
22 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020 1070-9932/20©2020IEEE

R
epresenting robot skills as movement primitives
(MPs) that can be learned from human demonstration
and adapted to new tasks and situations is a
promising approach toward intuitive robot pro -
gramming. To allow such adaptation, mapping

between task parameters and MP parameters is needed, and
different approaches have been proposed in the literature to
learn such mapping. In human demonstrations, however,
multiple modes and models exist, and these should be taken
into account when learning these mappings and generalized
MP representations.

Here, a challenging problem is mode or model collapse. To
solve this problem, we propose using a mixture density

network (MDN) that takes task parameters as input and pro-
vides a Gaussian mixture model (GMM) of the MP parame-
ters. To avoid mode and model collapse during MDN
training, we introduce an entropy cost to achieve a more bal-
anced association of demonstrations to GMM components.
Since it is often easier to collect failed examples using an
underfitted MDN model instead of additional human dem-
onstrations, we introduce a failure cost to reduce the occur-
rence of failures in future executions. We evaluated our
approach in simulation and real robot experiments and
showed that the method outperforms previous approaches.

Challenges of Imitation Learning
Over the past decades, robotics researchers have developed
different approaches that enable robots to learn from humans,
imitate human behavior, and autonomously improve their

©
IS

TO
C

K
P

H
O

TO
.C

O
M

/C
Y

LO
N

P
H

O
TO

Movement Movement Movement Movement Movement Movement
Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning Primitive Learning
and Generalizationand Generalizationand Generalizationand Generalizationand Generalizationand Generalization

By You Zhou, Jianfeng Gao, and Tamim Asfour

Using Mixture
Density Networks

Digital Object Identifier 10.1109/MRA.2020.2980591

Date of current version: 6 April 2020

23JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

movements. As a replacement for manual robot program-
ming, learning from human demonstrations, also called imi-
tation learning, has been proven a promising and powerful
technique for intuitive robot programming [1]. Inspired by
neuropsychological findings [2], we use MPs as essential
building blocks for describing robot motions. In this context,
the question of how a generalizable and compact representa-
tion of MPs can be learned from demonstrations and adapted
to new situations and changing task parameters is an active
research area in robotics.

Different MP representations have been proposed, such as
dynamic MP (DMP) [3], probabilistic MP (ProMP) [4], and
task-parameterized GMM (TP-GMM) [5]. These representa-
tions can adapt to task parameters in the space in which we
define these primitives. For example, a DMP adapts to a new
start or goal; a ProMP adapts to intermediate via points; and
TP-GMM adapts to changes of predefined local frames,
where we describe the demonstrated trajectories. However,
for different tasks, the parameters could have different
meanings and are not directly associated with spatial or
temporal requirements for motion trajectories. For exam-
ple, a robot throwing a ball to a target specified in the Car-
tesian space by executing a motion learned and represented
in the robot’s joint space should be able to adapt the learned
motion to new targets. None of these approaches can adapt
a learned MP to new targets specified in a different space.

For such generalization problems,
methods have been proposed in
which task-specific mapping be
tween the task and MP parameters is
learned through regression models,
such as locally weighted regression
(LWR) [6], [7], Gaussian process
regression (GPR) [8], or deep neural
networks [9]. However, such meth-
ods cannot deal with the problems of
mode and model collapse. Given the
task of reaching a target while avoid-
ing an obstacle (see Figure 1), the
goal can be reached using two differ-
ent modes, i.e., by trajectories passing
the obstacle from the left or right.
Thus, learning an MP for such a task
should take multiple modes in
human demonstrations into account
to increase the diversity of motions,
which is beneficial in the case of
changing task constraints.

Even though there are no multiple
modes for each individual task param-
eter query in human demonstrations,
there might exist multiple models for
different types of task parameters. As
shown in Figure 1(b), the goals on the
left and right sides of the obstacle are
reached separately by two types of

trajectories, resulting from two different models, to allow the
obstacle to be passed from the left or right.

In many applications, human demonstrations might use
multiple modes and models at the same time. To avoid both
mode and model collapse, we propose learning a mapping
from the task parameter query q to a GMM of the MP
parameters w with MDNs. Each mixture component of the
GMM represents either a mode for one specific task parame-
ter query or a model for multiple task parameter queries.
However, training an MDN with only the negative log-likeli-
hood (NLL) cost, as is usually done in the original MDN,
might still lead to mode and model collapse, especially when
the set of demonstrations is relatively small, as shown in Fig-
ure 1. To further reduce the occurrence of both collapses, we
introduce an entropy cost function for training the MDN
(entropy MDN).

Figure 1(a) shows the human demonstrations (dashed
curves) for obstacle avoidance with an imbalanced distribu-
tion of examples associated with the two different modes as
well as the results obtained with different approaches for a
new task parameter query (the green dot). As can be seen, our
approach (entropy MDN) generates multiple solutions (here,
five solutions are shown in Figure 1) that cover both demon-
stration modes (blue and green) for the same task parameter
query. We achieve this result with the entropy cost function,
which ensures a more balanced probability associated with

Multiple Modes Multiple Models

Mode Collapse Model Collapse

GPR

Original MDN

Entropy MDN

Demonstrations

(a) (b)

Figure 1. The (a) mode and (b) model collapse issues in the obstacle-avoidance problem
are solved using the entropy MDNs. The dashed curves denote the demonstrations, and
the solid curves show the generated trajectories.

24 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

the different modes. The original MDN generates multiple
solutions, but these solutions (also five) reflect only one mode
in the human demonstrations since it is associated with a high
probability for the dominant mode. The GPR generates only
one single solution that is close to the examples for the domi-
nant mode.

Figure 1(b) shows the demonstrations (blue and green
dashed curves) associated with two different models and
the trajectories generated by different approaches (solid
curves) for several task parameter queries (the colored
dots). As shown at the bottom of Figure(b), our approach
(entropy MDN) successfully learns the two models and gen-
erates the solution for the task parameter query correspond-
ingly. We also achieve this result with the entropy cost
function, which ensures that each model is associated with
some human demonstrations. The original MDN has a high-
er chance of being stuck in the local minima of the NLL,
where only one model is trained and overfitted for all task
parameter queries. This fact leads to the failure of the task
execution, i.e., collision with the obstacle, especially when the
task parameter queries are on the boundary of two models.
The GPR can learn only one model; thus, it suffers from the
same problem as the original MDN.

For many tasks, it is often easier to collect failed samples with
an underfitted MDN model instead of requesting additional
human demonstrations. To further improve the MDN perfor-
mance, we introduce a failure cost function that reduces the
occurrence of the same failures for a given task parameter query.

Related Works
DMP is one of the popular approaches to representing robot
motions. A DMP consists of a damped spring system and a
nonlinear force term ()f x such that

	
() () () ,

()
()

()

,

,
w

v K g y Dv g y f x x
y

f x
x

x

v

i
i

N

i
i

N

i

0

1

1

}

}

x

x

- - + -

=

=

=

=

=

o

o

/

/
�

(1)

where v and y are the scaled velocity and position of the tra-
jectory point, respectively; ,g ,y0 and ,x as the hyperparame-
ters, represent the goal, start, and temporal factor separately;
and x is the canonical variable, which goes from 1 to 0. The
force term ()f x is a linear regression model with N squared
exponential kernels (SEKs) () (()),expx h x ci i i

2} = - -
where ,hi and ci are fixed constants. (, ,)w w wN

T
1 f= is a

vector representing the DMP parameters.
DMP generalization means replacing w with a parameter-

ized function ().q~ As mentioned previously, this function
can be represented and learned with different approaches,
such as GPR [8], LWR [6], [7], support-vector regression
(SVR) [10], or deep neural networks [9]. To train those mod-
els, the training data set is collected as M pairs of task parame-
ter queries and MP parameters (,) ,q wi i i

M
1=" , where the ith

MP parameter w i is learned from the ith demonstration and
corresponds to the ith task parameter .qi

Those methods require two parameterized functions, ()f x
and ().q~ The output of ()q~ is the parameter w of ();f x
hence, they are called two-step methods. In [11], Stulp et al.
proposed combining two functions into one single function

(,),qf x which was learned with LWR or GPR and extended
to the GMM in [12]. Since these methods use only one single
function, they are called one-step methods, and they are more
compact than the two-step methods.

The idea of the TP-GMM, suggested in [5], is to observe
human demonstrations from multiple perspectives (local
frames). A global GMM represents the trajectory points in a
global frame and maximizes the likelihood of demonstra-
tions from different perspectives. With the transformation of
the local frames, the TP-GMM achieves a better extrapola-
tion performance than other methods. In [13], Pignat and
Calinon extended the TP-GMM and learned the sensory
data together with the motion trajectories. As mentioned
before, however, the task parameters considered by the TP-
GMM are limited.

The ProMP uses a linear regression model with kernel
functions ()$} to directly represent the motion trajectory

() () wy x x .T}= In [4], Parachos et al. assumed that w follows
a Gaussian distribution. In [14], the Gaussian distribution was
extended to a GMM. For human–robot interactions, the
ProMP parameter ,w w wo c=^ h" , is separated to encode
both human ()wo and robot motions ().wc With the condi-
tional probability, the robot MP parameter wc is inferred
based on the human MP parameter .wo Both methods in [13]
and [14] learn a generative model and use the conditional
probability to infer unknown variables based on known ones.

In this article, we use a via-points MP (VMP), an MP for-
mulation presented in our previous work [15] and described
in the “The VMP” section. Instead of learning a generative
model, we learn an MDN to directly map from a task param-
eter q to a GMM of the MP parameters w. As a GPR or SVR
for DMP, our technique belongs to the two-step methods.

MP Generalization

The VMP
We use the VMP (see [15]) to represent robot motions, which
consists of an elementary trajectory h and shape modulation f
as follows:

	 () () () () () ,wy x h x f x g x y g x T
0 }= + = + - + � (2)

where x is the canonical variable, which goes from 1 to 0 with
a linear-decay canonical system. The elementary trajectory
takes the form of a polynomial; here, it is a first-order polyno-
mial, i.e., a line connecting the start and the goal. By changing
y0 and g as the hyperparameters, the VMP adapts to the new
start and goal. As the nonlinear force term in DMP, the shape
modulation is a linear regression model with the SEKs .} w is
the parameter vector of the VMP.

25JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

In [15], we assumed that the parameter (,)w N+ n R fol-
lows a Gaussian distribution and that the maximum likeli-
hood estimation of n is the empirical mean of all ws, each of
which corresponds to one demonstration and is obtained by
solving a least-square problem.

Here, we extend the Gaussian distribution to a GMM and
consider task parameter queries q as inputs:

	 () ((), ()) ,w q q qN
k

K

k k
z

1

k+ n~ R=
=

% � (3)

where zk is an element of a K-dimensional binary variable
(, , ,) ,z z z zK

T
1 2 f= with only one particular element being

equal to one and all other elements being zero. The probabili-
ty of the kth element of z being equal to one is

() ().qp z 1k kr= =

The probability of the result w given the task parameter q is

	 (|) () ((), ())w q q q qp Nk
k

K

k k
1

nr R=
=

/ .� (4)

We assume that the number of the mixture components K
of the GMM is known and that (), (), ()k k k k

K
1$ $ $nr R =" , are

the functions to be learned.
The advantage of the VMP over DMP is its ability to

adapt to intermediate via points by modifying the elementa-
ry trajectory h(x) (see [15]). Apart from the via-points
adaptation, extending the force term
in a DMP to a GMM makes VMPs
and DMPs exchangeable. Since the
ProMP lacks the elementary trajecto-
ry and has no hyperparameters y0
and ,g the ProMP parameter func-
tion ()w q~= determines both the
motion trajectory shape and its start
and goal. In many tasks, the start and
goal are a part of the task parameter
queries. With a VMP, we reduce the
learning complexity, because one
requirement of the task, i.e., reaching
a new goal, is directly satisfied by the
hyperparameter g.

For example, in Figure 2, in con-
trast to a VMP, not all of the trajecto-
ries generated by the ProMP reach the
goal if we use the entropy MDN and
select the most probable parameter w
from the output distribution. In some
tasks, however, the goal is not a part of
the task parameters and is necessary
for the task execution. For these tasks,
the VMP requires learning an addi-
tional mapping from the task parame-
ters to the goals, whereas the ProMP
provides a more compact solution.
As shown in Figure 2, the entropy

MDN suggested for VMP generalization also works for
ProMP generalization.

In general, for MP generalization, M human demon-
strations for different task parameter queries are collected.
The purpose is to learn an MDN ()][$~ mapping from the
task parameter query q to the parameter distribution of the
MP parameter w. For MDN, we have an assumption that
the number of mixture components K of the output GMM
is known.

The MDN
Using neural networks to learn the functions in (4) results in
an MDN (see [16]). The mixing coefficients (),k $r mean

(),$n and covariance ()$R are represented by the network
branches, as shown in Figure 3. These network branches

(a) (b)

Figure 2. A comparison of (a) a ProMP and (b) a VMP. The
dashed curves are demonstrations, and the solid curves are
generated trajectories for different goals. The red circles indicate
the starts and goals missed by the ProMP.

MP
Generalization

MDN

T
as

k
P

ar
am

et
er

s

M
P

 P
ar

am
et

er
K

K

π

{µk}
K
k = 1

{Σk}
K
k = 1

π

(a) (c)

(b)

Figure 3. The MDN proposed for MP generalization. As an example, (a) with the target
as the task parameter indicated by the red circle, the system (b) generates an MP
parameter corresponding to (c) the motion of throwing the ball (see the red curves) on
the target.

26 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

share a common network part (the blue box), which allows
extracting common latent features.

We assume that the covariance is a diagonal matrix .R
According to [17], a GMM with a diagonal variance matrix
approximates any given density function to arbitrary accura-
cy. The diagonal covariance output has the same dimension as
the mean output. For K components, an MDN has K pairs of
mean and variance outputs. Each pair corresponds to a mixture
component of a GMM.

The dimension of the MP parameters, as the output of the
MDN, determines the accuracy of the trajectory representa-
tion. With more SEKs, the MP represents the motion in a
more accurate way. In the following experiments, we use
10 SEKs for each dimension. As an example, the output mean
vector has 30 dimensions for a 3D motion trajectory, and there
are a total of K K 30 2# #+ values in the MDN output.

For one single demonstration, we calculate w by solving
the least-square problem for (2). With M demonstrations,
a training data set (,)q wi i i

M
1=" , is collected. The NLL is

written as

() () ,; (; (;), (;))log q w q ql N
i

M

k i i i i
k

K

1 1
NLL nrH H H HR= -

= =

e o/ /
� (5)
where H is the parameters of the network, and

()
,; ,

() | |
expw

w
2
1

2
1 ·N

,

, ,
/ /i i i d

i i j

i j i j

j

d

2

2

1
2 1 2n

v

n

r
R

R
-

-
=

=

^ eh o/
� (6)

where d is the dimension of the output, (;),qi in n H= and
(;).qi iR R H= A stochastic gradient descent method is used

to minimize the NLL.
According to previous works [18], [19], training an MDN

with the NLL suffers from mode collapse. In [18], to avoid
the mode collapse and reduce learning complexity, Hjorth
and Nabney suggest fixing the mean and variance on a grid
defined in the output space and training only the model that
outputs the mixing coefficients to reduce the NLL. If there
are enough components regularly distributed in the output
space, fixed means and variances do not reduce the represen-
tation capability. However, for large-dimensional outputs,
such as MP parameters, this method leads to a sizeable
intractable grid.

In [19], Makansi et al. used an MDN to predict the dis-
tribution of future car positions based on a current car
position. To avoid mode collapse, they separated the MDN
into two parts: a sampling and inference network. The sam-
pling network takes the current car position as input and
outputs a fixed number of hypotheses for future car posi-
tions. The authors trained the sampling network to place
hypotheses to cover all of the observed outputs diversely.
Based on these hypotheses, an inference network infers the
parameters of the GMM. The MDN is a combination of the
sampling and inference networks. The proposed method
avoids mode collapse for the car-position prediction.

However, for a high-dimensional output, such as MP
parameters, the sampling network requires a large output
dimension. Hence, it is difficult to apply both methods to
our problem.

Entropy Costs for the MDN
Before introducing the entropy cost function, we first inspect
the reasons that mode and model collapses occur when learn-
ing an MDN from demonstrations. Mode collapse occurs if
the demonstrations associated with different modes for a task
parameter query are imbalanced. For example, in Figure 1(a),
only a small number of demonstrations take the path from
the right side. By maximizing the likelihood of all demonstra-
tions, the MDN tends to output a small mixing coefficient for
the mixture component, which corresponds to the mode with
fewer associated training data. In theory, it is correct to associ-
ate a small probability with an event that rarely happens in the
observations. However, the reasons for the imbalance of the
demonstrations in different modes, such as the habit of the
demonstrator, can be meaningless for correct motion genera-
tion. It is often the case that we cannot collect enough demon-
strations to cover all modes. Even if there are only a few
demonstrations, where the human accomplishes the task with
particular types of motions, the robot should learn these
motions to increase motion diversity.

Model collapse occurs in particular when relatively few
demonstrations are available. Several mixture components of
the MDN, which are represented by neural networks, are pow-
erful enough to overfit all demonstrations. After training of the
MDN, instead of all K mixture components, it uses only a sub-
set of them, which corresponds to the local minima of the
NLL and results in poor performance of the MDN for some
task parameter queries. As shown in Figure 1(b), one of the
two models disappears with the original MDN, and the MDN
performs similarly to the GPR. Compared to mode collapse,
model collapse is more severe because it can lead to the failure
of task execution.

To reduce the occurrence of mode and model collapses,
we introduce the negative model entropy cost function
as follows:

	 () (| ;) (| ;),logD Dl p m k p m k
k

K

1
model H H H= = =

=

/ � (7)

where

	 (| ;) (;) (),D q qp m k pk
i

M

i i
1
rH H= =

=

/ � (8)

where m is the component index, and () .qp Mi
1? - By mini-

mizing the cost, we increase the uncertainty of the model
labels when considering all demonstrations D. A high uncer-
tainty of the model labels is equivalent to either equally distrib-
uted mixing coefficients for each task parameter query or
equally distributed demonstrations to different models. In the
former case, if all mixing coefficients for one specific task

27JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

parameter query are almost equal and close to / ,K1 each mode
has the same probability of being selected to generate motions.
Hence, the mode collapse does not occur. In the latter case, if
each model is associated with some demonstrations, the corre-
sponding mixture component, i.e., the network branch, is well
trained. Hence, model collapse does not occur.

The objective function for training the entropy MDN is a
weighted sum of the NLL and the entropy cost function:
w l w l .NLL NLL model model+ In the following experiments, the
weights are empirically determined: ,w 1NLL = .w 50model =

Improving the MDN With Failures
In many applications, the failed samples are easily collected
with an underfitted MDN model. To reduce the occurrence of
these failed MP parameters for similar task parameter queries,
we introduce the failure cost function as follows:

	 () (;) ,(;) ,wlog ql Nk
k

K

i i i
i

M

11
neg negnrH H R=)

==

)

e o// � (9)

where the normal distribution has the same form as (6), but
I.neg negvR = By minimizing this cost, the output mean vec-

tor in for a specific task parameter qi is kept away from the
failed MP parameters .w i i

M
1

)
=

)" ,
If negv is too small, the failure cost does not affect the

results; on the other hand, a negv that is too large can result in
trajectories that are significantly different from demonstra-
tions. Here, we determined negv empirically with the smallest
variance of all MP parameter components.

To train an MDN with the failure cost, we prepare an eval-
uation data set. After a certain number of training steps, we
run the MDN on this evaluation data set and collect the failed
samples in a failures data set { }w .i i

M
1

)
=
)

 In the next training
steps, we calculate the failure cost function based on the fail-
ures data set. To avoid increasing the computational cost, we
use a fixed data set size M) and remove the earliest failed
samples when new samples are collected.

To evaluate the MP generalization methods, we check
whether the generated MPs accomplish the tasks with differ-
ent task parameters. In learning from demonstrations, a suc-
cessful task execution means that the generated motions are
similar to the demonstrations and can accomplish the task
with specific task parameters. In the proposed method, we
meet this requirement by training the MDN with the NLL,
which is related to the similarity between the collected and
generated MP parameters. To check whether the trained
model meets the latter requirement, we evaluate it with the
success rate of task execution.

For task execution, we can only execute one motion after
another. Hence, the MP parameter for the task must be deter-
mined based on the MDN output distribution in a subse-
quent step.

Generating Motion With the MDN
The purpose is to generate single motions for some task
parameter queries. In the following experiments, we consider
two strategies: selecting the most probable mode or choosing

the best one from multiple samples. The most probable mode
is the output mean vector of the mixture component that has
the most significant mixing coefficient. If the Gaussian com-
ponents of the output GMM have separated means, the most
probable mode corresponds to the mode of the GMM.

For one specific task parameter query q, the MDN outputs
K Gaussian mixture components with their mixing coeffi-
cients .k k

K
1r =" , The K modes of these Gaussian mixture com-

ponents correspond to the K most probable motions of
different types. However, not all of these K modes can accom-
plish the task. The most significant mixing coefficient indi-
cates the mode that most likely succeeds. With this strategy,
the MDN serves as a deterministic model; hence, we can
compare it with previous deterministic methods. Selecting the
most probable mode is the simplest way to generate motion
from the MDN output. Moreover, this strategy works quite
well in many tasks.

However, with the most probable mode, we ignore the
information provided by the output variance R of the
MDN. Each of its diagonal elements indicates how various
the generated trajectories can be at the corresponding time
for successful task execution. When we draw samples from
the output GMM for a specific task parameter query, the
variance matrix ensures that the samples have a high prob-
ability of success. In some tasks, the most probable mode
does not work very well, such as in the experiment
described in the “The Hit-the-Ball Experiment in MuJo-
Co” section. To improve the performance, we draw several
MP parameters from the output distribution and execute
one after another for the task until success. In this case, the
success rate is also dependent on the number of samples.

Moreover, with the former strategy, the MDN always gen-
erates the same motion for one specific task parameter query.
To demonstrate motion diversity and the fact that the MDN
learns multiple modes, we also must draw multiple samples
from the output distribution (see the “The Throw-the-Ball
Experiment” section).

In the next section, we evaluate the proposed method with
four experiments. In the first two investigations, we select the
most probable mode and compare our method with previous
deterministic methods. In the other two, we draw multiple
samples from the MDN output to either improve the perfor-
mance or show the motion diversity.

Experiments and Evaluations

Fitting Polynomials
In this experiment, we consider a fifth-order polynomial

/() .y x a xk k
k

1
5= = The purpose is to learn a mapping from

the coefficients ak to the MP parameter w in (2). The error is
the distance between the true fifth-order polynomials and the
generated trajectories by the output VMP parameters. We
evaluate different methods separately for the inputs with one
dimension a5 to all dimensions (, , ,) .a a a T

5 4 0f Figure 4
shows the results for 60 experiments. In each experiment,
30 random coefficients are for training, and 20 are for testing.

28 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

The one-step approaches presented in [11] with SVR and
GPR are denoted as “−1,” while two-step methods are indicat-
ed with “−2.” Notice that the dot-product kernel is the perfect
assumption for this task because the polynomial value is,
indeed, a dot product of the coefficients and bases. However,
GPR-1 with dot-product kernels is worse than other methods
when learning the mapping from (,)a a T

5 4 to w; this results
because the time-dependent variable x is a part of the input,
which loses the advantage of the correct dot-product assump-
tion. In contrast, the two-step method GPR-2 with dot-prod-
uct kernels perfectly reproduces the polynomial. On the other
hand, however, SVR-1 performs better than SVR-2.

For the MDN, we select the most probable VMP parame-
ter as the output. Except for the GPR with dot-product ker-
nels, the MDN outperforms all other methods.

Random-Obstacles Avoidance
To show whether the methods can scale to a more com-
plex task than the one shown in Figure 1, we randomly
placed three obstacles in 2D space and asked for the colli-
sion-free trajectories with random starts and goals. To
collect demonstrations, a person drew curves connecting
random starts and goals without collisions with three ran-
domly generated 2D balls on a tablet. Without any
instructions, the human demonstrations show multiple
modes and models.

The success of the task execution requires that the generat-
ed trajectory connects the start and goal without any collision

with randomly placed obstacles. Due to the task complexity
and existence of multiple modes and models, previous
approaches cannot achieve acceptable results. With a data set
with 100 demonstrations, the TP-GMM has a success rate of
only approximately 45% with five local frames (three for the
obstacles and two for the start and goal). Both one-step and
two-step methods with SVR and GPR perform worse, with a
success rate of less than 30%.

For the MDN, we assume three mixture components:
.K 3= To extract the latent feature (see the blue box in Fig-

ure 3), we introduce three separate network branches for
three obstacles. Each branch takes the position of one obstacle
and the start and goal of the trajectory as the input and out-
puts a hidden feature vector. The three hidden feature vectors
are then concatenated for the rest of the MDN. The entire
MDN is trained in an end-to-end manner.

During testing, we select the most probable mode, as men-
tioned previously. For each number of training data, 30 exper-
iments are conducted for 30 different training data sets
randomly chosen from the collected demonstrations. To uti-
lize the failure cost function, after each 100 training steps, the
MDN is evaluated on an evaluation data set to produce failed
samples. To avoid increasing data, we consider only the most
recent 3,000 failed samples.

As shown in Figure 5, with 100 demonstrations, the MDN
with both the entropy and failure cost functions
()l l lNLL model neg+ + achieves a success rate of approximately
82%. The performance is improved further to 85% with 300
demonstrations. With 100 demonstrations, the entropy MDN
with the failure cost function ()l l lNLL model neg+ + achieves the
best result, and the entropy MDN ()l lNLL model+ is better than
the original MDN ().lNLL Their difference decreases with an
increasing number of demonstrations.

In Figure 6 [16], testing samples are shown. The colorized
solid curves are generated by the most probable mode (MP
parameter) given by the MDN, and the transparent dashed
curves correspond to the other two modes, which are not
selected by the MDN, with relatively small output mixing coef-
ficients. Three different colors indicate three different modes:
the green curves bend toward the top, red curves bend toward
the bottom, and blue curves connect the start and goal directly.
As can be seen, the MDN accomplishes the task with two steps.
One step is to separately update each mixture component
branch to increase the success rate of their modes. The other
step is to adjust the mixing-coefficient output to select the
mode that has the highest chance of accomplishing the task.

The Hit-the-Ball Experiment in MuJoCo
In this experiment, the robot hits the ball with its fist. After
being hit, the ball slides on the table and stops at some loca-
tions. The final location of the ball on the table is the task
parameter query. The purpose is to generate an appropriate
robot motion to hit the ball and let the ball stop at a specific
location. We conducted this experiment in the MuJoCo
simulator [20] with the model of the humanoid robot
ARMAR-6 [21].

5
4
3
2
1
0

E
rr

or

SVR-1

GPR-1
 (S

EK)

GPR-1
 (d

p)

SVR-2

GPR-2
 (S

EK)

GPR-2
 (d

p)
M

DN

5
4
3
2
1
0

E
rr

or

SVR-1

GPR-1
 (S

EK)

GPR-1
 (d

p)

SVR-2

GPR-2
 (S

EK)

GPR-2
 (d

p)
M

DN

Learning Mapping for (a5, a4)T

Learning Mapping for (a5, a4, …, a0)T

(a)

(b)

Figure 4. The models learned to fit a fifth-order polynomial,
showing the results for learning a mapping from (a) a part of the
coefficients to the MP parameters and (b) all coefficients to the
MP parameters. dp: dot-product kernel.

29JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

For the demonstrations, we used a random trajectory gen-
erator based on a fifth-order polynomial with which the posi-
tion and velocity at the end of the trajectory can be specified.
The initial ball location on the table is fixed. The end veloci-
ties of the trajectories are randomly sampled from a uniform
distribution. With different hitting velocities, the ball stops at
different locations. We collected the final locations of the ball
q and MP parameters w in a training data set.

As shown in Figure 7, the ball can bounce off the borders
of the table, which realizes multiple modes for one specific
target location in the collected demonstrations. The table
measures ,260 200 cm# and the ball has a radius of 5 cm.
Successful task execution means that the ball is no more than
10 cm from the target location.

We use K 3= mixture components and train the MDN
with 50 random demonstrations and test it on 100 new ball
locations. When selecting the most probable mode, we get an
average success rate of approximately 15%. This poor perfor-
mance might be because the task requires an accurate trajecto-
ry. With a randomly small perturbation of the MP parameters
that correspond to the original 50 demonstrations, the success
rate can drop rapidly. As mentioned previously to improve the
task performance, we draw several samples from the output
distribution. In this case, a successful MP generalization means
that there exists at least one of these samples that leads to

0.84

0.8

0.76

0.72

0.85

0.84

0.83

S
uc

ce
ss

 R
at

e
S

uc
ce

ss
 R

at
e

1,500 3,000 4,500 6,000

1,500 3,000 4,500 6,000
Epochs

(b)

Epochs
(a)

Learning From 100 Demonstrations

Learning From 300 Demonstrations

lNLL
lNLL + lmodel

lNLL + lmodel + lneg

Figure 5. A comparison between the original and entropy MDNs,
showing the results with (a) 100 and (b) 300 demonstrations.

Figure 6. Three obstacles are randomly placed in the 2D space. The solid curves correspond to the most probable mode, and the
dashed curves are generated by the two other modes that are not selected by the MDN.

30 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

successful task execution. As shown in Figure 8, increasing the
number of samples improves the success rate.

In this specific task, the number of samples helps for two
reasons. One trivial reason is the setup of the task, which
allows successful task executions by chance: the VMP guaran-
tees that the robot hits the ball, and the table borders limit the
final ball locations. The other reason is that the MDN learns
the correct distribution, which gives a high probability to the
correct MP parameter, which is, unfortunately, not precisely
the mode. Sampling from the correct distribution has a great-
er chance of finding the correct solution than directly select-
ing the most probable mode.

To prove that the latter exists with the MDN for this task,
we consider a uniform distribution of the MP parameters as
the baseline, whose interval is determined by the minimal
and maximal components of the MP parameters, which cor-
respond to the 50 demonstrations. In addition to the baseline,
we construct Gaussian distributions by considering the GPR
and SVR outputs as mean vectors and with a fixed-variance
matrix (.).I0 01R=

As shown in Figure 8, the MDN outperforms the others
for all sample numbers. For the baseline, it coincides with the
intuition that its success rate is almost proportional to the
sample number because it does not learn from the demon-
strations. GPR and SVR have better performances than the
baseline because they draw the samples close to their output
MP parameters. However, the samples drawn around their
outputs are totally by chance because of the fixed-variance
matrix. In contrast, the MDN learns a relatively correct distri-
bution output. Hence, it already achieves a high success rate
with a smaller sample number.

The Throw-the-Ball Experiment
To further evaluate our methods, we let the humanoid robot
ARMAR-6 throw a ball at a specific target. The arms of
ARMAR-6 have eight degrees of freedom (DoF) each. To
simplify the task, we used only four of them without loss of
generality (see the 4 DoF in Figure 9). The demonstrations
were conducted by a human using kinesthetic teaching. After
learning the corresponding MP parameter for each

(a)

(b)

Figure 7. In the hit-the-ball experiment, the desired final ball location is the input of the MDN, which is denoted by a transparent box. (a)
The robot hits the ball from its right side, and the ball bounces off the border and stops at the target. (b) The robot hits the ball directly
toward the target.

31JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

demonstration, we speed up the motion to 1 s and set a fixed
joint goal. The robot hand always opens at 0.55 s. Then, we
record the location of the ball when it drops to the ground. By
fixing the goals and speed of the motions, these hit-ground
locations are dependent only on the shapes of the joint trajec-
tories. In the experiment, we let the robot face the wall, and it
can bounce the ball off the wall to the target.

We let the robot throw 50 times with different human
demonstrations and randomly split the collected data into
30 for training and 20 for testing. We train an MDN ()K 2=
on 30 demonstrations. For the testing, we use only the hit-
ground locations of the other 20 demonstrations as task
parameter queries, which guarantees that all of the hit-ground
locations are reachable. During the testing, we place a plate on
the ground to indicate the current query. Successful task exe-
cution is to throw the ball onto the plate either directly or by
bouncing it off the wall. In the experiment, with 10 samples,
the robot missed only two out of 20 target hit-ground loca-
tions. In Figure 9, for one specific task parameter query, we
show how two of 10 MP parameters, which correspond to
two different modes, result in different paths of the ball.

Discussion and Conclusions
This work addressed the problem of MP generalization to dif-
ferent tasks and was concerned with two aspects. First, to take
the multiple modes and models of human demonstrations
into account, we propose using an MDN for the mapping
from the task parameter query to the MP parameter distribu-
tion. The experiments show that the MDN-based approach
outperforms techniques used in previous works. Second, to
further reduce the occurrence of mode and model collapse
during training of the MDN, we propose the entropy cost
function. Moreover, for some tasks, we introduce the failure

cost to improve the performance of the MDN further. The
comparison of different MDNs shows that the new cost func-
tions perform better than the original one, especially when
the set of demonstrations is relatively small.

What we did not consider here is the extrapolation of the
method to areas outside the demonstration range. Since the
MDN is learned fully from demonstrations, its extrapolation
capability is limited. Current methods dealing with the
extrapolation problem focus only on a specific set of task
parameters, such as the TP-GMM and via-points adaptation
of the VMP, described in [5] or our previous work [15]. The
extrapolation of MP generalization to arbitrary task parame-
ter queries is still unsolved.

Recent approaches, such as those in [13] and [14], also
take task-relevant sensory inputs into account and learn them
together with the robot motions. For human–robot

1

0.8

0.6

0.4

0.2

0

S
uc

ce
ss

 R
at

e

10 30 50 70
Number of Samples

Baseline GPR ± Σ
SVR ± Σ MDN

Figure 8. The results of the hit-the-ball experiment show that the
MDN (red) outperforms the baseline (gray), GPR !R (blue), and
SVR !R (green).

(b)

(c)

(a)

(1) (2) (3)

(1) (2) (3) (4)

Mode 1 Mode 1 Mode 1

Mode 2Mode 2Mode 2Mode 2

Figure 9. (a) There are 4 DoF used for throwing the ball. (b) The robot throws the ball directly to the target. (c) The robot bounces the
ball to the target off the wall.

32 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

interactions, the robot motion is generated based on the
observed human activity. With the human activity considered
as a task parameter query, these methods also learn a map-
ping from the task to MP parameters. However, unlike the
MDN, which directly learns this mapping, these approaches
learn a generative model. In the future, we will explore the use
of our proposed method for human–robot interaction tasks
and compare these methods.

For the sampling strategy, selecting the most probable
mode already solves many tasks. However, for some other
tasks, the suggested method needs multiple samples to achieve
better performance, such as that described in the “The Hit-
the-Ball Experiment in MuJoCo” section. This fact requires
multiple robot trials for each task parameter query. To solve
this problem, we consider either using reinforcement learning
to refine the mean vector given by the trained MDN with a
small number of trials, as in [22], or training a discriminator
that can predict success or failure based on both task and
MP parameters.

Acknowledgments
The research leading to these results received funding from the
German Federal Ministry of Education and Research under
the project Organic Machine Learning (01IS18040A) and the
European Union Horizon 2020 Research and Innovation pro-
gram under grant agreement 643950 (SecondHands). We
would like to thank Jonas Rothfuss for the fruitful discussions.

References
[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Robot Programming
by Demonstration. New York: Springer-Verlag, 2008, pp. 1371–1394.
[2] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi, “Convergent force fields
organized in the frog’s spinal cord,” J. Neurosci., Official J. Soc. Neurosci.,
vol. 13, no. 2, pp. 467–491, 1993. doi: 10.1523/JNEUROSCI.13-02-00467.1993.
[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, Feb. 2013. doi:
10.1162/NECO_a_00393.
[4] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Proc. Advances Neural Information Process-
ing Systems 26, 2013, pp. 2616–2624.
[5] S. Calinon, T. Alizadeh, and D. G. Caldwell, “On improving the
extrapolation capability of task-parameterized movement models,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Nov. 2013, pp. 610–
616. doi: 10.1109/IROS.2013.6696414.
[6] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific generaliza-
tion of discrete and periodic dynamic movement primitives,” IEEE Trans.
Robot., vol. 26, no. 5, pp. 800–815, Oct. 2010. doi: 10.1109/TRO.2010.2065430.
[7] Y. Zhou and T. Asfour, “Task-oriented generalization of dynamic move-
ment primitive,” in Proc. 2017 IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS), 2017, pp. 3202–3209. doi: 10.1109/IROS.2017.8206153.
[8] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion syn-
thesis and adaptation using a trajectory database,” Robot. Auton. Syst.,
vol. 60, no. 10, pp. 1327–1339, 10 2012. doi: 10.1016/j.robot.2012.05.004.
[9] R. Pahic, A. Gams, A. Ude, and J. Morimoto, “Deep encoder-decoder
networks for mapping raw images to dynamic movement primitives,”

in Proc. 2018 IEEE Int. Conf. Robotics and Automation (ICRA), pp. 1–6.
doi: 10.1109/ICRA.2018.8460954.
[10] B. da Silva, G. Konidaris, and A. Barto, “Learning parameterized skills,”
in Proc. 29th Int. Conf. Machine Learning, June 2012, pp. 1443–1450. doi:
10.5555/3042573.3042758.
[11] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in Proc. IEEE-
RAS Int. Conf. Humanoid Robots (Humanoids), Oct. 2013, pp. 417–422.
doi: 10.1109/HUMANOIDS.2013.7030008.
[12] A. Pervez and D. Lee, “Learning task-parameterized dynamic
movement primitives using mixture of GMMs,” Intell. Service Robot.,
vol. 11, no. 1, pp. 61–78, Jan. 2018. doi: 10.1007/s11370-017-0235-8.
[13] E. Pignat and S. Calinon, “Learning adaptive dressing assistance
from human demonstration,” Robot. Auton. Syst., vol. 93, no. C, pp. 61–75,
July 2017. doi: 10.1016/j.robot.2017.03.017.
[14] M. Ewerton, G. Neumann, R. Lioutikov, H. Ben Amor, J. Peters, and
G. Maeda, “Learning multiple collaborative tasks with a mixture of
interaction primitives,” in Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA), May 2015, pp. 1535–1542. doi: 10.1109/ICRA.2015.7139393.
[15] Y. Zhou, J. Gao, and T. Asfour, “Learning via-point movement
primitives with inter- and extrapolation capabilities,” in Proc 2019
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 4301–
4308. doi: 10.1109/IROS40897.2019.8968586.
[16] C. M. Bishop, “Mixture density networks,” Dept. of Computer Science
and Applied Mathematics, Aston Univ., Birmingham, NCRG/94/004, 1994.
[17] G. Mclachlan and K. Basford, Mixture Models: Inference and Applica-
tions to Clustering (Statistics, Textbooks and Monographs Series 84). New
York: Marcel Dekker, 1988.
[18] L. U. Hjorth and I. T. Nabney, “Regularisation of mixture density
networks,” in Proc. 9th Int. Conf. Artificial Neural Networks ICANN 99,
Sept. 1999, vol. 2, pp. 521–526. doi: 10.1049/cp:19991162.
[19] O. Makansi, E. Ilg, Ö. Çiçek, and T. Brox, “Overcoming limitations of mix-
ture density networks: A sampling and fitting framework for multimodal
future prediction,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Rec-
ognition (CVPR), 2019, pp. 7137–7146. doi: 10.1109/CVPR.2019.00731.
[20] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for mod-
el-based control,” in Proc 2012 IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS), pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.
[21] T. Asfour et al., “Armar-6: A collaborative humanoid robot for indus-
trial environments,” in Proc 2018 IEEE/RAS Int. Conf. Humanoid Robots
(Humanoids), pp. 447–454. doi: 10.1109/HUMANOIDS.2018.8624966.
[22] J. Kober and J. Peters, “Reinforcement learning in robotics: A sur-
vey,” in Learning Motor Skills: From Algorithms Robot Experiments.
Cham, Switzerland: Springer-Verlag, 2014, pp. 9–67.

You Zhou, Institute for Anthropomatics and Robotics, Karl-
sruhe Institute of Technology, Germany. E-mail: you.zhou@
kit.edu.

Jianfeng Gao, Institute for Anthropomatics and Robotics, Karl-
sruhe Institute of Technology, Germany. E-mail: jianfeng
.gao@kit.edu.

Tamim Asfour, Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology, Germany. E-mail: asfour@
kit.edu.�

