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R
epresenting robot skills as movement primitives 
(MPs) that can be learned from human demonstration 
and adapted to new tasks and situations is a 
promising approach toward intuitive robot pro -
gramming. To allow such adaptation, mapping 

between task parameters and MP parameters is needed, and 
different approaches have been proposed in the literature to 
learn such mapping. In human demonstrations, however, 
multiple modes and models exist, and these should be taken 
into account when learning these mappings and generalized 
MP representations. 

Here, a challenging problem is mode or model collapse. To 
solve this problem, we propose using a mixture density 

network (MDN) that takes task parameters as input and pro-
vides a Gaussian mixture model (GMM) of the MP parame-
ters. To avoid mode and model collapse during MDN 
training, we introduce an entropy cost to achieve a more bal-
anced association of demonstrations to GMM components. 
Since it is often easier to collect failed examples using an 
underfitted MDN model instead of additional human dem-
onstrations, we introduce a failure cost to reduce the occur-
rence of failures in future executions. We evaluated our 
approach in simulation and real robot experiments and 
showed that the method outperforms previous approaches.

Challenges of Imitation Learning
Over the past decades, robotics researchers have developed 
different approaches that enable robots to learn from humans, 
imitate human behavior, and autonomously improve their 
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movements. As a replacement for manual robot program-
ming, learning from human demonstrations, also called imi-
tation learning, has been proven a promising and powerful 
technique for intuitive robot programming [1]. Inspired by 
neuropsychological findings [2], we use MPs as essential 
building blocks for describing robot motions. In this context, 
the question of how a generalizable and compact representa-
tion of MPs can be learned from demonstrations and adapted 
to new situations and changing task parameters is an active 
research area in robotics.

Different MP representations have been proposed, such as 
dynamic MP (DMP) [3], probabilistic MP (ProMP) [4], and 
task-parameterized GMM (TP-GMM) [5]. These representa-
tions can adapt to task parameters in the space in which we 
define these primitives. For example, a DMP adapts to a new 
start or goal; a ProMP adapts to intermediate via points; and 
TP-GMM adapts to changes of predefined local frames, 
where we describe the demonstrated trajectories. However, 
for different tasks, the parameters could have different 
meanings and are not directly associated with spatial or 
temporal requirements for motion trajectories. For exam-
ple, a robot throwing a ball to a target specified in the Car-
tesian space by executing a motion learned and represented 
in the robot’s joint space should be able to adapt the learned 
motion to new targets. None of these approaches can adapt 
a learned MP to new targets specified in a different space.

For such generalization problems, 
methods have been proposed in 
which task-specific mapping be
tween the task and MP parameters is 
learned through regression models, 
such as locally weighted regression 
(LWR) [6], [7], Gaussian process 
regression (GPR) [8], or deep neural 
networks [9]. However, such meth-
ods cannot deal with the problems of 
mode and model collapse. Given the 
task of reaching a target while avoid-
ing an obstacle (see Figure 1), the 
goal can be reached using two differ-
ent modes, i.e., by trajectories passing 
the obstacle from the left or right. 
Thus, learning an MP for such a task 
should take multiple modes in 
human demonstrations into account 
to increase the diversity of motions, 
which is beneficial in the case of 
changing task constraints. 

Even though there are no multiple 
modes for each individual task param-
eter query in human demonstrations, 
there might exist multiple models for 
different types of task parameters. As 
shown in Figure 1(b), the goals on the 
left and right sides of the obstacle are 
reached separately by two types of 

trajectories, resulting from two different models, to allow the 
obstacle to be passed from the left or right.

In many applications, human demonstrations might use 
multiple modes and models at the same time. To avoid both 
mode and model collapse, we propose learning a mapping 
from the task parameter query q to a GMM of the MP 
parameters w with MDNs. Each mixture component of the 
GMM represents either a mode for one specific task parame-
ter query or a model for multiple task parameter queries. 
However, training an MDN with only the negative log-likeli-
hood (NLL) cost, as is usually done in the original MDN, 
might still lead to mode and model collapse, especially when 
the set of demonstrations is relatively small, as shown in Fig-
ure 1. To further reduce the occurrence of both collapses, we 
introduce an entropy cost function for training the MDN 
(entropy MDN).

Figure 1(a) shows the human demonstrations (dashed 
curves) for obstacle avoidance with an imbalanced distribu-
tion of examples associated with the two different modes as 
well as the results obtained with different approaches for a 
new task parameter query (the green dot). As can be seen, our 
approach (entropy MDN) generates multiple solutions (here, 
five solutions are shown in Figure 1) that cover both demon-
stration modes (blue and green) for the same task parameter 
query. We achieve this result with the entropy cost function, 
which ensures a more balanced probability associated with 

Multiple Modes Multiple Models

Mode Collapse Model Collapse

GPR

Original MDN

Entropy MDN

Demonstrations

(a) (b)

Figure 1. The (a) mode and (b) model collapse issues in the obstacle-avoidance problem 
are solved using the entropy MDNs. The dashed curves denote the demonstrations, and 
the solid curves show the generated trajectories.
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the different modes. The original MDN generates multiple 
solutions, but these solutions (also five) reflect only one mode 
in the human demonstrations since it is associated with a high 
probability for the dominant mode. The GPR generates only 
one single solution that is close to the examples for the domi-
nant mode.

Figure 1(b) shows the demonstrations (blue and green 
dashed curves) associated with two different models and 
the trajectories generated by different approaches (solid 
curves) for several task parameter queries (the colored 
dots). As shown at the bottom of Figure(b), our approach 
(entropy MDN) successfully learns the two models and gen-
erates the solution for the task parameter query correspond-
ingly. We also achieve this result with the entropy cost 
function, which ensures that each model is associated with 
some human demonstrations. The original MDN has a high-
er chance of being stuck in the local minima of the NLL, 
where only one model is trained and overfitted for all task 
parameter queries. This fact leads to the failure of the task 
execution, i.e., collision with the obstacle, especially when the 
task parameter queries are on the boundary of two models. 
The GPR can learn only one model; thus, it suffers from the 
same problem as the original MDN.

For many tasks, it is often easier to collect failed samples with 
an underfitted MDN model instead of requesting additional 
human demonstrations. To further improve the MDN perfor-
mance, we introduce a failure cost function that reduces the 
occurrence of the same failures for a given task parameter query.

Related Works
DMP is one of the popular approaches to representing robot 
motions. A DMP consists of a damped spring system and a 
nonlinear force term ( )f x  such that
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where v and y are the scaled velocity and position of the tra-
jectory point, respectively; ,g  ,y0  and ,x  as the hyperparame-
ters, represent the goal, start, and temporal factor separately; 
and x is the canonical variable, which goes from 1 to 0. The 
force term ( )f x  is a linear regression model with N squared 
exponential kernels (SEKs) ( ) ( ( ) ),expx h x ci i i

2} = - -  
where ,hi  and ci  are fixed constants. ( , , )w w wN

T
1 f=  is a 

vector representing the DMP parameters. 
DMP generalization means replacing w with a parameter-

ized function ( ).q~  As mentioned previously, this function 
can be represented and learned with different approaches, 
such as GPR [8], LWR [6], [7], support-vector regression 
(SVR) [10], or deep neural networks [9]. To train those mod-
els, the training data set is collected as M pairs of task parame-
ter queries and MP parameters ( , ) ,q wi i i

M
1=" ,  where the ith 

MP parameter w i  is learned from the ith demonstration and 
corresponds to the ith task parameter .qi

Those methods require two parameterized functions, ( )f x  
and ( ).q~  The output of ( )q~  is the parameter w of ( );f x  
hence, they are called two-step methods. In [11], Stulp et al. 
proposed combining two functions into one single function 

( , ),qf x  which was learned with LWR or GPR and extended 
to the GMM in [12]. Since these methods use only one single 
function, they are called one-step methods, and they are more 
compact than the two-step methods.

The idea of the TP-GMM, suggested in [5], is to observe 
human demonstrations from multiple perspectives (local 
frames). A global GMM represents the trajectory points in a 
global frame and maximizes the likelihood of demonstra-
tions from different perspectives. With the transformation of 
the local frames, the TP-GMM achieves a better extrapola-
tion performance than other methods. In [13], Pignat and 
Calinon extended the TP-GMM and learned the sensory 
data together with the motion trajectories. As mentioned 
before, however, the task parameters considered by the TP-
GMM are limited.

The ProMP uses a linear regression model with kernel 
functions ( )$}  to directly represent the motion trajectory 

( ) ( ) wy x x .T}=  In [4], Parachos et al. assumed that w follows 
a Gaussian distribution. In [14], the Gaussian distribution was 
extended to a GMM. For human–robot interactions, the 
ProMP parameter ,w w wo c=^ h" ,  is separated to encode 
both human ( )wo  and robot motions ( ).wc  With the condi-
tional probability, the robot MP parameter wc  is inferred 
based on the human MP parameter .wo  Both methods in [13] 
and [14] learn a generative model and use the conditional 
probability to infer unknown variables based on known ones.

In this article, we use a via-points MP (VMP), an MP for-
mulation presented in our previous work [15] and described 
in the “The VMP” section. Instead of learning a generative 
model, we learn an MDN to directly map from a task param-
eter q to a GMM of the MP parameters w. As a GPR or SVR 
for DMP, our technique belongs to the two-step methods.

MP Generalization

The VMP
We use the VMP (see [15]) to represent robot motions, which 
consists of an elementary trajectory h and shape modulation f 
as follows:

	 ( ) ( ) ( ) ( ) ( ) ,wy x h x f x g x y g x T
0 }= + = + - + � (2)

where x is the canonical variable, which goes from 1 to 0 with 
a linear-decay canonical system. The elementary trajectory 
takes the form of a polynomial; here, it is a first-order polyno-
mial, i.e., a line connecting the start and the goal. By changing 
y0  and g as the hyperparameters, the VMP adapts to the new 
start and goal. As the nonlinear force term in DMP, the shape 
modulation is a linear regression model with the SEKs .}  w is 
the parameter vector of the VMP.
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In [15], we assumed that the parameter ( , )w N+ n R  fol-
lows a Gaussian distribution and that the maximum likeli-
hood estimation of n  is the empirical mean of all ws, each of 
which corresponds to one demonstration and is obtained by 
solving a least-square problem.

Here, we extend the Gaussian distribution to a GMM and 
consider task parameter queries q as inputs:

	 ( ) ( ( ), ( )) ,w q q qN
k

K

k k
z

1

k+ n~ R=
=

% � (3)

where zk  is an element of a K-dimensional binary variable 
( , , , ) ,z z z zK

T
1 2 f=  with only one particular element being 

equal to one and all other elements being zero. The probabili-
ty of the kth element of z being equal to one is

( ) ( ).qp z 1k kr= =

The probability of the result w given the task parameter q is

	 ( | ) ( ) ( ( ), ( ))w q q q qp Nk
k

K

k k
1

nr R=
=

/ .� (4)

We assume that the number of the mixture components K 
of the GMM is known and that ( ), ( ), ( )k k k k

K
1$ $ $nr R =" ,  are 

the functions to be learned.
The advantage of the VMP over DMP is its ability to 

adapt to intermediate via points by modifying the elementa-
ry trajectory h(x) (see [15]). Apart from the via-points 
adaptation, extending the force term 
in a DMP to a GMM makes VMPs 
and DMPs exchangeable. Since the 
ProMP lacks the elementary trajecto-
ry and has no hyperparameters y0  
and ,g  the ProMP parameter func-
tion ( )w q~=  determines both the 
motion trajectory shape and its start 
and goal. In many tasks, the start and 
goal are a part of the task parameter 
queries. With a VMP, we reduce the 
learning complexity, because one 
requirement of the task, i.e., reaching 
a new goal, is directly satisfied by the 
hyperparameter g. 

For example, in Figure 2, in con-
trast to a VMP, not all of the trajecto-
ries generated by the ProMP reach the 
goal if we use the entropy MDN and 
select the most probable parameter w 
from the output distribution. In some 
tasks, however, the goal is not a part of 
the task parameters and is necessary 
for the task execution. For these tasks, 
the VMP requires learning an addi-
tional mapping from the task parame-
ters to the goals, whereas the ProMP 
provides a more compact solution. 
As shown in Figure 2, the entropy 

MDN suggested for VMP generalization also works for 
ProMP generalization.

In general, for MP generalization, M human demon-
strations for different task parameter queries are collected. 
The purpose is to learn an MDN ( )][ $~  mapping from the 
task parameter query q to the parameter distribution of the 
MP parameter w. For MDN, we have an assumption that 
the number of mixture components K of the output GMM 
is known.

The MDN
Using neural networks to learn the functions in (4) results in 
an MDN (see [16]). The mixing coefficients ( ),k $r  mean 

( ),$n  and covariance ( )$R  are represented by the network 
branches, as shown in Figure 3. These network branches 

(a) (b)

Figure 2. A comparison of (a) a ProMP and (b) a VMP. The 
dashed curves are demonstrations, and the solid curves are 
generated trajectories for different goals. The red circles indicate 
the starts and goals missed by the ProMP. 
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Figure 3. The MDN proposed for MP generalization. As an example, (a) with the target 
as the task parameter indicated by the red circle, the system (b) generates an MP 
parameter corresponding to (c) the motion of throwing the ball (see the red curves) on 
the target.
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share a common network part (the blue box), which allows 
extracting common latent features.

We assume that the covariance is a diagonal matrix .R  
According to [17], a GMM with a diagonal variance matrix 
approximates any given density function to arbitrary accura-
cy. The diagonal covariance output has the same dimension as 
the mean output. For K components, an MDN has K pairs of 
mean and variance outputs. Each pair corresponds to a mixture 
component of a GMM.

The dimension of the MP parameters, as the output of the 
MDN, determines the accuracy of the trajectory representa-
tion. With more SEKs, the MP represents the motion in a 
more accurate way. In the following experiments, we use 
10 SEKs for each dimension. As an example, the output mean 
vector has 30 dimensions for a 3D motion trajectory, and there 
are a total of K K 30 2# #+  values in the MDN output.

For one single demonstration, we calculate w by solving 
the least-square problem for (2). With M demonstrations, 
a training data set ( , )q wi i i

M
1=" ,  is collected. The NLL is 

written as

( ) ( ) ,; ( ; ( ; ), ( ; ))log q w q ql N
i

M

k i i i i
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where d is the dimension of the output, ( ; ),qi in n H=  and 
( ; ).qi iR R H=  A stochastic gradient descent method is used 

to minimize the NLL.
According to previous works [18], [19], training an MDN 

with the NLL suffers from mode collapse. In [18], to avoid 
the mode collapse and reduce learning complexity, Hjorth 
and Nabney suggest fixing the mean and variance on a grid 
defined in the output space and training only the model that 
outputs the mixing coefficients to reduce the NLL. If there 
are enough components regularly distributed in the output 
space, fixed means and variances do not reduce the represen-
tation capability. However, for large-dimensional outputs, 
such as MP parameters, this method leads to a sizeable 
intractable grid.

In [19], Makansi et al. used an MDN to predict the dis-
tribution of future car positions based on a current car 
position. To avoid mode collapse, they separated the MDN 
into two parts: a sampling and inference network. The sam-
pling network takes the current car position as input and 
outputs a fixed number of hypotheses for future car posi-
tions. The authors trained the sampling network to place 
hypotheses to cover all of the observed outputs diversely. 
Based on these hypotheses, an inference network infers the 
parameters of the GMM. The MDN is a combination of the 
sampling and inference networks. The proposed method 
avoids mode collapse for the car-position prediction. 

However, for a high-dimensional output, such as MP 
parameters, the sampling network requires a large output 
dimension. Hence, it is difficult to apply both methods to 
our problem.

Entropy Costs for the MDN
Before introducing the entropy cost function, we first inspect 
the reasons that mode and model collapses occur when learn-
ing an MDN from demonstrations. Mode collapse occurs if 
the demonstrations associated with different modes for a task 
parameter query are imbalanced. For example, in Figure 1(a), 
only a small number of demonstrations take the path from 
the right side. By maximizing the likelihood of all demonstra-
tions, the MDN tends to output a small mixing coefficient for 
the mixture component, which corresponds to the mode with 
fewer associated training data. In theory, it is correct to associ-
ate a small probability with an event that rarely happens in the 
observations. However, the reasons for the imbalance of the 
demonstrations in different modes, such as the habit of the 
demonstrator, can be meaningless for correct motion genera-
tion. It is often the case that we cannot collect enough demon-
strations to cover all modes. Even if there are only a few 
demonstrations, where the human accomplishes the task with 
particular types of motions, the robot should learn these 
motions to increase motion diversity.

Model collapse occurs in particular when relatively few 
demonstrations are available. Several mixture components of 
the MDN, which are represented by neural networks, are pow-
erful enough to overfit all demonstrations. After training of the 
MDN, instead of all K mixture components, it uses only a sub-
set of them, which corresponds to the local minima of the 
NLL and results in poor performance of the MDN for some 
task parameter queries. As shown in Figure 1(b), one of the 
two models disappears with the original MDN, and the MDN 
performs similarly to the GPR. Compared to mode collapse, 
model collapse is more severe because it can lead to the failure 
of task execution.

To reduce the occurrence of mode and model collapses, 
we introduce the negative model entropy cost function 
as follows:

	 ( ) ( | ; ) ( | ; ),logD Dl p m k p m k
k

K

1
model H H H= = =

=

/ � (7)

where

	 ( | ; ) ( ; ) ( ),D q qp m k pk
i

M

i i
1
rH H= =

=

/ � (8)

where m is the component index, and ( ) .qp Mi
1? -  By mini-

mizing the cost, we increase the uncertainty of the model 
labels when considering all demonstrations D. A high uncer-
tainty of the model labels is equivalent to either equally distrib-
uted mixing coefficients for each task parameter query or 
equally distributed demonstrations to different models. In the 
former case, if all mixing coefficients for one specific task 
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parameter query are almost equal and close to / ,K1  each mode 
has the same probability of being selected to generate motions. 
Hence, the mode collapse does not occur. In the latter case, if 
each model is associated with some demonstrations, the corre-
sponding mixture component, i.e., the network branch, is well 
trained. Hence, model collapse does not occur.

The objective function for training the entropy MDN is a 
weighted sum of the NLL and the entropy cost function: 
w l w l .NLL NLL model model+  In the following experiments, the 
weights are empirically determined: ,w 1NLL =  .w 50model =

Improving the MDN With Failures
In many applications, the failed samples are easily collected 
with an underfitted MDN model. To reduce the occurrence of 
these failed MP parameters for similar task parameter queries, 
we introduce the failure cost function as follows:

	 ( ) ( ; ) ,( ; ) ,wlog ql Nk
k

K

i i i
i

M

11
neg negnrH H R= )

==

)

e o// � (9)

where the normal distribution has the same form as (6), but 
I.neg negvR =  By minimizing this cost, the output mean vec-

tor in  for a specific task parameter qi  is kept away from the 
failed MP parameters .w i i

M
1

)
=

)" ,
If negv  is too small, the failure cost does not affect the 

results; on the other hand, a negv  that is too large can result in 
trajectories that are significantly different from demonstra-
tions. Here, we determined negv  empirically with the smallest 
variance of all MP parameter components.

To train an MDN with the failure cost, we prepare an eval-
uation data set. After a certain number of training steps, we 
run the MDN on this evaluation data set and collect the failed 
samples in a failures data set { }w .i i

M
1

)
=
)

 In the next training 
steps, we calculate the failure cost function based on the fail-
ures data set. To avoid increasing the computational cost, we 
use a fixed data set size M)  and remove the earliest failed 
samples when new samples are collected.

To evaluate the MP generalization methods, we check 
whether the generated MPs accomplish the tasks with differ-
ent task parameters. In learning from demonstrations, a suc-
cessful task execution means that the generated motions are 
similar to the demonstrations and can accomplish the task 
with specific task parameters. In the proposed method, we 
meet this requirement by training the MDN with the NLL, 
which is related to the similarity between the collected and 
generated MP parameters. To check whether the trained 
model meets the latter requirement, we evaluate it with the 
success rate of task execution.

For task execution, we can only execute one motion after 
another. Hence, the MP parameter for the task must be deter-
mined based on the MDN output distribution in a subse-
quent step.

Generating Motion With the MDN
The purpose is to generate single motions for some task 
parameter queries. In the following experiments, we consider 
two strategies: selecting the most probable mode or choosing 

the best one from multiple samples. The most probable mode 
is the output mean vector of the mixture component that has 
the most significant mixing coefficient. If the Gaussian com-
ponents of the output GMM have separated means, the most 
probable mode corresponds to the mode of the GMM.

For one specific task parameter query q, the MDN outputs 
K Gaussian mixture components with their mixing coeffi-
cients .k k

K
1r =" ,  The K modes of these Gaussian mixture com-

ponents correspond to the K most probable motions of 
different types. However, not all of these K modes can accom-
plish the task. The most significant mixing coefficient indi-
cates the mode that most likely succeeds. With this strategy, 
the MDN serves as a deterministic model; hence, we can 
compare it with previous deterministic methods. Selecting the 
most probable mode is the simplest way to generate motion 
from the MDN output. Moreover, this strategy works quite 
well in many tasks.

However, with the most probable mode, we ignore the 
information provided by the output variance R  of the 
MDN. Each of its diagonal elements indicates how various 
the generated trajectories can be at the corresponding time 
for successful task execution. When we draw samples from 
the output GMM for a specific task parameter query, the 
variance matrix ensures that the samples have a high prob-
ability of success. In some tasks, the most probable mode 
does not work very well, such as in the experiment 
described in the “The Hit-the-Ball Experiment in MuJo-
Co” section. To improve the performance, we draw several 
MP parameters from the output distribution and execute 
one after another for the task until success. In this case, the 
success rate is also dependent on the number of samples.

Moreover, with the former strategy, the MDN always gen-
erates the same motion for one specific task parameter query. 
To demonstrate motion diversity and the fact that the MDN 
learns multiple modes, we also must draw multiple samples 
from the output distribution (see the “The Throw-the-Ball 
Experiment” section).

In the next section, we evaluate the proposed method with 
four experiments. In the first two investigations, we select the 
most probable mode and compare our method with previous 
deterministic methods. In the other two, we draw multiple 
samples from the MDN output to either improve the perfor-
mance or show the motion diversity.

Experiments and Evaluations

Fitting Polynomials
In this experiment, we consider a fifth-order polynomial 

/( ) .y x a xk k
k

1
5= =  The purpose is to learn a mapping from 

the coefficients ak  to the MP parameter w in (2). The error is 
the distance between the true fifth-order polynomials and the 
generated trajectories by the output VMP parameters. We 
evaluate different methods separately for the inputs with one 
dimension a5  to all dimensions ( , , , ) .a a a T

5 4 0f  Figure  4 
shows the results for 60 experiments. In each experiment, 
30 random coefficients are for training, and 20 are for testing.
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The one-step approaches presented in [11] with SVR and 
GPR are denoted as “−1,” while two-step methods are indicat-
ed with “−2.” Notice that the dot-product kernel is the perfect 
assumption for this task because the polynomial value is, 
indeed, a dot product of the coefficients and bases. However, 
GPR-1 with dot-product kernels is worse than other methods 
when learning the mapping from ( , )a a T

5 4  to w; this results 
because the time-dependent variable x is a part of the input, 
which loses the advantage of the correct dot-product assump-
tion. In contrast, the two-step method GPR-2 with dot-prod-
uct kernels perfectly reproduces the polynomial. On the other 
hand, however, SVR-1 performs better than SVR-2.

For the MDN, we select the most probable VMP parame-
ter as the output. Except for the GPR with dot-product ker-
nels, the MDN outperforms all other methods.

Random-Obstacles Avoidance
To show whether the methods can scale to a more com-
plex task than the one shown in Figure 1, we randomly 
placed three obstacles in 2D space and asked for the colli-
sion-free trajectories with random starts and goals. To 
collect demonstrations, a person drew curves connecting 
random starts and goals without collisions with three ran-
domly generated 2D balls on a tablet. Without any 
instructions, the human demonstrations show multiple 
modes and models.

The success of the task execution requires that the generat-
ed trajectory connects the start and goal without any collision 

with randomly placed obstacles. Due to the task complexity 
and existence of multiple modes and models, previous 
approaches cannot achieve acceptable results. With a data set 
with 100 demonstrations, the TP-GMM has a success rate of 
only approximately 45% with five local frames (three for the 
obstacles and two for the start and goal). Both one-step and 
two-step methods with SVR and GPR perform worse, with a 
success rate of less than 30%.

For the MDN, we assume three mixture components: 
.K 3=  To extract the latent feature (see the blue box in Fig-

ure 3), we introduce three separate network branches for 
three obstacles. Each branch takes the position of one obstacle 
and the start and goal of the trajectory as the input and out-
puts a hidden feature vector. The three hidden feature vectors 
are then concatenated for the rest of the MDN. The entire 
MDN is trained in an end-to-end manner.

During testing, we select the most probable mode, as men-
tioned previously. For each number of training data, 30 exper-
iments are conducted for 30 different training data sets 
randomly chosen from the collected demonstrations. To uti-
lize the failure cost function, after each 100 training steps, the 
MDN is evaluated on an evaluation data set to produce failed 
samples. To avoid increasing data, we consider only the most 
recent 3,000 failed samples.

As shown in Figure 5, with 100 demonstrations, the MDN 
with both the entropy and failure cost functions 
( )l l lNLL model neg+ +  achieves a success rate of approximately 
82%. The performance is improved further to 85% with 300 
demonstrations. With 100 demonstrations, the entropy MDN 
with the failure cost function ( )l l lNLL model neg+ +  achieves the 
best result, and the entropy MDN ( )l lNLL model+  is better than 
the original MDN ( ).lNLL  Their difference decreases with an 
increasing number of demonstrations.

In Figure 6 [16], testing samples are shown. The colorized 
solid curves are generated by the most probable mode (MP 
parameter) given by the MDN, and the transparent dashed 
curves correspond to the other two modes, which are not 
selected by the MDN, with relatively small output mixing coef-
ficients. Three different colors indicate three different modes: 
the green curves bend toward the top, red curves bend toward 
the bottom, and blue curves connect the start and goal directly. 
As can be seen, the MDN accomplishes the task with two steps. 
One step is to separately update each mixture component 
branch to increase the success rate of their modes. The other 
step is to adjust the mixing-coefficient output to select the 
mode that has the highest chance of accomplishing the task.

The Hit-the-Ball Experiment in MuJoCo
In this experiment, the robot hits the ball with its fist. After 
being hit, the ball slides on the table and stops at some loca-
tions. The final location of the ball on the table is the task 
parameter query. The purpose is to generate an appropriate 
robot motion to hit the ball and let the ball stop at a specific 
location. We conducted this experiment in the MuJoCo 
simulator [20] with the model of the humanoid robot 
ARMAR-6  [21].
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Figure 4. The models learned to fit a fifth-order polynomial, 
showing the results for learning a mapping from (a) a part of the 
coefficients to the MP parameters and (b) all coefficients to the 
MP parameters. dp: dot-product kernel.
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For the demonstrations, we used a random trajectory gen-
erator based on a fifth-order polynomial with which the posi-
tion and velocity at the end of the trajectory can be specified. 
The initial ball location on the table is fixed. The end veloci-
ties of the trajectories are randomly sampled from a uniform 
distribution. With different hitting velocities, the ball stops at 
different locations. We collected the final locations of the ball 
q and MP parameters w in a training data set.

As shown in Figure 7, the ball can bounce off the borders 
of the table, which realizes multiple modes for one specific 
target location in the collected demonstrations. The table 
measures ,260 200 cm#  and the ball has a radius of 5 cm. 
Successful task execution means that the ball is no more than 
10 cm from the target location.

We use K 3=  mixture components and train the MDN 
with 50 random demonstrations and test it on 100 new ball 
locations. When selecting the most probable mode, we get an 
average success rate of approximately 15%. This poor perfor-
mance might be because the task requires an accurate trajecto-
ry. With a randomly small perturbation of the MP parameters 
that correspond to the original 50 demonstrations, the success 
rate can drop rapidly. As mentioned previously to improve the 
task performance, we draw several samples from the output 
distribution. In this case, a successful MP generalization means 
that there exists at least one of these samples that leads to 
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Figure 6. Three obstacles are randomly placed in the 2D space. The solid curves correspond to the most probable mode, and the 
dashed curves are generated by the two other modes that are not selected by the MDN. 
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successful task execution. As shown in Figure 8, increasing the 
number of samples improves the success rate.

In this specific task, the number of samples helps for two 
reasons. One trivial reason is the setup of the task, which 
allows successful task executions by chance: the VMP guaran-
tees that the robot hits the ball, and the table borders limit the 
final ball locations. The other reason is that the MDN learns 
the correct distribution, which gives a high probability to the 
correct MP parameter, which is, unfortunately, not precisely 
the mode. Sampling from the correct distribution has a great-
er chance of finding the correct solution than directly select-
ing the most probable mode. 

To prove that the latter exists with the MDN for this task, 
we consider a uniform distribution of the MP parameters as 
the baseline, whose interval is determined by the minimal 
and maximal components of the MP parameters, which cor-
respond to the 50 demonstrations. In addition to the baseline, 
we construct Gaussian distributions by considering the GPR 
and SVR outputs as mean vectors and with a fixed-variance 
matrix ( . ).I0 01R=

As shown in Figure 8, the MDN outperforms the others 
for all sample numbers. For the baseline, it coincides with the 
intuition that its success rate is almost proportional to the 
sample number because it does not learn from the demon-
strations. GPR and SVR have better performances than the 
baseline because they draw the samples close to their output 
MP parameters. However, the samples drawn around their 
outputs are totally by chance because of the fixed-variance 
matrix. In contrast, the MDN learns a relatively correct distri-
bution output. Hence, it already achieves a high success rate 
with a smaller sample number.

The Throw-the-Ball Experiment
To further evaluate our methods, we let the humanoid robot 
ARMAR-6 throw a ball at a specific target. The arms of 
ARMAR-6 have eight degrees of freedom (DoF) each. To 
simplify the task, we used only four of them without loss of 
generality (see the 4 DoF in Figure 9). The demonstrations 
were conducted by a human using kinesthetic teaching. After 
learning the corresponding MP parameter for each 

(a)

(b)

Figure 7. In the hit-the-ball experiment, the desired final ball location is the input of the MDN, which is denoted by a transparent box. (a) 
The robot hits the ball from its right side, and the ball bounces off the border and stops at the target. (b) The robot hits the ball directly 
toward the target. 
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demonstration, we speed up the motion to 1 s and set a fixed 
joint goal. The robot hand always opens at 0.55 s. Then, we 
record the location of the ball when it drops to the ground. By 
fixing the goals and speed of the motions, these hit-ground 
locations are dependent only on the shapes of the joint trajec-
tories. In the experiment, we let the robot face the wall, and it 
can bounce the ball off the wall to the target.

We let the robot throw 50 times with different human 
demonstrations and randomly split the collected data into 
30 for training and 20 for testing. We train an MDN ( )K 2=  
on 30 demonstrations. For the testing, we use only the hit-
ground locations of the other 20 demonstrations as task 
parameter queries, which guarantees that all of the hit-ground 
locations are reachable. During the testing, we place a plate on 
the ground to indicate the current query. Successful task exe-
cution is to throw the ball onto the plate either directly or by 
bouncing it off the wall. In the experiment, with 10 samples, 
the robot missed only two out of 20 target hit-ground loca-
tions. In Figure 9, for one specific task parameter query, we 
show how two of 10 MP parameters, which correspond to 
two different modes, result in different paths of the ball.

Discussion and Conclusions
This work addressed the problem of MP generalization to dif-
ferent tasks and was concerned with two aspects. First, to take 
the multiple modes and models of human demonstrations 
into account, we propose using an MDN for the mapping 
from the task parameter query to the MP parameter distribu-
tion. The experiments show that the MDN-based approach 
outperforms techniques used in previous works.  Second, to 
further reduce the occurrence of mode and model collapse 
during training of the MDN, we propose the entropy cost 
function. Moreover, for some tasks, we introduce the failure 

cost to improve the performance of the MDN further. The 
comparison of different MDNs shows that the new cost func-
tions perform better than the original one, especially when 
the set of demonstrations is relatively small.

What we did not consider here is the extrapolation of the 
method to areas outside the demonstration range. Since the 
MDN is learned fully from demonstrations, its extrapolation 
capability is limited. Current methods dealing with the 
extrapolation problem focus only on a specific set of task 
parameters, such as the TP-GMM and via-points adaptation 
of the VMP, described in [5] or our previous work [15]. The 
extrapolation of MP generalization to arbitrary task parame-
ter queries is still unsolved.

Recent approaches, such as those in [13] and [14], also 
take task-relevant sensory inputs into account and learn them 
together with the robot motions. For human–robot 
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Figure 9. (a) There are 4 DoF used for throwing the ball. (b) The robot throws the ball directly to the target. (c) The robot bounces the 
ball to the target off the wall. 
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interactions, the robot motion is generated based on the 
observed human activity. With the human activity considered 
as a task parameter query, these methods also learn a map-
ping from the task to MP parameters. However, unlike the 
MDN, which directly learns this mapping, these approaches 
learn a generative model. In the future, we will explore the use 
of our proposed method for human–robot interaction tasks 
and compare these methods.

For the sampling strategy, selecting the most probable 
mode already solves many tasks. However, for some other 
tasks, the suggested method needs multiple samples to achieve 
better performance, such as that described in the “The Hit-
the-Ball Experiment in MuJoCo” section. This fact requires 
multiple robot trials for each task parameter query. To solve 
this problem, we consider either using reinforcement learning 
to refine the mean vector given by the trained MDN with a 
small number of trials, as in [22], or training a discriminator 
that can predict success or failure based on both task and 
MP parameters.
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