
Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-020-00694-7

1 3

A Unified Model and Algorithms for Temporal Map Labeling

Andreas Gemsa1 · Benjamin Niedermann2  · Martin Nöllenburg3 

© The Author(s) 2020

Abstract
We consider map labeling for the case that a map undergoes a sequence of opera-
tions such as rotation, zoom and translation over a specified time span. We unify
and generalize several previous models for dynamic map labeling into one versatile
and flexible model. In contrast to previous research, we completely abstract from the
particular operations and express the labeling problem as a set of time intervals rep-
resenting the labels’ presences, activities and conflicts. One of the model’s strength
is manifested in its simplicity and broad range of applications. In particular, it sup-
ports label selection both for map features with fixed position as well as for moving
entities (e.g., for tracking vehicles in logistics or air traffic control). We study the
active range maximization problem in this model. We prove that the problem is NP-
complete and W[1]-hard, and present constant-factor approximation algorithms. In
the restricted, yet practically relevant case that no more than k labels can be active at
any time, we give polynomial-time algorithms as well as constant-factor approxima-
tion algorithms.

Keywords  Dynamic map labeling · Unified map labeling model · Approximation
algorithms · Complexity results · Geometric packing algorithms · Dynamic
programming · Polynomial time algorithms

Preliminary versions of this paper have appeared as follows. Trajectory-Based Dynamic Map
Labeling In: Proc. 24th Int. Symp. on Algorithms and Computation (ISAAC’13), volume 8283 of
Lect. Notes in Comput. Sci., pages 413–423. Springer, 2013 and Temporal Map Labeling: A New
Unified Framework with Experiments In: Proc. 24th ACM SIGSPATIAL Int. Conf. on Advances in
Geographic Information Systems (GIS’16), pages 23:1–23:10, ACM, 2016.

 *	 Benjamin Niedermann
	 niedermann@uni‑bonn.de

	 Martin Nöllenburg
	 noellenburg@ac.tuwien.ac.at

1	 Karlsruhe Institute of Technology, Karlsruhe, Germany
2	 University of Bonn, Bonn, Germany
3	 TU Wien, Vienna, Austria

http://orcid.org/0000-0001-6638-7250
http://orcid.org/0000-0003-0454-3937
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00694-7&domain=pdf

	 Algorithmica

1 3

1  Introduction

Dynamic digital maps are becoming more and more ubiquitous, especially with the
rising numbers of location-based services and smartphone users worldwide. Con-
sumer applications that include personalized and interactive map views range from
classic navigation systems to map-based search engines and social networking ser-
vices. Likewise, interactive digital maps are a core component of professional geo-
graphic information systems. All these map services have in common that the con-
tent of the map view is changing over time based on interaction with the system (i.e.,
zooming, panning, rotating, content filtering, etc.; see Fig. 1 for a schematic illustra-
tion of interactive maps) or based on the physical movement of the user or a set of
tracked entities. Creating smooth visualizations under such map dynamics induces
challenging geometric problems, e.g., continuous generalization [22] or dynamic
map labeling.

In the past decade, dynamic map labeling has therefore captured the interest of
researchers. In 2003, Petzold et al. [21] presented a framework for automatically
placing labels on dynamic maps. They split the label placement procedure into two
phases, namely a (possibly time-consuming) pre-processing phase and a query phase
which computes the labeling of custom-scale maps. However, this approach does not
guarantee that labels do not jump or flicker while transforming the map.

In 2006, Been et al. [1] introduced the first formal model for dynamic maps
and dynamic labels, formulating a general optimization problem. They describe
the change of a map by the operations zooming, panning, and rotation. They
observe that the selection and placement of labels must be temporally coherent
(or consistent) during all map animations resulting from interactions, rather than
being optimized individually for each map view as in static map labeling. In order
to avoid flickering and jumping labels while transforming the map with zoom-
ing and panning, they require four desiderata for consistent dynamic map labe-
ling. These comprise monotonicity, i.e., labels should not vanish when zooming
in or appear when zooming out (or any of the two when panning), invariant point
placement, i.e., label positions and size remain invariant during movement, and
history independence, i.e., placement and selection of labels should be a function
of the current map state only. Monotonicity is modeled as selecting for each label
at most one scale interval, the so-called active range, during which the label is

(a) Zooming. (b) Panning. (c) Rotation.

Fig. 1   Illustration of interactive maps providing zooming, panning, and rotation as user interaction

1 3

Algorithmica	

displayed. They introduce the active range optimization problem (ARO) maxi-
mizing the sum of active ranges over all labels such that no two labels overlap
and all desiderata are fulfilled. They prove that ARO is NP-hard for star-shaped
labels and present a greedy algorithm that computes an optimal solution for a
simplified variant in polynomial time.

That model is the starting point for several subsequent papers considering the
operations zooming, panning and rotation, mostly independently. Been et al. [4]
take a closer look at different variants of ARO for zooming. They show NP-hard-
ness and give approximation algorithms. In the same manner further variants are
investigated by Liao et al. [14]. Gemsa et al. [9] present a fully polynomial-time
approximation scheme (FPTAS) for a special case of ARO, where the given map is
one-dimensional and only zooming is allowed. However, they combine the selection
problem with a placement problem in a slider model. Zhang et al. [27] also consider
the model of Been et al. [1] for zooming, however, instead of maximizing the total
sum of active ranges, they maximize the minimum active range among all labels.
They discuss similar variants as Liao et al. [14] and Been et al. [4], and also prove
NP-hardness and give approximation algorithms.

Gemsa et al. [10, 11] extend the ARO model to rotation operations. They first
show that the ARO problem is NP-hard in the considered setting and introduce an
efficient polynomial-time-approximation scheme (FPTAS) for unit-height rectan-
gles [10]. In subsequent work, they experimentally evaluate heuristics, algorithms
with approximation guarantees and optimal approaches based on integer linear pro-
gramming [11]. A similar setting for rotating maps is considered by Yokosuka and
Imai [26]. However, instead of ARO, they aim at finding the maximum font size for
which all labels can always be displayed without overlapping.

Apart from the results based on the consistency model of Been et al. [1], other
approaches and models are considered, too. Maass et al. [17] describe a view man-
agement system for interactive three-dimensional maps of cities also considering
label placement. Mote [20] presents a fast label placement strategy without a pre-
processing phase. Luboschik et al. [15] describes a fast particle-based strategy that
locally optimizes the label placement. None of these approaches takes consistency
criteria for dynamic map labeling into account.

A different generalization of static point labeling is dynamic point labeling.
Instead of transforming the map, the point set changes over time by adding or
removing points as well as by moving points continuously. Inspired by air-traffic
control, De Berg and Gerrits [6] consider moving points on a static map that must
be labeled. They present a sophisticated heuristic for finding a reasonable trade-off
between label speed and label overlap. Finally, Buchin and Gerrits [2] show that
dynamic point labeling is strongly PSPACE-complete.

Embedded labels for road maps are also considered for interactive and dynamic
maps. Maass and Döllner [18] provide a heuristic for labeling interactive 3D road
maps taking obstacles into account. Vaaraniemi et al. [25] present a study on a force-
based labeling algorithm for dynamic maps considering both point and line features.
Schwartges et al. [24] investigate embedded labels in interactive maps allowing pan-
ning, zooming and rotation of the map. They evaluate a simple heuristic for maxi-
mizing the number of placed labels. In [23] Schwartges et al. take another approach

	 Algorithmica

1 3

using billboards (labels with short leaders) for naming roads in interactive 3D maps
to avoid label distortion.

Contribution and Outline Most existing algorithmic results in dynamic map
labeling take a global view on the map, which optimizes over the whole interaction
space, regardless of which portion of that space is actually explored by the user.
In this paper we take a more local view on dynamic map labeling. Our aim is to
develop algorithms that optimize the labeling for a specific map animation given
offline as input. Any feature or label that is not relevant for that particular anima-
tion—for example, because it never enters the map view—can be ignored by our
algorithms. This approach not only allows us to compute better labelings by remov-
ing unnecessary dependencies and non-local effects, but it also reduces the problem
size, since fewer features and labels must be taken into account.

In Sect. 2, we first formulate an abstract, generic model for offline, temporal
labeling problems, in which labels and potential conflicts between labels are rep-
resented as intervals over time. To represent a label’s presence, we use a presence
interval, which corresponds to the time that a label is present (but not necessarily
displayed) in the map view. That is, whenever a label enters the map view, a cor-
responding presence interval starts, and whenever a label leaves the view, its cur-
rent presence interval ends. Next, a conflict interval (or simply conflict) between two
present labels starts and ends at the points in time at which the two labels start and
stop intersecting. A temporal labeling is then simply represented as a set of subinter-
vals—the labels’ activity intervals, during which the labels are displayed such that
no two conflicting labels are displayed simultaneously. Depending on the objective
and additional consistency constraints of the labeling model, different sets of subin-
tervals may be chosen by the algorithm.

This is a very versatile model, which includes, for instance, map labeling for
car navigation systems, in which the map view changes position, angle, and scale
according to the car’s position, heading, and speed following a particular route; see
Fig. 2. To give another, seemingly different example, it also includes the problem of
labeling a set of moving entities in a map view (e.g., for tracking vehicles in logistics

H
ospital

B
ankSup

erm
arket

C
afe

P
ark

C
hurchCastle

G
as

Station

P
oliceHotel

L
ib

T
heater

M
useum

Stadion

α

Bank

Cafe

Park

Theater

Supermarket

Hospital

(a) Overall view. (b) Viewport.

Fig. 2   Trajectory-based labeling. a Viewport moves and aligns along a given trajectory (fat orange line).
Labels align to the viewport. b The user’s view on the scene

1 3

Algorithmica	

applications or planes in air traffic control). Also non-map related applications such
as labeling 3D scenes as they occur in medical information systems is covered by
our model. Put differently, the model comprises any application in which start and
end times of label presences and conflicts can be determined in advance. Further, the
conflicts are not restricted to label–label conflicts but may also include label–object
conflicts. This flexibility of the abstract model comes at the cost of concealing the
geometric information behind the particular problem settings. Hence, one might find
faster algorithms for the concrete geometric problem setting. On the other hand, our
approach is easily implementable for rather different problem settings. In particular,
it splits the problem into two independent sub-problems. The first is about trans-
forming a particular geometric instance into intervals and the second is about find-
ing good activity ranges based on these intervals. We deem both problems to be two
relevant research challenges.

Based on this model we introduce the two optimization problems GeneralMax-
Total and k-RestrictedMaxTotal. While in the former problem we simply maxi-
mize the number of visible labels integrated over time, in the latter problem we fur-
ther require that at most k labels are active at any time for some constant k. We note
that limiting the number of simultaneously active labels is of practical interest as to
avoid overly dense labelings, in particular for dynamic maps on small-screen devices
such as in car navigation systems. We further refine our model by the three activity
models AM1, AM2 and AM3, which introduce special requirements to enforce tem-
poral consistency avoiding flickering when switching labels on and off.

In Sect. 3, we investigate the problem GeneralMaxTotal. We first prove
that GeneralMaxTotal is NP-complete; in fact it is even W[1]-hard and thus it is
unlikely that a fixed-parameter tractable algorithm exists. For the special case
of unit-square labels, we give an efficient approximation algorithm with different
approximation ratios depending on the actual label activity model. In Sect. 4 we
present polynomial-time algorithms for k-RestrictedMaxTotal in AM1 and AM2.
For AM3 we show that the problem is NP-hard for k ≥ 2 . Further, for k-Restrict-
edMaxTotal we present efficient constant-factor approximation algorithms for all
three activity models assuming that all labels are unit squares.

2 � Model

In this section we formally describe our temporal labeling model. In particular, it
unifies and generalizes the models presented by Been et al. [1] and by de Berg and
Gerrits [6].

2.1 � Basic Model

We are given a set O = {o1,… , on} of objects in a scene over a given time span
T = [0, 1] . Further, for each object o we are given a label � , e.g., text describ-
ing o. We denote the set of labels by L = {�1,… ,�n} , where �i is the label of oi .

	 Algorithmica

1 3

To quantify the importance of a label, we define for each label � ∈ L a positive
weight w

�
∈ ℝ

+.
We have a restricted view on the scene through a camera, i.e., the objects are

projected onto an infinite plane P such that we can only see a restricted section V
of P, where V models the viewport of the camera; see Fig. 3 for an example.
During the time interval T  , the objects are moving and the camera changes its
perspective by changing its position, direction and zoom. We denote the plane P
and the viewport V at time t by P(t) and V(t), respectively. Depending on the posi-
tion of the object oi ∈ O , each label �i has a certain shape and position on P(t)
at time t; we denote the geometric shape of � at time t by �(t) . Following typical
map labeling models we may assume that �(t) is a (closed) rectangle enclosing
the text; one may also consider other shapes. In the following, we introduce some
further notations to describe the setting precisely.

According to the perspective and position of the camera, not every label �(t)
is contained in the viewport at time t. We say that a label � is present at time t
if �(t) is (partly) contained in V(t); that is, �(t) ∩ V(t) ≠ � . We assume that the
time intervals, during which a label � is present, are given by a set Ψ

�
 of disjoint,

closed sub-intervals of T  ; see Fig. 4. For such an interval [a, b] ∈ Ψ
�
 we also

(a) (b)

Restaurant

Fig. 3   Model. a Overall view of the scene. Depending on the rotation, translation, and zoom, the camera
shoots a restricted part of the scene. The objects to be labeled are represented by black dots. b The cor-
responding viewport of the camera. The labels are placed near their objects

(a) (b) (c)

Fig. 4   Label activity. The intervals illustrate presence, conflict and activity intervals. a A set of valid
activity intervals. b, c The maps rotate clockwise, while the labels keep aligned horizontally. White
labels are active, while gray labels are inactive. The witness label �′ justifies b the start c the end of � ’s
activity interval

1 3

Algorithmica	

write [a, b]
�
 indicating that it belongs to � . We denote the union of all those sets

Ψ
�
 by Ψ and assume that Ψ is a multi-set, as it may contain the same interval

[a, b] multiple times, where each occurrence of [a, b] belongs to a different label.
Two labels � and �′ are in conflict at time t ∈ T  , if the geometric shapes of

both labels intersect, i.e., �(t) ∩ �
�(t) ≠ � . We describe the occurrences of con-

flicts between two labels �,�� ∈ L by a set of closed intervals, C
�,�� = {[a, b] ⊆ T ∣

� and �′ are in conflict for all t ∈ [a, b] and[a,b]is maximal} . For such an interval
[a, b] ∈ C

�,�� we also write [a, b]
�,�� indicating that it is a conflict interval between �

and �′ . We denote the set of all conflict intervals over all pairs of labels by the multi-
set C.

To avoid overlaps between labels, we display a label � only at certain times when
no other displayed label overlaps � ; the label � is said to be active at those times.
We describe the activity of � , by a set Φ

�
 of disjoint intervals.1 For such an interval

[a, b] ∈ Φ
�
 we also write [a, b]

�
 to indicate that the activity interval belongs to � .

The union of all activity intervals over all labels is denoted by the multi-set Φ.
We say that two activity (presence) intervals [a, b]

�
 and [c, d]

�� of two labels �
and �′ are in conflict if there is a time t in the intersection of the open intervals
(a, b) ∩ (c, d) such that the labels � and �′ are in conflict at t.

An instance of temporal labeling is then defined by the set L of labels, the set Ψ
of presence intervals and the set C of conflict intervals. We thus completely abstract
away the geometry of the problem, while all essential information of the temporal
labeling instance is captured combinatorially in Ψ and C . In this paper, we primarily
focus on conflict-free label selection, and therefore assume that Ψ and C are given
as input. In [3] we describe how to construct Ψ and C for the specific application of
navigation systems.

Similarly to Been et al. [1] we require the following temporal consistency criteria:

	(C1)	 A label should not be set active and inactive repeatedly to avoid flickering.
	(C2)	 The position and size of a label should be changed continuously, it should not

jump.
	(C3)	 Labels should not overlap.

We formalize these consistency criteria and say the activity set Φ is valid (see
Fig. 4a) if

	(R1)	 for each activity interval I
�
∈ Φ there is a presence interval I�

�
∈ Ψ with I

�
⊆ I′

�
,

	(R2)	 for each presence interval I�
�
∈ Ψ there is at most one activity interval I

�
∈ Φ

with I
�
⊆ I′

�
 , and

	(R3)	 no two activity intervals of Φ are in conflict.

1  Technically, one needs to distinguish between open and closed intervals, i.e., for closed rectangular
labels, the presence and conflict intervals are closed but the activity intervals are open. However, includ-
ing or excluding the interval boundaries makes no difference in our algorithms and hence we decided to
simply use the notation [a, b] for all respective intervals unless stated otherwise.

	 Algorithmica

1 3

Requirement (R1) enforces that a label is only displayed if it is present in the view-
port. Requirement (R2) prevents a label from flickering during a presence interval
(C1), while (R3) enforces that no two displayed labels overlap (C3). In fact, (R2) is
only a minimum requirement for avoiding flickering labels, which we later extend
to stronger variants. By assuming that labels’ positions are fixed relative to their
anchors, labels may not jump (C2) as long as labeled objects are either fixed or move
continuously. From now on we assume that an activity set is valid, unless stated
otherwise.

2.2 � Optimization Problems

Based on the introduced model we investigate two optimization problems for tem-
poral labeling that aim to maximize the overall active time of labels. The first prob-
lem allows for any number of labels to be active at the same time, and the second
allows at most k labels to be active at the same time, which reduces the amount of
presented information. We define the weight of an activity interval [a, b]

�
∈ Φ to be

w([a, b]
𝓁
) = (b − a) ⋅ w

𝓁
.

Problem 1  (GeneralMaxTotal)

Given:	� Instance (L,Ψ,C).
Find:	� Activity set Φ maximizing

∑
[a,b]

�
∈Φ w([a, b]

�
).

Figure 5a shows an example of a single frame of a temporal labeling that is opti-
mal with respect to GeneralMaxTotal. While such a labeling is acceptable for
general applications such as spatial data exploration, for small-screen devices, such
as car navigation systems, the same labeling may overwhelm or distract the user
with too much additional information. In fact, psychological studies have shown
that untrained users are strongly limited in receiving, processing, and remember-
ing information (e.g., see [19]). For applications that do not receive a user’s full

(a) (b)

Fig. 5   Frame of a dynamic map labeling. While in a 54 labels are displayed at the same time, in b 10
labels are displayed in order to limit the informational content

1 3

Algorithmica	

attention it is therefore desirable to restrict the number of simultaneously displayed
labels (see Fig. 5b), which we formalize as an alternative optimization problem as
follows.

Problem 2  (k-RestrictedMaxTotal)

Given:	� Instance (L,Ψ,C) , k ∈ ℕ.
Find:	�� Activity set Φ maximizing

∑
[a,b]

�
∈Φ w([a, b]

�
) , such that at any time t at

most k labels are active.

2.3 � Activity Models

So far labels may become active or inactive within the viewport without any external
influence, see, e.g., the second activity interval of �3 in Fig. 4a. Hence, the activity
behavior of labels, even in an optimal solution Φ , is not necessarily explainable to a
user by simple and direct observations such as “the label becomes inactive at time t,
because at that moment an overlap starts with another active label”. The absence of
those simple logical explanations may lead to unnecessary irritations of the user. To
account for that we introduce the concept of justified activity intervals.

Consider a label � with activity interval [a, b]
�
∈ Φ . We say that the start of

[a, b]
�
 is justified if � enters the viewport at time a or if there is a witness label �′

such that a conflict of � and �′ ends at a and �′ is active at a; see Fig. 4b.
Analogously, we say that the end of [a, b]

�
 is justified if � leaves the viewport

at time b or if there is a witness label �′ such that a conflict of � and �′ begins at b
and �′ is active at b; see Fig. 4c. If both the start and end of [a, b]

�
 are justified, then

[a, b]
�
 is justified.

We distinguish the three activity models AM1, AM2, and AM3 that consider jus-
tified activity intervals; see Fig. 6. While for AM1, a label may only become active
and inactive when it enters and leaves the viewport, for AM2 it may also become
inactive before leaving the viewport if a witness label justifies this event. AM3 fur-
ther allows a label to become active after entering the viewport if a witness label
justifies that event.

T

�1

�2

�3

ConflictPresent Active
T

�1

�2

�3

ConflictPresent Active
T

�1

�2

�3

ConflictPresent Active

(a) AM1 (b) AM2 (c) AM3

Fig. 6   The activity models AM1, AM2 and AM3

	 Algorithmica

1 3

AM1 An activity set Φ satisfies AM1 if any activity interval [a, b]
�
∈ Φ is

justified and there is a presence interval [c, d]
�
∈ Ψ of the same label � with

[a, b]
�
= [c, d]

�
.

AM2 An activity set Φ satisfies AM2 if any activity interval [a, b]
�
∈ Φ is justi-

fied and there is a presence interval [c, d]
�
∈ Ψ of the same label � with a = c.

AM3 An activity set Φ satisfies AM3 if any activity interval [a, b]
�
∈ Φ is justi-

fied. For AM2 one might also consider the symmetric variant in which the activ-
ity interval starts in the middle of the presence interval and ends with the pres-
ence interval; due to symmetry we do not consider the variant explicitly. We have
described only the core of the model. Depending on the application it can be easily
extended to more complex variants, e.g., requiring minimum durations of activity
intervals.

3 � Solving GeneralMaxTotal

In this section we discuss GeneralMaxTotal. First, we present results on its com-
putational complexity and then we present a simple approximation algorithm for the
case that the labels are unit squares.

3.1 � Computational Complexity

We first prove that the corresponding decision problem of GeneralMaxTotal is NP-
complete with respect to the three activity models. The membership in NP follows
from the fact that the start and the end of an active interval may be assumed to coin-
cide with the start or end of a presence interval or a conflict interval. Thus, there is
a finite number of candidates for the endpoints of the active intervals so that a solu-
tion L can be guessed. Verifying that L is valid in one of the three models and that
its value exceeds a given threshold can obviously be checked in polynomial time.

For the NP-hardness we apply a straight-forward reduction from the NP-complete
maximum independent set of rectangles problem [7]. We simply interpret the set
of rectangles as a set of labels with unit weight, choose a short vertical trajectory T
and a viewport R that contains all labels at any point of T. Since the conflicts do no
change over time, the reduction can be used for all three activity models. By means
of the same reduction and Marx’ result [16] that finding an independent set for a
given set of axis-parallel unit squares is W[1]-hard we derive the next theorem.

Theorem 1  GeneralMaxTotal is NP-hard and �[1]-hard for all activity models AM1,
AM2, AM3. In particular, the respective decision problem is NP-complete for all
activity models AM1, AM2, AM3.

As a consequence, GeneralMaxTotal is not fixed-parameter tractable unless
W[1]=FPT. Note that this also means that for k-RestrictedMaxTotal we cannot
expect to find an algorithm that runs in O(f (k) ⋅ nc) time, where c is a constant, n is
the number of presence and conflict intervals, and f(k) is a computable function that

1 3

Algorithmica	

depends only on the parameter k. Assume for the sake of contradiction that there is
an algorithm Ak for k-RestrictedMaxTotal with O(f (k) ⋅ nc) running time. We then
could use Ak to check whether the input set of unit squares contains an independent
set of size � as follows. We use the same reduction as above and determine the larg-
est k ∈ {1,… , �} for which the solution of Ak contains exactly k labels. This par-
ticularly implies that for every k′ with k′ > k the algorithm Ak′ also yields a solution
with k labels. If k = � , this implies that the input instance contains an independent
set of � unit squares, which contradicts that selecting � intersection-free unit squares
from a set of intersecting unit squares is W[1]-hard.

3.2 � Approximation of GeneralMaxTotal

We now describe a simple greedy algorithm for GeneralMaxTotal in all three
activity models assuming that all labels are unit squares anchored at their lower-left
corner. We assume that the map changes via the standard operations panning, rota-
tion and zooming. Further, the weight of each presence interval [a, b]

�
 is its length

w([a, b]
�
) = b − a.

Starting with an empty solution Φ , our algorithm GreedyMaxTotal removes the
maximal interval I from Ψ and adds it to Φ , i.e., the label of I is set active during I.
Then, depending on the activity model, it updates all presence intervals that have a
conflict with I in Ψ and continues until the set Ψ is empty.

For AM1 the update process simply removes all presence intervals from Ψ that
are in conflict with the newly selected interval I. For AM2 and AM3 let Ij ∈ Ψ and
let I1

j
,… , Ik

j
 be the longest disjoint sub-intervals of Ij for some k ≥ 0 that are not in

conflict with the selected interval I. We assume that I1
j
,… , Ik

j
 are sorted by their left

endpoint. The update operation for AM2 replaces every interval Ij ∈ Ψ that is in
conflict with I with I1

j
 . As I1

j
 is a prefix of Ij , selecting Ij in a later step satisfies the

condition that the label becomes active with the beginning of its presence interval.
Further, the conflict with I justifies the end of I1

j
 . In AM3 we replace Ij by I1

j
 if I1

j
 is

not fully contained in I. Otherwise, Ij is replaced by Ik
j
 . Note that this discards some

candidate intervals, but the chosen replacement of Ij is enough to prove the approxi-
mation factor. We observe that due to the conflicts with I (and possibly other inter-
vals chosen in a previous step) the new interval is justified. Note that after each
update all intervals in Ψ are valid choices according to the specific model. Hence,
we can conclude that the result Φ of GreedyMaxTotal is also valid in that model.

In the following, we analyze the approximation quality of GreedyMaxTotal. To
that end we first introduce a purely geometric packing lemma. Similar packing lem-
mas have been introduced before, but to the best of our knowledge for none of them
it is sufficient that only one prescribed corner of the packed objects lies within the
container.

Lemma 1  Let C be a circle of radius
√
2 in the plane and let Q be a set of non-

intersecting closed and axis-parallel unit squares with their bottom-left corner in C.
Then Q cannot contain more than eight squares.

	 Algorithmica

1 3

Proof  First, we show that Q cannot contain more than nine squares and extend the
result to the claim of the lemma. We begin by proving the following claim.

(S) At most three squares of Q can be stabbed by a vertical line. In order to prove
(S) let Q′ ⊆ Q be a set of squares that is stabbed by an arbitrary vertical line l and
let qt be the topmost square stabbed by l and let qb be the bottommost square stabbed
by l. Since both the bottom-left corner of qt and qb are in C, their vertical distance is
at most 2

√
2 . Consequently, there can be at most one other square in Q′ that lies in

between qt and qb , which shows the claim (S).
Now let l1 be the left vertical tangent of C and let l2 be its right vertical tangent;

see Fig. 7. We define Ql ⊆ Q to be the set of squares whose bottom-left corner
has distance of at most 1 to l1 . Hence, there is a vertical line that stabs all squares
in Ql . By (S) it follows that |Ql| ≤ 3 . We can analogously define the set Qr ⊆ Q
whose bottom-left corner has distance of at most one to the vertical line l2 . By
the same argument it follows that |Qr| ≤ 3 . Further, the bottom-left corners of the
squares Qm = Q ⧵ {Ql,Qr} are contained in a vertical strip of width 2

√
2 − 2 < 1 .

Hence, there is a vertical line that stabs all squares of Qm and |Qm| ≤ 3 follows. We
conclude that the set Q contains at most nine squares; in fact, |Q| ≤ 8 as we show
next.

For the sake of contradiction we assume that |Q| = 9 , i.e., |Ql| = |Qm| = |Qr| = 3 .
We denote the topmost square in Ql by tl and the bottommost square by bl , and define
tr and br for Qr analogously.

Further, let sm be the vertical line through the center of C, let sl be the vertical line
that lies one unit to the left of sm and let sr be the vertical line that lies one unit to
the right of sm . Note that the length of the segment of sl and sr that is contained in C
has length 2. Since the bottom-left corners of tl and bl have vertical distance strictly
greater than 2, both squares lie to the right of sl . Hence, tl and bl intersect sm . Analo-
gously, the bottom-left corners of tr and br lie to the left of sr , and, hence intersect sr .
The line sm is intersected by two squares of Ql . By (S) there can be at most one
additional square of Qm that intersects sm . Thus, there are two squares in Qm whose
anchors lie to the right of sm . But then they both intersect sr which itself is already
intersected by at least the squares tr and br . This is a contradiction to (S), and con-
cludes the proof. 	� ◻

Fig. 7   Illustration for the proof
of Lemma 1 sl sr l2l1

sm

1 1

1 1

C

1 3

Algorithmica	

Figure 8 shows that the bound is tight. Based on Lemma 1 we now show that for
any label with anchor p there is no point of time t ∈ [0, 1] for which there can be
more than eight active labels whose anchors are within distance

√
2 of p. We call a

set X ⊆ Ψ conflict-free if it contains no pair of presence intervals that are in conflict.
Further, we say that X is in conflict with I ∈ Ψ if every element of X is in conflict
with I, and we say that X contains t ∈ [0, 1] if every element of X contains t.

Lemma 2  For every t ∈ [0, 1] and every I ∈ Ψ any maximum cardinality conflict-
free set XI(t) ⊆ Ψ that is in conflict with I and contains t satisfies |XI(t)| ≤ 8.

Proof  Assume that there is a time t and an interval I such that there is a set XI(t) that
contains more than eight intervals. Let � be the label that corresponds to I. For an
interval I� ∈ XI(t) to be in conflict with I the anchors of the two corresponding labels
must have a distance of at most

√
2 . Hence, there are |XI(t)| labels corresponding

to the intervals in XI(t) with anchors of distance at most
√
2 to the anchor of � . By

Lemma 1 we know that two of these labels must overlap. This implies that there is
a conflict between the corresponding intervals contained in XI(t) , which is a contra-
diction. 	� ◻

With this lemma we can finally obtain the approximation guarantees for Greedy-
MaxTotal for all activity models.

Theorem 2  Assuming that all labels are unit squares and w([a, b]) = b − a , Greedy-
MaxTotal is a 1/24-, 1/16-, 1/8-approximation for AM1–AM3, respectively, and
needs O(n log n) time for AM1 and O(n2) time for AM2 and AM3.

Proof  To show the approximation ratios, we consider an arbitrary step of Greedy-
MaxTotal in which the presence interval I = [a, b]

�
 is selected from Ψ . Let CI

�
 be

the set of presence intervals in Ψ that are in conflict with I.
Consider the model AM1. Since I is the longest interval in Ψ when it is chosen,

the intervals in CI
�
 are completely contained in J = [a − w(I), b + w(I)] . As CI

�
 con-

tains all presence intervals that are in conflict with I, it is sufficient to consider J
to bound the effect of selecting I. Obviously, the interval J is three times as long

Fig. 8   Example configuration
of eight axis-aligned, non-
intersecting, unit-squares whose
bottom-left corners lie inside a
circle C of radius

√
2

C

	 Algorithmica

1 3

as I. By Lemma 2 we know that for any t ∈ J it holds that |XI(t)| ≤ 8 . Hence, in
an optimal solution there can be at most eight active labels at each point t ∈ J
that are discarded when [a, b]

�
 is selected. Thus, the cost of selecting [a, b]

�
 is at

most 3 ⋅ 8 ⋅ w(I).
For AM2 we apply the same arguments, but restrict the interval J to

J = [a, b + w(I)] , which is only twice as long as I. To see that consider for an inter-
val [c, d]

�� ∈ CI
�
 the prefix [c, a] if it exists. If [c, a] does not exist (because a < c ),

removing [c, d]
�� from Ψ changes Ψ only in the range of J. If [c, a] exists, then

again Ψ is only changed in the range of I, because by definition [c, d]
�� is shortened

to an interval that at least contains [c, a] and is still contained in Ψ . Thus, the cost of
selecting I is at most 2 ⋅ 8w(I).

Analogously, for AM3 we can argue that it is sufficient to consider the inter-
val J = [a, b] . By definition of the update operation of GreedyMaxTotal at least the
prefix or suffix subinterval of each [c, d]

�� ∈ CI
�
 remains in Ψ that extends beyond I

(if such an interval exists). Thus, selecting I influences only the interval J and its
cost is at most 8w(I). The approximation bounds of 1/24, 1/16, and 1/8 follow
immediately.

We use a binary search tree to achieve the time complexity O(n log n) of Greedy-
MaxTotal for AM1. We first add all intervals sorted by their weights to the binary
tree. We then successively remove the intervals with maximal weight and its con-
flicting neighbors. As each interval is inserted and removed exactly once, we obtain
O(n log n) running time. For AM2 and AM3 we use a linear sweep to identify the
longest interval contained in Ψ . In each step we need O(n) time to update all inter-
vals in Ψ , and we need a total of O(n) steps. Thus, GreedyMaxTotal needs O(n2)
time in total for AM2 and AM3. 	� ◻

In case that we exclude rotation as an operation and only consider panning and
zooming, we can improve the approximation by a factor of two, as we can use a more
restrictive packing argument instead of Lemma 1.

Observation 1  Let S be a square with side length 2 in the plane and let Q be a set of
non-intersecting closed and axis-parallel unit squares with their bottom-left corner
in S. Then Q cannot contain more than four squares.

With this observation we can strengthen Lemma 2 and thus Theorem 2 by a factor
of two and hence obtain the following corollary.

Corollary 1  Assuming that all labels are unit squares, the map operations are
panning and zooming, and w([a, b]) = b − a , GreedyMaxTotal is a 1/12-, 1/8-,
1/4-approximation for AM1–AM3, respectively, and needs O(n log n) time for AM1
and O(n2) time for AM2 and AM3.

1 3

Algorithmica	

4 � Solving k‑RestrictedMaxTotal

In this section we prove that unlike GeneralMaxTotal the problem k-Restrict-
edMaxTotal can actually be solved in polynomial time for AM1 and AM2. We
give a detailed description of our algorithm for AM1, and then show how it can be
extended to AM2. Note that solving k-RestrictedMaxTotal is related to finding a
maximum cardinality k-colorable subset of n intervals in interval graphs. This can
be done in polynomial time in both n and k [5]. However, we have to consider addi-
tional constraints due to conflicts between labels, which makes our problem more
difficult. First, we discuss how to solve the case for k = 1 and then give an algorithm
that solves k-RestrictedMaxTotal for k > 2 . Altogether, we obtain an algorithm
that runs in O(nf (k)) time, where f is a polynomial function. Hence, k-Restricted-
MaxTotal lies in the complexity class XP for AM1 and AM2. Due to the �[1]-hard-
ness of GeneralMaxTotal, we cannot expect running times in O(f (k) ⋅ nc) , where
f is a computable function and c is a constant. In contrast, for AM3 we prove that
k-RestrictedMaxTotal is NP-hard for k ≥ 2 . Since the running times of the pre-
sented algorithms for AM1 and AM2 are, even for small k, prohibitively expensive
in practice, we finally propose an approximation algorithm for k-RestrictedMaxTo-
tal in all three activity models.

4.1 � An Algorithm for k‑RestrictedMaxTotal in AM1

In this section we present a dynamic programming approach for computing an
optimal solution for an instance (L,Ψ,C) of k-RestrictedMaxTotal in AM1. The
approach is based on the idea to systematically identify and solve smaller sub-
instances that are independent from each other. As separators of these sub-instances
we systematically explore all choices of k intervals that have a point in time in com-
mon. More precisely, a separating k-tuple v⃗ is a set of k presence intervals that are
not in conflict with each other and that have a non-empty intersection Kv⃗ =

⋂
I∈v⃗ I .

The weight of a separating tuple v⃗ is defined as w(v⃗) =
∑

I∈v⃗ w(I) . We observe that a
separating k-tuple v⃗ contained in a solution of k-RestrictedMaxTotal splits the set
of presence intervals into two independent subsets. Specifically, a left (right) subset
Lk[v⃗] ⊆ Ψ ( Rk[v⃗] ⊆ Ψ ) that contains only intervals which lie completely to the left
(right) of Kv⃗ and are not in conflict with any interval of v⃗ ; see Fig. 9.

�v {
Fig. 9   The separating 3-tuple (orange) splits the set of presence intervals into a left and right subinstance
(blue). The presence intervals (gray) intersecting Kv⃗ (green box) cannot be selected since at most three
labels can be active at the same time (Color figure online)

	 Algorithmica

1 3

Given two separating k-tuples u⃗ and v⃗ (where Ku⃗ lies to the left of Kv⃗ ) we pre-
sent an algorithm Ak(u⃗, v⃗) that computes an activity set Φ ⊆ Lk[v⃗] ∩ Rk[u⃗] such
that

	(C1)	 no two intervals of Φ ∪ u⃗ ∪ v⃗ are in conflict,
	(C2)	 at any time t at most k intervals of Φ ∪ u⃗ ∪ v⃗ contain t, and
	(C3)	 the total activity

∑
I
�
∈Φ w(I

�
) is maximized.

We observe that with respect to these conditions the activity set Φ respects the sepa-
rating tuples u⃗ and v⃗ , but Φ does not contain any intervals of u⃗ and v⃗ . We call u⃗ and v⃗
the boundary separating k-tuples of Φ.

We define the algorithm Ak recursively such that it uses Ak−1 as subroutine. Ini-
tially, for the input instance we call Ak(dl, dr) where dl and dr are two dummy sepa-
rating k-tuples such that the presence intervals of dl are strictly to the left of 0 and
the presence intervals of dr are strictly to the right of 1. Since all original presence
intervals are completely contained in [0, 1], every optimal solution contains both
dummy separating k-tuples.

So assume in the following that the algorithm Ak is called with the two separat-
ing k-tuples u⃗ and v⃗ and let X = Lk[v⃗] ∩ Rk[u⃗] . We first explain how to solve the base
case k = 1 and then present the algorithm for k > 1.

Case k = 1 . First note that for the case that at most one label can be active at any
given point in time ( k = 1 ), conflicts between labels do not matter. Thus, for solving
1-RestrictedMaxTotal it is sufficient to find an independent subset of Ψ of maxi-
mum weight. This is equivalent to finding a maximum weight independent set on
interval graphs, which can be done in O(n2) time using dynamic programming given
n sorted intervals [13]. The algorithm basically computes a table T1 indexed by the
intervals in X, where an entry T1[Ij] stores the value of a maximum weight independ-
ent set Q of L1[Ij] and a pointer to the rightmost interval in Q. Hence, using this
approach we obtain an activity set Φ . As no interval of X intersects any interval of
the singletons u⃗ and v⃗ , the set Φ also satisfies the conditions (C1)–(C3) from above.

Case k > 1 . We say that a separating k-tuple v⃗ is smaller than a separating k-tuple
w⃗ if Kv⃗ begins to the left of Kw⃗ . Ties are broken arbitrarily. This lets us define the
ordered set Sk = {v⃗1,… , v⃗z} of all separating k-tuples of X. In order to ease notation
we denote the given boundary separating k-tuples u⃗ by v⃗0 and v⃗ by v⃗z+1 . Further, we
say a set C of presence intervals is k-compatible if no more than k intervals in C
intersect at any point and there are no conflicts in C. Two separating k-tuples x⃗ and y⃗
are k-compatible if they are disjoint, i.e., they have no interval in common, and x⃗ ∪ y⃗
is k-compatible. Further, for a separating k-tuple x⃗ let lk−1(x⃗) be the set of the k − 1
intervals of x⃗ whose right end points are rightmost; in case that this is not uniquely
defined, we choose any of those subsets. Analogously, let rk−1(x⃗) be the set of the
k − 1 intervals of x⃗ whose left end points are leftmost. We observe that lk−1(x⃗) and
rk−1(x⃗) are separating k − 1-tuples; in the recursion step we use lk−1(x⃗) and rk−1(x⃗) as
left and right boundary separating k − 1-tuples, respectively.

The algorithm Ak fills a one-dimensional table Tk . Similarly to the case k = 1 ,
each entry Tk[v⃗] stores the value of the optimal solution for Lk[v⃗] . Then the solution
of the given subinstance bounded by v⃗0 and v⃗z+1 can be obtained from Tk[v⃗z+1] . We

1 3

Algorithmica	

initialize Tk[v⃗0] = 0 . Then, the remaining entries of Tk can be obtained by comput-
ing (see also Fig. 10)

Apart from Tk[v⃗j] we also store for each separating k-tuple vj the separating k-tuple
vi for which the expression above is maximized; we define pred(v⃗j) = v⃗i . Starting a
standard backtracking procedure at v⃗z+1 we obtain a activity set Φ(v⃗z+1) recursively
defined by

As the result of the algorithm we return the set Φ = Φ(vz+1) ⧵ (v⃗0 ∪ v⃗z+1) . Hence, Φ
is an activity set for the instance X.

Theorem 3  Algorithm Ak solves k-RestrictedMaxTotal in AM1 in O(nk2+k−1) time
and O(nk) space.

Proof  We first show the correctness of Ak by induction on k. Given two separating
k-tuples u⃗ and v⃗ (where u⃗ is smaller than v⃗ ) we prove that Ak(u⃗, v⃗) computes an activ-
ity set Φ ⊆ Lk[v⃗] ∩ Rk[u⃗] such that conditions (C1)–(C3) are satisfied.

For the case k = 1 this is clearly the case. So assume k > 1 . Since Ak considers
only solutions where adjacent separating k-tuples are k-compatible with each other
and both boundary k-tuples, we cannot produce an invalid solution, i.e., a solution
with conflicts or more than k active intervals at any point. Hence, both condition
(C1) and (C2) are satisfied. We prove condition (C3) by contradiction. So assume
that there is an instance X for which Ak does not compute an optimal solution and let
OPT be an optimal solution. There must be a smallest separating k-tuple v⃗j , j > 0 ,
for which Tk[v⃗j] is less than the value of OPT for Lk[v⃗j] . Let v⃗i , i < j be the rightmost
disjoint separating k-tuple in OPT that precedes v⃗j such that the set v⃗0 ∪ v⃗i ∪ v⃗j ∪ v⃗z+1
is k-compatible. By our assumption Tk[v⃗i] has the same value as OPT on Lk[v⃗i] .
For the set of intervals Lk[v⃗j] ∩ Rk[v⃗i] there are at most k − 1 active intervals at any
point (otherwise v⃗i is not rightmost). This means that when we run algorithm Ak−1
on that instance with the boundary tuples lk−1(v⃗i) and rk−1(v⃗j) , we obtain by the

Tk[v⃗j] = max
i<j

{Tk[v⃗i] + w(v⃗i) + w(Ak−1

(
lk−1(v⃗i), rk−1(v⃗j))

)
∣ v⃗i ∈ Sk, v⃗i ⊆ Lk[v⃗j] ∪ v⃗0,

v⃗j ⊆ Rk[v⃗i] ∪ v⃗z+1, v⃗0 ∪ v⃗z+1 ∪ v⃗i ∪ v⃗j is k-compatible}.

Φ(x⃗) =

{
� if x⃗ = v⃗0,

x⃗ ∪ Φ(pred(x⃗)) otherwise.

�vi �vjA2(l2(�vi), r2(�vj))T3[�vi]

l2(�vi) r2(�vj)

Fig. 10   Illustration for computing the table entry Tk[v⃗j] for k = 3 . The intervals Kv⃗i
 and Kv⃗j

 are marked in
green. The dotted intervals illustrate the optimal solution represented by Tk[v⃗i] . The separating k-tuples
(orange) enclose an instance for 2-RestrictedMaxTotal (blue). The algorithm A2(l2(v⃗i), r2(v⃗j)) computes
an optimal solution (blue intervals) for that instance respecting v⃗i and v⃗j (Color figure online)

	 Algorithmica

1 3

induction hypothesis a solution that is at least as good as the restriction of OPT to
that instance. Since v⃗i is a valid predecessor k-tuple for v⃗j the algorithm Ak considers
it. So Tk[v⃗j] ≥ Tk[v⃗i] + w(v⃗i) +Ak−1(lk−1(v⃗i), rk−1(v⃗j)) , which is at least as good as
OPT restricted to Lk[v⃗j] . This is a contradiction and proves condition (C3).

For proving the time and space complexity let zi be the number of separating
i-tuples in an instance for 1 < i ≤ k . Each zi is in O(ni) . We again use induction
on k. Algorithm A1 needs O(n2) time and O(n) space, which match the bounds to
be shown. So let k > 1 . The table Tk has O(zk) ⊆ O(nk) entries and each of the recur-
sive computations of Ak−1 need O(nk−1) space by the induction hypothesis. Thus the
overall space is dominated by Tk and the bound follows. Checking whether a separat-
ing k-tuple v⃗i ∈ Sk is a feasible predecessor for a particular v⃗j can easily be done in
O(k2) time, which is dominated by the time to compute Ak−1(lk−1(v⃗i), rk−1(v⃗j)) . So
for the running time we observe that each entry in Tk makes O(zk) calls to Ak−1 and
hence the overall running time is indeed O(n2k ⋅ n(k−1)2+(k−1)−1) = O(nk

2+k−1) . 	� ◻

4.2 � Extending the Algorithm for k‑RestrictedMaxTotal to AM2

With some modifications and at the expense of another polynomial factor in the run-
ning time we can extend algorithm Ak of the previous section to the activity model
AM2, which shows that k-RestrictedMaxTotal in AM2 can still be solved in poly-
nomial time. In the following, we give a sketch of the modifications. The impor-
tant difference between AM1 and AM2 is that presence intervals can be truncated
at their right side if there is an active conflicting witness label causing the trunca-
tion. We need two modifications to model this behavior. First, we create for each
original presence interval Ii = [ai, bi] in Ψ at most n prefix intervals Ij

i
= [ai, cij] ,

where cij is the start of the first conflict between Ii and Ij ∈ Ψ . Each interval Ij
i
 inher-

its the conflicts of Ii that intersect Ij
i
 . We obtain a modified set of presence intervals

Ψ� = Ψ ∪ {I
j

i
∣ Ii, Ij ∈ Ψ and Ii, Ij in conflict} of size O(n2) . We create mutual con-

flicts among all intervals that are prefixes of the same original interval. This will
enforce that at most one of them is active. We still have to take care that a truncated
interval Ij

i
 can only be active if Ij (or a prefix of Ij ) is active at cij as a witness.

In order to achieve this we instantiate the algorithm Ak′ for every k′ ≤ k not only
with its two boundary k-tuples ̃⃗v0 and ̃⃗vz+1 but also with a set W of at most k witness
intervals that are k-compatible and must be made active at some stage of the algo-
rithm. In a valid solution we have W ⊆ Lk� [v⃗] ∪ v⃗ for the leftmost separating k′-tuple
v⃗ , since otherwise more than k′ intervals are active in Kv⃗ . However, the truncated
intervals in v⃗ themselves define a family of O(nk�) possible witness sets W(v⃗) to be
respected to the right of ⃗v . So when we compute the table entry for a separating k′-tuple
v⃗j and consider a particular predecessor k′-tuple v⃗i we must in fact iterate over all
possible witness sets W(v⃗i) as well. We need to make sure that v⃗j is W(v⃗i)-compatible,
i.e., v⃗j ∪W(v⃗i) is k-compatible and W(v⃗i) ⊆ Lk� [v⃗j] ∪ v⃗j . For the recursive call to

1 3

Algorithmica	

Ak�−1(
̃⃗vi,

̃⃗vj) the initial witness set W ′ consists of W(v⃗i) ⧵ v⃗j , i.e., those witness inter-
vals of W(v⃗i) that are not part of v⃗j.

The increase in running time is caused by dealing with O(n2) intervals in Ψ�
and by the fact that instead of one call to Ak−1(

̃⃗vi,
̃⃗vj) in the computation of table

Tk we make O(nk) calls, one for each possible witness set of v⃗i . By an inductive
argument one can show that the running time is in O(n3k2+2k).

Theorem 4  k-RestrictedMaxTotal in AM2 can be solved in O(n3k2+2k) time.

4.3 � Complexity of k‑RestrictedMaxTotal in AM3

In this section we discuss the complexity of k-RestrictedMaxTotal with respect
to AM3. For k = 1 the problem is equivalent to finding a maximum weighted
independent set on interval graphs, which can be done in linear time [13].

We show that the corresponding decision problem, which is defined as follows,
is NP-complete for k ≥ 2.

Problem 3  (k-RestrictedMaxTotalDecision)

Given:	� Instance I = (L,Ψ,C) , k ∈ ℕ and W ∈ ℝ
+.

Question:	� Is there an activity set Φ for I such that
∑

[a,b]
�
∈Φ w([a, b]

�
) ≥ W

and at most k labels are active at the same time?

We first show that the decision problem is NP-hard for k ≥ 2 , which implies
that the corresponding optimization problem is NP-hard as well. We reduce from
the NP-complete problem 3-Partition. For the convenience of the reader, we
repeat the definition given by Garey and Johnson [8].

Problem 4  (3-Partition)

Given:	� Set X of 3m elements, a bound B ∈ ℤ
+ , and a size s(x) ∈ ℤ

+ for
�each element x ∈ X such that B

4
< s(x) <

B

2
 and

∑
x∈X s(x) = mB.

Question:	� Can X be partitioned into m disjoint sets X1,X2,… ,Xm such that ∑
x∈Xi

s(x) = B for all i with 1 ≤ i ≤ m?

Note that each Xi must contain exactly three elements. We first present a con-
struction that transforms a given instance I of 3-Partition into an instance I′ of
k-RestrictedMaxTotal. As the construction is rather technical, we give a short
sketch beforehand discussing the main ideas. Afterwards, we present the formal
details. Finally, we show that I is a yes-instance of 3-Partition if and only if I′ is a
yes-instance of k-RestrictedMaxTotal with respect to AM3.

	 Algorithmica

1 3

Sketch. The construction is schematically illustrated in Fig. 11 and an example
for a concrete instance of 3-Partition is given in Fig. 12. We observe that 3-Parti-
tion can be slightly reformulated as follows. Let 𝜏 ⊆ X be a triplet such that the
three elements in � are mutually distinct and

∑
x∈� s(x) = B and let T = {�1,… , �h}

denote the set of all these triplets. The problem 3-Partition is then equivalent to
selecting a subset T ′ ⊆ T with size m such that each element x ∈ X is contained in
exactly one triplet � ∈ T � . We model this selection problem using three groups of
labels. The first group consists of a single label �K . We choose its presence inter-
val appropriately long in order to enforce that it is active for its complete presence
interval. Further, for all other labels we will choose their presence intervals such
that they are contained in �K ’s presence interval. By introducing conflicts between
�K and these labels, this provides us with the possibility of defining exact ranges in
which a label can be active during its presence interval. The second group L� con-
sists of 3m labels each representing one element of X. In our construction we will
enforce that the label �x ∈ L� of each element x ∈ X is active for exactly s(x) time.
Further, we ensure that its activity interval can be uniquely assigned to one of the
triplets in T that contains x. The third group L� consists of h − m many labels repre-
senting the triplets in T that are not selected in a solution. More precisely, we ensure
for each label in L� that its activity interval is uniquely assigned to one of the triplets
in T such that we interpret this label as not selected for the solution.

Further, we ensure that if a label �x ∈ L� is active for triplet � , then no label �
of L� is active for � . Choosing W appropriately, we enforce that all defined labels
must have an activity interval. Depending on the chosen activity intervals we then
derive a solution for 3-Partition.

Fig. 11   Illustration of the construction used for the reduction from 3-Partition to k-RestrictedMaxTo-
tal. Times for which a label � ∈ L� ∪ L� is in conflict with �K are marked red. For each label �x ∈ L� the
times when it can possibly be active are marked orange (Color figure online)

1 3

Algorithmica	

Details. Let smax = maxx∈X s(x) . We first construct every triplet 𝜏 ⊆ X such that
the three elements in � are mutually distinct and

∑
x∈� s(x) = B . Let T = {�1,… , �h}

denote the set of those triplets. For each triplet �i ∈ T we fix an arbitrary order of
its elements, and denote its j-th element by � j

i
 (with j ∈ {1, 2, 3} ). We define

In case that h < m , the given instance is a no-instance. Hence, in the following we
assume that m ≥ h . For each element x ∈ X we create one label �x with presence
interval

Let L� denote the set of those labels, and let l1 denote the common length of those
intervals. The interval I can be partitioned into a set S of 3h intervals of length smax
and a set U of 3h + 1 intervals of unit length such that the intervals in S and U alter-
nate, starting with an interval of U ; see Fig. 11. We call an interval in S a slot. We
denote the slots by S1 = [a1, b1],… , S3h = [a3h, b3h] in increasing order, i.e., ai < aj
for i < j . We say that the slots S3i−2 , S3i−1 and S3i belong to the triplet �i ( 1 ≤ i ≤ h).

Thus, for each xi we have a slot Si with 1 ≤ i ≤ 3h . In our construction we will
enforce that a label �x ∈ L� can only be active during a slot Si ( 1 ≤ i ≤ 3h ) if
yi = x . More precisely, we define

y1 = �1
1
, y2 = �2

1
, y3 = �3

1
, y4 = �1

2
, y5 = �2

2
,… , y3h = �3

h
.

I = [0, 3h ⋅ (smax + 1) + 1].

Fig. 12   Example for the reduction from 3-Partition to k-RestrictedMaxTotal. The input are the nine
elements x1,… , x9 with s(x1) = 20 , s(x2) = 23 , s(x3) = 25 , s(x4) = 49 , s(x5) = 45 , s(x6) = 27 , s(x7) = 40 ,
s(x8) = 22 and s(x9) = 19 . Times for which a label � ∈ L� ∪ L� is in conflict with �K are marked red. For
each label its activity interval is blue. Further, for each label �x ∈ L� the other times when it can pos-
sibly be active are marked orange. The solution is �1 = {x1, x3, x5} , �3 = {x2, x6, x7} and �4 = {x4, x8, x9}
(Color figure online)

	 Algorithmica

1 3

Thus, Sx,i ⊆ Si . We will enforce that �x can only be active during Sx,i . To that end we
introduce a single label �K with presence interval

where we choose M > 3l1 . We denote the length of K by l2 and note that l2 ≥ 2M.
For each x ∈ X we introduce conflicts between �x and �K such that �x and �K

are not in conflict at time t if and only if there is an i with 1 ≤ i ≤ 3h and t ∈ Sx,i .
Put differently, �x and �K are in conflict during the time expressed by

Assume that �K is active during the complete interval [0, l1] , then any label �x with
x ∈ X can only be active during

⋃3h

i=1
Sx,i . Since the slots are disjoint, Sx,i ⊆ Si , and

each label can only be active once per presence interval, each label �x can only be
active during at most one slot Si , but not outside of a slot. Further, the element x
must be contained in the corresponding triplet �j with j = ⌈ i

3
⌉.

Moreover, we introduce h − m labels with presence interval I. We denote the
set of these labels by L� . We define that any label � ∈ L� and �K are in conflict
during the time expressed by

Thus, � is not in conflict with �K during any interval Ti = [a3i−2, b3i] (with 1 ≤ i ≤ h ),
which spans the slots S3i−2 , S3i−1 , S3i of the triplet �i . We note that the length of Ti is
l3 = 3smax + 2 . We further define that the labels in L� ∪ L� are pairwise in conflict
during the complete interval I, which implies that at most two labels can be active at
any time, namely �K and at most one label of L� ∪ L� . Finally, for any constructed
label � we set w

�
= 1 and define

Hence, we have w([a, b]
�
) = (b − a) for any presence/activity interval of �.

Altogether, we obtain the instance I� = (L = L� ∪ {�K} ∪ L�,Ψ,C,W) , which
can obviously be constructed in polynomial time with respect to the given 3-Par-
tition instance I .

Lemma 3  Let I be an instance of 3-Partition and let I′ be an instance of k-Restrict-
edMaxTotalDecision (k ≥ 2) with respect to AM3 constructed from I as described.
The instance I is a yes-instance if and only if I′ is a yes-instance.

Sx,i =

{
[ai, ai + s(x)], if yi = x

�, otherwise,

K = [−M, l1 +M],

I ⧵

3h⋃

i=1

Sx,i.

I ⧵

h⋃

j=1

[a3j−2, b3j].

W = l2 +
∑

x∈X

s(x) + (h − m) ⋅ l3

1 3

Algorithmica	

Proof  First assume that I is a yes-instance of 3-Partition. Let T ′ ⊆ T be the set of
the m triplets such that each element x ∈ X is contained in exactly one triplet of T ′
and the sizes of the elements in each triplet of T ′ sum up to B. We now construct an
activity set Φ for I′ with weight WΦ ≥ W . To that end we first set �K active for the
interval K. Thus, WΦ ≥ l2.

Further, for each triplet � ∈ T � and each element x ∈ � we add the slot Sx,i to Φ ,
where 1 ≤ i ≤ 3h , x = xi and Sx,i belongs to � . By construction �x is not in conflict
with �K during Sx,i , but directly before and after that interval. Since K is completely
contained in Φ , the label �K is also active directly before and after that interval,
which altogether satisfies AM3. Further, only two labels are active at the same time.
This follows directly from the fact that the slots are disjoint and we set for each
slot at most two labels active, namely �x and �K . Since each added interval Sx,i has
length s(x) and each x belongs to exactly one triplet � ∈ T � , the activity set Φ now
has weight WΦ = l2 +

∑
x∈X s(x).

There are h − m triplets �i1 ,… , �ih−m in T ⧵ T ′ . For each such triplet �ij we know by
construction that no label �x ∈ L� is active during Tij . Hence, we set the label �j
active during the interval Tij . Since �j is in conflict with �K directly before and
after Tij , the model AM3 is satisfied. Further, since Ti1 ,… , Tih−m are pairwise disjoint,
at most two labels are active at the same time. In total we obtain a valid activity set
Φ with weight

Hence, Φ is a solution for k-RestrictedMaxTotalDecision for any k ≥ 2.
Now assume that I′ is a yes-instance of k-RestrictedMaxTotal ( k ≥ 2 ) with

respect to AM3, i.e., we are given an activity set Φ for I′ with WΦ ≥ W . We show
how to construct a valid solution for I .

Recall that since the labels in L� ∪ L� are pairwise in conflict for the complete
interval I, for any k ≥ 2 at most two labels can be active at the same time, namely �K
and one label of L� ∪ L�.

We now argue that �K is active for the complete interval [0, l1] . If this was not
the case, then the prefix [−M, 0] or the suffix [l1, l1 +M] of K cannot belong to the
activity of �K . Further, for the interval [0, l1] we obtain less than 2

3
M weight in total,

because at most two labels can be active at the same time and l1 <
M

3
 . Thus, we

obtain WΦ < M +
2

3
M < 2M . On the other hand, because of l2 ≥ 2M and WΦ ≥ W ,

we have WΦ ≥ 2M , which is a contradiction. On that account, the label �K is active
during the complete interval [0, l1] . It is even active for the complete interval K to
sustain the requirements of AM3. As reasoned previously, the activity interval of
any label � ∈ L� must be thus contained in one of the slots S1,… , S3h ; otherwise
there would be an unresolved conflict between � and �K . Similarly, the activity inter-
val of any label � ∈ L� must be contained in one of the intervals T1,… , Th.

By the construction of the conflicts, a label �x ∈ L� can be active for at most s(x)
time and a label �i ∈ L� can be active for at most l3 time. Due to WΦ ≥ W , each
label �x ∈ Lx is therefore active for exactly s(x) time and, consequently, there is a
slot Sx,i with 1 ≤ i ≤ 3h that is the activity interval of �x . Similarly each label � ∈ L�

WΦ = l2 +
∑

x∈X

s(x) + (h − m) ⋅ l3 = W.

	 Algorithmica

1 3

is active for exactly l3 time and, consequently, there is an interval Ti with 1 ≤ i ≤ h
that is the activity interval of �.

More precisely, there are m triplets �i1 ,… , �im such that the activity intervals of
the labels in L� are contained in

⋃m

j=1
Tij . To see that, consider any label � ∈ L� . By

the previous reasoning there is a triplet �i with 1 ≤ i ≤ h such that the activity inter-
val Ti of � contains S3i−2, S3i−1, S3i . This implies that no label �x ∈ L� with x ∈ �i can
be active during Ti . Since no two labels �,�� ∈ L� can be active during the same
interval Ti and |L�| = h − m , the m remaining intervals Ti1 ,… , Tim contain the activ-
ity intervals of the labels in L�.

Those triplets �i1 ,… , �im form the desired solution for I  : Since each label �x ∈ L�
is active for exactly one interval, each element x ∈ X is contained in exactly one tri-
plet �ij with 1 ≤ j ≤ m . Further, we have

∑
x∈�ij

s(x) = B , which concludes the proof. 	
� ◻

The lemma directly implies that the problem k-RestrictedMaxTotal is NP-hard
for k ≥ 2 and AM3. Moreover, it is easy to see that the decision problem is in NP.
For each label � ∈ L we guess intervals that are contained in the presence inter-
vals of � and whose beginnings and ends coincide with the beginnings and ends of
presence and conflict intervals in Ψ ∪ C . We further check whether the intervals are
valid activity intervals with respect to AM3, whether their weights sum up at least
to W, and whether at most k labels are active at the same time. Obviously this takes
time polynomial in the size of the input. We summarize the results of this section in
the following theorem.

Theorem 5  For k = 1 the problem k-RestrictedMaxTotal can be solved in linear
time for AM3, while k-RestrictedMaxTotalDecision is NP-complete for k ≥ 2.

We observe that from a computational point of view this hardness result justifies
the use of AM2. While AM2 is more flexible then AM1, it is less difficult to solve
than AM3. It is an open question, whether k-RestrictedMaxTotal in AM3 remains
NP-hard for k ≥ 2 if the concrete geometric setting is also taken into account. For
example, in case that the viewport follows a predefined trajectory, does this help to
solve the problem in polynomial time?

4.4 � Approximation of k‑RestrictedMaxTotal

Since the running times of our algorithms for k-RestrictedMaxTotal are, even for
small k, prohibitively expensive in practice, we propose an approximation algorithm
for k-RestrictedMaxTotal based on GreedyMaxTotal for all activity models.

Our algorithm GreedyRestrictedMaxTotal is a simple extension of Greedy-
MaxTotal. Recall that GreedyMaxTotal greedily removes the longest interval I
from Ψ and adds it to the set Φ that contains the active intervals of the solution.
Then, it updates all intervals contained in Ψ that are in conflict with I. This process
is repeated until Ψ is empty. For approximating k-RestrictedMaxTotal we need to

1 3

Algorithmica	

ensure that there is no point in time t that is contained in more than k intervals in Φ .
We call intervals which we cannot add to Φ without violating this property invalid.

Our modification of GreedyMaxTotal is as follows. After adding an interval I to
Φ and handling conflicts as before, we remove intervals from Ψ that became inva-
lid. We say that we ensure that I is valid. Note that we cannot shorten those inter-
vals because then we could not ensure that adding an interval from Ψ to Φ is valid
according to our model.

In order to prove approximation ratios we first introduce the following lemma that
describes the structure of a solution of k-RestrictedMaxTotal.

Lemma 4 ([12])  Let S be a set of intervals such that there is no number that is con-
tained in more than k intervals from S. Then, there is a partition of S into k sets
M1,… ,Mk , such that no two intersecting intervals are in the same set Mi.

For the proof we refer to [12]. With this lemma we now can prove the fol-
lowing theorem that makes a statement about the approximation ratio
of GreedyRestrictedMaxTotal

Theorem 6  Assuming that all labels are unit squares and w([a, b]) = b − a ,
GreedyRestrictedMaxTotal is a 1∕min{3 + 3k, 27} , 1∕min{3 + 2k, 19} ,
1∕min{3 + k, 11}-approximation for AM1–AM3, respectively, and runs in O(n2)
time.

Proof  We begin by proving its correctness and then we show its time complexity.
Consider the step in which we add an interval I = [a, b] to Φ , and let

J = [a − w(I), b + w(I)] . Let L be a fixed, but arbitrary optimal solution. If I ∈ L ,
there is no lost weight compared to the optimal solution when choosing I.

Thus, assume that I ∉ L . Let C(I) ⊆ L be the set of intervals that are
in conflict with I. Identically to the proof of Theorem 2 we can argue that
w(C(I)) =

∑
I∈C w(I) ≤ (4 − X) ⋅ 8 ⋅ w(I) considering activity model AMX

with X ∈ {1, 2, 3}.
We now show that at most 3w(I) weight of the optimal solution is lost when

ensuring that I is valid.
By Lemma 4 we can partition L into k sets M1,… ,Mk such that no two inter-

secting intervals are in the same set Mi . If I is in L , then we do not lose any
weight compared to the optimal solution. Hence, assume that I is not in L . Take
any Mi, 1 ≤ i ≤ k , remove all intervals of L ⧵Φ that intersect I. We denote the set of
removed intervals by R. In the following, we bound the cost of removing the inter-
vals in R. If there are intervals in R that are longer than I, then we have already
accounted for them in previous steps. This relies on the fact that we consider the
intervals sorted by their length in non-ascending order, and, hence if those longer
intervals are not in Φ , we must have removed them in an earlier step. Thus, we only
need to bound the length of intervals in R which have length at most w(I). Those
intervals must lie in J, and due to the definition of Mi they must be disjoint. Hence,
the cost for ensuring that I is valid is bounded by 3w(I).

	 Algorithmica

1 3

Altogether choosing I causes that at most 3w(I) + (4 − X) ⋅ 8 ⋅ w(I) weight
is lost compared to the optimal solution considering activity model AMX
with X ∈ {1, 2, 3} . Finally, this yields an approximation factor of 1/27, 1/19, 1/11
for AM1, AM2, and AM3, respectively.

For k < 8 we can improve w(C(I)) ≤ (4 − X) ⋅ 8 ⋅ w(I) to
w(C(I)) ≤ (4 − X) ⋅ k ⋅ w(I) considering activity model AMX with X ∈ {1, 2, 3}
because we know that I cannot be in conflict with more than k intervals of the opti-
mal solution. Thus, we can bound the loss of choosing I by 3w(I) + (4 − X) ⋅ k ⋅ w(I) .
In total this yields the claimed approximation ratios for the three activity models.

Finally, we argue the correctness of the claimed running time of O(n2) . Since the
worst-case running time of GreedyMaxTotal is O(n2) we only need to argue that
we can delete those intervals from Φ , which are not valid anymore, in O(n) time per
step. To do this we simply sort the intervals in Ψ in non-decreasing order by their
left-endpoint. We also maintain Φ in the same way. Then, we can check for non-
valid intervals with a simple linear sweep over Ψ and Φ . Hence, each iteration of the
algorithm requires O(n) time, which yields a total running time of O(n2) . 	� ◻

5 � Conclusions

In this paper, we introduced a temporal model for dynamic map labeling that satis-
fies the consistency criteria demanded by Been et al. [1], even in a stronger sense,
where each activity change of a label must be explainable to the user by some wit-
ness label. Our model transforms the geometric information specified by the motion
of the camera as well as the labels into the two combinatorial problems General-
MaxTotal and k-RestrictedMaxTotal that are expressed in terms of presence and
conflict intervals. Thus, our algorithms apply to any dynamic labeling problem that
can be transformed into such an interval-based problem.

We showed that GeneralMaxTotal is NP-complete and W[1]-hard and presented
constant-factor approximation algorithms for our three different activity models.
The problem k-RestrictedMaxTotal, where at most k labels can be visible at any
time, can be solved in polynomial time O(nf (k)) in activity models AM1 and AM2 for
any fixed k, where f is a polynomial function. Hence, k-RestrictedMaxTotal lies in
the complexity class XP for AM1 and AM2. Due to the W[1]-hardness of General-
MaxTotal we cannot expect to find better results for the running times, apart from
improving upon the function f. Further, we proved NP-hardness for k-Restricted-
MaxTotal in AM3 for k ≥ 2 . We also presented an O(n2)-time approximation algo-
rithm for k-RestrictedMaxTotal in all three activity models.

The analysis of the approximation algorithms for both k-RestrictedMaxTotal
and GeneralMaxTotal relies on the assumption that labels are unit squares. We can
soften this assumption by bounding the ratio between the largest and smallest label
size. We observe, that the core of our packing arguments remains valid obtaining
constant-factor approximations for this setting as well. However, the more the label
size ratio increases, the more the approximation ratios decline.

1 3

Algorithmica	

In this paper we have restricted our attention to a combinatorial view on tempo-
ral map labeling, i.e., we have assumed that we are given all presence and conflict
intervals in advance. This allowed us to completely abstract from the actual geomet-
ric setting obtaining generic algorithms for different problem variants such as map
labeling for car navigation and labeling moving entities. It is future work to incorpo-
rate the specific geometric settings into our results. For example, does the geometric
information based on viewport, its motion and the geometry of the labels imply a
useful structure on the induced label conflict graph? Such insights promise further
improvements on our results.

Acknowledgements  Open Access funding provided by Projekt DEAL. We thank Lukas Barth and Dar-
ren Strash for many interesting discussions.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Been, K., Daiches, E., Yap, C.: Dynamic map labeling. IEEE Trans. Vis. Comput. Graph. 12(5),
773–780 (2006)

	 2.	 Buchin, K., Gerrits, D.H.P.: Dynamic point labeling is strongly PSPACE-complete. Int. J. Comput.
Geom. Appl. 24(4), 373–395 (2014)

	 3.	 Barth, L., Gemsa, A., Niedermann, B., Nöllenburg, M.: Temporal map labeling: a new unified
framework with experiments. In: Advances in Geographic Information Systems (ACM-GIS’16).
ACM Press (2016)

	 4.	 Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent dynamic
map labeling. Comput. Geom. Theory Appl. 43(3), 312–328 (2010)

	 5.	 Carlisle, M.C., Lloyd, E.L.: On the k-coloring of intervals. Discrete Appl. Math. 59(3), 225–235
(1995)

	 6.	 de Berg, M., Gerrits, D.H.P.: Labeling moving points with a trade-off between label speed and label
overlap. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms (ESA’13). Lecture Notes in Com-
puter Science, vol. 8125, pp. 373–384. Springer, Berlin (2013)

	 7.	 Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-
complete. Inf. Process. Lett. 12(3), 133–137 (1981)

	 8.	 Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complete-
ness. W. H. Freeman & Co., New York (1979)

	 9.	 Gemsa, A., Nöllenburg, M., Rutter, I.: Sliding labels for dynamic point labeling. In: Canadian Con-
ference on Computational Geometry (CCCG’11), pp. 205–210 (2011)

	10.	 Gemsa, A., Nöllenburg, M., Rutter, I.: Consistent labeling of rotating maps. J. Comput. Geom. 7(1),
308–331 (2016)

	11.	 Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating maps. J. Exp.
Algorithmics 21(1), 1–21 (2016)

	12.	 Golumbic, M.C.: Interval graphs, chapter 8. In: Golumbic, M.C. (ed.) Algorithmic Graph Theory
and Perfect Graphs, pp. 171–202. Academic Press, Cambridge (1980)

	13.	 Hsiao, J.Y., Tang, C.Y., Chang, R.S.: An efficient algorithm for finding a maximum weight 2-inde-
pendent set on interval graphs. Inf. Process. Lett. 43(5), 229–235 (1992)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Algorithmica

1 3

	14.	 Liao, C.-S., Liang, C.-W., Poon, S.-H.: Approximation algorithms on consistent dynamic map labe-
ling. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) Frontiers in Algorithmics (FAW’14). Lecture Notes
in Computer Science, vol. 8497, pp. 170–181. Springer, Cham (2014)

	15.	 Luboschik, M., Schumann, H., Cords, H.: Particle-based labeling: fast point-feature labeling without
obscuring other visual features. IEEE Trans. Vis. Comput. Graph. 14(6), 1237–1244 (2008)

	16.	 Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal, G.S., Leonardi, S.
(eds.) Algorithms (ESA’05). Lecture Notes in Computer Science, vol. 3669, pp. 448–459. Springer,
Berlin (2005)

	17.	 Maass, S., Döllner, J.: Efficient view management for dynamic annotation placement in virtual land-
scapes. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) Smart Graphics (SG’06). Lecture Notes
in Computer Science, vol. 4073, pp. 1–12. Springer, Berlin (2006)

	18.	 Maass, S., Döllner, J.: Embedded labels for line features in interactive 3d virtual environments. In:
Computer Graphics, Virtual Reality, Visualisation and Interaction (AFRIGRAPH’07), pp. 53–59.
ACM Press (2007)

	19.	 Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for pro-
cessing information. Psychol. Rev. 63(2), 81–97 (1956)

	20.	 Mote, K.: Fast point-feature label placement for dynamic visualizations. Inf. Vis. 6(4), 249–260
(2007)

	21.	 Petzold, I., Gröger, G., Plümer, L.: Fast screen map labeling—data structures and algorithms. In:
International Cartographic Conference (ICC’03), pp. 288–298 (2003)

	22.	 Sester, M., Brenner, C.: Continuous generalization for visualization on small mobile devices. In:
Spatial Data Handling (SDH’04), pp. 355–368. Springer, Berlin (2004)

	23.	 Schwartges, N., Morgan, B., Haunert, J.-H., Wolff, A.: Labeling streets along a route in interactive
3D maps using billboards. In: Bacao, F., Santos, M., Painho, M. (eds.) AGILE 2015. Lecture Notes
in Geoinformation and Cartography, pp. 269–287. Springer, Cham (2015)

	24.	 Schwartges, N., Wolff, A., Haunert, J.-H.: Labeling streets in interactive maps using embedded
labels. In: Advances in Geographic Information Systems (ACM-GIS’14), pp. 517–520. ACM Press
(2014)

	25.	 Vaaraniemi, M., Treib, M., Westermann, R.: Temporally coherent real-time labeling of dynamic
scenes. In: Computing Geospatial Research Applications (COM.Geo’12), pp. 17:1–17:10. ACM
Press (2012)

	26.	 Yokosuka, Y., Imai, K.: Polynomial time algorithms for label size maximization on rotating maps.
In: Canadian Conference on Computational Geometry (CCCG’13), pp. 187–192 (2013)

	27.	 Zhang, X., Poon, S.-H., Li, M., Lee, V.: On maxmin active range problem for weighted consistent
dynamic map labeling. In: GEOProcessing 2015, pp. 32–37. IARIA (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A Unified Model and Algorithms for Temporal Map Labeling
	Abstract
	1 Introduction
	2 Model
	2.1 Basic Model
	2.2 Optimization Problems
	2.3 Activity Models

	3 Solving GeneralMaxTotal
	3.1 Computational Complexity
	3.2 Approximation of GeneralMaxTotal

	4 Solving k-RestrictedMaxTotal
	4.1 An Algorithm for k-RestrictedMaxTotal in AM1
	4.2 Extending the Algorithm for k-RestrictedMaxTotal to AM2
	4.3 Complexity of k-RestrictedMaxTotal in AM3
	4.4 Approximation of k-RestrictedMaxTotal

	5 Conclusions
	Acknowledgements
	References

