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Abstract
We consider map labeling for the case that a map undergoes a sequence of opera-
tions such as rotation, zoom and translation over a specified time span. We unify 
and generalize several previous models for dynamic map labeling into one versatile 
and flexible model. In contrast to previous research, we completely abstract from the 
particular operations and express the labeling problem as a set of time intervals rep-
resenting the labels’ presences, activities and conflicts. One of the model’s strength 
is manifested in its simplicity and broad range of applications. In particular, it sup-
ports label selection both for map features with fixed position as well as for moving 
entities (e.g., for tracking vehicles in logistics or air traffic control). We study the 
active range maximization problem in this model. We prove that the problem is NP-
complete and W[1]-hard, and present constant-factor approximation algorithms. In 
the restricted, yet practically relevant case that no more than k labels can be active at 
any time, we give polynomial-time algorithms as well as constant-factor approxima-
tion algorithms.

Keywords  Dynamic map labeling · Unified map labeling model · Approximation 
algorithms · Complexity results · Geometric packing algorithms · Dynamic 
programming · Polynomial time algorithms
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1  Introduction

Dynamic digital maps are becoming more and more ubiquitous, especially with the 
rising numbers of location-based services and smartphone users worldwide. Con-
sumer applications that include personalized and interactive map views range from 
classic navigation systems to map-based search engines and social networking ser-
vices. Likewise, interactive digital maps are a core component of professional geo-
graphic information systems. All these map services have in common that the con-
tent of the map view is changing over time based on interaction with the system (i.e., 
zooming, panning, rotating, content filtering, etc.; see Fig. 1 for a schematic illustra-
tion of interactive maps) or based on the physical movement of the user or a set of 
tracked entities. Creating smooth visualizations under such map dynamics induces 
challenging geometric problems, e.g., continuous generalization [22] or dynamic 
map labeling.

In the past decade, dynamic map labeling has therefore captured the interest of 
researchers. In 2003, Petzold et  al. [21] presented a framework for automatically 
placing labels on dynamic maps. They split the label placement procedure into two 
phases, namely a (possibly time-consuming) pre-processing phase and a query phase 
which computes the labeling of custom-scale maps. However, this approach does not 
guarantee that labels do not jump or flicker while transforming the map.

In 2006, Been et  al. [1] introduced the first formal model for dynamic maps 
and dynamic labels, formulating a general optimization problem. They describe 
the change of a map by the operations zooming, panning, and rotation. They 
observe that the selection and placement of labels must be temporally coherent 
(or consistent) during all map animations resulting from interactions, rather than 
being optimized individually for each map view as in static map labeling. In order 
to avoid flickering and jumping labels while transforming the map with zoom-
ing and panning, they require four desiderata for consistent dynamic map labe-
ling. These comprise monotonicity, i.e., labels should not vanish when zooming 
in or appear when zooming out (or any of the two when panning), invariant point 
placement, i.e., label positions and size remain invariant during movement, and 
history independence, i.e., placement and selection of labels should be a function 
of the current map state only. Monotonicity is modeled as selecting for each label 
at most one scale interval, the so-called active range, during which the label is 

(a) Zooming. (b) Panning. (c) Rotation.

Fig. 1   Illustration of interactive maps providing zooming, panning, and rotation as user interaction
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displayed. They introduce the active range optimization problem (ARO) maxi-
mizing the sum of active ranges over all labels such that no two labels overlap 
and all desiderata are fulfilled. They prove that ARO is NP-hard for star-shaped 
labels and present a greedy algorithm that computes an optimal solution for a 
simplified variant in polynomial time.

That model is the starting point for several subsequent papers considering the 
operations zooming, panning and rotation, mostly independently. Been et  al. [4] 
take a closer look at different variants of ARO for zooming. They show NP-hard-
ness and give approximation algorithms. In the same manner further variants are 
investigated by Liao et  al. [14]. Gemsa et  al. [9] present a fully polynomial-time 
approximation scheme (FPTAS) for a special case of ARO, where the given map is 
one-dimensional and only zooming is allowed. However, they combine the selection 
problem with a placement problem in a slider model. Zhang et al. [27] also consider 
the model of Been et al. [1] for zooming, however, instead of maximizing the total 
sum of active ranges, they maximize the minimum active range among all labels. 
They discuss similar variants as Liao et al. [14] and Been et al. [4], and also prove 
NP-hardness and give approximation algorithms.

Gemsa et  al. [10, 11] extend the ARO model to rotation operations. They first 
show that the ARO problem is NP-hard in the considered setting and introduce an 
efficient polynomial-time-approximation scheme (FPTAS) for unit-height rectan-
gles [10]. In subsequent work, they experimentally evaluate heuristics, algorithms 
with approximation guarantees and optimal approaches based on integer linear pro-
gramming [11]. A similar setting for rotating maps is considered by Yokosuka and 
Imai [26]. However, instead of ARO, they aim at finding the maximum font size for 
which all labels can always be displayed without overlapping.

Apart from the results based on the consistency model of Been et al. [1], other 
approaches and models are considered, too. Maass et al. [17] describe a view man-
agement system for interactive three-dimensional maps of cities also considering 
label placement. Mote [20] presents a fast label placement strategy without a pre-
processing phase. Luboschik et al. [15] describes a fast particle-based strategy that 
locally optimizes the label placement. None of these approaches takes consistency 
criteria for dynamic map labeling into account.

A different generalization of static point labeling is dynamic point labeling. 
Instead of transforming the map, the point set changes over time by adding or 
removing points as well as by moving points continuously. Inspired by air-traffic 
control, De Berg and Gerrits [6] consider moving points on a static map that must 
be labeled. They present a sophisticated heuristic for finding a reasonable trade-off 
between label speed and label overlap. Finally, Buchin and Gerrits [2] show that 
dynamic point labeling is strongly PSPACE-complete.

Embedded labels for road maps are also considered for interactive and dynamic 
maps. Maass and Döllner [18] provide a heuristic for labeling interactive 3D road 
maps taking obstacles into account. Vaaraniemi et al. [25] present a study on a force-
based labeling algorithm for dynamic maps considering both point and line features. 
Schwartges et al. [24] investigate embedded labels in interactive maps allowing pan-
ning, zooming and rotation of the map. They evaluate a simple heuristic for maxi-
mizing the number of placed labels. In [23] Schwartges et al. take another approach 
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using billboards (labels with short leaders) for naming roads in interactive 3D maps 
to avoid label distortion.

Contribution and Outline Most existing algorithmic results in dynamic map 
labeling take a global view on the map, which optimizes over the whole interaction 
space, regardless of which portion of that space is actually explored by the user. 
In this paper we take a more local view on dynamic map labeling. Our aim is to 
develop algorithms that optimize the labeling for a specific map animation given 
offline as input. Any feature or label that is not relevant for that particular anima-
tion—for example, because it never enters the map view—can be ignored by our 
algorithms. This approach not only allows us to compute better labelings by remov-
ing unnecessary dependencies and non-local effects, but it also reduces the problem 
size, since fewer features and labels must be taken into account.

In Sect.  2, we first formulate an abstract, generic model for offline, temporal 
labeling problems, in which labels and potential conflicts between labels are rep-
resented as intervals over time. To represent a label’s presence, we use a presence 
interval, which corresponds to the time that a label is present (but not necessarily 
displayed) in the map view. That is, whenever a label enters the map view, a cor-
responding presence interval starts, and whenever a label leaves the view, its cur-
rent presence interval ends. Next, a conflict interval (or simply conflict) between two 
present labels starts and ends at the points in time at which the two labels start and 
stop intersecting. A temporal labeling is then simply represented as a set of subinter-
vals—the labels’ activity intervals, during which the labels are displayed such that 
no two conflicting labels are displayed simultaneously. Depending on the objective 
and additional consistency constraints of the labeling model, different sets of subin-
tervals may be chosen by the algorithm.

This is a very versatile model, which includes, for instance, map labeling for 
car navigation systems, in which the map view changes position, angle, and scale 
according to the car’s position, heading, and speed following a particular route; see 
Fig. 2. To give another, seemingly different example, it also includes the problem of 
labeling a set of moving entities in a map view (e.g., for tracking vehicles in logistics 

H
ospital

B
ankSup

erm
arket

C
afe

P
ark

C
hurchCastle

G
as

Station

P
oliceHotel

L
ib

T
heater

M
useum

Stadion

α

Bank

Cafe

Park

Theater

Supermarket

Hospital

(a) Overall view. (b) Viewport.

Fig. 2   Trajectory-based labeling. a Viewport moves and aligns along a given trajectory (fat orange line). 
Labels align to the viewport. b The user’s view on the scene
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applications or planes in air traffic control). Also non-map related applications such 
as labeling 3D scenes as they occur in medical information systems is covered by 
our model. Put differently, the model comprises any application in which start and 
end times of label presences and conflicts can be determined in advance. Further, the 
conflicts are not restricted to label–label conflicts but may also include label–object 
conflicts. This flexibility of the abstract model comes at the cost of concealing the 
geometric information behind the particular problem settings. Hence, one might find 
faster algorithms for the concrete geometric problem setting. On the other hand, our 
approach is easily implementable for rather different problem settings. In particular, 
it splits the problem into two independent sub-problems. The first is about trans-
forming a particular geometric instance into intervals and the second is about find-
ing good activity ranges based on these intervals. We deem both problems to be two 
relevant research challenges.

Based on this model we introduce the two optimization problems GeneralMax-
Total and k-RestrictedMaxTotal. While in the former problem we simply maxi-
mize the number of visible labels integrated over time, in the latter problem we fur-
ther require that at most k labels are active at any time for some constant k. We note 
that limiting the number of simultaneously active labels is of practical interest as to 
avoid overly dense labelings, in particular for dynamic maps on small-screen devices 
such as in car navigation systems. We further refine our model by the three activity 
models AM1, AM2 and AM3, which introduce special requirements to enforce tem-
poral consistency avoiding flickering when switching labels on and off.

In Sect.  3, we investigate the problem GeneralMaxTotal. We first prove 
that GeneralMaxTotal is NP-complete; in fact it is even W[1]-hard and thus it is 
unlikely that a fixed-parameter tractable algorithm exists. For the special case 
of unit-square labels, we give an efficient approximation algorithm with different 
approximation ratios depending on the actual label activity model. In Sect.  4 we 
present polynomial-time algorithms for k-RestrictedMaxTotal in AM1 and AM2. 
For AM3 we show that the problem is NP-hard for k ≥ 2 . Further, for k-Restrict-
edMaxTotal we present efficient constant-factor approximation algorithms for all 
three activity models assuming that all labels are unit squares.

2 � Model

In this section we formally describe our temporal labeling model. In particular, it 
unifies and generalizes the models presented by Been et al. [1] and by de Berg and 
Gerrits [6].

2.1 � Basic Model

We are given a set O = {o1,… , on} of objects in a scene over a given time span 
T = [0, 1] . Further, for each object  o we are given a label � , e.g., text describ-
ing o. We denote the set of labels by L = {�1,… ,�n} , where �i is the label of oi . 
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To quantify the importance of a label, we define for each label � ∈ L a positive 
weight w

�
∈ ℝ

+.
We have a restricted view on the scene through a camera, i.e., the objects are 

projected onto an infinite plane P such that we can only see a restricted section V 
of  P, where V models the viewport of the camera; see Fig.  3 for an example. 
During the time interval T  , the objects are moving and the camera changes its 
perspective by changing its position, direction and zoom. We denote the plane P 
and the viewport V at time t by P(t) and V(t), respectively. Depending on the posi-
tion of the object oi ∈ O , each label �i has a certain shape and position on P(t) 
at time t; we denote the geometric shape of � at time t by �(t) . Following typical 
map labeling models we may assume that �(t) is a (closed) rectangle enclosing 
the text; one may also consider other shapes. In the following, we introduce some 
further notations to describe the setting precisely.

According to the perspective and position of the camera, not every label �(t) 
is contained in the viewport at time  t. We say that a label � is present at time  t 
if �(t) is (partly) contained in V(t); that is, �(t) ∩ V(t) ≠ � . We assume that the 
time intervals, during which a label � is present, are given by a set Ψ

�
 of disjoint, 

closed sub-intervals of T  ; see Fig.  4. For such an interval [a, b] ∈ Ψ
�
 we also 

(a) (b)

Restaurant

Fig. 3   Model. a Overall view of the scene. Depending on the rotation, translation, and zoom, the camera 
shoots a restricted part of the scene. The objects to be labeled are represented by black dots. b The cor-
responding viewport of the camera. The labels are placed near their objects

(a) (b) (c)

Fig. 4   Label activity. The intervals illustrate presence, conflict and activity intervals. a A set of valid 
activity intervals. b, c The maps rotate clockwise, while the labels keep aligned horizontally. White 
labels are active, while gray labels are inactive. The witness label �′ justifies b the start c the end of � ’s 
activity interval
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write [a, b]
�
 indicating that it belongs to � . We denote the union of all those sets 

Ψ
�
 by Ψ and assume that Ψ is a multi-set, as it may contain the same interval 

[a, b] multiple times, where each occurrence of [a, b] belongs to a different label.
Two labels � and �′ are in conflict at time t ∈ T  , if the geometric shapes of 

both labels intersect, i.e., �(t) ∩ �
�(t) ≠ � . We describe the occurrences of con-

flicts between two labels �,�� ∈ L by a set of closed intervals, C
�,�� = {[a, b] ⊆ T ∣ 

� and �′ are in conflict for all t ∈ [a, b] and[a,b]is maximal} . For such an interval 
[a, b] ∈ C

�,�� we also write [a, b]
�,�� indicating that it is a conflict interval between � 

and �′ . We denote the set of all conflict intervals over all pairs of labels by the multi-
set C.

To avoid overlaps between labels, we display a label � only at certain times when 
no other displayed label overlaps � ; the label � is said to be active at those times. 
We describe the activity of � , by a set Φ

�
 of disjoint intervals.1 For such an interval 

[a, b] ∈ Φ
�
 we also write [a, b]

�
 to indicate that the activity interval belongs to � . 

The union of all activity intervals over all labels is denoted by the multi-set Φ.
We say that two activity (presence) intervals [a, b]

�
 and [c, d]

�� of two labels � 
and �′ are in conflict if there is a time t in the intersection of the open intervals 
(a, b) ∩ (c, d) such that the labels � and �′ are in conflict at t.

An instance of temporal labeling is then defined by the set L of labels, the set Ψ 
of presence intervals and the set C of conflict intervals. We thus completely abstract 
away the geometry of the problem, while all essential information of the temporal 
labeling instance is captured combinatorially in Ψ and C . In this paper, we primarily 
focus on conflict-free label selection, and therefore assume that Ψ and C are given 
as input. In [3] we describe how to construct Ψ and C for the specific application of 
navigation systems.

Similarly to Been et al. [1] we require the following temporal consistency criteria: 

	(C1)	 A label should not be set active and inactive repeatedly to avoid flickering.
	(C2)	 The position and size of a label should be changed continuously, it should not 

jump.
	(C3)	 Labels should not overlap.

We formalize these consistency criteria and say the activity set Φ is valid (see 
Fig. 4a) if 

	(R1)	 for each activity interval I
�
∈ Φ there is a presence interval I�

�
∈ Ψ with I

�
⊆ I′

�
,

	(R2)	 for each presence interval I�
�
∈ Ψ there is at most one activity interval I

�
∈ Φ 

with I
�
⊆ I′

�
 , and

	(R3)	 no two activity intervals of Φ are in conflict.

1  Technically, one needs to distinguish between open and closed intervals, i.e., for closed rectangular 
labels, the presence and conflict intervals are closed but the activity intervals are open. However, includ-
ing or excluding the interval boundaries makes no difference in our algorithms and hence we decided to 
simply use the notation [a, b] for all respective intervals unless stated otherwise.
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Requirement (R1) enforces that a label is only displayed if it is present in the view-
port. Requirement (R2) prevents a label from flickering during a presence interval 
(C1), while (R3) enforces that no two displayed labels overlap (C3). In fact, (R2) is 
only a minimum requirement for avoiding flickering labels, which we later extend 
to stronger variants. By assuming that labels’ positions are fixed relative to their 
anchors, labels may not jump (C2) as long as labeled objects are either fixed or move 
continuously. From now on we assume that an activity set is valid, unless stated 
otherwise.

2.2 � Optimization Problems

Based on the introduced model we investigate two optimization problems for tem-
poral labeling that aim to maximize the overall active time of labels. The first prob-
lem allows for any number of labels to be active at the same time, and the second 
allows at most k labels to be active at the same time, which reduces the amount of 
presented information. We define the weight of an activity interval [a, b]

�
∈ Φ to be 

w([a, b]
𝓁
) = (b − a) ⋅ w

𝓁
.

Problem 1  (GeneralMaxTotal) 

Given:	� Instance (L,Ψ,C).
Find:	� Activity set Φ maximizing  

∑
[a,b]

�
∈Φ w([a, b]

�
).

Figure 5a shows an example of a single frame of a temporal labeling that is opti-
mal with respect to GeneralMaxTotal. While such a labeling is acceptable for 
general applications such as spatial data exploration, for small-screen devices, such 
as car navigation systems, the same labeling may overwhelm or distract the user 
with too much additional information. In fact, psychological studies have shown 
that untrained users are strongly limited in receiving, processing, and remember-
ing information (e.g., see [19]). For applications that do not receive a user’s full 

(a) (b)

Fig. 5   Frame of a dynamic map labeling. While in a 54 labels are displayed at the same time, in b 10 
labels are displayed in order to limit the informational content
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attention it is therefore desirable to restrict the number of simultaneously displayed 
labels (see Fig. 5b), which we formalize as an alternative optimization problem as 
follows.

Problem 2  (k-RestrictedMaxTotal) 

Given:	� Instance (L,Ψ,C) , k ∈ ℕ.
Find:	�� Activity set Φ maximizing   

∑
[a,b]

�
∈Φ w([a, b]

�
) , such that at any time t at 

most k labels are active.

2.3 � Activity Models

So far labels may become active or inactive within the viewport without any external 
influence, see, e.g., the second activity interval of �3 in Fig. 4a. Hence, the activity 
behavior of labels, even in an optimal solution Φ , is not necessarily explainable to a 
user by simple and direct observations such as “the label becomes inactive at time t, 
because at that moment an overlap starts with another active label”. The absence of 
those simple logical explanations may lead to unnecessary irritations of the user. To 
account for that we introduce the concept of justified activity intervals.

Consider a label � with activity interval [a, b]
�
∈ Φ . We say that the start of 

[a, b]
�
 is justified if � enters the viewport at time a or if there is a witness label �′ 

such that a conflict of � and �′ ends at a and �′ is active at a; see Fig. 4b.
Analogously, we say that the end of [a, b]

�
 is justified if � leaves the viewport 

at time b or if there is a witness label �′ such that a conflict of � and �′ begins at b 
and �′ is active at b; see Fig. 4c. If both the start and end of [a, b]

�
 are justified, then 

[a, b]
�
 is justified.

We distinguish the three activity models AM1, AM2, and AM3 that consider jus-
tified activity intervals; see Fig. 6. While for AM1, a label may only become active 
and inactive when it enters and leaves the viewport, for AM2 it may also become 
inactive before leaving the viewport if a witness label justifies this event. AM3 fur-
ther allows a label to become active after entering the viewport if a witness label 
justifies that event.

T

�1

�2

�3

ConflictPresent Active
T

�1

�2

�3

ConflictPresent Active
T

�1

�2

�3

ConflictPresent Active

(a) AM1 (b) AM2 (c) AM3

Fig. 6   The activity models AM1, AM2 and AM3
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AM1 An activity set Φ satisfies AM1 if any activity interval [a, b]
�
∈ Φ is 

justified and there is a presence interval [c, d]
�
∈ Ψ of the same label � with 

[a, b]
�
= [c, d]

�
.

AM2 An activity set Φ satisfies AM2 if any activity interval [a, b]
�
∈ Φ is justi-

fied and there is a presence interval [c, d]
�
∈ Ψ of the same label � with a = c.

AM3 An activity set Φ satisfies AM3 if any activity interval [a, b]
�
∈ Φ is justi-

fied. For AM2 one might also consider the symmetric variant in which the activ-
ity interval starts in the middle of the presence interval and ends with the pres-
ence interval; due to symmetry we do not consider the variant explicitly. We have 
described only the core of the model. Depending on the application it can be easily 
extended to more complex variants, e.g., requiring minimum durations of activity 
intervals.

3 � Solving GeneralMaxTotal

In this section we discuss GeneralMaxTotal. First, we present results on its com-
putational complexity and then we present a simple approximation algorithm for the 
case that the labels are unit squares.

3.1 � Computational Complexity

We first prove that the corresponding decision problem of GeneralMaxTotal is NP-
complete with respect to the three activity models. The membership in NP follows 
from the fact that the start and the end of an active interval may be assumed to coin-
cide with the start or end of a presence interval or a conflict interval. Thus, there is 
a finite number of candidates for the endpoints of the active intervals so that a solu-
tion L can be guessed. Verifying that L is valid in one of the three models and that 
its value exceeds a given threshold can obviously be checked in polynomial time.

For the NP-hardness we apply a straight-forward reduction from the NP-complete 
maximum independent set of rectangles problem [7]. We simply interpret the set 
of rectangles as a set of labels with unit weight, choose a short vertical trajectory T 
and a viewport R that contains all labels at any point of T. Since the conflicts do no 
change over time, the reduction can be used for all three activity models. By means 
of the same reduction and Marx’ result [16] that finding an independent set for a 
given set of axis-parallel unit squares is W[1]-hard we derive the next theorem.

Theorem 1  GeneralMaxTotal is NP-hard and �[1]-hard for all activity models AM1, 
AM2, AM3. In particular, the respective decision problem is NP-complete for all 
activity models AM1, AM2, AM3.

As a consequence, GeneralMaxTotal is not fixed-parameter tractable unless 
W[1]=FPT. Note that this also means that for k-RestrictedMaxTotal we cannot 
expect to find an algorithm that runs in O(f (k) ⋅ nc) time, where c is a constant, n is 
the number of presence and conflict intervals, and f(k) is a computable function that 



1 3

Algorithmica	

depends only on the parameter k. Assume for the sake of contradiction that there is 
an algorithm Ak for k-RestrictedMaxTotal with O(f (k) ⋅ nc) running time. We then 
could use Ak to check whether the input set of unit squares contains an independent 
set of size � as follows. We use the same reduction as above and determine the larg-
est k ∈ {1,… , �} for which the solution of Ak contains exactly k labels. This par-
ticularly implies that for every k′ with k′ > k the algorithm Ak′ also yields a solution 
with k labels. If k = � , this implies that the input instance contains an independent 
set of � unit squares, which contradicts that selecting � intersection-free unit squares 
from a set of intersecting unit squares is W[1]-hard.

3.2 � Approximation of GeneralMaxTotal

We now describe a simple greedy algorithm for GeneralMaxTotal in all three 
activity models assuming that all labels are unit squares anchored at their lower-left 
corner. We assume that the map changes via the standard operations panning, rota-
tion and zooming. Further, the weight of each presence interval [a, b]

�
 is its length 

w([a, b]
�
) = b − a.

Starting with an empty solution Φ , our algorithm GreedyMaxTotal removes the 
maximal interval I from Ψ and adds it to Φ , i.e., the label of I is set active during I. 
Then, depending on the activity model, it updates all presence intervals that have a 
conflict with I in Ψ and continues until the set Ψ is empty.

For AM1 the update process simply removes all presence intervals from Ψ that 
are in conflict with the newly selected interval I. For AM2 and AM3 let Ij ∈ Ψ and 
let I1

j
,… , Ik

j
 be the longest disjoint sub-intervals of Ij for some k ≥ 0 that are not in 

conflict with the selected interval I. We assume that I1
j
,… , Ik

j
 are sorted by their left 

endpoint. The update operation for AM2 replaces every interval Ij ∈ Ψ that is in 
conflict with I with I1

j
 . As I1

j
 is a prefix of Ij , selecting Ij in a later step satisfies the 

condition that the label becomes active with the beginning of its presence interval. 
Further, the conflict with I justifies the end of I1

j
 . In AM3 we replace Ij by I1

j
 if I1

j
 is 

not fully contained in I. Otherwise, Ij is replaced by Ik
j
 . Note that this discards some 

candidate intervals, but the chosen replacement of Ij is enough to prove the approxi-
mation factor. We observe that due to the conflicts with I (and possibly other inter-
vals chosen in a previous step) the new interval is justified. Note that after each 
update all intervals in Ψ are valid choices according to the specific model. Hence, 
we can conclude that the result Φ of GreedyMaxTotal is also valid in that model.

In the following, we analyze the approximation quality of GreedyMaxTotal. To 
that end we first introduce a purely geometric packing lemma. Similar packing lem-
mas have been introduced before, but to the best of our knowledge for none of them 
it is sufficient that only one prescribed corner of the packed objects lies within the 
container.

Lemma 1  Let C be a circle of radius 
√
2 in the plane and let Q be a set of non-

intersecting closed and axis-parallel unit squares with their bottom-left corner in C. 
Then Q cannot contain more than eight squares.
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Proof  First, we show that Q cannot contain more than nine squares and extend the 
result to the claim of the lemma. We begin by proving the following claim.

(S) At most three squares of Q can be stabbed by a vertical line. In order to prove 
(S) let Q′ ⊆ Q be a set of squares that is stabbed by an arbitrary vertical line l and 
let qt be the topmost square stabbed by l and let qb be the bottommost square stabbed 
by l. Since both the bottom-left corner of qt and qb are in C, their vertical distance is 
at most 2

√
2 . Consequently, there can be at most one other square in Q′ that lies in 

between qt and qb , which shows the claim (S).
Now let l1 be the left vertical tangent of C and let l2 be its right vertical tangent; 

see Fig.  7. We define Ql ⊆ Q to be the set of squares whose bottom-left corner 
has distance of at most 1 to l1 . Hence, there is a vertical line that stabs all squares 
in Ql . By (S) it follows that |Ql| ≤ 3 . We can analogously define the set Qr ⊆ Q 
whose bottom-left corner has distance of at most one to the vertical line  l2 . By 
the same argument it follows that |Qr| ≤ 3 . Further, the bottom-left corners of the 
squares Qm = Q ⧵ {Ql,Qr} are contained in a vertical strip of width 2

√
2 − 2 < 1 . 

Hence, there is a vertical line that stabs all squares of Qm and |Qm| ≤ 3 follows. We 
conclude that the set Q contains at most nine squares; in fact, |Q| ≤ 8 as we show 
next.

For the sake of contradiction we assume that |Q| = 9 , i.e., |Ql| = |Qm| = |Qr| = 3 . 
We denote the topmost square in Ql by tl and the bottommost square by bl , and define 
tr and br for Qr analogously.

Further, let sm be the vertical line through the center of C, let sl be the vertical line 
that lies one unit to the left of sm and let sr be the vertical line that lies one unit to 
the right of sm . Note that the length of the segment of sl and sr that is contained in C 
has length 2. Since the bottom-left corners of tl and bl have vertical distance strictly 
greater than 2, both squares lie to the right of sl . Hence, tl and bl intersect sm . Analo-
gously, the bottom-left corners of tr and br lie to the left of sr , and, hence intersect sr . 
The line  sm is intersected by two squares of Ql . By (S) there can be at most one 
additional square of Qm that intersects sm . Thus, there are two squares in Qm whose 
anchors lie to the right of sm . But then they both intersect sr which itself is already 
intersected by at least the squares tr and br . This is a contradiction to (S), and con-
cludes the proof. 	� ◻

Fig. 7   Illustration for the proof 
of Lemma 1 sl sr l2l1

sm

1 1

1 1

C
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Figure 8 shows that the bound is tight. Based on Lemma 1 we now show that for 
any label with anchor p there is no point of time t ∈ [0, 1] for which there can be 
more than eight active labels whose anchors are within distance 

√
2 of p. We call a 

set X ⊆ Ψ conflict-free if it contains no pair of presence intervals that are in conflict. 
Further, we say that X is in conflict with I ∈ Ψ if every element of X is in conflict 
with I, and we say that X contains t ∈ [0, 1] if every element of X contains t.

Lemma 2  For every t ∈ [0, 1] and every I ∈ Ψ any maximum cardinality conflict-
free set XI(t) ⊆ Ψ that is in conflict with I and contains t satisfies |XI(t)| ≤ 8.

Proof  Assume that there is a time t and an interval I such that there is a set XI(t) that 
contains more than eight intervals. Let � be the label that corresponds to I. For an 
interval I� ∈ XI(t) to be in conflict with I the anchors of the two corresponding labels 
must have a distance of at most 

√
2 . Hence, there are |XI(t)| labels corresponding 

to the intervals in XI(t) with anchors of distance at most 
√
2 to the anchor of � . By 

Lemma 1 we know that two of these labels must overlap. This implies that there is 
a conflict between the corresponding intervals contained in XI(t) , which is a contra-
diction. 	� ◻

With this lemma we can finally obtain the approximation guarantees for Greedy-
MaxTotal for all activity models.

Theorem 2  Assuming that all labels are unit squares and w([a, b]) = b − a , Greedy-
MaxTotal is a 1/24-, 1/16-, 1/8-approximation for AM1–AM3, respectively, and 
needs O(n log n) time for AM1 and O(n2) time for AM2 and AM3.

Proof  To show the approximation ratios, we consider an arbitrary step of Greedy-
MaxTotal in which the presence interval I = [a, b]

�
 is selected from Ψ . Let CI

�
 be 

the set of presence intervals in Ψ that are in conflict with I.
Consider the model AM1. Since I is the longest interval in Ψ when it is chosen, 

the intervals in CI
�
 are completely contained in J = [a − w(I), b + w(I)] . As CI

�
 con-

tains all presence intervals that are in conflict with I, it is sufficient to consider J 
to bound the effect of selecting  I. Obviously, the interval J is three times as long 

Fig. 8   Example configuration 
of eight axis-aligned, non-
intersecting, unit-squares whose 
bottom-left corners lie inside a 
circle C of radius 

√
2

C
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as  I. By Lemma 2 we know that for any t ∈ J it holds that |XI(t)| ≤ 8 . Hence, in 
an optimal solution there can be at most eight active labels at each point  t ∈ J 
that are discarded when [a, b]

�
 is selected. Thus, the cost of selecting [a, b]

�
 is at 

most 3 ⋅ 8 ⋅ w(I).
For AM2 we apply the same arguments, but restrict the interval J to 

J = [a, b + w(I)] , which is only twice as long as I. To see that consider for an inter-
val [c, d]

�� ∈ CI
�
 the prefix [c, a] if it exists. If [c, a] does not exist (because a < c ), 

removing [c, d]
�� from Ψ changes Ψ only in the range of  J. If  [c,  a] exists, then 

again Ψ is only changed in the range of I, because by definition [c, d]
�� is shortened 

to an interval that at least contains [c, a] and is still contained in Ψ . Thus, the cost of 
selecting I is at most 2 ⋅ 8w(I).

Analogously, for AM3 we can argue that it is sufficient to consider the inter-
val J = [a, b] . By definition of the update operation of GreedyMaxTotal at least the 
prefix or suffix subinterval of each [c, d]

�� ∈ CI
�
 remains in Ψ that extends beyond I 

(if such an interval exists). Thus, selecting  I influences only the interval J and its 
cost is at most 8w(I). The approximation bounds of 1/24, 1/16, and 1/8 follow 
immediately.

We use a binary search tree to achieve the time complexity O(n log n) of Greedy-
MaxTotal for AM1. We first add all intervals sorted by their weights to the binary 
tree. We then successively remove the intervals with maximal weight and its con-
flicting neighbors. As each interval is inserted and removed exactly once, we obtain 
O(n log n) running time. For AM2 and AM3 we use a linear sweep to identify the 
longest interval contained in Ψ . In each step we need O(n) time to update all inter-
vals in Ψ , and we need a total of O(n) steps. Thus, GreedyMaxTotal needs O(n2) 
time in total for AM2 and AM3. 	�  ◻

In case that we exclude rotation as an operation and only consider panning and 
zooming, we can improve the approximation by a factor of two, as we can use a more 
restrictive packing argument instead of Lemma 1.

Observation 1  Let S be a square with side length 2 in the plane and let Q be a set of 
non-intersecting closed and axis-parallel unit squares with their bottom-left corner 
in S. Then Q cannot contain more than four squares.

With this observation we can strengthen Lemma 2 and thus Theorem 2 by a factor 
of two and hence obtain the following corollary.

Corollary 1  Assuming that all labels are unit squares, the map operations are 
panning and zooming, and  w([a, b]) = b − a , GreedyMaxTotal is a 1/12-, 1/8-, 
1/4-approximation for AM1–AM3, respectively, and needs O(n log n) time for AM1 
and O(n2) time for AM2 and AM3.
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4 � Solving k‑RestrictedMaxTotal

In this section we prove that unlike GeneralMaxTotal the problem k-Restrict-
edMaxTotal can actually be solved in polynomial time for AM1 and AM2. We 
give a detailed description of our algorithm for AM1, and then show how it can be 
extended to AM2. Note that solving k-RestrictedMaxTotal is related to finding a 
maximum cardinality k-colorable subset of n intervals in interval graphs. This can 
be done in polynomial time in both n and k [5]. However, we have to consider addi-
tional constraints due to conflicts between labels, which makes our problem more 
difficult. First, we discuss how to solve the case for k = 1 and then give an algorithm 
that solves k-RestrictedMaxTotal for k > 2 . Altogether, we obtain an algorithm 
that runs in O(nf (k)) time, where f is a polynomial function. Hence, k-Restricted-
MaxTotal lies in the complexity class XP for AM1 and AM2. Due to the �[1]-hard-
ness of GeneralMaxTotal, we cannot expect running times in O(f (k) ⋅ nc) , where 
f is a computable function and c is a constant. In contrast, for AM3 we prove that 
k-RestrictedMaxTotal is NP-hard for k ≥ 2 . Since the running times of the pre-
sented algorithms for AM1 and AM2 are, even for small k, prohibitively expensive 
in practice, we finally propose an approximation algorithm for k-RestrictedMaxTo-
tal in all three activity models.

4.1 � An Algorithm for k‑RestrictedMaxTotal in AM1

In this section we present a dynamic programming approach for computing an 
optimal solution for an instance (L,Ψ,C) of k-RestrictedMaxTotal in AM1. The 
approach is based on the idea to systematically identify and solve smaller sub-
instances that are independent from each other. As separators of these sub-instances 
we systematically explore all choices of k intervals that have a point in time in com-
mon. More precisely, a separating k-tuple v⃗ is a set of k presence intervals that are 
not in conflict with each other and that have a non-empty intersection Kv⃗ =

⋂
I∈v⃗ I . 

The weight of a separating tuple v⃗ is defined as w(v⃗) =
∑

I∈v⃗ w(I) . We observe that a 
separating k-tuple v⃗ contained in a solution of k-RestrictedMaxTotal splits the set 
of presence intervals into two independent subsets. Specifically, a left (right) subset 
Lk[v⃗] ⊆ Ψ ( Rk[v⃗] ⊆ Ψ ) that contains only intervals which lie completely to the left 
(right) of Kv⃗ and are not in conflict with any interval of v⃗ ; see Fig. 9.

�v {
Fig. 9   The separating 3-tuple (orange) splits the set of presence intervals into a left and right subinstance 
(blue). The presence intervals (gray) intersecting Kv⃗ (green box) cannot be selected since at most three 
labels can be active at the same time (Color figure online)
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Given two separating k-tuples u⃗ and v⃗ (where Ku⃗ lies to the left of Kv⃗ ) we pre-
sent an algorithm Ak(u⃗, v⃗) that computes an activity set Φ ⊆ Lk[v⃗] ∩ Rk[u⃗] such 
that 

	(C1)	 no two intervals of Φ ∪ u⃗ ∪ v⃗ are in conflict,
	(C2)	 at any time t at most k intervals of Φ ∪ u⃗ ∪ v⃗ contain t, and
	(C3)	 the total activity 

∑
I
�
∈Φ w(I

�
) is maximized.

We observe that with respect to these conditions the activity set Φ respects the sepa-
rating tuples u⃗ and v⃗ , but Φ does not contain any intervals of u⃗ and v⃗ . We call u⃗ and v⃗ 
the boundary separating k-tuples of Φ.

We define the algorithm Ak recursively such that it uses Ak−1 as subroutine. Ini-
tially, for the input instance we call Ak(dl, dr) where dl and dr are two dummy sepa-
rating k-tuples such that the presence intervals of dl are strictly to the left of 0 and 
the presence intervals of dr are strictly to the right of 1. Since all original presence 
intervals are completely contained in [0,  1], every optimal solution contains both 
dummy separating k-tuples.

So assume in the following that the algorithm Ak is called with the two separat-
ing k-tuples u⃗ and v⃗ and let X = Lk[v⃗] ∩ Rk[u⃗] . We first explain how to solve the base 
case k = 1 and then present the algorithm for k > 1.

Case k = 1 . First note that for the case that at most one label can be active at any 
given point in time ( k = 1 ), conflicts between labels do not matter. Thus, for solving 
1-RestrictedMaxTotal it is sufficient to find an independent subset of Ψ of maxi-
mum weight. This is equivalent to finding a maximum weight independent set on 
interval graphs, which can be done in O(n2) time using dynamic programming given 
n sorted intervals [13]. The algorithm basically computes a table T1 indexed by the 
intervals in X, where an entry T1[Ij] stores the value of a maximum weight independ-
ent set Q of L1[Ij] and a pointer to the rightmost interval in Q. Hence, using this 
approach we obtain an activity set Φ . As no interval of X intersects any interval of 
the singletons u⃗ and v⃗ , the set Φ also satisfies the conditions (C1)–(C3) from above.

Case k > 1 . We say that a separating k-tuple v⃗ is smaller than a separating k-tuple 
w⃗ if Kv⃗ begins to the left of Kw⃗ . Ties are broken arbitrarily. This lets us define the 
ordered set Sk = {v⃗1,… , v⃗z} of all separating k-tuples of X. In order to ease notation 
we denote the given boundary separating k-tuples u⃗ by v⃗0 and v⃗ by v⃗z+1 . Further, we 
say a set C of presence intervals is k-compatible if no more than k intervals in C 
intersect at any point and there are no conflicts in C. Two separating k-tuples x⃗ and y⃗ 
are k-compatible if they are disjoint, i.e., they have no interval in common, and x⃗ ∪ y⃗ 
is k-compatible. Further, for a separating k-tuple  x⃗ let lk−1(x⃗) be the set of the k − 1 
intervals of x⃗ whose right end points are rightmost; in case that this is not uniquely 
defined, we choose any of those subsets. Analogously, let rk−1(x⃗) be the set of the 
k − 1 intervals of x⃗ whose left end points are leftmost. We observe that lk−1(x⃗) and 
rk−1(x⃗) are separating k − 1-tuples; in the recursion step we use lk−1(x⃗) and rk−1(x⃗) as 
left and right boundary separating k − 1-tuples, respectively.

The algorithm Ak fills a one-dimensional table Tk . Similarly to the case k = 1 , 
each entry Tk[v⃗] stores the value of the optimal solution for Lk[v⃗] . Then the solution 
of the given subinstance bounded by v⃗0 and v⃗z+1 can be obtained from Tk[v⃗z+1] . We 
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initialize Tk[v⃗0] = 0 . Then, the remaining entries of Tk can be obtained by comput-
ing (see also Fig. 10)

Apart from Tk[v⃗j] we also store for each separating k-tuple vj the separating k-tuple 
vi for which the expression above is maximized; we define pred(v⃗j) = v⃗i . Starting a 
standard backtracking procedure at v⃗z+1 we obtain a activity set Φ(v⃗z+1) recursively 
defined by

As the result of the algorithm we return the set Φ = Φ(vz+1) ⧵ (v⃗0 ∪ v⃗z+1) . Hence, Φ 
is an activity set for the instance X.

Theorem  3  Algorithm Ak solves k-RestrictedMaxTotal in AM1 in O(nk2+k−1) time 
and O(nk) space.

Proof  We first show the correctness of Ak by induction on k. Given two separating 
k-tuples u⃗ and v⃗ (where u⃗ is smaller than v⃗ ) we prove that Ak(u⃗, v⃗) computes an activ-
ity set Φ ⊆ Lk[v⃗] ∩ Rk[u⃗] such that conditions (C1)–(C3) are satisfied.

For the case k = 1 this is clearly the case. So assume k > 1 . Since Ak considers 
only solutions where adjacent separating k-tuples are k-compatible with each other 
and both boundary k-tuples, we cannot produce an invalid solution, i.e., a solution 
with conflicts or more than k active intervals at any point. Hence, both condition 
(C1) and (C2) are satisfied. We prove condition (C3) by contradiction. So assume 
that there is an instance X for which Ak does not compute an optimal solution and let 
OPT be an optimal solution. There must be a smallest separating k-tuple v⃗j , j > 0 , 
for which Tk[v⃗j] is less than the value of OPT for Lk[v⃗j] . Let v⃗i , i < j be the rightmost 
disjoint separating k-tuple in OPT that precedes v⃗j such that the set v⃗0 ∪ v⃗i ∪ v⃗j ∪ v⃗z+1 
is k-compatible. By our assumption Tk[v⃗i] has the same value as OPT on Lk[v⃗i] . 
For the set of intervals Lk[v⃗j] ∩ Rk[v⃗i] there are at most k − 1 active intervals at any 
point (otherwise v⃗i is not rightmost). This means that when we run algorithm Ak−1 
on that instance with the boundary tuples lk−1(v⃗i) and rk−1(v⃗j) , we obtain by the 

Tk[v⃗j] = max
i<j

{Tk[v⃗i] + w(v⃗i) + w(Ak−1

(
lk−1(v⃗i), rk−1(v⃗j))

)
∣ v⃗i ∈ Sk, v⃗i ⊆ Lk[v⃗j] ∪ v⃗0,

v⃗j ⊆ Rk[v⃗i] ∪ v⃗z+1, v⃗0 ∪ v⃗z+1 ∪ v⃗i ∪ v⃗j is k-compatible}.

Φ(x⃗) =

{
� if x⃗ = v⃗0,

x⃗ ∪ Φ(pred(x⃗)) otherwise.

�vi �vjA2(l2(�vi), r2(�vj))T3[�vi]

l2(�vi) r2(�vj)

Fig. 10   Illustration for computing the table entry Tk[v⃗j] for k = 3 . The intervals Kv⃗i
 and Kv⃗j

 are marked in 
green. The dotted intervals illustrate the optimal solution represented by Tk[v⃗i] . The separating k-tuples 
(orange) enclose an instance for 2-RestrictedMaxTotal (blue). The algorithm A2(l2(v⃗i), r2(v⃗j)) computes 
an optimal solution (blue intervals) for that instance respecting v⃗i and v⃗j (Color figure online)
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induction hypothesis a solution that is at least as good as the restriction of OPT to 
that instance. Since v⃗i is a valid predecessor k-tuple for v⃗j the algorithm Ak considers 
it. So Tk[v⃗j] ≥ Tk[v⃗i] + w(v⃗i) +Ak−1(lk−1(v⃗i), rk−1(v⃗j)) , which is at least as good as 
OPT restricted to Lk[v⃗j] . This is a contradiction and proves condition (C3).

For proving the time and space complexity let zi be the number of separating 
i-tuples in an instance for 1 < i ≤ k . Each zi is in O(ni) . We again use induction 
on k. Algorithm A1 needs O(n2) time and O(n) space, which match the bounds to 
be shown. So let k > 1 . The table Tk has O(zk) ⊆ O(nk) entries and each of the recur-
sive computations of Ak−1 need O(nk−1) space by the induction hypothesis. Thus the 
overall space is dominated by Tk and the bound follows. Checking whether a separat-
ing k-tuple v⃗i ∈ Sk is a feasible predecessor for a particular v⃗j can easily be done in 
O(k2) time, which is dominated by the time to compute Ak−1(lk−1(v⃗i), rk−1(v⃗j)) . So 
for the running time we observe that each entry in Tk makes O(zk) calls to Ak−1 and 
hence the overall running time is indeed O(n2k ⋅ n(k−1)2+(k−1)−1) = O(nk

2+k−1) . 	�  ◻

4.2 � Extending the Algorithm for k‑RestrictedMaxTotal to AM2

With some modifications and at the expense of another polynomial factor in the run-
ning time we can extend algorithm Ak of the previous section to the activity model 
AM2, which shows that k-RestrictedMaxTotal in AM2 can still be solved in poly-
nomial time. In the following, we give a sketch of the modifications. The impor-
tant difference between AM1 and AM2 is that presence intervals can be truncated 
at their right side if there is an active conflicting witness label causing the trunca-
tion. We need two modifications to model this behavior. First, we create for each 
original presence interval Ii = [ai, bi] in Ψ at most n prefix intervals Ij

i
= [ai, cij] , 

where cij is the start of the first conflict between Ii and Ij ∈ Ψ . Each interval Ij
i
 inher-

its the conflicts of Ii that intersect Ij
i
 . We obtain a modified set of presence intervals 

Ψ� = Ψ ∪ {I
j

i
∣ Ii, Ij ∈ Ψ and Ii, Ij in conflict} of size O(n2) . We create mutual con-

flicts among all intervals that are prefixes of the same original interval. This will 
enforce that at most one of them is active. We still have to take care that a truncated 
interval Ij

i
 can only be active if Ij (or a prefix of Ij ) is active at cij as a witness.

In order to achieve this we instantiate the algorithm Ak′ for every k′ ≤ k not only 
with its two boundary k-tuples ̃⃗v0 and ̃⃗vz+1 but also with a set W of at most k witness 
intervals that are k-compatible and must be made active at some stage of the algo-
rithm. In a valid solution we have W ⊆ Lk� [v⃗] ∪ v⃗ for the leftmost separating k′-tuple 
v⃗ , since otherwise more than k′ intervals are active in Kv⃗ . However, the truncated 
intervals in v⃗ themselves define a family of O(nk� ) possible witness sets W(v⃗) to be 
respected to the right of ⃗v . So when we compute the table entry for a separating k′-tuple  
v⃗j and consider a particular predecessor k′-tuple v⃗i we must in fact iterate over all 
possible witness sets W(v⃗i) as well. We need to make sure that v⃗j is W(v⃗i)-compatible,  
i.e., v⃗j ∪W(v⃗i) is k-compatible and W(v⃗i) ⊆ Lk� [v⃗j] ∪ v⃗j . For the recursive call to 
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Ak�−1(
̃⃗vi,

̃⃗vj) the initial witness set W ′ consists of W(v⃗i) ⧵ v⃗j , i.e., those witness inter-
vals of W(v⃗i) that are not part of v⃗j.

The increase in running time is caused by dealing with O(n2) intervals in Ψ� 
and by the fact that instead of one call to Ak−1(

̃⃗vi,
̃⃗vj) in the computation of table 

Tk we make O(nk) calls, one for each possible witness set of v⃗i . By an inductive 
argument one can show that the running time is in O(n3k2+2k).

Theorem 4  k-RestrictedMaxTotal in AM2 can be solved in O(n3k2+2k) time.

4.3 � Complexity of k‑RestrictedMaxTotal in AM3

In this section we discuss the complexity of k-RestrictedMaxTotal with respect 
to AM3. For k = 1 the problem is equivalent to finding a maximum weighted 
independent set on interval graphs, which can be done in linear time [13].

We show that the corresponding decision problem, which is defined as follows, 
is NP-complete for k ≥ 2.

Problem 3  (k-RestrictedMaxTotalDecision) 

Given:	� Instance I = (L,Ψ,C) , k ∈ ℕ and W ∈ ℝ
+.

Question:	� Is there an activity set Φ for I  such that 
∑

[a,b]
�
∈Φ w([a, b]

�
) ≥ W  

and at most k labels are active at the same time?

We first show that the decision problem is NP-hard for k ≥ 2 , which implies 
that the corresponding optimization problem is NP-hard as well. We reduce from 
the NP-complete problem 3-Partition. For the convenience of the reader, we 
repeat the definition given by Garey and Johnson [8].

Problem 4  (3-Partition) 

Given:	� Set X of 3m elements, a bound B ∈ ℤ
+ , and a size s(x) ∈ ℤ

+ for
�each element x ∈ X such that B

4
< s(x) <

B

2
 and 

∑
x∈X s(x) = mB.

Question:	� Can X be partitioned into m disjoint sets X1,X2,… ,Xm such that ∑
x∈Xi

s(x) = B for all i with 1 ≤ i ≤ m?

Note that each Xi must contain exactly three elements. We first present a con-
struction that transforms a given instance I  of 3-Partition into an instance I′ of 
k-RestrictedMaxTotal. As the construction is rather technical, we give a short 
sketch beforehand discussing the main ideas. Afterwards, we present the formal 
details. Finally, we show that I  is a yes-instance of 3-Partition if and only if I′ is a 
yes-instance of k-RestrictedMaxTotal with respect to AM3.
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Sketch. The construction is schematically illustrated in Fig. 11 and an example 
for a concrete instance of 3-Partition is given in Fig. 12. We observe that 3-Parti-
tion can be slightly reformulated as follows. Let 𝜏 ⊆ X be a triplet such that the 
three elements in � are mutually distinct and 

∑
x∈� s(x) = B and let T = {�1,… , �h} 

denote the set of all these triplets. The problem 3-Partition is then equivalent to 
selecting a subset T ′ ⊆ T  with size m such that each element x ∈ X is contained in 
exactly one triplet � ∈ T � . We model this selection problem using three groups of 
labels. The first group consists of a single label �K . We choose its presence inter-
val appropriately long in order to enforce that it is active for its complete presence 
interval. Further, for all other labels we will choose their presence intervals such 
that they are contained in �K ’s presence interval. By introducing conflicts between 
�K and these labels, this provides us with the possibility of defining exact ranges in 
which a label can be active during its presence interval. The second group L� con-
sists of 3m labels each representing one element of X. In our construction we will 
enforce that the label �x ∈ L� of each element x ∈ X is active for exactly s(x) time. 
Further, we ensure that its activity interval can be uniquely assigned to one of the 
triplets in T that contains x. The third group L� consists of h − m many labels repre-
senting the triplets in T that are not selected in a solution. More precisely, we ensure 
for each label in L� that its activity interval is uniquely assigned to one of the triplets 
in T such that we interpret this label as not selected for the solution. 

Further, we ensure that if a label �x ∈ L� is active for triplet � , then no label � 
of L� is active for � . Choosing W appropriately, we enforce that all defined labels 
must have an activity interval. Depending on the chosen activity intervals we then 
derive a solution for 3-Partition.

Fig. 11   Illustration of the construction used for the reduction from 3-Partition to k-RestrictedMaxTo-
tal. Times for which a label � ∈ L� ∪ L� is in conflict with �K are marked red. For each label �x ∈ L� the 
times when it can possibly be active are marked orange (Color figure online)
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Details. Let smax = maxx∈X s(x) . We first construct every triplet 𝜏 ⊆ X such that 
the three elements in � are mutually distinct and 

∑
x∈� s(x) = B . Let T = {�1,… , �h} 

denote the set of those triplets. For each triplet �i ∈ T  we fix an arbitrary order of 
its elements, and denote its j-th element by � j

i
 (with j ∈ {1, 2, 3} ). We define

In case that h < m , the given instance is a no-instance. Hence, in the following we 
assume that m ≥ h . For each element x ∈ X we create one label �x with presence 
interval

Let L� denote the set of those labels, and let l1 denote the common length of those 
intervals. The interval I can be partitioned into a set S of 3h intervals of length smax 
and a set U of 3h + 1 intervals of unit length such that the intervals in S and U alter-
nate, starting with an interval of U ; see Fig. 11. We call an interval in S a slot. We 
denote the slots by S1 = [a1, b1],… , S3h = [a3h, b3h] in increasing order, i.e., ai < aj 
for i < j . We say that the slots S3i−2 , S3i−1 and S3i belong to the triplet �i ( 1 ≤ i ≤ h).

Thus, for each xi we have a slot Si with 1 ≤ i ≤ 3h . In our construction we will 
enforce that a label �x ∈ L� can only be active during a slot  Si ( 1 ≤ i ≤ 3h ) if 
yi = x . More precisely, we define

y1 = �1
1
, y2 = �2

1
, y3 = �3

1
, y4 = �1

2
, y5 = �2

2
,… , y3h = �3

h
.

I = [0, 3h ⋅ (smax + 1) + 1].

Fig. 12   Example for the reduction from 3-Partition to k-RestrictedMaxTotal. The input are the nine 
elements x1,… , x9 with s(x1) = 20 , s(x2) = 23 , s(x3) = 25 , s(x4) = 49 , s(x5) = 45 , s(x6) = 27 , s(x7) = 40 , 
s(x8) = 22 and s(x9) = 19 . Times for which a label � ∈ L� ∪ L� is in conflict with �K are marked red. For 
each label its activity interval is blue. Further, for each label �x ∈ L� the other times when it can pos-
sibly be active are marked orange. The solution is �1 = {x1, x3, x5} , �3 = {x2, x6, x7} and �4 = {x4, x8, x9} 
(Color figure online)
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Thus, Sx,i ⊆ Si . We will enforce that �x can only be active during Sx,i . To that end we 
introduce a single label �K with presence interval

where we choose M > 3l1 . We denote the length of K by l2 and note that l2 ≥ 2M.
For each x ∈ X we introduce conflicts between �x and �K such that �x and �K 

are not in conflict at time t if and only if there is an i with 1 ≤ i ≤ 3h and t ∈ Sx,i . 
Put differently, �x and �K are in conflict during the time expressed by

Assume that �K is active during the complete interval [0, l1] , then any label �x with 
x ∈ X can only be active during 

⋃3h

i=1
Sx,i . Since the slots are disjoint, Sx,i ⊆ Si , and 

each label can only be active once per presence interval, each label �x can only be 
active during at most one slot Si , but not outside of a slot. Further, the element x 
must be contained in the corresponding triplet �j with j = ⌈ i

3
⌉.

Moreover, we introduce h − m labels with presence interval  I. We denote the 
set of these labels by L� . We define that any label � ∈ L� and �K are in conflict 
during the time expressed by

Thus, � is not in conflict with �K during any interval Ti = [a3i−2, b3i] (with 1 ≤ i ≤ h ), 
which spans the slots S3i−2 , S3i−1 , S3i of the triplet �i . We note that the length of Ti is 
l3 = 3smax + 2 . We further define that the labels in L� ∪ L� are pairwise in conflict 
during the complete interval I, which implies that at most two labels can be active at 
any time, namely �K and at most one label of L� ∪ L� . Finally, for any constructed 
label � we set w

�
= 1 and define

Hence, we have w([a, b]
�
) = (b − a) for any presence/activity interval of �.

Altogether, we obtain the instance I� = (L = L� ∪ {�K} ∪ L�,Ψ,C,W) , which 
can obviously be constructed in polynomial time with respect to the given 3-Par-
tition instance I .

Lemma 3  Let I  be an instance of 3-Partition and let I′ be an instance of k-Restrict-
edMaxTotalDecision (k ≥ 2) with respect to AM3 constructed from I  as described. 
The instance I  is a yes-instance if and only if I′ is a yes-instance.

Sx,i =

{
[ai, ai + s(x)], if yi = x

�, otherwise,

K = [−M, l1 +M],

I ⧵

3h⋃

i=1

Sx,i.

I ⧵

h⋃

j=1

[a3j−2, b3j].

W = l2 +
∑

x∈X

s(x) + (h − m) ⋅ l3
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Proof  First assume that I  is a yes-instance of 3-Partition. Let T ′ ⊆ T  be the set of 
the m triplets such that each element x ∈ X is contained in exactly one triplet of T ′ 
and the sizes of the elements in each triplet of T ′ sum up to B. We now construct an 
activity set Φ for I′ with weight WΦ ≥ W . To that end we first set �K active for the 
interval K. Thus, WΦ ≥ l2.

Further, for each triplet � ∈ T � and each element x ∈ � we add the slot Sx,i to Φ , 
where 1 ≤ i ≤ 3h , x = xi and Sx,i belongs to � . By construction �x is not in conflict 
with �K during Sx,i , but directly before and after that interval. Since K is completely 
contained in Φ , the label �K is also active directly before and after that interval, 
which altogether satisfies AM3. Further, only two labels are active at the same time. 
This follows directly from the fact that the slots are disjoint and we set for each 
slot at most two labels active, namely �x and �K . Since each added interval Sx,i has 
length s(x) and each x belongs to exactly one triplet � ∈ T � , the activity set Φ now 
has weight WΦ = l2 +

∑
x∈X s(x).

There are h − m triplets �i1 ,… , �ih−m in T ⧵ T ′ . For each such triplet �ij we know by 
construction that no label �x ∈ L� is active during Tij . Hence, we set the label �j 
active during the interval Tij . Since �j is in conflict with �K directly before and 
after Tij , the model AM3 is satisfied. Further, since Ti1 ,… , Tih−m are pairwise disjoint, 
at most two labels are active at the same time. In total we obtain a valid activity set 
Φ with weight

Hence, Φ is a solution for k-RestrictedMaxTotalDecision for any k ≥ 2.
Now assume that I′ is a yes-instance of k-RestrictedMaxTotal ( k ≥ 2 ) with 

respect to AM3, i.e., we are given an activity set Φ for I′ with WΦ ≥ W . We show 
how to construct a valid solution for I .

Recall that since the labels in L� ∪ L� are pairwise in conflict for the complete 
interval I, for any k ≥ 2 at most two labels can be active at the same time, namely �K 
and one label of L� ∪ L�.

We now argue that �K is active for the complete interval [0, l1] . If this was not 
the case, then the prefix [−M, 0] or the suffix [l1, l1 +M] of K cannot belong to the 
activity of �K . Further, for the interval [0, l1] we obtain less than 2

3
M weight in total, 

because at most two labels can be active at the same time and l1 <
M

3
 . Thus, we 

obtain WΦ < M +
2

3
M < 2M . On the other hand, because of l2 ≥ 2M and WΦ ≥ W , 

we have WΦ ≥ 2M , which is a contradiction. On that account, the label �K is active 
during the complete interval [0, l1] . It is even active for the complete interval K to 
sustain the requirements of AM3. As reasoned previously, the activity interval of 
any label � ∈ L� must be thus contained in one of the slots S1,… , S3h ; otherwise 
there would be an unresolved conflict between � and �K . Similarly, the activity inter-
val of any label � ∈ L� must be contained in one of the intervals T1,… , Th.

By the construction of the conflicts, a label �x ∈ L� can be active for at most s(x) 
time and a label �i ∈ L� can be active for at most l3 time. Due to WΦ ≥ W , each 
label �x ∈ Lx is therefore active for exactly s(x) time and, consequently, there is a 
slot Sx,i with 1 ≤ i ≤ 3h that is the activity interval of �x . Similarly each label � ∈ L� 

WΦ = l2 +
∑

x∈X

s(x) + (h − m) ⋅ l3 = W.
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is active for exactly l3 time and, consequently, there is an interval Ti with 1 ≤ i ≤ h 
that is the activity interval of �.

More precisely, there are m triplets �i1 ,… , �im such that the activity intervals of 
the labels in L� are contained in 

⋃m

j=1
Tij . To see that, consider any label � ∈ L� . By 

the previous reasoning there is a triplet �i with 1 ≤ i ≤ h such that the activity inter-
val Ti of � contains S3i−2, S3i−1, S3i . This implies that no label �x ∈ L� with x ∈ �i can 
be active during Ti . Since no two labels �,�� ∈ L� can be active during the same 
interval Ti and |L�| = h − m , the m remaining intervals Ti1 ,… , Tim contain the activ-
ity intervals of the labels in L�.

Those triplets �i1 ,… , �im form the desired solution for I  : Since each label �x ∈ L� 
is active for exactly one interval, each element x ∈ X is contained in exactly one tri-
plet �ij with 1 ≤ j ≤ m . Further, we have 

∑
x∈�ij

s(x) = B , which concludes the proof. 	
� ◻

The lemma directly implies that the problem k-RestrictedMaxTotal is NP-hard 
for k ≥ 2 and AM3. Moreover, it is easy to see that the decision problem is in NP. 
For each label � ∈ L we guess intervals that are contained in the presence inter-
vals of � and whose beginnings and ends coincide with the beginnings and ends of 
presence and conflict intervals in Ψ ∪ C . We further check whether the intervals are 
valid activity intervals with respect to AM3, whether their weights sum up at least 
to W, and whether at most k labels are active at the same time. Obviously this takes 
time polynomial in the size of the input. We summarize the results of this section in 
the following theorem.

Theorem  5  For k = 1 the problem k-RestrictedMaxTotal can be solved in linear 
time for AM3, while k-RestrictedMaxTotalDecision is NP-complete for k ≥ 2.

We observe that from a computational point of view this hardness result justifies 
the use of AM2. While AM2 is more flexible then AM1, it is less difficult to solve 
than AM3. It is an open question, whether k-RestrictedMaxTotal in AM3 remains 
NP-hard for k ≥ 2 if the concrete geometric setting is also taken into account. For 
example, in case that the viewport follows a predefined trajectory, does this help to 
solve the problem in polynomial time?

4.4 � Approximation of k‑RestrictedMaxTotal

Since the running times of our algorithms for k-RestrictedMaxTotal are, even for 
small k, prohibitively expensive in practice, we propose an approximation algorithm 
for k-RestrictedMaxTotal based on GreedyMaxTotal for all activity models.

Our algorithm  GreedyRestrictedMaxTotal is a simple extension of Greedy-
MaxTotal. Recall that GreedyMaxTotal greedily removes the longest interval I 
from Ψ and adds it to the set Φ that contains the active intervals of the solution. 
Then, it updates all intervals contained in Ψ that are in conflict with I. This process 
is repeated until Ψ is empty. For approximating k-RestrictedMaxTotal we need to 
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ensure that there is no point in time t that is contained in more than k intervals in Φ . 
We call intervals which we cannot add to Φ without violating this property invalid.

Our modification of GreedyMaxTotal is as follows. After adding an interval I to 
Φ and handling conflicts as before, we remove intervals from Ψ that became inva-
lid. We say that we ensure that I is valid. Note that we cannot shorten those inter-
vals because then we could not ensure that adding an interval from Ψ to Φ is valid 
according to our model.

In order to prove approximation ratios we first introduce the following lemma that 
describes the structure of a solution of k-RestrictedMaxTotal.

Lemma 4 ([12])  Let S be a set of intervals such that there is no number that is con-
tained in more than k intervals from S. Then, there is a partition of S into k sets 
M1,… ,Mk , such that no two intersecting intervals are in the same set Mi.

For the proof we refer to [12]. With this lemma we now can prove the fol-
lowing theorem that makes a statement about the approximation ratio 
of GreedyRestrictedMaxTotal

Theorem  6  Assuming that all labels are unit squares and  w([a, b]) = b − a , 
GreedyRestrictedMaxTotal is a 1∕min{3 + 3k, 27} , 1∕min{3 + 2k, 19} , 
1∕min{3 + k, 11}-approximation for AM1–AM3, respectively, and runs in O(n2) 
time.

Proof  We begin by proving its correctness and then we show its time complexity.
Consider the step in which we add an interval I = [a, b] to Φ , and let 

J = [a − w(I), b + w(I)] . Let L be a fixed, but arbitrary optimal solution. If I ∈ L , 
there is no lost weight compared to the optimal solution when choosing I.

Thus, assume that  I ∉ L . Let  C(I) ⊆ L be the set of intervals that are 
in conflict with  I. Identically to the proof of Theorem  2 we can argue that 
w(C(I)) =

∑
I∈C w(I) ≤ (4 − X) ⋅ 8 ⋅ w(I) considering activity model AMX 

with X ∈ {1, 2, 3}.
We now show that at most 3w(I) weight of the optimal solution is lost when 

ensuring that I is valid.
By Lemma 4 we can partition L into k sets M1,… ,Mk such that no two inter-

secting intervals are in the same set Mi . If I is in L , then we do not lose any 
weight compared to the optimal solution. Hence, assume that I is not in L . Take 
any Mi, 1 ≤ i ≤ k , remove all intervals of L ⧵Φ that intersect I. We denote the set of 
removed intervals by R. In the following, we bound the cost of removing the inter-
vals in  R. If there are intervals in R that are longer than I, then we have already 
accounted for them in previous steps. This relies on the fact that we consider the 
intervals sorted by their length in non-ascending order, and, hence if those longer 
intervals are not in Φ , we must have removed them in an earlier step. Thus, we only 
need to bound the length of intervals in R which have length at most w(I). Those 
intervals must lie in J, and due to the definition of Mi they must be disjoint. Hence, 
the cost for ensuring that I is valid is bounded by 3w(I).
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Altogether choosing  I causes that at most 3w(I) + (4 − X) ⋅ 8 ⋅ w(I) weight 
is lost compared to the optimal solution considering activity model AMX 
with X ∈ {1, 2, 3} . Finally, this yields an approximation factor of 1/27, 1/19, 1/11 
for AM1, AM2, and AM3, respectively.

For k < 8 we can improve w(C(I)) ≤ (4 − X) ⋅ 8 ⋅ w(I) to 
w(C(I)) ≤ (4 − X) ⋅ k ⋅ w(I) considering activity model AMX with  X ∈ {1, 2, 3} 
because we know that I cannot be in conflict with more than k intervals of the opti-
mal solution. Thus, we can bound the loss of choosing I by 3w(I) + (4 − X) ⋅ k ⋅ w(I) . 
In total this yields the claimed approximation ratios for the three activity models.

Finally, we argue the correctness of the claimed running time of O(n2) . Since the 
worst-case running time of GreedyMaxTotal is O(n2) we only need to argue that 
we can delete those intervals from Φ , which are not valid anymore, in O(n) time per 
step. To do this we simply sort the intervals in Ψ in non-decreasing order by their 
left-endpoint. We also maintain Φ in the same way. Then, we can check for non-
valid intervals with a simple linear sweep over Ψ and Φ . Hence, each iteration of the 
algorithm requires O(n) time, which yields a total running time of O(n2) . 	�  ◻

5 � Conclusions

In this paper, we introduced a temporal model for dynamic map labeling that satis-
fies the consistency criteria demanded by Been et al. [1], even in a stronger sense, 
where each activity change of a label must be explainable to the user by some wit-
ness label. Our model transforms the geometric information specified by the motion 
of the camera as well as the labels into the two combinatorial problems General-
MaxTotal and k-RestrictedMaxTotal that are expressed in terms of presence and 
conflict intervals. Thus, our algorithms apply to any dynamic labeling problem that 
can be transformed into such an interval-based problem.

We showed that GeneralMaxTotal is NP-complete and W[1]-hard and presented 
constant-factor approximation algorithms for our three different activity models. 
The problem k-RestrictedMaxTotal, where at most k labels can be visible at any 
time, can be solved in polynomial time O(nf (k)) in activity models AM1 and AM2 for 
any fixed k, where f is a polynomial function. Hence, k-RestrictedMaxTotal lies in 
the complexity class XP for AM1 and AM2. Due to the W[1]-hardness of General-
MaxTotal we cannot expect to find better results for the running times, apart from 
improving upon the function f. Further, we proved NP-hardness for k-Restricted-
MaxTotal in AM3 for k ≥ 2 . We also presented an O(n2)-time approximation algo-
rithm for k-RestrictedMaxTotal in all three activity models.

The analysis of the approximation algorithms for both k-RestrictedMaxTotal 
and GeneralMaxTotal relies on the assumption that labels are unit squares. We can 
soften this assumption by bounding the ratio between the largest and smallest label 
size. We observe, that the core of our packing arguments remains valid obtaining 
constant-factor approximations for this setting as well. However, the more the label 
size ratio increases, the more the approximation ratios decline.
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In this paper we have restricted our attention to a combinatorial view on tempo-
ral map labeling, i.e., we have assumed that we are given all presence and conflict 
intervals in advance. This allowed us to completely abstract from the actual geomet-
ric setting obtaining generic algorithms for different problem variants such as map 
labeling for car navigation and labeling moving entities. It is future work to incorpo-
rate the specific geometric settings into our results. For example, does the geometric 
information based on viewport, its motion and the geometry of the labels imply a 
useful structure on the induced label conflict graph? Such insights promise further 
improvements on our results.
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