and
Jiangsu as well as the city of Shanghai, finally reaching the East China Sea. HWYZ, longitude 90◦30′

E–97◦15′ E, latitude 32◦30′ N, and 35◦50′ N, is located in the center of QTP and covers an area of about
135,700 km2 [26]. It is divided into Tuotuohe and Zhimenda sub-basins. The HWYZ covers about 17% of
the area of QTP and contributes to 20% of the total water volume of the Yangtze River [27]. HWYZ is the
world’s highest major river basin at an average height of 4754 m (Figure 1). There are about 753 glaciers
in the HWYZ [28], and their water equivalent is approximately 887.5 × 108 m3, which is five-times the
annual flow at the Zhimenda hydrological station [29]. The Tuotuohe River is the starting point of the
Yangtze River, and ultimately, it converges into the Dangqu River. Swampy land, permafrost, and lakes
are widely distributed in the area [30–34]. The maximum and minimum temperatures had positive
trends in the Yangtze River basin during 1960–2002 [15]. Daily temperature, precipitation, and monthly
streamflow data from 1961–2015 were obtained from the China Meteorological Administration and the
Yangtze River Authority, respectively (Figure 1).
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Figure 1. Study area of the headwaters of the Yangtze River (HWYZ) with hydrological and 
meteorological stations. 
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The modified Mann–Kendall (MMK) test [35,36] and Sen’s estimator [37] were used for trend 
analysis and slope detection, respectively, while the pre-whitening was applied to detect the auto-
correlation in the time series [38]. The MMK, a non-parametric trend analysis test, was used for the 
trend analysis of temperature, precipitation, and streamflow. This method has been commonly used 
in different river basins across the world, including the Colorado River Basin [39], the Calabria region 
in Southern Italy [40], and the Komadougu-Yobe basin in West Africa [41]. The Pettitt test [42] is a 
ranked-based test used for the detection of changes in the mean of time series when there is no clear 
and exact change point identifiable. The Pettitt test has been widely used for the detection of 
discontinuities in hydro-climatic time series [38,43,44]. 

Wavelet analysis is mostly used for signal processing [23,45] and is used in this study for the 
analysis of periodicity. This method is better compared to traditional Fourier transformation and is 
also a more powerful signal processing tool. The Morlet wavelet function was used in this study, 
which is an effective method to identify the dominant periodic behavior in the time series [25]. This 
method represents the detailed features of the time series due to its narrowly shaped frequency 
domain and relatively widely developed time domain. Further details about the application of 
wavelet methods in hydrology are available, for instance, in Torrence and Compo [46]. A multivariate 
correlation analysis was also carried out to find relations among temperature, precipitation, and 
streamflow time series for each sub-basin in HWYZ during 1961–2015. 

  

Figure 1. Study area of the headwaters of the Yangtze River (HWYZ) with hydrological and
meteorological stations.

2.2. Methodology

The modified Mann–Kendall (MMK) test [35,36] and Sen’s estimator [37] were used for trend
analysis and slope detection, respectively, while the pre-whitening was applied to detect the
auto-correlation in the time series [38]. The MMK, a non-parametric trend analysis test, was used for
the trend analysis of temperature, precipitation, and streamflow. This method has been commonly
used in different river basins across the world, including the Colorado River Basin [39], the Calabria
region in Southern Italy [40], and the Komadougu-Yobe basin in West Africa [41]. The Pettitt test [42]
is a ranked-based test used for the detection of changes in the mean of time series when there is no
clear and exact change point identifiable. The Pettitt test has been widely used for the detection of
discontinuities in hydro-climatic time series [38,43,44].

Wavelet analysis is mostly used for signal processing [23,45] and is used in this study for the
analysis of periodicity. This method is better compared to traditional Fourier transformation and is
also a more powerful signal processing tool. The Morlet wavelet function was used in this study, which
is an effective method to identify the dominant periodic behavior in the time series [25]. This method
represents the detailed features of the time series due to its narrowly shaped frequency domain and
relatively widely developed time domain. Further details about the application of wavelet methods in
hydrology are available, for instance, in Torrence and Compo [46]. A multivariate correlation analysis
was also carried out to find relations among temperature, precipitation, and streamflow time series for
each sub-basin in HWYZ during 1961–2015.
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3. Results and Discussion

3.1. Annual Trend Analysis

The mean annual areal averaged precipitation and temperature for the Zhimenda and Tuotuohe
sub-basins are shown in Figure 2. The Thiessen polygon method was used to calculate the areal
mean averaged precipitation and temperature for each sub-basin. The precipitation and temperature
significantly increased in the whole study area. The precipitation has an increasing trend of 1.2 mm
year−1, and the temperature increased by 0.03 ◦C year−1 for both sub-basins. Figure 2 shows that
on short time scales, temperature and precipitation are negatively correlated, which is consistent
with other studies of short-term climate variations. On longer scales, they are positively correlated.
The mean, maximum, and minimum temperature, precipitation, and streamflow are presented in
Tables 1 and 2.
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Figure 2. Areal mean annual precipitation and temperature in Zhimenda (a) and Tuotuohe (b) sub-basins.

Table 1. Observation stations with mean, minimum, and maximum annual precipitation and
temperature during 1961–2015.

Stations Elevations
(m.a.s.l.)

Precipitation (mm) Temperature (◦C)

Mean Minimum Maximum Mean Minimum Maximum

Wudaoliang 4612.20 291.91 136.30 429.40 −5.21 −6.49 −3.75
Tuotuohe 4533.10 294.79 162.70 503.00 −3.86 −7.29 −2.03
Qumalai 4175.00 425.29 296.20 568.40 −1.97 −3.94 −0.24

Yushu 3681.20 488.96 321.70 638.30 3.40 2.01 5.25
Qingshuihe 4415.40 524.26 348.20 675.00 −4.48 −6.73 −2.55
Xiaozaohuo 2767.00 27.75 6.10 67.50 3.74 1.53 5.91

Golmud 2807.60 42.89 11.40 101.80 5.28 2.89 7.10
Zaduo 4066.40 537.67 411.70 700.80 0.74 −0.82 2.50
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Table 2. Observation stations with mean, maximum, and minimum streamflow in the headwaters of
the Yangtze River (HYWZ) during 1961–2015.

Stations
Altitude
(m.a.s.l.) Longitude Latitude

Discharge (m3/s)

Mean Minimum Maximum Drainage
Area (km2)

Tuotuohe 4532 97.23◦ E 33.01◦ N 33.36 8.84 61.71 15,924
Zhimenda 3530 92.44◦ E 34.22◦ N 415.75 221.21 774.46 137,704

Figure 3 presents the linear trends for each station in HWYZ during 1961–2015 for temperature
and precipitation. Temperature and precipitation increased for all stations during the study period, as
shown in this figure. The magnitude of the linear trends and modified Mann–Kendall test statistics are
presented in Table 3. The temperature significantly increased for all stations during 1961–2015, whereas
seven stations showed significantly increasing precipitation trends, and only for one station (Yushu)
was a non-significantly increasing trend found. Stations located at higher elevations experienced a more
substantial increase as compared to stations situated at lower elevations. The greatest precipitation
trend was observed at Wudaoliang (3.79 mm decade−1), followed by Qumalai (2 mm decade−1).

The annual streamflow for the Tuotuohe and Zhimenda stations is presented in Figure 4 for
1961–2015. A linear trend shows that streamflows increased for both sub-basins. The results of the
linear and modified Mann–Kendall trend test statistics for the streamflow of Tuotuohe and Zhimenda
are presented in Table 4. The sreamflow for both stations had an insignificant increasing trend at
a 0.05 confidence level. The monthly streamflow for Zhimenda and Tuotuohe sub-basins showed
that maximum flows were recorded during July and August, respectively (Figure 5). The monthly
streamflow pattern shows a gradual increase from May to July and August and gradually decreases
afterward. During the summer months (June–August), maximum streamflows were recorded during
2005 (2533 m3/s) in August, whereas the lowest were in June 1979 (184 m3/s) for the Zhimenda sub-basin.
The Tuotuohe sub-basin recorded the maximum streamflow during August 2002 (300 m3/s), whereas
the lowest was during July 1979 (13.5 m3/s). The lowest streamflow was observed during the month
of February 1997 (46.10 m3/s) for the Zhimenda sub-basin, and for the whole winter season for the
Tuotuohe sub-basin (December–February), there is no streamflow. This is because of the topographical
location of this sub-basin. Even though there is an increase in the trend of annual streamflow, the
monthly variability shows a unimodal pattern of streamflow; i.e., from June to October. This also
coincides with the months of the highest precipitation.

Table 3. Linear trends in precipitation and temperature and modified Mann–Kendall statistics (Z)
during 1961–2015. Bold values show statistically significant trends at a 0.05 significant level.

Stations
Precipitation Temperature Precipitation Precipitation Temperature

Trend (mm
dec−10)

Standard
Deviation

Trend (◦C
dec−10)

SD Coefficient
of Variance Z p Z p

Wudaoliang 19.89 62.40 0.33 0.72 0.21 5.94 p < 0.05–0.09 9.44 p < 0.05

Tuotuohe 11.50 72.76 0.34 0.92 0.25 2.82 p < 0.05 7.00 p < 0.05

Qumalai 13.06 65.63 0.44 0.86 0.15 3.21 p < 0.05 8.92 p < 0.05

Yushu 2.97 73.37 0.33 0.76 0.15 1.12 p > 0.05 11.32 p < 0.05

Qingshuihe 9.38 67.25 0.38 0.86 0.13 2.41 p < 0.05 7.16 p < 0.05

Xiaozaohuo 1.87 12.23 0.65 1.12 0.44 5.74 p < 0.05 13.94 p < 0.05

Golmud 2.21 17.43 0.58 1.05 0.41 3.30 p < 0.05 12.85 p < 0.05

Zaduo 7.65 71.95 0.39 0.81 0.13 3.74 p < 0.05 8.13 p < 0.05
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Table 4. Linear trends in streamflow and modified Mann–Kendall statistics (Z) during 1961–2015.

Station Streamflow Trend
(m3/s/year) Z p Standard

Deviation
Co-Efficient of

Variance

Tuotuohe 0.22 1.86 p < 0.05 13.08 0.39
Zhimenda 1.36 1.38 p < 0.05 110 0.26

3.2. Change Point Analysis and Seasonal Variations

The annual precipitation, temperature, and streamflow during 1961–2015 for Tuotuohe and
Zhimenda sub-basins in the HWYZ were used to specify the year in which a change point was likely to
exist [47]. The discontinuity in the annual time series of temperature, precipitation, and streamflow
was detected using Pettitt’s test. This test identifies the location of the change point in the time series.
The results of the change point analysis are presented in Table 5. For the Tuotuohe sub-basin, the
change points in the temperature time series, precipitation time series, and streamflow series occurred
in 2000, 1998, and 1991, respectively, all at a 95% confidence level. For Zhimenda, change points
in temperature, precipitation, and streamflow series occurred in 1997, 1998, and 2004, respectively.
The mean annual temperature for the Tuotuohe sub-basin is −4.22 ◦C from 1961–2000 and −3.0 ◦C
during 2001–2015, and the annual precipitation is 273.47 mm during 1961–1998 and 346.02 mm during
1999–2015. For the Zhimenda sub-basin, the mean annual temperature during 1961–1997 was −3.21 ◦C,
and −1.92 ◦C during 1998–2015, and precipitation was 335.14 mm during 1961–1998 and 390.74 mm
during 1999–2015.
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Table 5. Results and confidence levels of change point analysis from 1961–2015.

Hydro-Climatic Variables Change Point Change Point
Confidence (%)

Tuotuohe Sub-Basin Zhimenda Sub-Basin

Temperature (◦C) 2000 1997 95

Precipitation (mm) 1998 1998 95

Flows (m3/s) 1991 2004 95

It is evident in Table 5 that the change points for temperature and streamflow time series are
different for the Tuotuohe and Zhimenda sub-basins, while precipitation showed the same change
point year of 1998 for both sub-basins. Temperature and precipitation are an integral part of the
hydrological system, acting as spatial and temporal integrator over the sub-basins. Streamflow records
can serve as an index of the inter-annual hydro-climatic variability at the regional scale. Therefore, the
data were divided into two different periods based on the change point in streamflow for the Tuotuohe
sub-basin, averaged for 1961–1991 and 1992–2015, as presented in Figure 6 (right panels).Water 2020, 12, x FOR PEER REVIEW 10 of 18 
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Figure 6. Change of monthly temperature, precipitation and flows for the Zhimenda (left column) and
Tuotuohe (right column) sub-basins of HWYZ during 1961–2015.

The monthly temperature, precipitation, and streamflow for the Tuotuohe sub-basin for 1961–1991
and 1992–2015 are presented in Figure 6. The division of data into two periods is justified because
the temperature and precipitation increased after the change point in the year 1991, which ultimately
increased the flows from 1992–2015 as compared to 1961–1991. The temperature from January to
July increased and gradually decreased for the rest of the months. During the dry season (October
to March), the highest increase in temperature was found in November 1992–2015 as compared to
1961–2015. Precipitation decreased in July, which is the monsoon period, and also reduced in October
from 1992–2015 as compared to 1961–2015. The streamflow in the Tuotuohe sub-basin increased from
May to October; the most significant positive change in flows was found in August, followed by July
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and September. This means that an increase in temperature will impact the melting of glaciers and
snowmelt runoff in the Tuotuohe sub-basin and, with a rise in precipitation, increase the flows for the
Tuotuohe sub-basin.

The monthly temperature, precipitation, and streamflow for the Zhimenda sub-basin during
1961–2004 and 2005–2015 are shown in Figure 6 (left panels). During 2005–2015, temperature,
precipitation, and streamflow increased as compared to 1961–2004. The temperature from January to
July increased, and after July it started to decrease. During 1961–2004, the highest temperature was
observed in July (8.20 ◦C) followed by August (7.72 ◦C), while during 2005–2015, the temperature
increased by 1.20 ◦C and 1.10 ◦C, respectively, in these months. A lower temperature during 1961–2004
occurred from October to April (dry season). However, the lowest temperature was recorded during
January and February, at −15.14 ◦C and −12.18 ◦C in the period 1961–2004. During 2005–2015, the
temperature in these months increased by 2.26 ◦C and 2.24 ◦C. This was the highest change observed
in monthly temperature during 2005–2015. The highest precipitation amounts of 89.43 mm and
76.01 mm during 1961–2004 were recorded in July and August, although during 2005–2015, these
values was increased to 89.43 mm and 76.01 mm, respectively. July and August received 11.63 mm and
12.04 mm more precipitation during 2005–2015 as compared to 1961–2004. Eventually, the increase in
temperature and precipitation impacted the flows. July and August recorded the highest monthly
flows of 1044.35 m3 s−1 and 942.01 m3 s−1 during 1961–2004 and 1296 m3 s−1 and 1294 m3 s−1 during
2005–2015. These variations show that the increase in temperature, by melting glaciers and snow,
impacted runoff in the Zhimenda sub-basin. Combined with the addition of precipitation, the result is
higher flows in all months at the Zhimenda station.

3.3. Precipitation, Temperature, and Streamflows Periodicity Features for Each Sub-Basin

Annual time series of precipitation, temperature, and streamflow were evaluated based on the
wavelet analysis, and results are presented in Figures 7–9, respectively, for each sub-basin. From Figure 7,
significant periodicities for 2 to 4 years for the Zhimenda sub-basin occurred during 1966–1976 and
2000–2012 and for Tuotuohe sub-basin during 1970–1977 and 1999–2012. Intense 6–10 years periodicities
were found during 1973–1986 and 1977–1992 for Zhimenda and Tuotuohe sub-basins, respectively.
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Regarding the annual temperature, the Zhimenda sub-basin showed 1–3 year periodicities for
1965–1973 and parts of 1980–2010, whereas 6–10 year periodicities were found during 1980–1990, as
shown in Figure 8. For the Tuotuohe sub-basin, during 1965–1973 and 1978–2012, periodicities of 2 to
4 years were observed, while during 1982–1993, a periodicity of 8–16 years was found.

Dominant streamflow periodicities are presented in Figure 9 for each station. There are 2–4 year
periodicities from 1970–1976, 1984–1994, and 2003–2012, showing a high intensity found from 2004
onwards, as this is the change year for streamflow for the Zhimenda station. High flow periodicities of
6–10 years were also observed from 1974–1990. For Tuotuohe station, 2–6 year periodicities were found
during 1970–1990 and high flow periodicities with longer periods after 1994, which is the change point
for this station.
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3.4. Water Balance for Each Sub-Basin

Streamflow in the headwaters of the Yangtze River is affected by climate change and the significant
spatial variations in the headwaters of the Yangtze River. The water balances for each sub-basin were
analyzed to better understand and explore the hydrological behavior in the sub-basins. The results of
the MMK test statistics for areal mean precipitation and temperature in each sub-basin are presented in
Table 6. The temperature significantly increased for all seasons for both sub-basins and dramatically
increased at an annual scale in the Zhimenda sub-basin. Precipitation increased significantly for all
seasons for Tuotuohe sub-basin, whereas annual significance was observed in both sub-basins.

Table 6. Results of annual areal mean precipitation and temperature for each sub-basin for modified
Mann–Kendall statistics (Z), both annually and seasonally. Bold values show statistically significant
trends at a 0.05 significant level.

Mann Kendall Test
Statistics and Sen’s Slope Annual Winter Spring Summer Autumn

Zhimenda Sub-Basin

Temperature

Z 7.99 7.03 8.98 8.78 13.26
p p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Slope/10Year (◦C) 0.39 0.5 0.27 0.34 0.4

Precipitation

Z 3.99 3.21 2.99 3.04 0.97
p p < 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05

Slope/10Year (mm) 3.4 1.2 1.27 2.38 0.12

Tuotuohe Sub-Basin

Temperature

Z 6.8 6.34 6.91 7.6 9.17
p p > 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Slope/10Year (◦C) 0.33 0.43 0.26 0.28 0.37

Precipitation

Z 2.87 5.14 8.95 2.33 2.65
p p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Slope/10Year (mm) 3.33 2 3.63 2.22 1.23

The correlation between annual streamflow and annual areal mean temperature and precipitation
for Tuotuohe and Zhimenda stations is shown in Table 7. Streamflow for both stations is positively
correlated with both temperature and precipitation, although values are higher for temperature.
Moreover, a larger correlation difference is found for the most upstream sub-basin (Tuotuohe sub-basin).
This suggests that changes in temperature are more important in upstream regions of HWYZ because
of the melting of glaciers and seasonally frozen ground in this region.

Table 7. Correlation coefficient between annual streamflow and annual areally averaged precipitation
and temperature for each sub-basin. Bold values show statistically significance at a 0.05 significance level.

Climatic Variables Tuotuohe Sub-Basin Zhimenda Sub-Basin

Precipitation 0.283 0.447
Temperature 0.701 0.548

3.5. Discussion

The results of the modified Mann–Kendall test revealed that the climate of HWYZ became
warmer in the period 1961–2015. The annual and seasonal temperatures show positive trends with
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the highest increase in autumn. These findings are in agreement with Su et al. [15], Yang et al. [16],
and Kang et al. [48]. Most of the trends were significant, which showed consistency in results with
Qi and Wang [49]. Yao et al. [50] reported that temperature increases during the summer season as
compared to the winter season, whereas in our study, significantly increasing trends and magnitudes
were larger during autumn season for both sub-basins. Berg et al. [51] confirmed that, in autumn
seasons, a temperature increase is attributed to the process of drying soil. However, this is reversed in
dry months. Berg et al. [51] and Adeyeri et al. [52] confirmed that moisture availability influences the
precipitation intensity during the warm season rather than the atmospheric moisture storage capacity.
The seasonal analysis findings are consistent with previous research on climate change in the Qinghai
Tibetan Plateau region [53]. This increase in temperature happens mostly in autumn and winter months
(October to February), which may reduce the percentage of snowfall and degrade the permafrost.
Annual precipitation in the HWYZ during 1961–2015 has continuously increased, which showed
consistency with the studies conducted by Zhang et al. [21]. This increase in temperature will alter
streamflow as reported by Yuan et al. [25]. Furthermore, Adeyeri et al. [41] and Mouhamed et al. [54]
showed that increasing temperature can be caused by an increased ocean–land temperature gradient
characterized by the monsoon. Another cause could be the increasing concentration of greenhouse
gases in the atmosphere.

Streamflow for both stations is positively correlated with temperature and precipitation.
The correlation is higher for temperature as compared to precipitation. Moreover, a higher correlation
was found for the upstream Tuotuohe sub-basin. However, the correlation for precipitation is higher
for the sub-basin located downstream (Zhimenda sub-basin). This analysis reveals that changes in
temperature have more impact in upper regions of HWYZ and result in the melting of glaciers and
seasonally frozen ground in this region. Eventually, this implies that in the Tuotuohe sub-basin, the
dominant contribution to streamflow is temperature, whereas in Zhimenda sub-basin, the significant
contribution is from precipitation.

Wavelet analysis, used to analyze the periodicity in the hydroclimatic variables, showed the
severity of droughts with their frequency. A statistically significant 2–4 year periodicity was found
for precipitation during 1966–1976 and 2000–2012 for the Zhimenda sub-basin and for the Tuotuohe
sub-basin in 1970–1977 and 1999–2012. These results are in agreement with the findings of Qian et al. [24].
Intense 6–10 year periodicities were found during 1973–1986 and 1977–1992 for Zhimenda and Tuotuohe
sub-basins, respectively. For annual temperature, Zhimenda sub-basin showed 1–3 year periodicities
for 1965–1975 and 1980–2010 and 6–10 year periodicities for high temperatures during 1980–1990.
For the Tuotuohe sub-basin, during 1965–1976 and 1978–2012, a periodicity of 2 to 4 years was observed,
and during 1982–1993, a high amplitude of temperatures for 8–16 years were found. For streamflows,
3–4 year, 7–8 year, and 42–44 year periodicities were investigated by Liang et al. [55] in the source
regions of the Yellow River; among these, 3–4 year periodicities during 1970–2000 and 2002–2015 were
also found in the Zhimenda sub-basin. For the Tuotuohe station, 2–6 year periodicities were found for
1970–1991 and high flow periodicities after 1994 to 2015, which indicates that 1994 is the changing
year/breakpoint for this station. Besides, there appears to be a common magnitude of periodicities in
some years in both basins. This could be attributed to a common cause variation in both variables in the
basins; i.e., the variations were predominantly caused by climate variability or human activities [56].
Furthermore, years characterized with high periodicities are mostly associated with a combined effect
of a high degree of climate variability and high impact of human activities in a basin [57]. As observed,
there are varying degrees of high periodicities in the basin. This is an indication of the combined effect
of climate variability and human activities in the basin [56,57].

4. Conclusions

The purpose of this study was to investigate and explore the trends in and linkages between
streamflow, temperature, and precipitation for two sub-basins of the headwaters of the Yangtze River
(HWYZ) during 1961–2015. Temperature and precipitation significantly increased for each sub-basin.
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However, the rate of change in temperature was more substantial in Tuotuohe sub-basin as compared
to the Zhimenda sub-basin. The streamflow for both sub-basins increased during 2005–2015 due to an
increase in temperature and precipitation. In particular, the months of July and August recorded higher
flows, which was the result of an increase in precipitation during these months. Wavelet analysis
enabled the analysis of long-term time-series of streamflow and revealed multi-time scale structures,
change points, and changes in and distributions of periodic variations for different time scales of the
streamflow series. A significant periodicity of 2–4 years was observed in precipitation, temperature,
and streamflow for both sub-basins; however, these periodical variations did not occur in the same
years. For streamflow, high periodical variations were observed for Tuotuohe and Zhimenda sub-basins
after 1991 and 2004, respectively, which indicates that these are the change points of trends in flows for
corresponding sub-basins. The periodicity analysis examined the dynamic link between streamflow
and climate variability in the headwaters of the Yangtze River. This improved the understanding of
the dynamics of the hydrological cycle. The influence of temperature on streamflow is more significant
than that of precipitation in the Tuotuohe sub-basin, which will ultimately impact the melting of
glaciers and snowmelt runoff in the Tuotuohe sub-basin. On the other hand, precipitation has a more
significant role in the Zhimenda streamflow as compared to temperature. Hydroclimatic variability in
the headwaters of the Yangtze River impacts downstream water fluctuations and power generation,
and insights from this study could therefore be valuable for water resource planning and management
in the Yangtze River basin.
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