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ABSTRACT Developments in artificial intelligence (AI) and distributed ledger technology (DLT) currently
lead to lively debates in academia and practice. AI processes data to perform tasks that were previously
thought possible only for humans. DLT has the potential to create consensus over data among a group of
participants in untrustworthy environments. In recent research, both technologies are used in similar and
even the same systems. This can lead to a convergence of AI and DLT, which in the past, has paved the way
for major innovations of other information technologies. Previous work highlights several potential benefits
of a convergence of AI and DLT but only provides a limited theoretical framework to describe upcoming
real-world integration cases of both technologies. In this research, we review and synthesize extant research
on integrating AI with DLT and vice versa to rigorously develop a future research agenda on the convergence
of both technologies. In terms of integrating AI with DLT, we identified research opportunities in the areas
of secure DLT, automated referee and governance, and privacy-preserving personalization. With regard to
integrating DLT with AI, we identified future research opportunities in the areas of decentralized computing
for AI, secure data sharing and marketplaces, explainable AI, and coordinating devices. In doing so, this
research provides a four-fold contribution. First, it is not constrained to blockchain but instead investigates
the broader phenomenon of DLT. Second, it considers the reciprocal nature of a convergence of AI and DLT.
Third, it bridges the gap between theory and practice by helping researchers active in AI or DLT to overcome
current limitations in their field, and practitioners to develop systems along with the convergence of both
technologies. Fourth, it demonstrates the feasibility of applying the convergence concept to research on AI
and DLT.

INDEX TERMS Artificial intelligence, blockchain, convergence, distributed ledger technology, machine
learning.

I. INTRODUCTION
Artificial intelligence (AI) and distributed ledger tech-
nology (DLT) are among today’s most actively debated
developments in information technology with potential for
tremendous impact on individuals, organizations, and soci-
eties over the next decades. A 2018 report from theMcKinsey
Global Institute estimates that the application of AI in various
industries could deliver an additional global economic output
of around USD 13 trillion by 2030 [1]. Similarly, a study by
theWorld Economic Forum predicts that by 2025, up to 10 %
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of the world’s GDP may be stored on a blockchain [2], which
is the most commonly used concept of DLT today [3].

AI can perform complex tasks that were previously thought
possible only for humans to perform. In some application
domains, AI can nowadays already exceed human capabil-
ities. Research in the health care domain has, for instance,
shown that AI can analyze echocardiograms faster and
more accurate than medical professionals [4]. Furthermore,
advancements in AI are also expected to be key enablers of
important upcoming innovations such as autonomous driv-
ing [5] or intelligent robots [6], to name but a few. DLT,
on the other hand, can provide consensus over a shared ledger
in untrustworthy networks containing, for example, unreach-
able or maliciously behaving nodes [3]. It became known
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to the public due to the emergence of the cryptocurrency
Bitcoin [7]. Following the success of Bitcoin, further DLT
applications are emerging in application domains beyond
finance that are often corresponding to those of AI. DLTmay,
for example, be used to manage access control for electronic
health records [8], or to secure the IT systems of autonomous
cars [9].

As one result of these developments, we now increasingly
see the emergence of applications using both information
technologies in close integration. Recent work, for exam-
ple, uses deep reinforcement learning to explore attacks on
blockchain incentive mechanisms [10]. In doing so, the AI
system can detect new attack strategies and provide security
insights, even for well-studied DLT protocols like Bitcoin.
Another recent work uses a DLT-based platform to exchange
data and computing resources in order to enable AI applica-
tions [11]. The platform gives data providers the opportunity
to share their data while keeping it confidential and maintain-
ing the right to manage data access. Data consumers can then
train algorithms on the provided data and compensate data
providers for use of their data.

The examples above demonstrate that the integration of AI
and DLT yields great potential to advance the capabilities of
both technologies, and, ultimately, to increase the positive
impact of AI and DLT on individuals, organizations, and
societies. Yet, in order to make meaningful contributions,
researchers and practitioners alike will have to keep up with
the latest developments in both fields as well as the most
recent developments and innovations related to their integra-
tion. Owing to the fast pace and interdisciplinary nature of
both research areas, assessing the current state of research on
AI and DLT and especially their integration in its entirety is
a difficult task. In attempt to provide guidance to researchers
enticed by the integration of AI and DLT, previous research
has either focused on partial aspects of the integration of AI
and DLT such as the use of blockchain for AI (e.g., [12])
or on deriving conceptual ideas of how both technologies
might be integrated with each other (e.g., [13]). Despite the
invaluable contributions that these publications have made to
the nascent stream of literature concerning the integration of
AI and DLT, we presently lack in-depth knowledge about
the current state of research on the integration of AI and
DLT that does (a) not only focus on a specific DLT concept
(i.e., blockchain), (b) considers the reciprocal integration of
both technologies (as opposed to the one-way integration of,
for example, DLT into AI), and (c) goes beyond a purely
conceptual level. In particular, we still lack a comprehensive
overview of the most pressing research challenges that must
be overcome in order to unleash the full potential of integrat-
ing both technologies. With this research, we aim to address
this apparent knowledge gap by asking and answering the
following two research questions:
RQ 1: What is the current state of research on the techno-

logical integration of AI and DLT?
RQ 2: What are open research challenges on the techno-

logical integration of AI and DLT?

To address our research questions, we draw on the concept
of convergence (see section II.C) and conduct a systematic
literature review on the current state of research on the conver-
gence (i.e., integration) of AI and DLT and develop a future
research agenda. The contribution of ourwork is thereby four-
fold. First, in contrast to extant research in this area, we also
include non-blockchain distributed ledgers in our analysis
of the literature. Prior work has highlighted several current
shortcomings of blockchain in the application for AI [12].
Other DLT concepts (e.g., BlockDAG or TDAG), may be
more promising for solving some of these shortcomings [3]
and thus potentially better suited for certain AI applications.
Second, we consider the reciprocal nature of convergence and
investigate both perspectives: the usage of AI for DLT, and the
usage of DLT for AI. To the best of our knowledge, no holis-
tic review on the convergence of AI and DLT exists today,
which considers the large variety of interaction cases from
both perspectives. Third, we aim to bridge the gap between
theory and practice by drawing theoretical conclusions from
practical research, as well as outlining future potential for
practical and theoretical research from the theory in these
fields. Fourth, we apply the concept of convergence [14], [15]
as a theoretical lens for our article. In doing so, we contribute
to the understanding of how convergence may drive product
innovations and create economic value in the information
technology (IT) industry. In addition, we demonstrate how
convergence can be applied as a lens to tackle research ques-
tions in interdisciplinary, innovative, and emerging research
fields.

The remainder of this article is organized as follows: In
section 2, we discuss related work on AI and DLT, and
introduce the concept of convergence. Afterward, we describe
our methods in section 3. In section 4, we analyze the current
literature on AI usage for DLT, and in chapter 5, provide
our future research agenda on AI for DLT. In section 6,
we analyze the current literature on DLT usage for AI, and
a corresponding research agenda in section 7. In section 8,
we discuss our results, before we conclude this article in
section 9.

II. RELATED WORK
A. ARTIFICIAL INTELLIGENCE
AI enables computers to execute tasks that are easy for peo-
ple to perform but difficult to describe formally. Such tasks
typically occur in complex or uncertain environments [16].
Despite ongoing debates in society about Artificial General
Intelligence, which describes computer programs that can
control themselves and solve tasks in a variety of differ-
ent domains [17], most deployed AI-based systems solve
tasks in narrow application domains, and are referred to as
Narrow Artificial Intelligence. Several approaches to design
such narrowAI-based systems exist. For example, knowledge
bases have seen a lot of attention by researchers in the past.
Nowadays, Machine Learning (ML) seems to be the most
well-spread approach toward building AI-based systems [16].
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FIGURE 1. Overview of artificial intelligence.

ML-based systems consist of a model that represents a func-
tion between input data and output data. In most cases,
ML models have to be trained. In this training phase, an opti-
mization algorithm tweaks the model parameters in order to
minimize a loss or maximize a reward. Depending on the
application, different types of training exist. In the case of
supervised machine learning, the input data and the corre-
sponding output data are known during the training phase.
In the case of unsupervised machine learning, only the input
data is known but no output data. In a reinforcement learning
setting, a learning agent executes actions that result in an
immediate reward, whereas the agent’s goal is to maximize
a future, cumulative reward. In general, the training phase
can require large amounts of data and, thus, is often com-
putationally intensive. This is especially the case for deep
neural networks, which are complex ML models with many
parameters that have paved the way for many of the recent
advancements inML [18]. In Figure 1, we present a high-level
overview of different types of approaches toward designing
AI-based systems.

The execution of a (trained) ML model is called inference.
It is usually computationally less expensive than the initial
training phase. Some models can only be described as black
boxes, meaning that their inner functionalities are difficult to
explain. Among many research streams, some cutting-edge
research in ML aims to better explain the inner functioning
of ML models in order to guarantee their robustness [19].
Other streams aim to increase ML systems’ capabilities [20],
[21], or to ensure training data confidentiality when creating
ML-based systems [16]. Besides these ML approaches intro-
duced above, many variations exist. For example, for some
ML algorithms, there is no explicit model building phase at
all [22]. For a detailed overview of AI and ML, in particular,
we refer to Russell and Norvig [23].

B. DISTRIBUTED LEDGER TECHNOLOGY
DLT enables the operation of a highly available, append-
only, peer-to-peer database (i.e., the distributed ledger) in

FIGURE 2. Overview of distributed ledger technology and its
characteristics by Kannengießer et al. [3].

untrustworthy environments characterized by Byzantine fail-
ures, where separated storage devices (i.e., the nodes) main-
tain a local replication of the data stored on the ledger. A dis-
tributed ledger can either be deployed as a public ledger, if a
new node can directly join a new network, or a private ledger,
in case a node first needs permission to join the network.
Another aspect to distinguish distributed ledgers are the write
permissions: In the case of permissionless ledgers, all nodes
have equal write permissions. In the case of permissioned
ledgers, nodes first require granted permission to validate and
commit new data to the ledger [3]. Today, several concepts
for DLT exist with different characteristics, for example,
regarding the transaction throughput or fault tolerance. The
most widespread concept of DLT is blockchain [3], which
became known to the public due to the emergence of the
cryptocurrency Bitcoin [7]. Other concepts, for example,
rely on directed acyclic graphs [3], [24], [25]. We provide
an overview of DLT concepts with different characteristics
in Figure 2. Nowadays, applications of DLT and especially
blockchain beyond financial transactions are emerging, such
as the management of medical data [26], autonomous driving
[9], or decentralized games [27].

In a blockchain system such as Bitcoin [7], transactions
of network participants are stored in blocks of a fixed size.
Every block also includes a timestamp, and a hash of the
previous block. Thus, the system can be regarded as a chain
of blocks. Cryptographic techniques are used to ensure that
only legitimate participants holding a cryptographic key can
perform transactions, which are stored in the block. Bitcoin
[7] was the first blockchain created and has mostly financial
applications.

The main networks of the widely known Bitcoin and
Ethereum [28] are public, unpermissioned blockchains.
To secure the network, only a selected node can propose a new
block that includes the cryptographically signed transactions.
This node has to find a block candidate with a hash below a
certain, network-defined threshold. As this hash calculation is
impossible to reverse, a node has to make large computational
efforts to find that new block, competing against other nodes.
In return, the node that successfully found a block gets a
reward in cryptocurrency payment. Since there are at any
time many miners aiming to find the next block, the chances
of finding the next block are relatively low for an individ-
ual miner. As a result, the variance of the mining payoff
for an individual miner is relatively large. Therefore, most
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miners nowadays mine together in so-called mining pools.
If a mining pool finds a block, the pool collective gets the
block reward and distributes it among its miners according to
their share of hash calculations. This reduces the payoff vari-
ance for individual miners participating in the pool. Besides
Bitcoin, several implementations of blockchains exist with
different characteristics [3]. Some implementations provide
high transaction confidentiality guarantees (e.g., Zcash [29]),
or enable a universally usable, decentralized Turing complete
computing platform (e.g., Ethereum [28]). In the latter case,
programs can be stored and executed upon the blockchain
system. These programs are referred to as smart contracts.

C. CONVERGENCE OF AI AND DLT
First described by Nathan Rosenberg in the 1960s, conver-
gence describes a phenomenon in which two or more initially
separate items move toward unity and become increasingly
integrated with each other. Convergence typically occurs in
four phases [15], [30]. The first phase, which is termed scien-
tific convergence, occurs when distinct scientific fields begin
citing each other, leading to an increase in cross-scientific
research. It is followed by the technology convergence phase
in which previously distinct technological fields increasingly
overlap and new technology platforms arise. As technol-
ogy convergence continues to blur existing technological
and market boundaries, market convergence, the third phase,
takes place, resulting in the emergence of new product-market
combinations. In some cases, the convergence of technologies
and markets may impact existing industries such that a fourth
phase in form of the convergence of entire industries occurs.
A typical and relatively recent example of convergence is
the emergence of the smartphone, which nowadays combines
initially separate technologies such as phones, cameras, and
portable computing devices. It eventually created an entirely
newmarket, completely transformed the mobile phone indus-
try, and even overthrew the compact camera industry. Another
example is Bitcoin [7], which was created by combining
techniques from various computer science domains such
as distributed systems, cryptography, security, and game
theory.

Concerning a potential convergence of DLT and AI,
we currently see the emergence of the first scientific publi-
cations that do not simply apply AI in the context of DLT
(e.g., deep learning for prediction of the Bitcoin price) or
vice versa, but instead discuss a deeper integration of both
technologies. Extant literature that provides a consolidated
overview of the integration possibilities of AI and DLT, how-
ever, is scarce. Dinh and Thai [13] provide a viewpoint with
conceptual ideas of how an integration of AI and blockchain
technology might look like. They outline possibilities for
the reciprocal integration of AI and DLT, highlighting that
AI can be used for blockchain, just as blockchain can be
used for AI. Specifically, AI can support blockchain sys-
tems by increasing their security and scalability, by acting
as an automated referee and governance mechanism, and for
privacy-preserving personalized systems. Blockchain, on the

other hand, can serve AI systems by enabling decentralized
computing, providing data sharing infrastructures, serving
as a trail for explainable AI, or by coordinating untrusting
devices. As the article is a viewpoint, the authors remain
on a rather conceptual level and do not provide an in-depth
review of extant literature. Salah et al. [12], on the other
hand, provide a review and open research challenges on
one of these two perspectives, the use of blockchain for AI.
The authors identify enhanced data security, improved trust
on robotic decisions, business process efficiency increases,
collective decision making and decentralized intelligence as
main drivers for the usage of blockchain for AI applica-
tions. Interestingly, the latter category has similarities with
the application of privacy-preserving personalization, which
Dinh and Thai [13] classify as an AI for blockchain perspec-
tive. Furthermore, Salah et al. [12] develop a taxonomy that
provides an overview of different relevant technical charac-
teristics, such as the consensus protocol or the blockchain
type. Their review surveys research articles, as well as indus-
try whitepapers. As such, it delivers valuable insights into
how blockchain can be used for AI in vertical industry use
case cases, such as banking, finance, or agriculture. The arti-
cle concludes with several open research questions on tech-
nologies that are relevant in the context of blockchain for AI
applications. These include topics of increasing blockchain
systems’ scalability and data confidentiality, interoperability,
or quantum cryptography. Lastly, Karafiloski and Mishev
[31] provide an overview of how blockchain can be used
for storing and organizing large amounts of data. Although
the authors do not consider AI use cases in much detail,
the presented work is representative for some fields of the
convergence of AI and DLT, such as data sharing.

In summary, prior research lacks an understanding how
AI and DLT are reciprocally integrated in systems today,
and how future research can advance the convergence of
these technologies. Specifically, prior research focuses on
blockchain, a specificDLT concept, and not on other potential
DLT concepts that may be better suited in the context of AI
[12], [13]. Furthermore, prior research only provides purely
conceptual ideas how AI may be used for DLT, and does not
evaluate today’s technical feasibility of such systems [13].

III. METHODS
A. DATA COLLECTION
For the identification of articles addressing the conver-
gence of AI and DLT, we systematically searched scientific
databases. To cover a wide range of journal and conference
publications, we queried IEEE Xplore, ACMDigital Library,
AIS Electronic Library, Science Direct, Scopus, Ebsco Busi-
ness Source, and ArXiv. The reason for including ArXiv
preprints in our search is the fact that AI and DLT are fast
moving fields of research, where new, potentially ground-
breaking research results and insights may be available as
preprints that are not finally published yet. Our search string
required the publications to have a DLT-specific term and an
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AI-specific term in either their title, abstract, or keywords.
The search string, we employed was:
TIKEAB ((Blockchain OR „Distributed Ledger‘‘ OR DLT

OR Bitcoin OR Ethereum OR Cryptocurrency OR „Crypto
currency‘‘ OR „Crypto-currency‘‘ OR „block chain‘‘ OR
„Smart contract‘‘) AND (AI OR ML OR „Artificial Intelli-
gence‘‘ OR „Machine Learning‘‘ OR „Deep Learning‘‘ OR
ClusteringORClassificationOR „Neural Network‘‘ OR „Big
data ‘‘OR„Datamining‘‘ OR „Intelligent system∗ ‘‘OR„Sta-
tistical model‘‘, OR „Statistic model‘‘)).

We excluded articles published before 2008, since the con-
cept of Bitcoin emerged that year. For DLT, the search string
included its most common concept of blockchain, as well
as blockchain’s most frequent implementations (i.e., Bitcoin
and Ethereum) and other technical terms. For AI, the search
string included ML and the most common application forms
of it. We searched on December 19th, 2019, this resulted
in 2,411 unique articles.

In a first step, we first removed 140 articles published
before 2008 from our set, as not all of the databases provided
the option to include this as a search criterion. Afterward,
we analyzed the titles, abstracts, and keywords for the remain-
ing articles and removed 17 that were not written in English.
For the remaining 2,254 articles, we not only analyzed the
titles, abstracts, and keywords, but also their full texts. From
this set, we first removed 431 articles that turned out to
not be research articles. Most of these articles were either
the title of a conference proceeding or book chapters. We,
then, checked the remaining 1,823 articles for whether they
actually covered both, AI and DLT. 1,544 turned out to not
cover AI and DLT, the largest group among these consists
of 141 articles from the medical field where DLT is an
abbreviation for other terms such as dose limiting toxicity
or double lumen endobronchial tube. From the remaining
279 articles, we excluded further 213 articles that did not
cover the close integration of these technologies according to
the concept of convergence [14], [15]. Out of these, the largest
group of 92 articles covered AI-based cryptocurrency price
prediction or trading. In the remaining set of 66 articles,
we excluded another 34 articles that did not clearly answer
why they used DLT. This resulted in a set of 32 articles that
eventually turned out to be relevant for further analysis.

B. DATA ANALYSIS
Following the data collection, which resulted in the identifica-
tion of 32 relevant articles, we categorized all 32 articles into
groups. The groups were thereby derived from Dinh and Thai
[13]’s viewpoint and adapted to our review, where necessary.
Toward this end, we expanded the concept of blockchain to
DLT, and reframed the focus and name of some categories
to better suit the extant literature (e.g. secure DLTs instead
of secure and scalable DLTs, and coordination of devices
instead of coordination of untrusting devices). Table 1, below,
provides an overview of the adapted coding scheme and the
number of articles in each category. Note that we categorized
some articles into multiple groups. Therefore, the sum of

TABLE 1. Classification of the identified articles that cover the
integration of AI and DLT into groups.

articles in Table 1 is higher than 32. We also added another
type of perspective, Both, to the coding scheme. It consists of
consolidating works, such as literature reviews or high-level
articles covering both aspects of the convergence of AI and
DLT. Several of these articles contain concepts from multiple
groups, especially articles covering DLT for AI. In Table 6 in
the appendix, we present an overview of the 32 analyzed
articles and their classification into different groups. Our
future research agenda is an extension from our review and
draws from multiple sources. On the one hand, the findings,
outlook and conclusion of the extant articles discussed in our
review. On the other hand, our own assessment of further,
recent developments in literature in the fields of AI and DLT.

IV. REVIEW ON AI FOR DLT
Drawing on the general distinction between AI for DLT and
DLT for AI proposed by Dinh and Thai [13], this section
describes our findings in terms of how extant research has
applied AI for DLT. We identified three different groups of
use contexts, which we detail on below, and summarize our
findings in Table 2.

A. SECURE DLTS
1) DLT PROTOCOL SECURITY
Within this category, extant literature solely applies AI
methods of reinforcement learning to explore and develop
strategies in game-theoretic settings concerning the DLT
protocol. Specifically, these articles analyze the fairness of
mining activities. The learning agents get rewarded with a
cryptocurrency-based miner reward. In the category of arti-
cles using reinforcement learning for DLT protocol security,
two subcategories exist.

a: SELFISH MINING
Articles in this subcategory analyze selfish mining strate-
gies for blockchain systems [10], [32]. The learning agent
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TABLE 2. Overview of concepts in the literature on AI for DLT.

thereby is a blockchain miner, which can strategically delay
the publication of found blocks. By doing so, the selfishminer
aims to waste mining power of honest miners that work on
another fork of the blockchain [33]. Through generating these
attacks on blockchain systems in a testing environment using
reinforcement learning, researchers can find new insights
on the security of these blockchain protocols. For example,
Hou et al. [10] performed the simulation with protocols such
as Bitcoin [7], Ethereum [28], or GHOST [34]. In their
research, an agent learns mining strategies where it can gain
disproportionately large mining rewards relative to its hash
rate. While some of these adversarial mining strategies are
known from theoretical studies of the blockchain protocols
[33], AI has the potential to detect new, previously unknown
attacks in complex scenarios, for example, in cases with mul-
tiple partially cooperating agents. Additionally, the simula-
tion may contribute to a better understanding of the feasibility
of these mining strategies [10].

b: POOL OPERATION
In research within this subcategory, the agent learns strategies
for operating a mining pool. In our review, we identified only
one article that fits this subcategory: Haghighat and Shajari
[35] specifically analyze a block withholding game, where
a pool operator can either decide to mine honestly, or attack
another pool by mining (at least with a fraction of its power)
for the other pool, but not actually submitting a solution,
in case a block is found. As a consequence, the revenue of

the attacked pool drops, and it gets less attractive for other,
honest miners to mine as a member of this attacked pool. The
authors train an agent, which represents a pool operator, with
reinforcement learning methods. It decides between mining
honestly and attacking other pools at each step in the game.
One insight from the results is that it may be more likely than
widely assumed that one pool operator at a certain point in
time was in control of more than 51 % of Bitcoin’s network
mining power [35].

2) SMART CONTRACT SECURITY
Articles within this category aim to protect users from inter-
acting with insecure or malicious smart contracts. Two sub-
categories with different approaches exist in literature: First,
the analysis and detection of such smart contracts. Second,
the active interaction with such smart contracts in order to
manipulate and invalidate them.

a: DETECTION
Three articles in this subcategory aim to detect security issues
in smart contracts using data analysis techniques. As the
smart contract opcode is usually published on the distributed
ledger, two articles [37], [38] analyze the opcode with neural
networks. Since a compiled opcode is challenging for humans
to read and understand, Kim, et al. [37] use neural networks
to estimate the functionality of a given smart contract (e.g.,
whether it is intended for a marketplace or for gaming).
Tann, et al. [38], in contrast, aim at detecting security
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vulnerabilities in smart contracts. To do so, they run long
short-term memory neural networks on a sequence of
opcodes. In a performance comparison with a symbolic anal-
ysis approach, the machine-learning-based analysis method
can outperform the formal verification-based method with
regards to classification accuracy and speed. Another article
by Camino et al. [36] aims at detecting honeypot smart con-
tracts. These types of smart contracts appear to contain free,
withdrawable funds. However, once a user aims to invoke
the honeypot contract to redeem free tokens, the honeypot
actually does not release the funds, resulting in the user
losing funds that they may have used to invoke the honeypot
contract. Contrary to the other articles in this subcategory,
Camino et al. [36] do not use opcode analysis techniques, but
analyze the smart contract metadata (i.e., values derived from
related transactions and fund flows) and off-chain data (i.e.,
the availability of a source code and the number of source
code lines). In this way, data science techniques can classify
more than 85 % of unseen smart contracts correctly. This
approach especially works well in cases where there was a
minimum of smart contract on-chain activity, and, as a result,
on-chain metadata is available.

b: MANIPULATION
The only article identified within this subcategory [39] uses
an active reinforcement learning approach to invalidate crim-
inal smart contracts. Criminal smart contracts can be used
for illegal activities, such as selling confidential informa-
tion [46]. In this research, the agent learns to manipulate
the contracts’ data feed and thereby successfully invalidates
a substantial share of the studied criminal smart contracts.
While doing so, the system aims at invalidating these given
smart contracts, but not at detecting possible criminal smart
contracts in the first place.

B. AUTOMATED REFEREE AND GOVERNANCE
Another small group of articles uses AI for DLT-based sys-
tem governance. Dinh and Thai [13] present the vision that
people, devices, and smart contracts record transactions on
a distributed ledger. An AI can then solve potential disputes
of events happening on- or off-chain, and record the results
on a distributed ledger. This automated arbitration could be
data driven, unbiased, and, as a result, more consistent, jus-
tified, and accepted than arbitrations today [47]. In extant
literature, articles toward this vision appear to be in an early
stage and fall within two categories: AI-based DLT protocol
governance, and AI-based smart contract governance.

1) DLT PROTOCOL GOVERNANCE
This category currently consists of two articles.
Lundbæk et al. [40] propose an adjusted proof-of-work-based
consensus mechanism. Only a subset of nodes participates
in the required hash calculation and the DLT protocol uses
ML to regularly update system governance parameters, such
as the ideal number of miners or the level of mining diffi-
culty. In this scenario, AI is tightly integrated with the DLT

protocol. However, the authors do not discuss in detail the
functionality and security aspects of their ML-based gov-
ernance. Gladden [41], on the other hand, discusses ethical
aspects about cryptocurrencies governed by an AI system.
The author claims that such a system can positively influence
the ethos and values of societies. However, the article has
a sociotechnical focus and does not describe the technical
architecture of the system.

2) SMART CONTRACT GOVERNANCE
Only one article in our review fits this category. Liu et al. [42]
propose to implement voting mechanisms for participants in
smart contracts to alter smart contract parameters. As such,
these voting mechanisms can govern smart contracts in com-
plex situations and can alter the smart contracts towards an
adaptive behavior. An ML-based system assists the users
in voting, based on their past voting behavior. As a result,
the ML-based system pre-chooses the users’ selections and
eases their tasks. In this scenario, the ML-based system runs
outside of the actual DLT system.

C. PRIVACY-PRESERVING PERSONALIZATION
Many internet platforms nowadays collect data about their
users and apply AI-based recommender systems to person-
alize their content. Examples include Facebook, Netflix,
or Taobao in China. A recommendation by this AI-based
system thereby is not only influenced by the individual user’s
data, but also by all the other users’ data. Netflix, for example,
can recommend newmovies to users based on their individual
and other users’ watching behavior. However, this comes at
the risk of impeding users’ privacy. In several cases, private
data from such platforms has been leaked to the public [48]
or misused [49]. A group of articles envisions AI-based
personalization for DLT-based data sharing platforms. This
could, for example, include a social network built on a DLT
infrastructure [13]. DLT can thereby serve as a transparent
trail of data flows, and give users control over their data.
Two categories of articles with different approaches toward
designing such systems exist in literature. First, a category
with articles that aim to use local computation. Second, a
category with articles that use distributed ledgers based on
hardware-assisted Trusted Execution Environments (TEEs).

1) LOCAL COMPUTATION
An ML model inference intended to personalize content on
a platform requires data about the user to personalize its
recommendation for them. If such a model inference is exe-
cuted locally, there is no need for the user to share their
data, while they can still get a personalized recommendation.
However, if no user shares their data with the platform,
it is challenging for a platform operator to train ML models
using traditional methods. Therefore, articles in this category
describe systems that use federated learning. With this dis-
tributedML technique, anMLmodel gets trained locally on a
user’s device and onlyMLmodel parameter updates leave the
device and are shared with the platform or potentially other
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parties. Model parameter updates from many users are then
aggregated into a new model. Federated learning is already
successfully applied on a large scale on smartphones, for
example, to predict the next word a user may want to type
on their keyboard [50]. The distributed ledger provides an
infrastructure to share data on an auditable and immutable
ledger. Some articles describe systems that only store hashes
of model gradient updates or hashes of aggregated models on
the distributed ledger, in order to save storage space on the
ledger and to preserve data confidentiality [51]. Other articles
describe systems that store the complete gradient updates
and aggregated models themselves on the ledger [52]. First
applications are illustrated for the Internet of Things [43] or
the taxi industry [44].

2) TRUSTED EXECUTION ENVIRONMENTS
The second category uses TEE-based DLTs. TEEs are typ-
ically located on a CPU and provide a special enclave for
secure computation. In this enclave, applications are executed
such that other applications executed on the same CPU but
outside the enclave cannot interfere with the state or control
flow of the application shielded by the TEE. As a result,
the enclave appears as a black box to the outside and secures
the application running inside. Furthermore, the hardware
of the TEE can generate a proof to the application running
inside the TEE to attest that the software is executing on
this specific, trusted hardware. This feature is called remote
attestation. Extant research uses DLT protocols to coordinate
TEEs, thus enabling confidential smart contracts that execute
inside the TEE. Since the TEE ensures data confidentiality,
this category does not necessarily require local computation.
First articles aim at providing solutions for the medical indus-
try [11], [45]. To further increase data security, some articles
describe systems that combine TEEs with federated learn-
ing [45] or differential privacy [11]. Simplified, differential
privacy is a mechanism that adds randomly distributed noise
to a set of data points. This protects the information privacy
of users that provide data. As the random noise has zero
mean (or a predefined mean), an aggregator can still draw
meaningful conclusions from the aggregated data set without
threatening anyone’s information privacy.

V. FUTURE RESEARCH AGENDA ON AI FOR DLT
In this section, we present our analysis of future research
opportunities on the advancement of DLT using AI. Again,
we use the categories proposed by Dinh and Thai [13] to
structure the future research agenda. We summarize our find-
ings in Table 3.

A. SECURE DLTS
Dinh and Thai [13] have drawn a futuristic picture with far-
reaching real-time analysis and decision possibilities of an
AI as part of the DLT system. Current AI-based systems,
however, do not provide the required security and robustness
guarantees necessary to govern a DLT system. Precisely,
while AI-based systems can detect software vulnerabilities,

they cannot (yet) guarantee that all available security vulnera-
bilities have been identified. If an AI detects no vulnerability,
this does not necessarily mean that there are none [10]. This
open research problem ofAI robustness is also highly relevant
in other AI application domains, such as autonomous driving,
where first results may be transferable to software and DLT
systems’ security [53]. In general, methods from the field of
explainable AI (XAI) [19] could help to better understand
how reliable anAI-based decision is.We, therefore, see this as
a fruitful field for future, foundational research. While AI is a
promising technology to detect DLT security vulnerabilities,
further research that aims to resolve these vulnerabilities and
to build secure DLT-based systems is required in parallel [35].
Subsequently, we present future research opportunities in
the two categories identified in our review in section IV.
Furthermore, we see possible research opportunities in the
convergence of these two categories, which we also present.

1) DLT PROTOCOL SECURITY
The security analysis of DLT protocols using AI is cur-
rently dominated by reinforcement learning. Extant litera-
ture analyzes game-theoretic incentive mechanisms in widely
adopted protocols such as Bitcoin or Ethereum. Possible
future research opportunities include the expansion of pre-
vious work with settings such as partially cooperating miners
[10], or the analysis of strategies other than selfish min-
ing [32]. In our view, beyond analyzing the fairness of mining
settings and its DLT security implications, another additional
interesting field of AI-based security analysis is the DLT
source code itself. This is a highly relevant field in practice.
For example, the deployed and widely-used cryptocurrency
Zcash, which uses a novel form of zero knowledge proof
cryptography, has been subject to a vulnerability that would
have allowed an attacker to generate an infinite amount
of cryptocurrency tokens [54], thus potentially inflating the
assets of other users. Extant literature already uses AI-based
analysis methods for software bug identification in general
[55], and smart contract opcode analysis in particular [37],
[38], thereby often outperforming formal verification-based
methods [38]. We, therefore, see a promising future research
avenue in further developing and applying such AI methods
for analyzing DLT protocol code security.

2) SMART CONTRACT SECURITY
Extant literature in this subcategory mostly aims to pro-
tect users from insecure [37], [38] or malicious [36], [39]
smart contracts. Practical experience, however, has shown
that developers struggle to develop secure smart contracts in
the first place [56]. Therefore, an interesting perspective for
future research would be in the field of using AI to assist
developers in developing secure smart contracts. This could
include the development of early security warning tools for
developers that automatically check developed code for secu-
rity vulnerabilities. Recent work in other fields of software
engineering suggests that such AI-based systems may be
feasible [55], [57].

57082 VOLUME 8, 2020



K. D. Pandl et al.: On the Convergence of AI and DLT: Scoping Review and Future Research Agenda

TABLE 3. Overview of future research opportunities in the field of AI for DLT.

Beyond this suggestion to expand the usage perspective
of future research, we see further research opportunities in
refining and applying the methods identified in our review.
Reinforcement learning, which has already shown promis-
ing results for DLT protocol security analysis in simulation
settings [10], [32], [35], appears as a promising method to
analyze the security of game-theoretically complex smart
contracts [39] in simulations. This could include, for exam-
ple, decentralized token exchanges.

The other identified approach is to analyze security vul-
nerabilities in smart contracts by supervised learning. This
appears as a promising field of AI application, as AI-based
methods have outperformed classical, formal verification-
based methods [38]. Future research could expand this work
by considering further classes of smart contracts [36] and
further details, such as different smart contract compiler ver-
sions [37]. Furthermore, future research that seeks to support
software developers could aim at not only detecting security
vulnerabilities in a smart contract, but also at localizing this
vulnerability (e.g., by expressing the information which por-
tions of the bytecode cause the vulnerabilities [38]) or even
at providing suggestions to fix it [60], [61].

3) INTERACTION OF DLT PROTOCOLS WITH SMART
CONTRACTS AND SECURITY IMPLICATIONS
In addition, we see a convergence of these two categories—
AI for DLT protocol security, and AI for smart contract

security—as a promising avenue for future research. Recent
research has investigated the extent to which game-theoretical
aspects in DLT protocols and smart contracts influence each
other and can lead to unfair conditions for regular users of the
overall system [58]. For example, miners whomay participate
in the trading of assets on blockchain-based decentralized
exchanges have the sovereignty to decide which transaction is
included in a block and which one is not. This can incentivize
other users to pay higher transaction costs for these exchange
transactions than they would without the miner participation.
Prior research considers this as an unfair setting [58]. The
outlined scenario is only one example of the complex inter-
play of smart contracts and DLT protocol incentives, which
is also relevant in decentralized applications other than token
exchanges [62], [63]. As it appears to be an even more com-
plex topic than the standalone security of DLT protocols or
smart contracts, an AI-based system could provide valuable
insights. Prior research uses reinforcement learning for game-
theoretic analyses of DLT protocols and smart contracts sep-
arately, therefore, reinforcement learning also appears as a
promising method to analyze the interplay between both. The
results could be used to support the development of fair and
secure DLT-based systems.

B. AUTOMATED REFEREE AND GOVERNANCE
In general, both identified categories—AI for smart con-
tract and for DLT protocol governance—face the reality of
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current AI’s capabilities. To automatically make far-reaching
decisions on a distributed ledger with a potential influence
on financial or data confidentiality circumstances, most of
today’s AI’s robustness and explainability guarantees are
not strong enough. The robustness guarantees of many
modern AI-based systems are weak [64] compared to the
complexity of the actions that agents perform when inter-
acting with DLT-based systems. Therefore, in our view,
breakthroughs in the robustness, explainability, and ulti-
mately security of AI-based systems are required before
they can automatically govern DLT protocols and smart
contracts on a large scale. However, in the case of human-
in-the-loop based AI smart contract governance [42], an AI
may assist a human decision maker which can intervene at
any time in case an AI-based system faces and detects an
irregular situation. This human-in-the-loop model, therefore,
appears to provide good practicality with today’s AI tech-
nology and appears to be a good starting point for future
research [42].

C. PRIVACY-PRESERVING PERSONALIZATION
DLT-based platforms for data sharing are starting to get
more attention in research but are not deployed and scaled
in practice yet. As such, research on such platforms and
their AI-based personalization is still in an early stage.
Articles in the group of privacy-preserving personalization
using AI for DLT often incorporate aspects from multi-
ple other groups, such as decentralized computing for AI,
or secure data sharing and marketplaces for AI. In our
view, developments in the field of privacy-preserving per-
sonalization depend on advancements in the underlying
secure computation and privacy-preserving data sharing
technologies.

An interesting future research opportunity which is prac-
tical with today’s technologies is the further development
and deployment of DLT-based data sharing platforms and an
AI deployment on top of these platforms. TEEs appear as
a promising technology to realistically build such systems
today, due to their relatively small computational overhead
when compared with other secure computation technologies,
as well as their ability to enforce policies [65]. TEEs can be
combined with federated learning [45] or differential privacy
techniques [11] for stronger data confidentiality guarantees.
A reasonable avenue for deployment appears to be within
consortia of (at least partially) trusting participants. This
could, for example, include a consortium of hospitals aiming
to deploy personalized, AI-based treatments while complying
with strong privacy requirements [45].

VI. REVIEW ON DLT FOR AI
Drawing, again, on the general distinction between AI for
DLT and DLT for AI proposed by Dinh and Thai [13],
this section describes our findings in terms of how extant
research has applied DLT for AI. We identified four dif-
ferent groups of use contexts and summarize our findings
in Table 4.

A. DECENTRALIZED COMPUTING FOR AI
Due to the large amount of processed data, ML model train-
ing is often computationally expensive. Nowadays, graph-
ics processing units (GPUs) are typically used to train ML
models, as they provide more computational power for most
ML training tasks. For complex optimization tasks, many
GPUs may be necessary to train ML models in a reasonable
amount of time [66]. However, many GPUs and CPUs in
computers around the world are only slightly loaded or even
unused. Previously, distributed computing has been applied
to utilize these unused resources in communities at scale, for
example, to perform protein folding calculations for medical
research [67]. Articles within this group describe systems
that use distributed computation methods to train AI models.
DLT can serve as a trail to organize this decentralized com-
putation, as well as to provide a ledger for rewards paid in
cryptocurrency [13]. Looking at the literature, three different
approaches for DLT-enabled distributed computing for AI
exist: First, the computationwithin theDLT protocol. Second,
the computation in smart contracts. Third, the computation
outside the distributed ledger.

1) DLT PROTOCOL
Especially public, permissionless distributed ledgers, such
as the Bitcoin or Ethereum main network, are nowadays
secured by a proof-of-work-based consensus mechanism.
It refers to the search for a number such that the hash of
a blockchain block candidate, which includes that number,
is below a certain threshold. This mechanism is required to
limit the number of nodes that can propose a new block, and
ultimately, to ensure blockchain security. By adjusting the
threshold, the network can adjust the difficulty of this search
problem, and adjust the average time to find a new block.
The search problem is computationally expensive. However,
the verification of a potential solution is computationally
inexpensive.

The proof-of-work mechanism consumes large amounts of
energy for protocols such as Bitcoin, which some authors
see critical [68]. At the same time, the calculated hashes
cannot be meaningfully used for purposes other than securing
the network. Some authors therefore propose a proof-of-
useful-work mechanism, in which miners train an ML model
instead of finding a number for a certain block hash. The
block which contains an ML model with the least test error
is then accepted as the new block by the other nodes [69].
For such a system to work, several challenges have to be
overcome. On the one hand, the computational difficulty of
optimizing an ML model is hard to adjust [70]. This can
also cause blockchain forks to occur on a very regular basis.
On the other hand, the proof-of-useful-work mechanism for
AI requires the secure provision of anMLmodel architecture,
training data, and test data. Extant literature that describes
such systems uses selected groups of participants and com-
mittees with reputation mechanisms to govern this data
provision [69]–[71].
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TABLE 4. Overview of concepts in the literature on DLT for AI.

2) COMPUTATION IN SMART CONTRACTS
In some DLT networks, such as Ethereum, a virtual machine
can execute Turing-complete smart contracts. As such, DLT
could provide a substrate for ML model training [72].
However, traditional ledgers like Ethereum do not support
intensive computations that would be necessary to perform
ML model training [74]. To overcome this limitation, some
articles propose to extend distributed ledger smart contract
execution with TEEs such that these ledgers can support
computationally more intensive smart contracts. This TEE
can then train simple ML models [11], [59].

3) OFF-CHAIN COMPUTATION
Another subcategory of articles performs computations not
on the distributed ledger, but off-chain. Unless using sophis-
ticated cryptographic techniques [79], the integrity of the
computation cannot be guaranteed. DLT-based federated
learning systems, for example, train an ML model on the

edge [43], [44], [52], [73]. The main motivation of most
articles focusing on DLT-based federated learning, however,
is not the usage of decentralized edge computing resources
per se. Instead, the main motivation is secure data sharing.
Some of the DLT-based federated learning articles also pro-
pose financial rewards for both in combination, model train-
ing and data sharing [80], [81]. Besides federated learning,
another article by Lu et al. [74] proposes a crowdsourced
computation approach to offload heavy computation tasks
from a blockchain, such as in ML model training. Multiple
offloaded computing engines audit each other’s work and
game-theoretic incentive mechanisms are used to build a
protocol. The authors also present a security analysis of their
protocol.

B. SECURE DATA SHARING AND MARKETPLACES FOR AI
In addition to the increasingly available computing power,
another fundamental reason for the recent advancement in
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AI is the strong growth of available and digitized data.
ML-based systems generally perform better the more data
they are trained on, for example, with regards to classification
accuracy [21], [82]. Some authors see recent developments in
IT, in which few companies are in control of large amounts of
personal data, critical and propose DLT-based data markets
to democratize such data silos [13], [83]. As such, a group
of articles proposes solutions based on DLT to build data
sharing infrastructures, thus enabling the deployment of AI.
These articles differ in their technical approaches toward
designing such systems. Articles which incorporate advanced
privacy-preservingmechanisms in their systemsmostly focus
on the health care industry. We suspect the reasons for this
being strong confidentiality requirements for the handling of
health data.

1) SMART CONTRACTS
Two identified articles use traditional smart contracts on
Ethereum to build a data sharing infrastructure and market-
place. These articles differ in their focus, either on sharing
training data itself [75], or ML models [76]. Especially the
sharing of training data requires the storage and handling
of large files. Therefore, Özyilmaz et al. [75] connect their
system to the decentralized file protocol SWARM and man-
age data access rights through the blockchain. These mar-
ketplaces allow the payment of data providers with units of
the cryptocurrency Ether. To incentivize participation with
high quality data, Harris and Waggoner [76] propose staking
mechanisms in which malicious participants sharing spam
models lose their stake. Such systems can be applied in the
Internet of Things industry in general [75].

2) TRUSTED EXECUTION ENVIRONMENTS
TEEs enable the computation of relatively intensive tasks,
while preserving data confidentiality and integrity throughout
the computation. Therefore, systems described in some arti-
cles execute computationally intensive smart contracts off-
chain in a TEE [11], [45], [59], [84], [85]. These articles
use the blockchain concept with different DLT designs [3].
Several articles use the Oasis blockchain [11], [84], [85]
Hynes et al. [11], for example, present a privacy-preserving
data market that provides solutions for a large share of the
ML pipeline. Through smart contracts, data providers can
define policies to share their data. These policies, for exam-
ple, include the asking for a reward and differential privacy
requirements. Data consumers can choose to fulfill these
policies in order to train an ML model on the providers’
data. Since a TEE ensures confidential computation, the train-
ing data does not get leaked and only data consumers can
get access to ML model inference. The ML model itself is
shielded inside a smart contract and inference executions
count toward the provider’s policies, which increases data
provider’s privacy against potential inference attacks. This
type of attacks aims at executing the ML model in order to
extract the underlying training data or the model itself [86].

Other articles, which describe a system with similar
capabilities, use an Ethereum-based blockchain [45], [59].
As a special feature, a virtual machine in the enclave
can allow the training of proprietary AI models while
not comprising the training data security [59]. Passerat-
Palmbach, et al. [45] incorporate federated learning into the
TEE-enabled blockchain. This protects data providers from
potential TEE side channel attacks and, therefore, further
reduces data privacy risks.

3) FEDERATED LEARNING
A large subcategory of articles describes systems that use
federated learning with distributed ledgers that are not TEE-
enabled [43], [44], [51], [52], [81]. DLT thereby serves as
a provenance record of data. This data can describe a large
share of the ML pipeline —training data origin, training
data, ML model modifications, or testing data [51]. In most
systems described in these articles, the data itself is not stored
on the blockchain, but hashes of the data [51]. In some cases,
the systems use relatively simple ML models and store plain
model updates on the blockchain [52]. As a result, every
participating server can audit and compute the aggregatedML
model weight updates. A blockchain-based solution can be
well-suited for certain use cases and only provides a small
performance overhead of ca. 5 % to 15 %, while enabling
transparency and accountability [52]. Some systems go fur-
ther and replace the traditionally centralized aggregator with
a smart contract-based one [44].

As federated learning is potentially vulnerable to inference
attacks [86], some articles describe systems that further use
differential privacy techniques [43], [73] to increase data con-
fidentiality guarantees. Further systems incorporate financial
incentives for participants sharing model updates [43], [81].

C. EXPLAINABLE AI
Complex ML models, such as deep neural networks, are
nowadays often used in a black box manner [19]. This means
that users or even system creators do not have the information
how these models come to a certain prediction. However,
obtaining this information can be desirable in certain cases,
for example, to verify the system’s robustness or to comply
with legislation [19]. Dinh and Thai [13] outline DLT as
a technology to increase AI-based systems’ explainability.
Their vision is that DLT provides an immutable trail to track
the data flow of AI-based systems.

Looking into the extant literature on DLT for AI,
the explainability of the black-box model itself is out of focus
for most researchers. The DLT for XAI literature mainly
covers data provenance or computational integrity aspects
for model training or inference. Sarpatwar et al. [51] design
a DLT-based federated learning system for trusted AI and
present five requirements of blockchain for trusted AI. First,
guarantees of AI model ownership and track of use are
important. Second, the confidential sharing of AI assets as
they are often created using sensitive data. Third, auditability
regarding the AI training process. Fourth, the traceability of
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the AI pipeline. Fifth, to keep a record in order to recognize
a potential bias and model fairness issues.

In general, several extant articles aim to use DLT-based
federated learning to ensure such aspects of AI model
explainability and trustworthiness [51], [52], [76]. Other arti-
cles use TEEs to also cover the model inference with their
system, and thus, provide stronger explainability and restric-
tions in order to track data flows for data providers [11],
[45], [59]. Hynes et al. [11], for example, use XAI methods
to compensate data providers relative to their influence their
data had on an ML model’s inference.

D. COORDINATION OF DEVICES
Afinal group of articles aims to coordinate devices with DLT.
These devices, such as Internet of Things devices, generate
data, which AI-based systems can analyze. A distributed
ledger can serve as a registrar for these devices, and store dif-
ferent types of data that these devices generate. This includes,
for example, metadata (such as hashes), or the generated
data itself. In extant literature, articles that use DLT also
connect devices to the distributed ledger. Using cryptographic
principles, transactions on a distributed ledger (such as smart
contracts) are signed, which ensures that only legitimate par-
ticipants can perform certain transactions. Kang et al. [77]
propose to use DLT for reputation management in a federated
learning setting. Beyond identification through asymmetric
cryptographic mechanisms on a distributed ledger, TEEs pro-
vide mechanisms to self-identify and remote-attest [78], such
as physically unclonable functions [87].

VII. FUTURE RESEARCH AGENDA ON DLT FOR AI
In this section, we present our analysis on open, future
research fields on DLT for AI. Again, we use the categories
based on Dinh and Thai [13] to structure the future research
agenda. We present an overview of our results in Table 5.

A. DECENTRALIZED COMPUTING FOR AI
Aswe identified three categories of approaches usingDLT for
decentralized computing for AI, the future research opportu-
nities in these approaches differ. Subsequently, we present our
identified research opportunities in all of these.

1) DLT PROTOCOL
First, extant research presents blockchain designs with proof-
of-useful-work mechanisms that could be used for MLmodel
training. Proof-of-useful-work itself has a long history with
several blockchain-based cryptocurrency systems deployed
[88], for example, for number theoretic research [89]. While
this prior work is interesting from an academic point of view,
the deployed cryptocurrencies so far had little practical rele-
vance based on their market capitalization. Some blockchain
designs, such as the public Ethereum mainnet, actually aim
to not use consensus mechanisms based on proof-of-work in
the future [90].

Despite that, we see promising avenues for future research
on proof-of-useful-work for AI, as well as for actually

deploying and evaluating such systems. On the one hand,
future research could analyze the economics of such systems
and their utility for ML model requesters as well as regular
DLT users. On the other hand, future research could analyze
the practical security guarantees of such systems. Aspects
include the security of incentive mechanisms, as well as the
security of DLT transactions. This is particularly interesting,
since an attacker with large computational power would not
only benefit from rearranging transactions on the ledger, but
also potentially from the useful work itself.

2) COMPUTATION IN SMART CONTRACTS
Extant research has aimed to compute smart contracts
off-chain in TEEs. Out of several approaches to off-chain
computation while ensuring integrity [79], TEEs are inter-
esting due to the relatively high computational power they
provide [91]. TEEs have seen prior research from both fields
separately, AI and DLT. In the field of AI, extant research
provides frameworks for ML model training and inference
on TEEs [92]. It has shown that TEEs are in general capable
of simple practical machine learning tasks, such as speech
processing [93], or the processing of small images [91]. In the
field of DLT, researchers have sought to increase the low
performance of smart contracts using TEEs while ensuring
confidentiality [78].

From our point of view, TEEs generally provide a promis-
ing trade-off between computational performance and confi-
dentiality. Prior research that provides an ML pipeline with
TEE-enabled DLTs does not evaluate its performance [11],
[45], [59]. As such, a natural extension would be a practical
performance evaluation. This could help researchers aiming
to deploy such systems, for example, for privacy-preserving
personalization. By knowing what amounts of data and what
complexity of computation the system can handle, other
researchers could select use cases and deploy and evaluate
TEE-enabled DLTs for their use cases.

Another avenue for future research is the further develop-
ment of computationally powerful TEEs, and to potentially
even enable TEEs on GPUs [106], which are, for many
ML model training tasks, better suited than CPUs. At the
same time, research has identified security vulnerabilities in
TEEs and potential security measures [94]. Therefore, future
research could aim to develop secure TEEs and mechanisms
to prevent attacks on TEEs, as well as study the feasibility
and implications of TEEs on distributed ledgers. To prevent
TEE security vulnerabilities, some researchers combine them
with other privacy-enabling technologies, such as federated
learning [45] or differential privacy [11], [91]. The further
analysis of such combined methods with regards to data
confidentiality guarantees, computational overhead, impact
on machine learning quality, and practicality for use cases
would be another promising avenue for further research.

In addition, TEEs with a strong integration into a
blockchain protocol enable new mechanisms for block selec-
tion. These mechanisms use special functions of TEEs, such
as the secure generation of random numbers, and are known
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TABLE 5. Overview of future research opportunities in the field of DLT for AI.

as proof of luck [96] or proof-of-elapsed-time [97]. Future
research could aim to further integrate such mechanisms into
the DLT protocol and evaluate the practical benefits and
system security implications.

3) OFF-CHAIN COMPUTATION
Most presented DLT-based federated learning protocols do
not ensure the integrity of the model training calculations.
As such, we see future research potential for such systems
in at least partially trusting consortia. Federated learning is
already successfully applied in systems with a large number
of users [50], therefore, future applied research could provide
further promising results when combined with DLT.

A further avenue for future research is the use of game-
theoretic mechanisms to incentivize honest computation, for
example, for ML model training [74]. In general, there is
a lot of current research that aims to scale smart contract
executions outside a distributed ledger while maintaining
integrity [98]–[102]. Much of this research is at the concep-
tual level and does not yet deal in detail with the application
of concrete computationally intensive applications, such as
the training of ML models.

In this regard, the advancement of cryptographic tech-
nologies for secure computation is another avenue for future
research. Homomorphic encryption, for example, enables
data consumers to perform computations on encrypted data.
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However, this technology and other technologies (such as
secure multiparty computation or zero knowledge proofs) are
not yet practicable for ML model computations [11], [78],
[84], [91] due to the strong computational overhead. If future
research achieves breakthroughs to enable intensive compu-
tations with these cryptographic technologies, they would
provide an alternative to TEEs.

B. SECURE DATA SHARING AND
MARKETPLACES FOR AI
Articles within this field already present systems that could
be further developed and deployed for practical use. Future
research could, therefore, evaluate the practicality and user
acceptance of such systems. For this practical deployment,
health care use cases may be particularly suitable, because the
deployment of ML in this context is especially challenging
due to high privacy and security requirements [11], [84], [85].

Beyond the deployment and evaluation, a further avenue
for future research is the rigorous security analysis of such
systems against different types of adversaries. Potential
adversaries could, for example, aim to get rewards for shar-
ing spam data, aim to extract training data by training a
proprietary ML model, or seek to extract training data of a
shared MLmodel through inference attacks or the shared ML
model itself. Only some articles of in our body of literature
study such attacks and securitymeasures to protect the system
[11], [52], [59]. Especially staking mechanisms have seen
little attention from researchers so far [76]. Future research
could possibly transfer insights from proof-of-stake-based
DLT consensus protocols [107] toward staking in DLT-based
data marketplaces.

We see differential privacy as a promising technique for
ensuring users’ privacy [43], [73], especially in large datasets
with low dimensionality. In such cases, its negative effect
on the aggregated model quality is small while improving
the individual data sharer’s privacy. Previous research on
differential privacy forML studies its theoretical implications
on test data sets [16]. In our view, future research could
build on these and study differential privacy’s practicality in
certain vertical use cases for both, classic ML (relevant in the
context of DLT; e.g., through TEEs), and federated learning.
Federated learning, for example, can be vulnerable to infer-
ence attacks [86]. Differential privacy can help impeding the
practical feasibility of such attacks [103].

Articles describing DLT-based federated learning use DLT
as an immutable trail and, in some cases, even for the data
communication and storage. Furthermore, DLT serves as a
ledger for the reward payment using cryptocurrencies. We,
therefore, see plain federated learning approaches as particu-
larly promising for applications in (at least partially) trusting
consortia. TEE-based approaches, however, not only use DLT
for the same reasons, but go further. Smart contracts on a
distributed ledger can enforce policies for both, data providers
and data consumers. From this point of view, the TEE-based
approach is more powerful in terms of covering a large
share of the ML pipeline, and ultimately, in ensuring system

security. Accordingly, it may have better utility for future
research that aims to deploy DLT-based secure data sharing
and marketplace systems.

Nevertheless, TEE implementations have a rich history of
security vulnerabilities [108]. A detailed security analysis
of the practical security of TEEs and their implications
for TEE-based DLT systems, possibly with further security
mechanisms in smart contracts could provide a valuable
contribution to future research. Such an analysis could also
include combined security measures in smart contracts, like
federated learning [45], differential privacy [11], or secure
multiparty computation [11]. We see such combinations
of privacy techniques [65], [84] with TEEs as an inter-
esting avenue for future research, although some of these
cryptography-based privacy techniques need breakthroughs
in practicability to be usable for ML [84].

C. EXPLAINABLE AI
In our view, DLT is well-suited as a trail for AI model
metadata and hashes of data generated around the AI model
training and inference phase. As such, DLT can help to enable
XAI applications that aim to describe the black box behavior
of AI models for both, off-chain, as well as on-chain [11]
applications. This can increase an AI-based system’s secu-
rity and, ultimately, enable the deployment of trustworthy
AI [51], [104].

In many DLT-based federated learning articles, only AI
model hashes andmetadata [51] or relatively small AI models
[52] are stored on the distributed ledger. TEE-based systems,
on the other hand, can securely write and read external mem-
ory while preserving data confidentiality [59]. Thus, we see
TEE-based systems [11], [45], [59] as specifically suited
for large, data intensive ML environments. Future research
could aim to deploy such systems and evaluate the practical
explainability of the AI model.

D. COORDINATION OF DEVICES
One of the core functions of DLT is to provide an immutable
ledger where only cryptographically legitimate participants
can perform transactions. The usage of DLT for coordinat-
ing devices and participants is therefore essential and basic
at the same time. Reputation management of participants
on a distributed ledger is one field that has only started
to see attention and appears to be of potential for future
research. Kang et al. [77] specifically mention a dynamic
system with variable thresholds as a future research oppor-
tunity. With regard to self-identifying TEEs, prior research
already uses DLT to coordinate devices [78], [109]. We con-
sider the further dissemination and use of self-identifying
functionalities through physically unclonable functions [105]
as an interesting future research opportunity. Such self-
identification functionalities could potentially be built in
Internet of Things devices, such as sensors or actuators. How-
ever, mechanisms for hardware-based authentication have
been identified as insecure in the past [110], [111]. Therefore,
we see an analysis of their practical security guarantees as
another open research problem.
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VIII. DISCUSSION
A. PRINCIPAL FINDINGS
Both fields, AI and DLT, currently experience a lot of hype
within research and practice. Even though our initial database
query listed a few articles that did not clearly explain what AI
or especially what DLT was used for, a substantial number of
extant articles provided profound insights for our review and
future research agenda.

One analysis aspect in our work is that we do not limit our
work to blockchain as the onlyDLT concept, but also consider
other concepts such as directed acyclic graphs. This decision
was based on the expectation that other DLT concepts with
distinct characteristics might be better suited for some AI
applications than the concept of blockchain [3], [12]. Yet,
only one out of 32 articles within our review considered
DLT concepts other than blockchain in the context of AI
[75]. This result is in line with previous research, which has
called for more research on other DLT concepts [3]. Improv-
ing and deploying DLT concepts other than blockchain is,
therefore, a highly interesting and relevant avenue for future
research.

Overall, the framework provided by Dinh and Thai [13]
served as a helpful tool to classify extant literature with regard
to the convergence of AI and DLT. However, several articles
cover aspects from multiple groups in the subsections of AI
for DLT or DLT for AI. This is particularly the case for
articles in our review that cover multiple subsections of DLT
for AI or the subsection privacy-preserving personalization
from the section AI for DLT. We have slightly modified
the framework of Dinh and Thai [13] in two ways. First,
extant literature applies AI for DLT in the context of secure
distributed ledgers, but not for scalable distributed ledgers as
well. A possible reason for this is the lack of AI’s robustness
and security guarantees, as discussed in our future research
agenda. Second, we renamed the subsection coordination of
untrusting devices to coordination of devices, because DLT
is not the element that establishes trust in all of the articles.
For example, TEEs can use physically unclonable functions
for remote attestation [87].

In our view, some of the research fields are mature enough
to transfer systems into practice and evaluate their influence
and user acceptance. This includes, for example, the fields of
security analysis of smart contracts or marketplace systems
based on TEE-enabled DLTs. Research particularly focus on
the application of these marketplaces in the health care indus-
try [11], [45], [59], [84], possibly due to the presence of data
lakes and strong data confidentiality requirements. Therefore,
further research-based deployment and evaluation of DLT-
based marketplaces for AI in health care settings may deliver
a promising contribution to their real-world deployment.
At the same time, other research fields, such as AI-based
automated referee and governance for DLT protocols, appear
to require substantial progress in fundamental research
(e.g., robust and secure AI), before transferring scientific
knowledge into practice and the establishing of real-world
systems.

By applying convergence as a theoretical lens on extant lit-
erature, we were able to focus our research on innovative arti-
cles that closely integrate AI and DLT. Furthermore, we were
able to exclude research that does not closely integrate AI
and DLT, such as AI-based cryptocurrency price prediction
or trading. Drawing on the definition of convergence [30],
many articles on AI and DLT’s convergence fall into the
first phase with cross-scientific research on their integration.
Some articles already pave the way for the second phase
with new platforms arising that could, for example, acceler-
ate health care research [11], [45], [84]. During our review,
we noticed that the concept of convergence has received
relatively little attention by IT researchers in the past. This
came to our surprise, as convergence has been amain driver of
IT innovations over the recent years [14]. Therefore, we con-
sider convergence as a promising theoretical lens to explore
interdisciplinary technological settings.

B. LIMITATIONS
Both fields, AI and DLT, are moving very fast and break-
throughs are regularly achieved. In this respect, we cannot
rule out the possibility that in some subfields of the conver-
gence of AI and DLT, future research will achieve innovative
breakthroughs that may enable use cases not identified in
our review or future research agenda. We have taken sev-
eral steps to minimize the chances of this outcome. First,
our analysis includes ArXiv preprints of research articles
that may only soon be published in journals or presented at
conferences. Second, we included insights from foundational
research on the topics of AI, DLT, and secure computation
into our future research agenda. In doing so, we sought to
consider aspects that may not be covered in the reviewed
body of literature but are nevertheless highly relevant in the
individual fields (e.g., the practical security guarantees of
TEEs). Third, we have also included articles that cover little
researched technologies, often with little practicality today,
but that may see breakthroughs in the future. This includes
Artificial General Intelligence, DLT which is not based on
the concept of blockchain, and cryptographic protocols for
computationally intensive tasks.

IX. CONCLUSION
In this research, we investigated the current research status
and future research opportunities on the convergence of
AI and DLT. In order to assess the current state of con-
vergence, we conducted a systematic literature review and
analyzed extant literature through the lens of convergence.
Our findings include several different ways that describe
how AI can advance DLT applications, as well as how DLT
can advance AI applications. In order to develop a future
research agenda, we built on the structure of our literature
review and linked the ongoing research with other research
in the separate fields of AI and DLT, as well as our own
view on future research opportunities. Our results reveal
multiple future research opportunities in this interdisciplinary
field for both, theory- as well as practice-oriented research.
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TABLE 6. Overview of relevant and analyzed papers and their classification into different groups.

With our article, we contribute to the current state of research
in four ways. First, we expand prior research, which did
not consider DLT concepts other than blockchain in the

integration with AI. Second, we consider both perspec-
tives, AI for DLT, and DLT for AI and the many differ-
ent concepts of their integration. Third, we bridge the gap
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TABLE 6. (Continued) Overview of relevant and analyzed papers and their classification into different groups.

between theory and practice by drawing theoretical conclu-
sions from practical research and outlining future practi-
cal research opportunities from theory. Fourth, we describe
how convergence creates innovation in an emerging
field.

This article provides insights for researchers and prac-
titioners interested in deepening their knowledge for
interdisciplinary applications of any of the fields: AI,
DLT, their convergence, or convergence in general. By

providing these insights with an overview on the upcom-
ing convergence of DLT and AI, we contribute to the
development of future innovations in this fast-paced field
problem.

APPENDIX
A. RELEVANT AND ANALYZED PAPERS
See Table 6.
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