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ABSTRACT 

The ratio between bubble velocity and mean velocity of the two-phase flow is a key 

parameter in Taylor flow. Correlations for this characteristic velocity ratio that are valid 

over the entire range of attainable capillary numbers are missing so far. Here, we 

develop such a correlation for laminar gas-liquid Taylor flow in circular capillary 

channels. The proposed model is a two-parameter logistic function, which approaches 

the theoretical asymptotic limit of Bretherton at low capillary number. The correlation 

relies on prior known parameters such as channel diameter, fluid properties and 

gas/liquid volumetric flow rates only. In comparison with numerical and experimental 

data, it is accurate within 5% and 18%, respectively. The correlation should be useful 

to estimate various prior unknown hydrodynamics features of Taylor flow such as 

bubble velocity, mean liquid velocity, gas holdup, uniform liquid film thickness, bubble 

diameter, and streamline patterns in the liquid slug. The derived two-parameter logistic 

function may be useful to develop similar correlations for non-circular channels and 

liquid-liquid Taylor flow. 

 

Keywords: capillary two-phase flow, microchannels, Taylor flow, slug flow 
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INTRODUCTION 

Taylor flow is a special kind of slug flow in small channels, where the liquid slugs 

separating the elongated bullet-shaped bubbles (Taylor bubbles) are free from gas 

entrainment. This flow regime, which is also known as bubble train flow, segmented 

flow or capillary slug flow, occurs in microfluidic devices for applications in life 

sciences (lab-on-a-chip), material synthesis and chemical process engineering, e.g. in 

heat exchangers and catalytic multiphase capillary and monolithic reactors [1]. Among 

the various gas-liquid flow patterns in microchannels [2], Taylor flow is attractive 

because of its well-defined interfaces and flow conditions, which are easier to control 

than in macroscopic devices and because of its advantageous mass transfer properties. 

The latter stems from (i) the high interfacial area per unit volume, (ii) the thin liquid film 

that separates the gas bubble from the channel wall, and (iii) the recirculation in the 

liquid slug, which accounts for good mixing and a wall-normal convective transport in 

laminar low [3]. For recent reviews on Taylor flow we refer to [4-7]. 

The shape of the Taylor bubble depends mainly on the (bubble) capillary number 

Ca
b
 = u

b
 µ

L
 /  and to a lesser extent on the Reynolds number Re

b
 = 

L
 u

b
 D / µ

L
. Here, 

u
b
 denotes bubble velocity, 

L
 liquid density, µ

L
 liquid viscosity,  surface tension and D 

the pipe diameter. At low Ca
b
, both bubble ends form hemispherical caps connected by a 

uniform cylindrical section of radius R
b
 [8]. As Ca

b
 increases, the Taylor bubble gets 

more slender and the fore-aft symmetry is lost. In addition, there are capillary wave 
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undulations where the uniform interface merges with the transition region in the rear [9]. 

The curvature of the bubble nose increases approaching a limiting value at Ca
b
 = O (1). 

The profile of the rear transition undertakes large deformations as its shape evolves from 

convex for small values of Ca
b
 to concave at large values of Ca

b
 [10]. For high bubble 

speeds, the trailing end develops re-entrant cavities of the continuous liquid phase [11] 

which cause bubble breakup at capillary numbers of order one and above [12,13]. 

Of primary interest for many applications with Taylor flow is the thickness of the 

uniform liquid film  = R  R
b
. Several correlations have been suggested in the literature 

do relate  with Ca
b
, see below. For engineering practice, the direct benefit of these 

correlations is at first limited as the bubble velocity and thus Ca
b
 are not prior known in 

general. Often mass flow controllers serve to prescribe the gas and liquid flow rates Q
G
 

and Q
L
. For a straight channel with constant cross-section A, thus the superficial 

velocities j
G
 = Q

G
 / A and j

L
 = Q

L
 / A, the total superficial velocity (or total volumetric 

flux) j
T
 = j

G
 + j

L
 and the volumetric flow rate ratio (dynamic holdup) 

 = Q
G
 / (Q

G
 + Q

L
) = j

G
 / j

T
 are known. In contrast, the mean gas velocity u

G
 and the void 

fraction  = j
G
 / u

G
 are unknown. In small channel Taylor flow, liquid slugs are usually 

free from gas entrainment to that u
b
 = u

G
. Thus, Ca

b
 is unknown as well. Particularly 

useful for practical applications of Taylor flow would be a (preferentially) universal 

correlation that relates the bubble velocity, the liquid film thickness and other important 

hydrodynamic parameters of Taylor flow to the total superficial velocity j
T
. The purpose 
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of the present paper is to develop such a correlation and to embed it in a unifying 

theoretical framework for characterization of Taylor flow hydrodynamics. Here we 

restrict our study to laminar gas-liquid Taylor flow through a straight circular pipe 

where the diameter is sufficiently low so that gravitational effects are negligible. 

We formulate the desired correlation for the ratio between the (unknown) bubble 

velocity u
b
 and the (known) mean velocity of the two-phase flow, i.e. the total 

superficial velocity j
T
. For two incompressible phases, the mean axial velocity in the 

liquid slug (u
s
) equals j

T
 [14]. Several researchers indicated the fundamental importance 

of this velocity ratio for Taylor flow [7,14,15]. Here, we denote  = u
b
 / j

T
 as the 

characteristic velocity ratio of Taylor flow. Since the proposed correlation for  is 

formulated in terms of prior known parameters only, it may also serve as closure relation 

for mechanistic models of Taylor flow in complement to closure relations for the Taylor 

bubble rise velocity proposed for larger channels [16]. 

The organization of the paper is as follows. We first give some fundamental relations 

in capillary Taylor flow. Thereafter, we summarize the state of the art in literature to 

elucidate the functional dependence of  on the (two-phase) capillary number 

Ca = j
T
 µ

L
 / , which is based on j

T
 as velocity scale. As main part, we present the 

development of the new model and its evaluation with respect to recent experimental 

and numerical data from literature. This is followed by a discussion of the accuracy, 

limitations and benefit of the model for predicting hydrodynamics of Taylor flow. 
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FUNDAMENTAL RELATIONS IN CAPILLARY TAYLOR FLOW 

Conditions and assumptions 

We consider the laminar pressure-driven gas-liquid flow through a cylindrical horizontal 

capillary (radius R, diameter D = 2R, cross-sectional area A = R2). Both phases are 

incompressible and immiscible Newtonian fluids. We assume that the gas density 
G
, 

the liquid density 
L
, the gas viscosity µ

G
, the liquid viscosity µ

L
 and the coefficient of 

surface tension  are all constant. 

The importance of gravitational and buoyancy effects is usually quantified by the 

Eötvös number Eo = g (
L
  

G
) D2 /  or by the Bond number Bo = g 

L
 D2 / . Leung 

et al. [17] experimentally studied the effect of gravity in horizontal gas-liquid Taylor 

flow in three different millimeter-sized channels (D = 1.12, 1.69, 2.12 mm giving Eo = 

0.287, 0.653 and 1.028). The authors observed gravity-induced drainage flow from the 

top to the bottom of the pipe within the liquid film resulting in bubble asymmetry. 

However, these effects diminish for small values of Eo and/or Ca. Magnini et al. [18] 

systematically investigated the effect of buoyancy on the Taylor bubble shape and 

velocity in vertical tubes by experiments and numerical simulations. The authors showed 

that buoyancy could have a notable effect even at Bond numbers below unity. Here we 

assume that the channel size is so small that gravity/buoyancy effects are negligible 

(Eo  0), a criterion that should be fulfilled for submillimeter channels. Accordingly, 
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the bubble profile and the flow field are assumed axisymmetric and steady in a frame of 

reference moving with the bubble. 

We further assume that the liquid slugs of Taylor flow are sufficiently long to form a 

fully developed parabolic velocity profile so that there is no interaction between 

neighboring bubbles. In addition, the bubble is assumed to be sufficiently long so that 

there is a region where the bubble has a cylindrical shape with the thickness of the liquid 

film being uniform and independent of bubble length as described in [19]. Such a 

situation occurs when the front and the back of the bubble are virtually independent. The 

inertia-free boundary integral computations of Lac and Sherwood [13] suggest that this 

is the case when the ratio between the radii of the undeformed bubble and the tube 

exceeds a value of 1.1. A further quantitative criterion for the minimum bubble length 

(relative to tube radius) in terms of Ca
b
 in absence of inertia and gravity is given in [20]. 

In the presence of inertia, the necessary bubble length to form a uniform film region 

steeply increases with Re
b
, in particular at high Ca

b
 [9]. Fig. 1 shows a sketch of the 

Taylor flow configuration under analysis with characteristic parameters. Real images of 

such Taylor bubbles can be found e.g. in reference [21]. 

Mass balance 

A global mass balance for the two-phase flow yields [14,22] 

sbf

f f b b T

QQQ

u A u A j A



   (1) 
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Here, u
f
 is the mean axial velocity of the liquid in the uniform film region while 

2 2( )f bA R R   and 2

b bA R  denote the cross-sectional area of the film and the bubble in 

this region, respectively. 

For a compact notation, we introduce the wetting fraction  

22

2

2
1 1 1 1

2

f b
A R

w
A R R R R

     
          

   
 (2) 

This quantity is of interest for the penetration of a gas phase into a capillary where it 

displaces a viscous liquid [23]. When gravitational forces are negligible, the thickness of 

the liquid film deposited at the wall becomes constant in a distance sufficiently far from 

the bubble tip [8,24]. The relative cross-sectional area fraction w = A
f
 /A then represents 

the fraction of liquid left behind the bubble. In terms of the wetting fraction, Eq. (1) can 

be expressed as 

1 1

1 1 /

b

T f b

u

j w Q Q


 
, (3) 

a relation that will be useful later. 

As further quantity of interest, we define the relative drift velocity  

1b T T

b b

u j j
m

u u


    (4) 

From Eq. (3) it follows 

1 (1 ) 1
f

b

Q
m w

Q

 
    

 
 (5) 

For a liquid film at rest it is Q
f
 = u

f
 = 0 and Eq. (5) yields 
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2

2

2
1 1

2

bR
m w

R R R

  
     

 
 (6) 

Such a stagnant liquid film with zero velocity occurs in the constant film thickness 

region of inviscid bubbles that cannot exert tangential stresses [11]. In studies on the 

displacement of a viscous liquid in a capillary by the steady propagation of an inviscid 

semi-infinite finger [25-27,8] or by a long inviscid bubble [28] m and w are often used 

synonymously. 

Streamline patterns in liquid slug 

For gas-liquid mass transfer in Taylor flow, the streamline patterns in the liquid slug are 

of great importance [5]. These can be classified in recirculating flow (see sketch in  

Fig. 1) and complete bypass flow, resulting in different pathways for mass-transfer. 

In a frame of reference moving with the Taylor bubble a recirculation pattern in the 

liquid slug occurs when the bubble velocity is lower than the liquid velocity on the 

channel axis, i.e. for u
b
 < u

L,max
 [23,29]. For a liquid slug with a laminar fully developed 

parabolic velocity profile the maximum liquid velocity is given by u
L,max

 = 2j
T
. Thus, for 

m < 0.5 streamline patterns show a recirculation region whereas for m > 0.5 complete 

bypass flow (CBF) occurs [11]. 

The cross-sectional regions with recirculation flow (in the channel center) and partial 

bypass flow (close to the walls) are separated by the dividing streamline [30], see Fig. 1. 

The position of the dividing streamline results from the condition that the axial flow rate 
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in the recirculation area is zero in the moving frame of reference. The radial position of 

the dividing streamline (R
ds

) and the radial position where the velocity in the moving 

frame of reference is zero (R
0
) are given by [30] 

1/2ds 02
(2 )

R R

R R
    (7) 

Thus, the relative cross-sectional area of the recirculation region is A
ds

 / A = 2  . 

The intensity of the recirculation can be quantified by the time needed for the liquid 

to move from one end of the liquid slug to the other end. A second characteristic time 

scale is the time needed by the liquid slug to travel a distance of its own length. 

Thulasidas et al. [30] used the ratio of both time scales to define a non-dimensional 

recirculation time. For a circular channel the non-dimensional recirculation time is [31] 

1

1 1

2






 
  
 

 (8) 

LITERATURE RELATIONS FOR FILM THICKNESS AND BUBBLE VELOCITY 

In this section, we summarize relations on the liquid film thickness and bubble 

velocity, which we will utilize in the subsequent section for the development of the new 

model. 

Liquid film thickness 

In his classical paper [24], Bretherton applied lubrication theory to the flow in the 

liquid film to derive the first theoretical expression for the film thickness. Using only 
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local conditions at the bubble nose, the asymptotic film thickness is independent of 

bubble length and given by 

2/3 2/3Br 0.643(3Ca ) 1.3375Cab b

P
R





   (9) 

Eq. (9) is only valid for very low capillary and Reynolds numbers and according to 

Bretherton’s own experiments accurate within 10% for Ca
b
 < 5103. 

By a scaling analysis, Aussilious and Quere (AQ) [32] derived the following 

equation for the liquid film thickness of a semi-infinite bubble in a circular tube 

2/3 2/3
AQ

2/3 2/3

Ca 1.3375Ca

1 2.5 Ca 1 3.344Ca

b b

b b

F

P

R P






 

   
 (10) 

The factor F = 2.5 is obtained empirically by fitting experimental data of Taylor [23]. 

This relation is valid in the range 103  Ca
b
  1.4 and approximates Eq. (9) for small 

capillary numbers. Klaseboer et al. [33] presented an analytical extension of 

Bretherton’s work yielding an expression identical to Eq. (10), except F = F
KGM

 = 2.79. 

Balestra, Zhu and Gallaire (BZG) [34] performed an extensive computational study on 

the hydrodynamics of Taylor bubbles and drops in capillaries under negligible gravity 

focusing on the effect of the viscosity ratio  = µ
G
 / µ

L
. Using COMSOL Multiphysics, 

they solved the Stokes equations by a moving mesh method for capillary numbers in the 

range 104  Ca  1. By fitting the numerical results for a bubble ( = 0) , they found 

F = F
BZG

 = 2.483 which is close to the value of AQ [32]. 
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Eq. (10) neglects inertial effects, which can become important at higher velocities 

causing a non-monotonic dependence of the film thickness on the Reynolds number in a 

circular tube [8,35] or a two-dimensional channel [36]. Han and Shikazono [37] 

proposed the correlation 

2/3

HS
HS2/3 0.672 0.589 0.629

0.643(3Ca )
0.643

1 3.13Ca 0.504Ca Re 0.352We

b

b b b b

f
R


 

  
 (11) 

which accounts for inertial effects by Reb and the Weber number We
b
 = Ca

b
Re

b
. Eq. (11) 

was derived from film thicknesses measurements for water and ethanol with 

0 < Ca
b
 < 0.4 and 0 < Re

b
 < 2000. Howard and Walsh [7] found that this correlation 

predicts the film thickness best at higher capillary numbers amongst the existing 

correlations. 

Langewisch and Buongiorno (LB) [38] studied capillary Taylor flow numerically 

with Ca and Re in the ranges 0.005  0.2 and 0  900, respectively. The density ratio 

was fixed to 0.001 and the viscosity ratio to  = 0.01 while gravity is neglected. The 

authors proposed the following model for the film thickness 

 

2/3

LB

0.764

1.3375 a

1 2.86 1+ (Re) Ca

C

R




 
 (12) 

where 

1

5 1.909

0.593

0 Re 0

(Re) 32.05
4.564 10 Re Re 0

Re








   
   

 

 (13) 
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Here, Ca = Ca
b
 /  and Re = Re

b
 /  represent the capillary and Reynolds number using 

j
T
 as characteristic velocity scale, respectively. Kurimoto et al. [39] found that the film 

thickness model of LB [38] shows a better agreement with their numerical results as 

compared to the model of Han and Shikazono [37]. 

Bubble velocity 

Literature relations for the bubble velocity are usually formulated either in terms of 

m or . By the definition of m in Eq. (4), it is  = 1  m1 so that both formulations are 

convertible. 

Bretherton’s [24] analytical approach at low Ca
b
 resulted in the expression 

2/3 2/31.29(3Ca ) 2.683Cab bm    (14) 

corresponding to 

2/31
1 1 1.29(3Ca )

1
bm

m
     


 (15) 

Giavedoni and Saita [8] found that their numerical results for the film thickness match 

the theoretical correlation of Bretherton for Ca
b
 < 103. Fairbrother and Stubbs [40] 

suggested the empirical correlation 

1/2Cabm   (16) 

which is valid in the range 7.5  105 < Ca
b
 < 0.014. Experiments for very viscous fluids 

in 1.5  3 mm circular tubes by Taylor [23] indicate that the validity of Eq. (16) may be 

extended up to Ca
b
 = 0.09. Taylors experimental data up to Ca

b
 = 2 are well fitted by 
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inserting the film thickness model of AQ [32] for a stagnant liquid film (m = w) into 

Eq. (2) giving  

22 2/3
AQ

2/3

Ca
1 1 1 1

1 Ca

b

b

P
m

R F P

    
       

     
 (17) 

For large capillary numbers, m adopts an asymptotic value, see discussion below. 

Liu et al. [41] performed experiments in capillaries with circular and square cross-

section with hydraulic diameters in the range of 0.9 – 3 mm using air and three different 

liquids in co-current upward flow. They fitted their experimental data for the ratio of 

bubble velocity to total superficial velocity by the correlation 

0.33

1

1 0.61Ca

b

T

u

j



 (18) 

which is valid in the range 2104  Ca  0.39. 

Abiev [22] developed a mathematical model for the bubble velocity and validated it 

by experimental data from literature [30,42]. Based on calculations with this model, he 

proposed the following approximation for horizontal flow [43] 

 Abiev1 1.716 1 exp (Ca )b
b

T

u
f

j
       (19) 

where 

2

Abiev (Ca ) exp 0.0204 0.4714ln Ca 0.0211(ln Ca )b b bf        (20) 

This relation is valid in the range 104  Ca
b
  50. 
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The Taylor bubble velocity in slug flow is often modelled based on the drift flux 

approach [44,45] which reads 

0b T du C j u   (21) 

Here, C
0
 is the distribution parameter and u

d
 is the drift velocity. The drift velocity is 

regarded zero in horizontal microchannels. With u
b
 = j

G
 /  and j

T
 = j

G
 /  Eq. (21) then 

yields the relation 

0
b

T

u
C

j





    (22) 

In microchannels, the characteristic velocity ratio thus takes the role of the distribution 

parameter. 

From a large number of experiments, Kurimoto et al. [21] proposed the following 

model for the distribution parameter 

4 0.875 0.0259

0 HS1 We 7.18 10 2.91 Re (1 0.845)Re /bC f          (23) 

where f
HS

 is defined in Eq. (11). This correlation has the disadvantage, that both, u
b
 and 

j
T
 must be known in order to evaluate We

b
 and Re. Thus, an iterative procedure is 

required, which may hinder a broader practical application of this model. 

A NEW CORRELATION FOR THE CHARACTERISTIC VELOCITY RATIO 

The goal of this paper is to derive a simple yet accurate correlation for the 

characteristic velocity ratio  = u
b
 / j

T
 in terms of prior known non-dimensional 

parameters. Suo and Griffith [14] performed a dimensional analysis and obtained seven 
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independent dimensionless groups. Here, the ratios of liquid-to-gas density and viscosity 

as well as the ratios of bubble and liquid slug length to tube diameter are all assumed 

large being without influence while gravity is negligible (cf. Section Conditions and 

assumptions). The two remaining parameters from the dimensional analysis in [14] are 

the capillary number and the Ohnesorge number. As the latter can be expressed in terms 

of capillary number and Reynolds number, we base our correlation for  on Ca and Re. 

Evaluation of literature data 

To develop a new model we evaluate the information from literature collected in the 

previous section. For that purpose, we plot in Fig. 2 various relations for  as function of 

Ca. The correlation of Liu et al. [41] in Eq. (18) is an explicit relation of the form 

 =  (Ca) and can be plotted without further processing. 

The correlation of Abiev [22] in Eq. (19) is an implicit relation between  and Ca. 

Since we could not bring it in an explicit form, we evaluate it as follows. For a given set 

of values for Ca
b
 we compute by Eq. (19) the corresponding values of  and thereafter 

the corresponding values of Ca = Ca
b
 / . This procedure yields the relation  =  (Ca) 

plotted in Fig. 2. 

Next, we utilize correlations for the relative velocity m. By inserting relations for m 

into Eq. (4), one can evaluate the velocity ratio. In this way, we obtain by insertion of 

Eq. (17) the result 
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2 2
2/3 2/3 2/3

2/3 2/3 2/3

Ca Ca
1 1

1 Ca 1 Ca

b

b

P P

F P F P






 

    
      

       
 (24) 

Eq. (24) represents again an implicit relation between  and Ca. Here we take 

F = F
AQ

 = 2.5 and proceed as described above to plot it in Fig. 2. Similarly, we inserted 

and evaluated Eq. (14) of Bretherton [24] which is valid at low capillary numbers only. 

The corresponding graph overlaps with Eq. (24) and is not included in Fig. 2. 

We now utilize correlations for the liquid film thickness to evaluate the characteristic 

velocity ratio. In gas-liquid Taylor flow, the viscosity ratio is typically very small 

resulting in negligible velocity in the liquid film. From Eq. (6) one obtains the relation  

22

2

1
1

1 b

R

w R R






 
    

  
 (25) 

Thus, one can determine the velocity ratio from correlations for  or R
b
. Inserting the 

film thickness model of AQ [32] given in Eq. (10) into Eq. (25) yields Eq. (24). The film 

thickness models of LB [38] in Eq. (12) accounts for inertial effects by the Reynold 

number Re. Inserting Eq. (12) in Eq. (25) yields an explicit relation  =  (Ca, Re) 

which is plotted by the thin lines in Fig. 2 for various values of Re. This model has the 

disadvantage that the function (Re = 0) in Eq. (13) is discontinuous at Re = 0. The film 

thickness model of Han and Shikazono [37] accounts for inertial effects by the Reynolds 

number Re
b
 and the Weber number We

b
 = Ca

b
Re

b
. Inserting Eq. (11) in Eq. (25) yields 

together with We
b
 = 2CaRe again an implicit relation of the form  =  (Ca, Re), which 

is however not evaluated here. 
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Included in Fig. 2 are numerical data from two recent numerical studies with state of 

the art CFD simulations (symbols). The results of BZG [34] for Re = 0 cover 20 distinct 

values of Ca in the range 0.0001  0.8 (taken from Fig. 16a in [34]). The numerical 

results of LB [38] cover 14 distinct values of Ca in the range 0.005 ≤ Ca ≤ 2 at various 

values of Re. In Fig. 2, only data for Re = 0, 2, 10, 20 and 100 are included while results 

for Re > 100 will be discussed in Fig. 3 below. 

We now discuss Fig. 2 displaying the various data and relationships. All relations 

and data show a monotonic increase of  with Ca. With exception of the model of Liu et 

al. [41] in Eq. (18), all data virtually overlap for Ca < 0.02. In this range,  is close to 

unity indicating that the bubble moves only slightly faster than the total superficial 

velocity. The curve resulting from the film thickness model of AQ [32] in combination 

with the stagnant film assumption (SFA) is in the entire range of Ca in excellent 

agreement with the model of Abiev [43]. The same holds for the numerical data of LB 

[38] for Re = 0 and 2 in the range 0.005  Ca  1. Only the two data points at Ca = 1.5 

and 2 show slightly lower values of  as compared to the model of Abiev [43]. For the 

larger values of Re, the numerical data of LB [38] show a continuous decrease of  with 

increase of Re. The viscosity ratio in the numerical simulations of LB [38] is  = 0.01. 

The thin lines in Fig. 2 represent the film thickness model of LB [38] in combination 

with the stagnant film assumption for  = 0. For Re  20, the lines agree very well with 

the numerical data, which indicates that the assumption of a stagnant liquid film is a 
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reasonable approximation. For Re = 100, however, a slight deviation exists especially at 

large values of Ca. 

Flows with negligible inertia 

As a strategy for the development of our new model we first consider the limit 

Re = 0 and then introduce the effect of finite Re. The model development for vanishing 

Reynolds number relies on the principle of mass conservation, which we aim to combine 

with information from momentum equation. 

Equation (3), which results from a global mass balance, shows that the characteristic 

velocity ratio u
b
 / j

T
 depends on the flow rate of the liquid film. Depending on the gas-to-

liquid viscosity ratio  = µ
G
 / µ

L
, the liquid film may be stagnant (  0) or be carried 

along by shear forces. Estimating the flow rate in the liquid film requires a momentum 

balance. To that end, one may approximate the uniform body of the bubble by a long 

concentric cylinder surrounded by an annular liquid film. Under the further assumption 

that the flow in both phases is fully developed and laminar, the radial profiles for the 

local velocity within the concentric gas core and the annular liquid film can be computed 

analytically [46,47]. These velocity profiles are an important ingredient in the model of 

Abiev [22]. For the ratio of flow rates, it follows [14] 

1 1 1
2b

f

Q w w

Q w w

  
  

 
 (26) 

Inserting Eq. (26) in Eq. (3) yields after some algebraic manipulations 
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2

1 (1 2 )

1 (2 )(1 )

w

w w






 


  
 (27) 

In the literature, various forms of this relation exist. Eq. (27) is equivalent to Eq. (16) in 

[14], to Eq. (12) in [7] and to Eq. (32) in [34]. It is also equivalent to Eq. (5) in [48], 

with reference to earlier work in [11]. In the limit   0, Eq. (27) reduces to Eq. (25). 

With j
T
 and  given, Eq. (27) forms a system of two unknowns (u

b
 and w) which one 

cannot solve analytically. By Eq. (2), w may be replaced by the bubble radius R
b
 or the 

liquid film thickness . Balestra et al. [34] combined Eq. (27) with a AQ-type film 

thickness model and solved the system for different values of the viscosity ratio  

numerically. More recently, Makuch et al. [48] performed a similar approach based on 

the Bretherton film thickness model in Eq. (9) extended for nonzero . The authors fitted 

the numerical results by a scaling function establishing an algebraic relationship valid 

for low values of Ca
b
. 

Here, we solve Eq. (27) in combination with the AQ [32] film thickness model in Eq. 

(10) numerically using the Matlab script provided by BZG [34] as supplemental 

material. Considering the viscosity ratio  = 0 and different values of F proposed in 

literature, we obtained in this way graphs for the velocity ratio  =  (Ca) for the range 

105  Ca  103. While values Ca >> 1 may not represent physically stable Taylor flow 

as discussed below, the curves show some interesting features, which are useful for 

model development. With two distinct asymptotic limits Ca  0 and Ca  , the 

curves  (Ca) are of sigmoidal type and symmetric with respect to the inflection point. 
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The lower asymptotic limit is 
0
 =  (Ca0) = 1 while the upper asymptotic limit 

 =  (Ca) depends on the value of F. 

By virtue of Eq. (4), the existence of an upper asymptotic limit  for large capillary 

numbers is consistent with the asymptotic value for the relative drift velocity m. The 

value m = 0.56 reported by Taylor [23] for Ca
b
 = 2 corresponds to  = 2.27. In 

experiments at a viscosity ratio  = 2.5105, Cox [49] considered capillary numbers up 

to Ca
b
 = 10 and reported a slightly higher asymptotic value m = 0.60 corresponding to 

 = 2.5. From boundary integral simulations for an inviscid bubble in creeping flow, 

Martinez and Udell [28] obtained the value m = 0.59 for Ca
b
 = 10 corresponding to 

 = 2.44. In a similar but more recent study, Lac and Sherwood [13] found an absolute 

maximal bubble velocity corresponding to  = 2.5 when Ca becomes very large. The 

same value was reported by Dupont et al. [50] from volume of fluid computations. 

Being valid under the assumptions of a stagnant liquid film and negligible inertia, 

Eq. (24) yields in the limit Ca   the relation 

2 22/3 2/3

2/3 2/3Ca

Ca
(Re 0) lim

( 1) Ca 1

F P F

F P F









    
     

     
 (28) 

Values reported in literature for F range from 2.483 [34] to 2.79 [33] resulting in 

 = 2.8 and 2.43 when inserted in Eq. (28), respectively. This and the values given 

above indicate a relatively large uncertainty for  even when inertia is negligible. 
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The numerical data of LB [38] in Fig. 2 suggest that the upper asymptotic limit  

depends on Re. Furthermore, for any value of Re the relationship  =  (Ca) is not 

symmetric with respect to the inflection point. To fit an asymmetric sigmoidal curve, a 

five-parameter logistic (5PL) function is required [51]. Here we adopt the 5PL function 

provided by the data analysis software Origin (OriginLab Corporation) 

0
5PL 0

1 ( / )
s

hCa c

 
  




 

  

 (29) 

The reason is that fitting by Eq. (29) shows better convergence as compared to the 5PL 

function proposed by Gottschalk and Dunn [51] when the focus is on low values of Ca 

as it is the case here. Fixing the lower asymptote to 
0
 =  (Ca0) = 1, four free 

parameters remain where we restrict the domain to  > 1, c > 0, h > 0 and s > 0. 

To determine further of the four parameters, we consider the asymptotic limit of 

Bretherton in Eq. (15). For Ca
b
  0, the velocity ratio approach unity. Thus, for 

Ca
b
  0 it follows Ca  Ca

b
 so that the asymptotic limit in Eq. (15) can also be written 

as 

2/31 1.29(3Ca)    (30) 

Our goal is to choose the parameters of the logistic function in such a way that the limit 

of Eq. (29) agrees with Bretherton’s limit in Eq. (30). In the limit Ca  0 it is 

(Ca/c)h >> 1 so that Eq. (29) may be approximated as 

1 ( 1)( / )h sCa c  

    (31) 
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Comparing Eq. (30) and Eq. (31) shows that both limits become identical when hs = 2/3 

and (1) c2/3 =1.2932/3. With these two conditions, there remain only two free 

parameters of the logistic function, namely h or s and  or c. Here, we choose s and  

as remaining free parameters. Thus we have h = 2/(3s) while c follows from relation 
3/2

11

3 1.29
c

  
  

 
 (32) 

The logistic function from Eq. (29) then takes the form 

 

2PL
1/

2/(3 )

1
1

1
1 3Ca

1.29

s
s

s











 

  
  
   

 (33) 

For s = 1, Eq. (33) simplifies to 

1PL
2/3

1
1

1
1 (3Ca)

1.29










 




 (34) 

with  being the sole free parameter. The function in Eq. (34) is symmetric with 

respect to the inflection point. For F = FBZG =2.483, Eq. (28) yields  = 2.8 so that 

Eq. (34) becomes 

2/3

1.8
1

1 0.6708Ca



 


 (35) 

Eq. (35) is in good agreement with the AQ-SFA curve in Fig. 2 only for Ca < 103. 

A more accurate model for high values of Ca requires s  1 in order to account for 

the asymmetric behavior. To determine appropriate values for s and  for the case of 

vanishing Reynolds number, we fit the data of LB [38] together with the data from 

Figure 16a) in BZG [34] by function (33) using Origin. By regression analysis for in 
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total 30 data points, we obtain s(Re=0) = 0.474 and (Re=0) = 2.467. The latter value 

is well within the range reported in literature. Inserting both numerical values in Eq. (33) 

yields 

 
Re 0 0.474

1.408

1.467
1

1 0.280Ca
 


 


 (36) 

Eq. (36) constitutes the present model for vanishing Reynolds number. 

Flows with inertia 

In order to estimate the accuracy of the new model for vanishing and finite Reynolds 

numbers, we normalize the numerical data of BZG [34] and LB [38] by Eq. (36). Fig. 3 

shows the corresponding ratio as function of Ca. For Re = 0, the difference between 

Eq. (36) and the numerical data is less than 1% over the entire range of Ca. For 

Ca ≤ 0.01, the deviation is virtually zero due to the fact that the asymptotic behavior 

agrees with the theory of Bretherton [24]. 

For Re = 2, the difference between Eq. (36) and the numerical data of LB [38] is less 

than about 2% over the entire range of Ca. For Re ≤ 100, the deviation is less than about 

2% only for Ca ≤ 0.025. For larger values of Ca, the ratio in Fig. 3 decreases with 

increase of Re from 0 to 100. At a value of Re  100, the ratio takes a minimum before it 

increases as Re increases up to 800. 

Overall, Fig. 3 reveals that for the combination Ca > 0.025 and Re > 2 a refined 

model is required. Since for Re ≥ 200 only few numerical data points are available, we 
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restrict the development of an improved model to the range 0 < Re ≤ 100. To that end, 

we follow the procedure from above and fit the numerical data of LB [38] for Re = 2, 

10, 20, 40, 60 and 100 by Eq. (33) using Origin. By regression analysis, we obtain for 

each value of Re a combination of  and s. In all cases, the coefficient of determination 

of the regression is larger than 0.9996. This value is close to the theoretical maximum of 

unity, indicating that the present model fits the data very well. 

In Fig. 4 we show the values of  and s for the above set of Re. In the range 

20 ≤ Re ≤ 100, the upper asymptote is about constant with   2.3. The exponent s, 

instead, is slightly increasing over the entire range of Re. Fig. 4 shows that one can well 

approximate the dependence of both parameters on Re by relations 

Re(Re) 2.3 0.167 0.83     (37) 

and 

Re(Re) 0.884 0.41 0.968s     (38) 

Equations (33), (37) and (38) constitute the present new model which we expect to be 

valid for capillary numbers up to Ca  10 and Reynolds numbers up to Re  100. 

DISCUSSION 

Model accuracy in comparison with literature data 

We assess the accuracy of the new model by a parity plot in Fig. 5 which compares 

the values of  =  (Ca, Re) predicted by Eqs. (33), (37) and (38) with numerical data 

for . The latter include in addition to the data from BZG [34] and LB [38] already used 
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for model development the numerical data of Kurimoto et al. [39]. Fig. 5 shows that for 

Re ≤ 200, the deviation between numerical data and model is within 2% over the entire 

range of Ca. For Re = 200 and 400, the deviation is larger but still within 5%. 

For further evaluation of the predictive capabilities of the new model, we show in 

Fig. 6 a second parity plot now comparing the model with the measurements listed in 

Table A1 of Kurimoto et al. [21]. The authors performed experiments in circular 

microchannels with four different diameters (D = 200, 320, 500, and 700 µm). They 

used three different liquids, namely water and two types of glycerol-water solutions with 

64 and 52 wt% glycerol, respectively. The experiments encompass the ranges 

0.005 ≤ Ca
b
 ≤ 0.235 and 6 ≤ Re ≤ 941 while  is in the range 1.1  1.6. Concerning 

measurements accuracy, the author give a relative error for the measured gas slug 

volume, which was estimated as less than ±3.0%. 

The deviation between the present model and the experimental data in Fig. 6 is 

within 10% for the diameter D = 200 µm. For the larger diameters D = 320 and 

500 µm, the deviation is mostly in the range between 0 and 10%, meaning that the 

present model consistently underestimates the measurements. For the largest diameter 

D = 700 µm, the deviation is mostly in the range from 5 to 18%. Interestingly, the 

experiments with 52 wt% glycerol-water solution in the 200 µm channel is the only case 

were the present model consistently overestimates the measurements of 

Kurimoto et al. [21]. 
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Limitations of proposed correlation 

The comparison with experimental results in the previous subsection shows that the 

proposed model for the characteristic velocity ratio of Taylor flow may be considered 

sufficiently accurate with an error of 10% for microchannels with diameter 500 µm and 

below and Reynolds number up to Re  400. For larger channel diameters and higher 

Reynolds numbers, the agreement is less good and refinement of the model is advisable. 

The improvement of the model for high Reynolds number is hindered by the lack of 

reliable numerical and experimental data at large capillary numbers. Experimentally, it 

is quite hard to reach high Ca in capillaries (either by high velocities or by high 

viscosities) because it results in very high pressure-drops. While the utility of extending 

the model to large Ca may thus be limited for practical applications, it is nevertheless of 

academic interest. 

The numerical simulations of LB [38] in Fig. 2 show that the value of  depends on 

Re. For Re  100 the upper asymptote decreases with increase of Re. For Re  200, 

there are not sufficient data available at large Ca to allow for a reliable regression 

analysis with respect to the upper asymptote, as the maximum values of Ca in the 

simulations of LB [38] decrease with increase of Re, cf Fig. 2. In fact, the upper 

asymptotic behavior of  at large Re seems to be largely unknown and a quantitative 

relationship (Re) is missing in literature. 
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This lack of information is related to the stability of Taylor bubbles. Goldsmith and 

Mason [11] found that the trailing end develops re-entrant cavities of the continuous 

liquid phase for high bubble speeds. For low Reynolds number, the corresponding re-

entrant jet may cause bubble breakup at Ca  4  7 as experimentally observed by 

Olbricht and Kung [12] and confirmed by inertia-less numerical simulations by Lac and 

Sherwood [13], see also [50]. As the Reynolds number increases, the bubble might lose 

its axial symmetry at the rear. Water/nitrogen experiments in a 2 mm capillary by 

Asadolahi et al. [52] show that three-dimensional shape oscillations occur for Reynolds 

numbers above Re  951 even for capillary numbers as low as Ca  0.007. 

Predicting Taylor flow hydrodynamics 

Among the quantities that are related to the characteristic velocity ratio  are the 

mean liquid velocity, the relative velocity, the gas hold-up, the cross-sectional area of 

the partial bypass flow and recirculation flow regions, the non-dimensional recirculation 

time in the liquid slug, the thickness of the liquid film and the bubble diameter. Tab. 1 

summarizes the mathematical relations of these and further quantities with the 

characteristic velocity ratio. When the pipe radius, the gas and liquid flow rates and the 

physical properties of the phases are known, then j
T
, , Ca and Re are known as well. 

The correlation  = (Ca, Re) given by Eqs. (33), (37) and (38) developed in this paper 

then links all priori unknown parameters in Tab. 1 with prior known parameters. Thus, 
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the new model allows predicting a comprehensive set of hydrodynamic parameters 

characterizing gas-liquid Taylor flow in circular microchannels by one single relation. 

By means of the identities Ca
b
 =  Ca, Re

b
 =  Re and We

b
 = 2CaRe, the proposed 

correlation can also be used to estimate the liquid film thickness or the pressure drop 

from correlations relying on Ca
b
, Re

b
 and We

b
, cf. the section with literature relations. 

Furthermore, it is of benefit for modeling mass transfer in Taylor flow [53], as it allows 

estimating the streamline pattern in the liquid slug including the size of the recirculation 

area and the non-dimensional recirculation time, given in Eqs. (7) and (8), from prior 

known parameters. 

The two-parameter logistic function in Eq. (33) with its asymptotic behavior at low 

capillary numbers agreeing with the theory of Bretherton [24], may also serve as basis 

for the development of correlations for a broader range of Taylor flow. While the 

present study was limited to gas-liquid flows, where the viscosity ratio  approaches 

zero, the underlying approach could be applied to liquid-liquid flow as well. In 

literature, there exist already several numerical studies on liquid-liquid Taylor flows, 

which may serve as starting basis [34,54-57]. Further potential extensions may concern 

larger/non-circular channels with upward/downward Taylor flow [18,58]. In such cases, 

gravity/buoyancy forces are no longer negligible so that their influence on the 

characteristic velocity ratio should be taken into account by the Eötvös or Bond number. 
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CONCLUSIONS 

Many hydrodynamic parameters of Taylor flow closely relate to the ratio between 

bubble velocity (u
b
) and total superficial velocity (j

T
). Correlations for this characteristic 

velocity ratio ( = u
b
 / j

T
), which are valid in the entire range of capillary numbers, have 

been lacking so far. Using available theoretical, experimental and numerical results on 

gas-liquid Taylor flow in circular microchannels from literature, a correlation for  is 

proposed in terms of the capillary number (Ca) and Reynolds number (Re) both using j
T
 

as velocity scale. 

As basis for the correlation a five parameter logistic function is selected which 

accounts for the lower and upper asymptotes of  for small and large values of Ca while 

allowing for asymmetry. At low Ca, the correlation adopts the theoretical asymptotic 

limit of Bretherton resulting in excellent agreement with literature data. By this 

asymptotic behavior, the number of free parameters is reduced to two. One parameter is 

the value of the upper asymptote while the other one accounts for the asymmetry of the 

logistic curve. Both remaining free parameters are obtained by regression analysis using 

numerical simulation data for  from literature. The new correlation is given by Eqs. 

(33), (37) and (38). The deviation between the correlation and numerical data for Re up 

to 800 is within 5% over the entire range of Ca. In comparison with experimental data, 

the agreement is less good but still within 18%.  
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For large values of Ca and Re, a further improvement of the new model is desirable. 

In literature there is, however, a relative large uncertainty concerning the upper 

asymptote of the characteristic velocity ratio for finite Reynolds number. Here, 

numerical studies where Ca and Re can be varied independently may be particularly 

useful to determine not only the upper asymptote but also the upper value of Ca where 

the Taylor bubble shape is stable for certain finite values of Re. 

Since the proposed correlation relies on prior knowledge of physical properties and 

gas/liquid flow rates only, it should be particularly useful to predict hydrodynamic 

attributes of Taylor flow such as bubble velocity, mean liquid velocity, gas holdup, 

uniform liquid film thickness, bubble diameter, and streamline patterns in the liquid 

slug. Furthermore, the present model can be used in combination with models for liquid 

film thickness or pressure drop formulated in terms of non-dimensional groups being 

based on the bubble velocity instead of total superficial velocity. Finally, the developed 

two-parameter logistic function may also serve as prototype for similar correlations 

valid for non-circular capillary channels and liquid-liquid Taylor flow. 
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NOTATION 

A area, m2 

 void fraction (holdup),  

Bo Bond number,  

 gas volumetric flow ratio (dynamic holdup),  

c parameter in 5PL function,  

Ca capillary number based on total superficial velocity, Ca = j
T
 µ

L
 / ,  

Ca
b
 capillary number based on bubble velocity, Ca

b
 = u

b
 µ

L
 / ,  

D inner diameter of circular pipe, m 

 uniform liquid film thickness, m 

Eo Eötvös number,  

F constant parameter in Eq. (10),  

g gravitational acceleration, m s2 

h parameter in 5PL function,  

j
T
 total superficial velocity, m s1 

 gas-to-liquid viscosity ratio,  

m relative drift velocity,  

µ dynamic viscosity, Pa s 

 characteristic velocity ratio  = u
b
 / j

T
,  

P constant in Bretherton model, P = 1.3375,  

Q volumetric flow rate, m3 s1 

R pipe radius, m 

Rb uniform bubble radius, m 

Re Reynolds number based on total superficial velocity, Re
T
 = 

L
 j

T
 R / µ

L
,  

Re
b
 Reynolds number based on bubble velocity, Re

b
 = 

L
 u

b
 R / µ

L
,  
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s parameter in 5PL function,  

 density, kg m3 

S slip ratio,  

 coefficient of surface tension, N m1 

 dimensionless recirculation time,  

u
b
 bubble velocity, m s1 

u
d
 drift velocity, m s1 

u
L
 mean liquid velocity, m s1 

w wetting fraction,  

We Weber number,  

SUBSCRIPTS 

b bubble 

f film 

G gas 

L liquid 

s slug 

T total 

0 asymptotic value at zero capillary number 

 asymptotic value at large capillary number 

ABBREVIATIONS 

5PL five-parameter logistic (function) 

CBF complete bypass flow 

ds dividing streamline 

SFA stagnant film assumption 
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FIGURE CAPTIONS 

Fig. 1: Sketch of axisymmetric Taylor flow in a circular pipe (radius R) with streamline 

patterns and important parameter. 

Fig. 2: Dependence of characteristic velocity ratio on capillary number and Reynolds 

number from various sources [32,34,38,41,43]. 

Fig. 3: Normalization of  data from numerical simulations [34,38] by Eq. (36), 

representing the present model for vanishing Reynolds number. 

Fig. 4: Parameters  and s of the 2PL model versus Reynolds number. 

Fig. 5: Parity plot comparing the present model with results from numerical simulations 

of Taylor flow [34,38,39]. 

Fig. 6: Parity plot comparing the present model with the experiments of Kurimoto et al. 

[21]. In the experiments with glycerol-water (GW) solutions, Re is in the range 6  34.3 

(64 wt% glycerol) and 19.5  84.3 (52wt% glycerol). For water, Re is in the range 139  

941. 
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Fig. 1: Sketch of axisymmetric Taylor flow in a circular pipe (radius R) with streamline 

patterns and important parameter. 
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Fig. 2: Dependence of characteristic velocity ratio on capillary number and 

Reynolds number from various sources [32,34,38,41,43]. 

 

 

Fig. 3: Normalization of  data from numerical simulations [34,38] by Eq. (36), 

representing the present model for vanishing Reynolds number. 
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Fig. 4: Parameters  and s of the 2PL model versus Reynolds number. 

 

 

Fig. 5: Parity plot comparing the present model with results from numerical 

simulations of Taylor flow [34,38,39]. 



43 

 

 

 

Fig. 6: Parity plot comparing the present model with the experiments of 

Kurimoto et al. [21]. In the experiments with glycerol-water (GW) solutions, Re 

is in the range 6  34.3 (64 wt% glycerol) and 19.5  84.3 (52wt% glycerol). 

For water, Re is in the range 139  941. 
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TABLES 

Tab. 1: Relations between priori unknown hydrodynamic parameters of Taylor flow and 

the characteristic velocity ratio. 

 

Unknown parameter Relation 

Void fraction and velocities  

Void fraction /    

Bubble velocity /b Tu j   

Mean liquid velocity / (1 ) / (1 / )L Tu j       

Slip ratio / ( ) / (1 )b LS u u        

Relative drift velocity 11m     

Relations for stagnant liquid film  

Uniform bubble radius 
1/2/bR R   

Uniform film thickness 1/2/ 1R     

Uniform wetting fraction 11w     

Streamline patterns in liquid slug  

Condition for recirculation flow 2    

Radius of dividing streamline 
1/2

ds / (2 )R R    

Radius of vanishing velocity in moving frame 
1/2

0 / (1 / 2)R R    

Non-dimensional recirculation time  11/ ( 0.5)     

 


