KIT | KIT-Bibliothek | Impressum | Datenschutz

A novel approach to label road defects in video data: semi-automated video analysis

Thumm, Jakob 1; Masino, Johannes 1; Knoche, Martin; Gauterin, Frank ORCID iD icon 1; Reischl, Markus ORCID iD icon 1
1 Karlsruher Institut für Technologie (KIT)


Road defects like potholes have a major impact on road safety and comfort. Detecting these defects manually is a highly time consuming and expensive task. Previous approaches to detect road events automatically using acceleration sensors and gyro meters showed good results. However, these results could be significantly improved with additional usage of image analysis. A large, labeled image data set is required for training and validation. This paper presents a method to automate parts of the labeling task. The method is based on a simple two step approach: at first, an unsupervised algorithm detects possible events based on the acceleration data and filters those video sequences with defects. Second, a human operator decides based on the short video sequences if the event was due to an existing road defect and labels the corresponding area in an image.

Verlagsausgabe §
DOI: 10.5445/IR/1000118895
Veröffentlicht am 04.05.2020
DOI: 10.21307/ijssis-2020-007
Zitationen: 1
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1178-5608
KITopen-ID: 1000118895
HGF-Programm 47.01.02 (POF III, LK 01) Biol.Netzwerke u.Synth.Regulat. IAI
Erschienen in International journal on smart sensing and intelligent systems
Verlag Exeley Inc.
Band 13
Heft 1
Seiten 1–9
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 30.04.2020
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page