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Abstract A novel planctomycetal strain, designated

Pla85_3_4T, was isolated from the surface of wood

incubated at the discharge of a wastewater treatment

plant in the Warnow river near Rostock, Germany.

Cells of the novel strain have a cell envelope

architecture resembling that of Gram-negative bacte-

ria, are round to pear-shaped (length: 2.2 ± 0.4 lm,

width: 1.2 ± 0.3 lm), form aggregates and divide by

polar budding. Colonies have a cream colour. Strain

Pla85_3_4T grows at ranges of 10–30 �C (optimum

26 �C) and at pH 6.5–10.0 (optimum 7.5), and has a

doubling time of 26 h. Phylogenetically, strain

Pla85_3_4T (DSM 103796T = LMG 29741T) is con-

cluded to represent a novel species of a novel genus

within the family Pirellulaceae, for which we propose

the name Lignipirellula cremea gen. nov., sp. nov.

Keywords Aquatic bacteria � Planctomycetes �
Pirellulaceae � Baltic Sea � Budding � Wood particles

Introduction

Planctomycetes is a phylum of bacteria which were

once thought to have several exceptional eukaryote-

like traits (Devos et al. 2013; Devos and Reynaud

2010; Fuerst and Sagulenko 2011; Fuerst and Webb

1991; König et al. 1984; Lindsay et al. 1997; Lonhi-

enne et al. 2010). These have since been re-examined

and re-interpreted (Acehan et al. 2013; Boedeker et al.

2017; Jeske et al. 2015; Jogler 2014; Jogler et al. 2011;

Jogler and Jogler 2013; Neumann et al. 2014; Rast et al.

2017; Rivas-Marin et al. 2016b; Rivas-Marı́n and

Devos 2018; Santarella-Mellwig et al. 2013; van

Teeseling et al. 2015). The cell envelope architecture

of Planctomycetes was shown to resemble that of

Gram-negative bacteria (Boedeker et al. 2017; Devos

2014). The phylum Planctomycetes is part of the PVC

superphylum, along with Verrucomicrobia, Chlamy-

diae and others (Wagner and Horn 2006). Members of

the phylum can play major roles in biogeochemical

cycles (Peeters and van Niftrik 2018; Strous et al. 1999;
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Wiegand et al. 2018), are ubiquitous and are found in

high abundance on algal surfaces (Bengtsson and

Øvreås 2010; Bengtsson et al. 2012; Bondoso et al.

2014, 2015, 2017; Lage and Bondoso 2014; Vollmers

et al. 2017), on which they probably metabolise

complex sugars (Frank et al. 2014; Jeske et al. 2013;

Lachnit et al. 2013; Wiegand et al. 2018).

Major scientific interest is dedicated to the inter-

esting cell biology of Planctomycetes. For example,

they lack many otherwise essential cell division genes,

including the canonical ftsZ (Jogler et al. 2012;

Pilhofer et al. 2008; Wiegand et al. 2020). Even so,

some Planctomycetes are capable of performing cell

division by binary fission, while others divide by

budding (Rivas-Marin et al. 2016a; Wiegand et al.

2020). Members of the orders Planctomycetales and

Pirellulales also perform a lifestyle switch between

sessile mother cells and motile daughter cells (Jogler

et al. 2011). Most Planctomycetes feature unusual

crateriform structures on their cell surfaces. Their

periplasm can be enlarged to form invaginations into

the cytoplasm. They are potential producers of small

molecules with interesting bioactivities (Graça et al.

2016; Jeske et al. 2016; Wiegand et al. 2018), possess

many giant genes (Kohn et al. 2016), and belong to the

bacterial phylum with the highest number of predicted

genes with unknown function (40–55% of the anno-

tated proteins) (Bordin et al. 2018; Overmann et al.

2017; Wiegand et al. 2018).

In this study, we isolated strain Pla85_3_4T from

wood particles floating in the estuary of the Warnow

river next to a wastewater treatment plant discharge

and close to the Baltic Sea. In phylogenetic analyses,

the strain clusters within the family Pirellulaceae,

which comprises most of the described members of the

order Pirellulales. In the past, Planctomycetes have

been found on decomposing wood in natural temper-

ate forests by 16S rRNA gene analysis (Tlaskal et al.

2017), but to date only one other Planctomycete,

Singulisphaera mucilagenosa, has been isolated from

(degrading) wood (Zaicnikova et al. 2011).

Materials and methods

Isolation and cultivation of the strain

Strain Pla85_3_4T was isolated from submerged wood

pellets suspended near the discharge of a wastewater

treatment plant in the estuary of Warnow river next to

the city Rostock located in Germany (exact location

54.106 N 12.096 E). This location is close to the

Baltic Sea and has brackish water. Isolation was

performed as described previously (Oberbeckmann

et al. 2018; Wiegand et al. 2020). For further

investigation, the strain was grown in M1H medium

supplemented with N-acetyl glucosamine (NAG) and

artificial seawater (ASW) (M1H NAG ASW medium)

as described previously (Wiegand et al. 2020) and was

cultivated at 28 �C under constant agitation at

110 rpm.

Light microscopy and electron microscopy

Phase contrast microscopy was performed with a

Nikon Eclipse Ti inverted microscope with a Nikon

DS-Ri2 camera. Cells were immobilised in MatTek

glass bottom dishes (35 mm, No. 1.5) using a 1% (w/

v) agarose cushion (Boedeker et al. 2017). ImageJ

(Rueden et al. 2017) was used to examine cell size by

sequentially applying an Otsu threshold, then the

watershed function, and finally the count particles

function, excluding particles smaller than 0.05 lm.

Field emission scanning electron microscopy was

performed as described previously (Boersma et al.

2019). The bacteria were fixed in formaldehyde,

washed and placed on poly-L-lysine-coated cover

slips. Samples were then fixed in 1% (v/v) glutaralde-

hyde and washed twice before dehydrating in graded

series of acetone [10, 30, 50, 70, 90, 100% (v/v)] on

ice. Samples from the last acetone treatment step were

brought to room temperature before placing them in

fresh 100% acetone. Samples were then subjected to

critical-point drying with liquid CO2 (CPD 300,

Leica). Dried samples were covered with a gold/pal-

ladium (80/20) film by sputter coating (SCD 500, Bal-

Tec), before examination in a field emission scanning

electron microscope (Zeiss Merlin) using an Everhart–

Thornley HESE2 detector and an inlens SE detector in

a 25:75 ratio with an acceleration voltage of 5 kV.

Physiological and biochemical analyses

The pH optimum was determined at 28 �C, with

buffering agents 100 mM 2-(N-morpholino)ethane-

sulfonic acid (MES) at pH 5 and 6, 100 mM (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) -

HEPES at pH 7, 7.5 and 8, and 100 mM N-
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cyclohexyl-2-aminoethanesulfonic acid (CHES) at pH

9 and 10. Temperature optimum determination was

performed at pH 7.5 and temperatures ranging from 10

to 40 �C in steps of 5 �C. Cell densities were inferred

from optical densities (k = 600 nm).

Genome information and analysis of genome-

encoded features

The genome and 16S rRNA gene sequences of strain

Pla85_3_4T are available from GenBank (accession

numbers MK559988 and CP036433, respectively).

Numbers of carbohydrate-active enzymes were

obtained from the CAZY database (Lombard et al.

2014). Gene clusters potentially involved in the

production of secondary metabolites were determined

using antiSMASH 4.0 (Blin et al. 2017).

Phylogenetic analysis

16S rRNA gene-based phylogeny was computed for

strain Pla85_3_4T, the type strains of all described

planctomycetal species (assessed in January 2020), all

isolates recently published (Boersma et al. 2019;

Kallscheuer et al. 2019a, b, c, d, 2020; Kohn et al.

2019; Peeters et al. 2019; Rensink et al. 2020) and with

an outgroup of strains from outside the phylum

Planctomycetes but part of the PVC superphylum.

The alignment of 16S rRNA genes was made with

SINA (Pruesse et al. 2012). Phylogenetic analysis was

performed employing a maximum likelihood

approach with 1000 bootstraps, the nucleotide substi-

tution model GTR, gamma distribution, and estima-

tion of proportion of invariable sites using

GTRGAMMAI (Stamatakis 2014).

The genomes for the genome-based analyses were

gathered from GenBank including the sequences for

strain Pla85_3_4T recently published (Wiegand et al.

2020). Completeness and contamination of the

genome was determined using CheckM v1.0.131

(Parks et al. 2015). The average nucleotide identity

(ANI) was calculated using OrthoANI (Lee et al.

2016), the average amino acid identity (AAI) was

computed with the aai.rb script from the enveomics

collection (Rodriguez-R and Konstantinidis 2016) and

the percentage of conserved proteins (POCP) was

determined as previously described (Qin et al. 2014).

The rpoB nucleotide sequences (encoding the b-

subunit of RNA polymerase) were taken from the

genome annotations and the sequence identities were

determined as described (Bondoso et al. 2013). Upon

extracting only those parts of the sequences that would

have been sequenced with the primer set described by

Bondoso et al. (2013), the alignment and matrix

calculation was performed with Clustal Omega (Siev-

ers et al. 2011).

For the multi-locus sequence analysis (MLSA), the

unique single-copy core genome of all analysed

genomes was determined with proteinortho5 (Lechner

et al. 2011) with the ‘selfblast’ option enabled. The

protein sequences of the resulting orthologous groups

were aligned using MUSCLE v.3.8.31 (Edgar 2004).

After clipping, partially aligned C- and N-terminal

regions and poorly aligned internal regions were

filtered using Gblocks (Castresana 2000). The final

alignment was concatenated and clustered using the

maximum likelihood method implemented by RaxML

(Stamatakis 2014) with the ‘rapid bootstrap’ method

and 500 bootstrap replicates. The outgroup consisted

of concatenated gene sets of strains from the order

Planctomycetales.

Results and discussion

Phylogenetic inference

Based on 16S rRNA sequence analysis and MLSA, the

isolated strain Pla85_3_4T clusters within the family

Pirellulaceae (Fig. 1). 16S rRNA gene sequence

identities to other current genera of this family range

from 87.7 to 89.2% (Fig. 2). These values fall below

the 94.5% cut-off value for delineating genera (Yarza

et al. 2014), indicating that this species is part of a

novel genus. To substantiate this claim, other phylo-

genetic markers such as RNA polymerase b-subunit

(rpoB) gene similarity (Bondoso et al. 2013), AAI

(Konstantinidis and Tiedje 2005) and POCP (Qin et al.

2014) were employed. Comparison of POCP values of

strain Pla85_3_4T and the other genera in the family

Pirellulaceae yielded maximum values between

27.8% and 45.7% (Fig. 2) which are all below the

50% cut-off value for delineation of genera (Qin et al.

2014). Comparison of AAI values of strain

Pla85_3_4T yielded maximal similarities ranging

from 48.1 to 53.8% (Fig. 2), which also fall below

the cut-off range of 60–80% for defining genera (Luo

et al. 2014). The maximal similarities of a 1200 base
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pair region of the rpoB gene between strain

Pla85_3_4T were found to be in a range of

66.9–72.3% (Fig. 2), which again fall below the cut-

off range of 75.5–78% for delineating genera (Bon-

doso et al. 2013; Kallscheuer et al. 2019d). Taken

together, all four parameters support the conclusion

that strain Pla85_3_4T belongs to a novel genus. A

most closely related genus could not be clearly

identified, although this strain formed a branch with

Pirellula staleyi in the MLSA-based tree.

Morphological, physiological and biochemical

analyses

Morphology, physiology and life cycle of strain

Pla85_3_4T were found to be similar to those of many

other Planctomycetes. Adult cells were attached by

loose fimbriae, enabling the cells to grow in aggre-

gates (Fig. 3a). In other Planctomycetes, these fim-

briae originate from crateriform structures, but these

structures were either absent or difficult to observe in

this strain. When examined with phase contrast

microscopy, the cells appeared round to pear-shaped

and 2.2 ± 0.4 by 1.2 ± 0.3 lm in length and width,

respectively (Table 1). As typical for members of the

family Pirellulaceae, the cells divide by polar bud-

ding. Colonies of strain Pla85_3_4T have a cream

colour, indicating a lack of carotenoid production. The

novel strain might be interesting for future studies on

pigmentation of Planctomycetes since its phylogenetic

position is between genera with mostly pigmented

species (Rhodopirellula, Rubripirellula, Novipirel-

lula, Crateriforma, Roseimaritima) and unpigmented

species of the genera Pirellula, Blastopirellula and

Bremerella (Fig. 1).

Strain Pla85_3_4T is able to grow in medium

containing artificial seawater, consistent with the

observation that the section of the river from which

this strain was isolated is quite brackish due to the

influx of water from the Baltic Sea. Strain Pla85_3_4T

grows chemoorganotrophically, aerobically and at

temperatures ranging from 10 to 30 �C, with the

optimum at 26 �C (Fig. 3b). The strain grows in the

neutral to alkaline pH range from 6.5 to 8.5, with the

optimum at 7.5. The growth rate of this strain was

calculated to be 0.027 h-1, which corresponds to a

doubling time of 26 h.

Genomic characteristics

The genome of strain Pla85_3_4T has a 61.4% G ? C

content and is 9,565,229 bp in length (Table 1). This

distinguishes the strain from other members of the

family Pirellulaceae as these species have smaller

genomes of between 6.1 and 8.0 Mb, and G ? C

contents between 53.4 and 57.8%. The strain has a

larger genome and a larger number of genes, while the

coding density and number of proteins per Mb is lower

than in its relatives from the family Pirellulaceae

(Table 1). The genome of strain Pla85_3_4T contains

both a large number of transposable elements (27) and

a large number of tRNAs (144) in comparison to those

of other members of the family Pirellulaceae

(Table 1). The genome of strain Pla85_3_4T contains

a singular 16S rRNA gene.

Genome-based analysis of metabolic features

Based on the genome of strain Pla85_3_4T and of

species of closely related genera, we analysed the

numbers of putative carbohydrate-active enzymes and

of gene clusters putatively involved in the synthesis of

secondary metabolites (Table 2). These numbers can

give a first impression on the metabolic capabilities of

the strain, e.g. in competitive environments, in which

complex polysaccharides (e.g. derived from macro-

scopic phototrophs) function as a major source of

carbon and energy. The observed number of 124

putative carbohydrate-active enzymes of strain

Pla85_3_4T is in the lower to middle range compared

to its relatives, which harbour between 87 and more

than 200 of such enzymes. Higher numbers of putative

carbohydrate-active enzymes are not reflected by

larger genomes. Strain Pla85_3_4T has the largest

genome of the compared strains, but is the strain with

the second-lowest number of carbohydrate-active

enzymes. Although the difference in the genome size

of Crateriforma conspicua and P. staleyi is only

bFig. 1 a 16S rRNA gene-based phylogenetic tree of described

planctomycetal species and the novel isolate Pla85_3_4T

indicated in blue. Bootstrap values indicated as a proportion

of 1000 re-samplings (in %). The outgroup consisted of three

16S rRNA genes from the PVC superphylum outside the phylum

Planctomycetes. b Whole genome-based MLSA phylogeny,

with bootstrap values based on 500 re-samplings, indicated at

the nodes (in %). The outgroup consisted of several represen-

tatives of the order Planctomycetales
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Fig. 2 Delineation of strain Pla85_3_4T from known genera in

the family Pirellulaceae. Methods used: 16S rRNA gene

identity (16S), average amino acid identity (AAI), average

nucleotide identity (ANI), rpoB gene (partial) identity and

percentage of conserved proteins (POCP)

123

Antonie van Leeuwenhoek



around 1 Mb, the number of carbohydrate-active

enzymes is nearly 2.5-fold different in a direct

comparison of these two species. The numbers of

proteins belonging to such classes are more likely a

reflection of the complexity of the natural environment

and probably do not depend on the genome size.

In contrast, numbers of gene clusters putatively

involved in the production of secondary metabolites

clearly correlated with the genome size. Strain

Pla85_3_4T has both the largest genome and the

highest number of predicted clusters (Table 2). The

lowest numbers were found in Mariniblastus fucicola

Fig. 3 Phase contrast micrographs of strain Pla85_3_4T (a) and

cell size, pH optimum and temperature optimum (b). The strain

grows in aggregates or rosettes and divides by polar budding, as

can be observed in the overview and close up, respectively.

Asterisks indicate budding cells. Scale bar is 1 lm
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Table 1 Phenotypic and genotypic information of strain Pla85_3_4T compared to members of the family Pirellulaceae

Characteristics Pla85_3_4 Bremerella

cremea LHWP2*

Mariniblastus

fucicola FC18**

Crateriforma

conspicua

Pan14r***

Pirellula staleyi

DSM 6068****

Rubripirellula

tenax

Poly51*****

Phenotypic characteristics

Shape Pear-

shaped to

round

Ovoid Round Pear-shaped Teardrop- to pear-

shaped

Round grain rice-

shaped

Aggregates Yes Yes Yes Rosettes Yes Yes

Division Budding Budding Budding Budding Budding Budding

Flagella n.o. Yes n.o. n.o. Monotrichous

polar

n.o.

Crateriform

structures

n.o Yes Yes At fiber pole At reproductive

pole

Polar

Fimbriae Polar

matrix or

fibre

n.o. n.o. Polar matrix or

fibre

Yes Matrix or fibre

Capsule n.o. n.o. n.o. n.o. n.o. Yes

Bud shape Like

mother

cell

Like mother cell Like mother cell Like mother cell Like mother cell Like mother cell

Budding pole Polar n.d. Any Polar Polar Polar

Stalk n.o. n.o. n.o. n.o. n.o. n.o.

Holdfast

structure

n.o. n.o. n.o. n.o. Yes n.o.

Size (lm) 2.2 9 1.2 0.6–1.5 9 0.6–1.4 1.6–2.0 1.8 9 0.9 0.5–1.0 9 0.5–1.0 1.4 9 0.9

Colony colour White/

cream

White/cream Light pink Pink White Pink

Genomic characteristics

Transposable

elements

27 12 5 2 0 6

Transposable

elements/Mb

2.82 1.91 0.76 0.28 0 0.75

Total genes 7178 5222 5200 5490 4767 6404

Genes/Mb 750 830 791 769 769 802

Giant genes 1 0 7 7 1 8

All proteins 7010 5145 5123 5400 4705 6274

Proteins/Mb 733 818 780 757 759 785

Hypothetical

proteins

3033 3342 2087 2080 2601 2796

tRNAs 144 71 65 82 49 120

tRNAs/Mb 15.05 11.29 9.89 11.49 7.91 15.02

16S rRNA

genes

1 1 1 1 1 1

Completeness

(%)

98.28 98.28 98.28 98.28 98.28 98.28

Contamination

(%)

5.17 1.72 1.72 0 0 1.72
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and P. staleyi, both with genomes below 7 Mb. In

strain Pla85_3_4T, three clusters putatively involved

in the biosynthesis of bacteriocin, one cluster for

ectoine production and one cluster related to resorci-

nol production were identified. These appear to be

restricted to strain Pla85_3_4T (of the other strains

Table 1 continued

Characteristics Pla85_3_4 Bremerella

cremea LHWP2*

Mariniblastus

fucicola FC18**

Crateriforma

conspicua

Pan14r***

Pirellula staleyi

DSM 6068****

Rubripirellula

tenax

Poly51*****

Genome size

(bp)

9,565,229 6,287,921 6,570,840 7,137,949 6,196,199 7,988,747

G ? C content

(%)

61.4 54.0 ± 2.6 53.4 57.8 ± 2.5 57.5 56.2 ± 2.1

Coding density

(%)

85.3 86.8 88.8 88 86.2 88.8

n.o. not observed

n.d. not determined

*Lee et al. (2013), **Lage et al. (2017), ***Peeters et al. (2019), ****Schlesner and Hirsch (1984), *****Kallscheuer et al. (2019b)

Table 2 Numbers of carbohydrate-active enzymes and putative gene clusters involved in the production of secondary metabolites in

strain Pla85_3_4T and close relatives

Metabolic feature Pla85_3_4T Roseimaritima

ulvae UC8T
Mariniblastus

fucicola FC18T
Crateriforma

conspicua Mal65T
Pirellula staleyi

DSM 6068T
Rhodopirellula

baltica SH1T

Genome size (Mb) 9.57 8.21 6.57 7.18 6.20 7.15

Carbohydrate-active enzymes

Glycoside hydrolase

family

48 45 44 121 19 51

Glycosyltransferase

family

46 76 57 65 45 64

Polysaccharide lyase

family

6 3 5 7 1 6

Carbohydrate

esterase family

9 7 5 9 8 12

Carbohydrate-

binding module

Family

15 21 15 15 14 10

Total 124 152 126 217 87 143

Secondary metabolite clusters

Terpenoid 3 2 2 2 3 2

Type I PKS 1 3 0 2 0 2

Type II PKS 0 0 0 0 0 0

Type III PKS 1 1 0 0 0 1

Type I PKS-NRPS 1 1 2 2 0 1

NRPS 0 0 0 1 0 0

Bacteriocin 3 0 0 0 1 0

Ectoine 1 0 0 0 0 0

Resorcinol 1 0 0 0 0 0

Total 11 7 4 7 4 6
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examined only P. staleyi harbours one putative cluster

related to bacteriocin production). Three terpenoid

biosynthetic gene clusters are present in Pla85_3_4T,

however, since the strain lacks pigmentation, they are

likely not exclusively involved in carotenoid biosyn-

thesis, but relevant for synthesis of other terpenoids.

Putative polyketide synthases of the types I and III are

present in all strains, except for the two above-

mentioned species with genome sizes smaller than

7 Mb. Type II polyketide synthases appear to be

absent from all compared strains.

Conclusion

Taken together, based on the phylogenetic inference

and supported by differences in morphology as well as

genomic characteristics, we conclude that strain

Pla85_3_4T represents a novel species of a new genus,

for which we propose the name Lignipirellula cremea

gen. nov., sp. nov.

Lignipirellula gen. nov.

Lignipirellula (Lig.ni.pi.rel’lu.la. L. neut. n. lignum

wood; N.L. fem. n. Pirellula name of a bacterial

genus; N.L. fem. n. Lignipirellula a Pirellula isolated

from wood).

Members of the genus have a Gram-negative cell

envelope architecture, are aerobic, mesophilic, neu-

trophilic and heterotrophic. Cells are round to pear-

shaped and divide by polar budding. The genus is part

of the family Pirellulaceae, order Pirellulales, class

Planctomycetia, phylum Planctomycetes.

Lignipirellula cremea sp. nov.

Lignipirellula cremea (cre’me.a. N.L. fem. adj. cre-

mea of creme; corresponding to the creamy colour of

the cells).

In addition to the characteristics described for the

genus, cells have a length of 2.2 ± 0.4 lm and width

of 1.2 ± 0.3 lm, form aggregates and lack pigmen-

tation. Crateriform structures are not observed.

Daughter cells have the same shape as the mother

cell. Grows aerobically at 10–30 �C (optimum 26 �C)

and at pH 6.5–8.5 (optimum 7.5), and has a doubling

time of about 26 h. The 9.6 Mb genomic DNA of the

type strain has a G ? C content of 61%.

The type strain is Pla85_3_4T (DSM 103796T =

LMG 29741T), which was isolated from the surface of

wood incubated close to the discharge of a wastewater

treatment plant in the Unterwarnow river in Rostock,

Germany in September 2014. The genome (accession

no. CP036433) and 16S rRNA sequence (GenBank

accession no. MK559988) of strain Pla85_3_4T are

available from GenBank.
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