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Chapter 1

Thesis Overview

Mathematical optimization is one of the pillars of machine learning and mod-
ern statistics. Optimization algorithms are used to compute parameters of
model functions such that available data is approximated optimally with re-
spect to some error criterion. The numerical efficiency of these optimization
algorithms is of key importance concerning the overall effectiveness of many
of the techniques used to tackle problems in data science.

The purpose of this thesis is the design of algorithms that can be used to
determine optimal solutions to nonconvex data approximation problems. If
such a problem is large-scale, i.e. the decision variable is high dimensional
and/or the number of data points is large, the computation of globally op-
timal solutions is usually not a realistic goal. Instead, local optimization
algorithms can be used to efficiently approximate locally optimal solutions.
And despite the fact that in the nonconvex case locally optimal solutions can
be far from globally optimal, there are relevant large-scale problem classes in
machine learning, e.g., the training of neural networks, for which local opti-
mization algorithms are very effective empirically and therefore very popular.
Naturally, there also exist nonconvex data approximation problems where lo-
cal optimization algorithms get stuck in suboptimal local solutions if they
are not initialized in a sufficiently small neighborhood of the global solution.
Here it is necessary to develop algorithms that compute solutions close to the
globally optimal solution, such that theses solutions can be used as starting
points in local optimization algorithms.

In Part I of this thesis, we consider a very general class of nonconvex
and large-scale data approximation problems and devise an algorithm that
efficiently computes locally optimal solutions to these problems. After the
introduction and literature review in Chapter 2, we present our algorithm in
Chapter 3. In contrast to most algorithms proposed in the machine learning
literature, our algorithm is a second-order method, i.e., it incorporates cur-
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2 CHAPTER 1. THESIS OVERVIEW

vature information of the objective function in the computation of the search
direction. As a type of trust-region Newton-CG method, the algorithm can
make use of directions of negative curvature to escape saddle points, which
otherwise might slow down the optimization process when solving nonconvex
problems. In Chapter 4 we present results of numerical experiments on con-
vex and nonconvex problems which support our claim that our algorithm has
significant advantages compared to current state-of-the-art methods. Part I
of this thesis is based on the preprint Mohr and Stein (2019).

In Part II we consider a specific nonconvex data approximation prob-
lem which is known to possess a large number of locally minimal points far
from the globally optimal solution, namely the univariate least-squares spline
approximation problem with free knots. In Chapter 5 we introduce the opti-
mization problem and review existing approaches for its solution. Moreover,
we show that local optimization algorithms, like the one presented in the first
part of this thesis, should not be expected to yield satisfactory solutions for
this problem if the initial point is not chosen sufficiently close to a globally op-
timal solution. However, since in typical applications, neither the dimension
of the decision variable nor the number of data points is particularly large,
it is possible to make use of the specific problem structure in order to de-
vise algorithmic approaches to approximate the globally optimal solution of
problem instances of relevant sizes. In Chapter 6 we propose to approximate
the continuous original problem with a combinatorial optimization problem
and, as a first algorithmic approach for the solution of the latter, we present
a convex mixed-integer formulation that can be solved with commercial op-
timization solvers. As an alternative algorithmic approach, we propose a
branch-and-bound method in Chapter 7, which is tailored specifically to the
combinatorial problem formulated in the previous chapter. In Chapter 8 we
present numerical experiments on real and synthetic data which show that
the combinatorial approach to the least-squares spline approximation prob-
lem with free knots makes it possible to compute high-quality solutions to
problems of realistic sizes within reasonable computing times. Part II of this
thesis is based on joint work with Dr. Maximilian Coblenz and Dr. Peter
Kirst.

Parts I and II of this thesis are concerned with the same basic problem of
data approximation. However, the optimization methods that are proposed
range from randomized local methods for continuous problems to determin-
istic global methods for discrete problems. This shows that when dealing
with the difficult problem of nonconvexity in data science applications, it is
important to make use of diverse tools from mathematical optimization in
order to obtain high-quality solutions.



Part I

A Trust-Region Method for the
Local Solution of Large-Scale

Finite-Sum Problems
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Chapter 2

Introduction

In this chapter, we first describe how the finite-sum minimization problem
arises naturally in machine learning applications. Then we review existing
algorithmic approaches to the large-scale finite sum minimization problem,
before giving an overview of our approach.

2.1 Machine Learning and Finite-Sum Mini-
mization

There exists a variety of applications from statistics and machine learning
that require the minimization of an objective function that is the sum of
a large number of convex or nonconvex functions. Well known examples
are logistic regression problems, the training of neural networks and nonlin-
ear least-squares problems. In these applications, the number of functions
summed up in the objective function typically corresponds to the number of
data points considered.

A typical task in supervised machine learning is prediction. Suppose we
are given a data set (xi, yi) ∈ Rr×Rz, i = 1, . . . , n, and a family of prediction
functions h(·, w) : Rr → Rz parametrized with a vector w ∈ Rm. The goal is
to find a parameter w̄ such that the probability is high that if (x̄, ȳ) is a new
and so far unseen data point, we have that h(x̄, w̄) ≈ ȳ. This is referred to as
generalization in the machine learning literature. However, since we have no
information apart from the given data set, the most natural way to approach
this task is to compute the global minimizer of the finite-sum problem

min
w∈Rm

n∑
i=1

`(h(xi, w), yi), (2.1)

5



6 CHAPTER 2. INTRODUCTION

where ` : Rz × Rz → R is an error function that quantifies the discrepancy
between h(xi, w) and the actual value yi corresponding to xi. In the machine
learning literature, ` is typically called a loss function and problem (2.1) is
referred to as the empirical risk minimization problem.

2.2 Optimization Algorithms in Large-Scale
Machine Learning

Successful algorithms from classical nonlinear optimization, such as quasi-
Newton, nonlinear conjugate-gradient and trust-region methods, usually re-
quire the computation of the gradient and (approximate) Hessian of the
objective function in every iteration. If the number of data points is very
large, these computations are expensive and prohibit fast progress in the
early stages of the optimization process.

Popular methods therefore use single data points or samples of data points
(so-called mini-batches) in order to obtain approximate information about
the objective function. Arguably the most well-known and successful algo-
rithms in this area are the stochastic gradient descent method, which was
first proposed by Robbins and Monro (1951), and its variance-reduced vari-
ants (e.g., Schmidt et al. 2017, Defazio et al. 2014, Johnson and Zhang 2013),
in which single data points or mini-batches are used in order to approximate
the gradient of the objective function. We refer the interested reader to the
excellent surveys by Bottou et al. (2018) and Curtis and Scheinberg (2017)
for details concerning these methods. However, these methods have two ma-
jor drawbacks. Firstly, extensive experimentation is needed for every new
problem and data set in order to find hyper-parameters (e.g., the step-size)
that lead to a good performance of these methods. Secondly, since only first-
order information is employed, their ability to make progress in the presence
of saddle points or to deal with ill-conditioned problems is limited.

In the last few years there has been growing interest in algorithms that
speed up the minimization of large-scale finite-sum problems by incorporating
approximate second-order information via sampling. In particular, stochas-
tic Newton, Gauss-Newton and (limited-memory) BFGS methods were de-
veloped (e.g., Byrd et al. 2011, Roosta-Khorasani and Mahoney 2019, Bol-
lapragada et al. 2018b, Martens 2010, Martens and Sutskever 2011, Schrau-
dolph et al. 2007, Bordes et al. 2009, Sohl-Dickstein et al. 2014, Mokhtari
et al. 2015, Byrd et al. 2016, Berahas et al. 2016, Curtis 2016, Gower et al.
2016, Zhou et al. 2017, Bollapragada et al. 2018c, Berahas and Takáč 2019).
However, despite promising theoretical and empirical results, most of the
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proposed methods still depend on extensive hyper-parameter tuning for each
new problem and data set. Moreover, all of these methods work with positive
definite curvature approximations and experience numerical instability when
these matrices become close to singular. However, in the context of noncon-
vex optimization, it was demonstrated by Curtis and Robinson (2019) that
incorporating directions of negative curvature can be beneficial and, accord-
ing to Dauphin et al. (2014), they might help to escape saddle points more
quickly.

In this thesis, we propose a trust-region method that can be applied to
large-scale nonconvex finite sum minimization. The reason why we propose
a trust-region method is that it is very flexible with respect to the type
of approximate curvature information that can be used, and can exploit
directions of negative curvature. In the next section we discuss the existing
literature on trust-region methods for the finite-sum minimization problem.

2.3 Trust-Region Methods for Finite-SumMin-
imization

Along with nonlinear conjugate gradient and quasi-Newton methods, trust-
region algorithms belong to the most reliable and efficient algorithms for
the local minimization of general nonlinear functions. Theoretical results
concerning global convergence properties of classical trust-region methods,
as well as practical considerations, can be found in the books by Conn et al.
(2000) and Nocedal and Wright (2006) and the survey paper by Yuan (2015).

From a practical point of view, trust-region algorithms for the finite-sum
minimization problem proposed so far can be broadly classified into three
groups, depending on how sampling is used in order to obtain approximate
information about the objective function. Members of the first group eval-
uate the objective function and its gradient exactly in each iteration, while
using a sample of the data points to determine approximate curvature infor-
mation (e.g., Xu et al. 2019, 2017). In addition to approximating curvature
information, methods that belong to the second group also approximate the
gradient based on a (possibly different) sample, while still evaluating the ob-
jective function exactly in every iteration (e.g., Gratton 2017, Yao et al. 2018,
Erway et al. 2019). The last group contains methods that, at least in the
early stages of the optimization process, only work with inexact information
about the objective function based on samples, i.e., the objective function
is evaluated inexactly as well (e.g., Chen et al. 2018, Bellavia et al. 2018,
Blanchet et al. 2019).
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The main idea underlying methods from the first group is that the most
expensive step in each iteration of a trust-region method is the (approximate)
solution of the trust-region subproblem, at least if nontrivial curvature ap-
proximations are employed. This cost can be greatly reduced if the curvature
information is approximated based on a small sample of the data points. The
global convergence to first order critical points is covered by results on stan-
dard trust-region methods. However, since the objective function and its
gradient are evaluated exactly in each iteration, the behavior of these meth-
ods is more similar to deterministic than to randomized methods.

This drawback also applies to the methods of the second group. In typical
finite-sum problems from machine learning and statistics, the evaluation of
the objective function is about half as expensive as the computation of the
gradient. Therefore, although methods that approximate the gradient can
be more efficient than methods that use the exact gradient, the progress of
these methods will be slow in the early stages of the optimization process as
long as the objective function is evaluated in every iteration.

In contrast, methods from the last group can achieve very low per itera-
tion costs if the samples used for the approximations are sufficiently small.
However, in order to obtain a convergent method, the objective function
and its gradient have to be approximated with increasing accuracy. In the
context of the finite-sum minimization, this necessitates increasing the cor-
responding sample size during the optimization process, which is referred to
as dynamic/adaptive sampling or progressive batching. This technique leads
to hybrid deterministic-stochastic methods, i.e., methods that start off as
randomized methods and eventually turn into deterministic methods.

In these methods, the sample size can either be increased at a preset
rate or adaptively according to information obtained during the optimiza-
tion process. Promising theoretical and empirical results were obtained for
the stochastic gradient descent and the stochastic L-BFGS methods (e.g.,
Friedlander and Schmidt 2012, Byrd et al. 2012, De et al. 2017, Bollapra-
gada et al. 2018a,b,c). In the context of trust-region methods, adaptive rules
for adjusting the sample size so far either depend on unknown quantities or
require experimentation by the user in order to obtain good performance.

2.4 Overview of our Approach
We propose a trust-region method for finite-sum minimization with an adap-
tive sample size adjustment technique, which is practical in the sense that it
leads to a globally convergent method that shows strong performance empiri-
cally without the need for experimentation by the user. During the optimiza-
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tion process, the size of the samples is adaptively increased (or decreased)
depending on the progress made on the objective function. We prove that
after a finite number iterations the sample includes all points from the data
set and the method becomes a full-batch trust-region method. Numerical
experiments on convex and nonconvex problems support our claim that our
algorithm has significant advantages compared to stochastic gradient descent
and its variance-reduced versions.

We note that the technique we propose for sample size adjustment could
also be used in conjunction with the adaptive regularization method with
cubics (ARC) proposed by Cartis et al. (2011a) and Cartis et al. (2011b).
The ARC method is an adaptive version of the cubic regularization method
first introduced by Griewank (1981). It was shown by Nesterov and Polyak
(2006) and Cartis et al. (2011b) that cubic regularization methods and their
adaptive variants are, from a worst-case complexity point of view, superior to
classical trust-region methods. This fact lead to increased research interest
in stochastic variants of these methods (e.g., Kohler and Lucchi 2017, Xu
et al. 2017, Cartis and Scheinberg 2018). However, we chose to propose a
trust-region method since it was observed in Xu et al. (2017) that they tend
to show stronger empirical performance than ARC methods.
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Chapter 3

An Adaptive Sample Size
Trust-Region Method

In the first section of this chapter, we present our trust-region method for
the finite-sum minimization problem. Then we provide a theoretical analysis
which shows that our adaptive sample size adjustment technique eventually
increases the sample size to include all data points, which implies global
convergence. In the final section we provide some guidance concerning the
practical implementation of the method.

3.1 The ASTR-Algorithm
We call our method Adaptive Sample Size Trust-Region method, or ASTR
for short. It is specifically designed to solve the finite-sum minimization
problem

min
x∈Rm

F (x) := 1
n

n∑
i=1

fi(x),

where n,m ∈ N and fi ∈ C2(Rm,R) for all i = 1, . . . , n. The method consists
of outer and inner iterations, shown in Algorithm 3.1 and 3.2, respectively.
In every inner iteration, a sample S ⊆ {1, . . . , n} is chosen and Algorithm
3.3 is used to compute a trust-region step for the function

FS := 1
|S|

∑
i∈S

fi.

After a certain number of inner iterations of Algorithm 3.2, a candidate for
the next outer iterate is returned to Algorithm 3.1. There, the candidate is
either accepted or rejected and the sample size is adjusted. We now describe
the three algorithms in detail.

11
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3.1.1 Outer Iterations
In iteration ν of Algorithm 3.1, Algorithm 3.2 is called with the current
iterate xν , sample size sν , initial trust-region radius δν and number of inner
iterations Rν as input arguments. It returns to Algorithm 3.1 a candidate for
the next iterate x̂ν and a prediction bν of the improvement in the objective
function value if x̂ν is accepted. Moreover, a value δν+1 is returned, which is
passed as the initial trust-region radius to Algorithm 3.2 in the next iteration
of Algorithm 3.1.

The candidate x̂ν is accepted if aν , the improvement in the objective func-
tion value, is nonnegative. Note that the computation of aν is an expensive
operation if n is large, since F needs to be evaluated at x̂ν . The new sample
size sν+1 is chosen depending on the size of the ratio τ ν of actual to predicted
improvement. A small value of τ ν indicates that the sampled functions used
in the inner iterations do not approximate F accurately enough and that the
sample size should therefore be increased. A large value of τ ν , however, is
an indicator that faster progress in the inner iterations might be possible if
the sample size is decreased.

Note that every time the sample size is increased/decreased in the outer
iteration, the inner iterations get more computationally expensive/cheap and
the number of inner iterations should therefore also be decreased/increased.
In Section 3.3 we explain how to update the sample size and the number of
inner iterations in order to obtain a method with strong empirical perfor-
mance.

3.1.2 Inner Iterations
In iteration k of Algorithm 3.2, a sample Sν,k of size sν is chosen. For
notational convenience, we define F ν,k := FSν,k and gν,k := ∇F ν,k(xν,k). If
the gradient gν,k does not satisfy ‖gν,k‖2 ≥ ε, where ε is a preset threshold, no
step is taken and a new sample is selected in the next iteration. Otherwise,
a trust-region step dν,k is computed and the initial trust-region radius δν,k+1

for the next iteration is determined with Algorithm 3.3.
After R iterations, the last inner iterate xν,R and the current trust-region

radius δν,R are returned to Algorithm 3.1. Additionally, the average improve-
ment on the sampled functions during the inner iterations

bν := 1
R

R−1∑
k=0

bν,k = 1
R

R−1∑
k=0

(
F ν,k(xν,k)− F ν,k(xν,k+1)

)
is returned to Algorithm 3.1 as a prediction for the improvement on the
objective function F if xν,R is accepted as the next outer iterate.
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Algorithm 3.1 ASTR - Outer Iterations
1: Input: Initial point x0 ∈ Rm, parameters s0, R̂ ∈ N and δ0, θ > 0;
2: for ν = 0, 1, . . . do
3: Select the number of inner iterations Rν ∈ {1, . . . , R̂};
4: Compute x̂ν , bν and δν+1 via Algorithm 3.2 with inputs xν , sν , δν , Rν ;
5: if sν < n then
6: Set aν = F (xν)− F (x̂ν);
7: if aν ≥ 0 then set xν+1 = x̂ν else set xν+1 = xν ;
8: if bν > 0 then set τ ν = aν/bν else set τ ν = 0;
9: if τ ν < θ then
10: Select sν+1 ∈ {sν + 1, . . . , n};
11: else
12: Select sν+1 ∈ {1, . . . , sν};
13: end if
14: else
15: Set xν+1 = x̂ν and sν+1 = n;
16: end if
17: end for

3.1.3 Trust-region step
In iteration r of Algorithm 3 an (approximate) solution dr to the trust-region
subproblem

min
d∈Rm

qν,k(d) s.t. ‖d‖2 ≤ ∆r, (3.1)

is computed, where qν,k is a (quadratic) model of F ν,k at xν,k defined as

qν,k(d) := F ν,k(xν,k) + 〈gν,k, d〉+ 1
2d
ᵀAν,kd,

and ∆r is the current trust-region radius. The matrix Aν,k ∈ Sm can be used
to include curvature information in the model. However, it is also possible
to only use first-order information by setting Aν,k = 0.

An (approximate) solution dr to problem (3.1) is accepted if the ratio

ρν,k(dr) := F ν,k(xν,k + dr)− F ν,k(xν,k)
qν,k(0)− qν,k(dr) (3.2)

of the actual improvement on F ν,k to the improvement predicted by the
quadratic model is above a certain threshold η1. The intuition behind this
is that if the ratio ρν,k(dr) is above this threshold, this is an indication that
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Algorithm 3.2 ASTR - Inner Iterations
1: Input: xν , δν , sν and Rν from Algorithm 3.1 and parameter ε > 0;
2: Set xν,0 = xν , δν,0 = δν and R = Rν ;
3: for k = 0, 1, . . . , R− 1 do
4: Choose a sample Sν,k ⊆ {1, . . . , n} of size sν ;
5: if ‖gν,k‖2 ≥ ε then
6: Compute dν,k, δν,k+1 via Algorithm 3.3 with inputs xν,k, gν,k, δν,k;
7: Set xν,k+1 = xν,k + dν,k;
8: Set bν,k = F ν,k(xν,k)− F ν,k(xν,k+1);
9: else
10: Set xν,k+1 = xν,k, bν,k = 0 and δν,k+1 = δν,k;
11: end if
12: end for
13: Output: x̂ν = xν,R, bν = 1

R

R−1∑
k=0

bν,k, δν+1 = δν,R;

the model qν,k is a good approximation of F ν,k on the feasible set of problem
(3.1) (the so called “trust-region”). As long as the ratio (3.2) is smaller then
η1, the trust-region radius is decreased and a new (approximate) solution of
the trust-region subproblem is computed. Since we use the exact gradient
of F ν,k in our model qν,k, it is always possible to find an acceptable (ap-
proximate) solution to the trust-region subproblem if the trust-region radius
is sufficiently small (see Theorem 3.2.5). Note that if the ratio (3.2) is not
only larger than η1 but also larger than η2, then the trust-region radius is
increased such that larger steps might be taken in the next inner iteration.

3.2 Theoretical Analysis
In this section we prove that after a finite number of iterations, the sample
size sν reaches n and the ASTR method becomes a full-batch trust-region
method.

3.2.1 Assumptions
Assumption 3.2.1 The function F is bounded below on Rm, i.e., there ex-
ists a constant κ1 ∈ R such that F (x) ≥ κ1 for all x ∈ Rm.

Assumption 3.2.2 The functions fi, i = 1, . . . , n, are twice continuously
differentiable and their gradients ∇fi are Lipschitz continuous.
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Algorithm 3.3 Trust-region step
1: Input: xν,k, gν,k and δν,k from Algorithm 3.2 and parameters η1, η2 ∈

(0, 1) and 0 < γ1 < 1 < γ2;
2: Set r = −1, ∆0 = δν,k;
3: repeat
4: r ← r + 1;
5: Compute an (approximate) solution dr of problem

min
d∈Rm

qν,k(d) s.t. ‖d‖2 ≤ ∆r;

6: Compute ρν,k(dr) := F ν,k(xν,k + dr)− F ν,k(xν,k)
qν,k(0)− qν,k(dr) ;

7: Set ∆r+1 = γ1‖dr‖2;
8: until ρν,k(dr) < η1
9: if ρν,k(dr) ≥ η2 and ‖dr‖2 = ∆r then set ∆+ = γ2∆r else set ∆+ = ∆r;
10: Output: dν,k = dr and δν,k+1 = ∆+;

Note that Assumption 3.2.2 implies that the Hessians D2fi(x) are uni-
formly bounded in x for all i. From the triangular inequality it immediately
follows that the Hessian of the function FS is uniformly bounded in x and S,
i.e., there exists a constant κ2 > 0 such that the inequality

‖D2FS(x)‖2 ≤ κ2 (3.3)

holds for any S ⊆ {1, . . . , n} and x ∈ Rm.

Assumption 3.2.3 There exists a constant κ3 > 0 such that for all ν, k we
have that ‖Aν,k‖2 ≤ κ3.

Assumption 3.2.3 is trivially satisfied if Aν,k = 0 for all ν, k. Due to (3.3)
we know that Assumption 3.2.3 is also satisfied if we set Aν,k = D2FS(x) for
any S and x.

Assumption 3.2.4 There exists a constant κ4 ∈ (0, 1) such that for all
ν, k, r we have that

qν,k(0)− qν,k(dr) ≥ κ4‖gν,k‖2 min( ‖gν,k‖2

1 + ‖Aν,k‖2
,∆r).

If dr is a sufficiently accurate approximation of the exact solution of the
trust-region subproblem, Assumption 3.2.4 is satisfied. Moreover, there exists
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a variety of methods for the inexact solution of the trust-region subproblem
such that Assumption 3.2.4 is satisfied, e.g., the truncated conjugate gradient
(CG) method by Toint (1981) and Steihaug (1983) or the truncated Lanczos
method by Gould et al. (1999).

3.2.2 Theoretical Results
The first two theorems presented in this section are modifications of well
known results in the literature on trust-region methods, see, e.g., Theorems
6.4.2 and 6.4.3 in Conn et al. (2000). We include the modified proofs of these
two theorems for completeness.

Theorem 3.2.5 Suppose A3.2.2, A3.2.3 and A3.2.4 hold. Then there exists
a constant κ5 > 0 such that for all ν, k and r the inequality ‖dr‖2 ≤ κ5
implies that ρν,k(dr) ≥ η1 holds.

Proof. Define the constant

κ5 := (1− η1)κ4ε

1 + κ2 + κ3

and assume that ‖dr‖2 ≤ κ5 holds. From the definition of ρν,k(dr) it follows
that

1− ρν,k(dr) = 1− F ν,k(xν,k)− F ν,k(xν,k + d)
qν,k(0)− qν,k(dr)

= F ν,k(xν,k + d)− qν,k(dr)
qν,k(0)− qν,k(dr) , (3.4)

where we used that qν,k(0) = F ν,k(xν,k). From Assumption 3.2.4 we know
that

qν,k(0)− qν,k(dr) ≥ κ4‖gν,k‖2 min( ‖gν,k‖2

1 + ‖Aν,k‖2
,∆r),

where ∆r denotes the trust-region radius in the subproblem that was used
to compute the trust-region step dr. With ∆r ≥ ‖dr‖2, ‖gν,k‖2 ≥ ε and
Assumption 3.2.3 we obtain

qν,k(0)− qν,k(dr) ≥ κ4εmin( ε

1 + κ3
, ‖dr‖2).

Moreover, due to η1, κ4 ∈ (0, 1) and κ2 ≥ 0 we know that ‖dr‖2 ≤ κ5 implies
‖dr‖2 ≤ ε

1+κ3
. Thus, we have

qν,k(0)− qν,k(dr) ≥ κ4ε‖dr‖2.
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This inequality together with (3.4) yields

1− ρν,k(dr) ≤ F ν,k(xν,k + dr)− qν,k(dr)
κ4ε‖dr‖2

.

Now, it follows from Taylor’s theorem that for some λ in the line segment
[xν,k, xν,k + d] it holds that

F ν,k(xν,k + dr) = F ν,k(xν,k) + 〈gν,k, dr〉+ 1
2(dr)ᵀD2F ν,k(λ)dr

and together with Assumptions 3.2.2 and 3.2.3 we obtain

F ν,k(xν,k + dr)− qν,k(dr) = 1
2(dr)ᵀD2F ν,k(λ)dr − 1

2(dr)ᵀAν,kdr

≤ 1
2
(
‖D2F ν,k(λ)‖2 + ‖Aν,k‖2

)
‖dr‖2

2

≤ (κ2 + κ3)‖dr‖2
2.

Thus, we have that

1− ρν,k(dr) ≤ (κ2 + κ3)
κ4ε

‖dr‖2 ≤
(κ2 + κ3)
κ4ε

κ5 = (κ2 + κ3)
κ4ε

(1− η1)κ4ε

1 + κ2 + κ3

= (κ2 + κ3)
1 + κ2 + κ3

(1− η1) ≤ 1− η1,

and therefore ρν,k(dr) ≥ η1. �
The previous theorem guarantees that Algorithm 3.3 terminates after a

finite number of steps. Moreover, it is instrumental in proving the following
result.

Theorem 3.2.6 Suppose A3.2.2, A3.2.3 and A3.2.4 hold. Then there exists
a constant κ6 > 0 such that δν,k ≥ κ6 holds for all ν, k.

Proof. Define the constant

κ6 := min(γ1(1− η1)κ4ε

1 + κ2 + κ3
, δ0,0).

Assume, for the purpose of deriving a contradiction, that (ν, k) is the
first iteration such that δν,k < κ6. Since κ6 ≤ δ0,0 we have (ν, k) 6= (0, 0).
Moreover, due to δν−1,R = δν,0 we have k ≥ 1. The value δν,k is calculated
via Algorithm 3.3 with ∆0 = δν,k−1 as the initial trust-region. Since (ν, k)
is the first iteration such that δν,k < κ6, we know that ∆0 = δν,k−1 ≥ κ6.
Since δν,k = ∆+ and ∆+ ≥ ∆r it follows that ∆r < κ6. Thus, there must
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exist a smallest index j ∈ {1, . . . , r} such that ∆j < κ6. Clearly, if j is the
first iteration such that ∆j < κ6 holds, it must hold that ρν,k(dj−1) < η1.
Consequently, we have that

∆j = γ1‖dj−1‖2

and thus

‖dj−1‖2 = ∆j

γ1
≤ κ6

γ1
≤ (1− η1)κ4ε

1 + κ2 + κ3
= κ5,

with κ5 as defined in the proof of Theorem 3.2.5. From Theorem 3.2.5 it now
follows that the inequality ρν,k(dj−1) ≥ η1 holds, which is a contradiction
since we already argued that ρν,k(dj−1) < η1. �

Theorem 3.2.7 Suppose A3.2.2, A3.2.3 and A3.2.4 hold. Then there exists
a constant κ7 > 0 such that for all ν either bν = 0 or bν ≥ κ7 holds.

Proof. For any k, if ‖gν,k‖2 < ε, then bν,k = 0. On the other hand, if
‖gν,k‖2 ≥ ε, then Theorem 3.2.5 guarantees that Algorithm 3.3 terminates
with a trust-region step dν,k that satisfies ρν,k(dν,k) ≥ η1. Thus, we obtain
from (3.2) and Assumption 3.2.4 that

bν,k = F ν,k(xν,k)− F ν,k(xν,k+1) ≥ η1
(
qν,k(0)− qν,k(dν,k)

)
≥ η1κ4‖gν,k‖2 min( ‖gν,k‖2

1 + ‖Aν,k‖2
,∆ν,k),

where ∆ν,k denotes the trust-region radius in the subproblem that was used
to compute the trust-region step dν,k. From Theorem 3.2.6 it follows that

∆ν,k ≥ δν,k

γ2
≥ κ6

γ2

and from Assumption 3.2.3 we know that

‖gν,k‖2

1 + ‖Aν,k‖2
≥ ‖g

ν,k‖2

1 + κ3
.

We therefore have that

bν,k ≥ η1κ4εmin( ε

1 + κ3
,
κ6

γ2
).

Thus, since bν = 1
Rν

Rν−1∑
k=0

bν,k, we either have bν = 0 or bν ≥ κ7, with

κ7 := η1κ4ε

R̂
min( ε

1 + κ3
,
κ6

γ2
) > 0.
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�
Concerning the previous theorem, we note that bν = 0 can only occur if

‖gν,k‖2 < ε for all inner iterations.

Theorem 3.2.8 Suppose A3.2.1, A3.2.2, A3.2.3 and A3.2.4 hold. Then
there exists a ν0 ∈ N such that sν = n holds for all ν ≥ ν0.

Proof. We show that there exists a ν0 ∈ N such that sν0 = n since this
implies the assertion in the theorem. Assume, for the purpose of deriving a
contradiction, that sν < n for all ν ∈ N. Since τ ν < θ implies sν+1 > sν ,
there does not exist a ν̄ ∈ N such that τ ν < θ for all ν > ν̄. Thus, there
exists a subsequence (xν(j)) with τ ν(j) ≥ θ for all j ∈ N. This implies that
bν(j) > 0 for all j ∈ N. From Theorem 3.2.7 we now obtain that bν(j) > κ7
and therefore

F (xν(j))− F (x̂ν(j)) = aν(j) ≥ θbν(j) ≥ θκ7

for all j ∈ N. Since the sequence (F (xν)) is monotonically nonincreasing we
obtain for all i ∈ N

F (x0)− F (xν(i)+1) =
ν(i)∑
ν=0

(F (xν)− F (xν+1)) ≥
i∑

j=0
(F (xν(j))− F (xν(j)+1))

=
i∑

j=0
(F (xν(j))− F (x̂ν(j))) ≥ (i+ 1)θκ7,

and therefore

F (x0)− F (xν(i)+1) i→∞→ +∞,

in contradiction to Assumption 3.2.1. �
Theorem 3.2.8 ensures that after a finite number of iterations, the ASTR

method becomes a standard (full-batch) trust-region method. It implies that
global convergence of the ASTR method follows from the global convergence
results about standard trust-region methods, e.g., Theorem 6.4.6 in Conn
et al. (2000).

3.3 Practical Considerations
In the description of our algorithm in Section 3.1 we left out several details
that do not need specification in order to prove the theoretical results in
Section 3.2, but which are nonetheless important with regard to the practical
implementation of the method. The purpose of this section is to close this
gap.
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3.3.1 Random Sampling and Sample Size Adjustment
We propose to select the samples in the inner iterations of our algorithm
uniformly at random, although other selection strategies (deterministic and
stochastic) are possible and may be worth investigating.

Friedlander and Schmidt (2012) and Byrd et al. (2012) showed that when
the sample size is increased geometrically in stochastic gradient decent, then
the expected optimality gap converges linearly . Inspired by this strategy, we
propose to choose a constant ω > 1 and set sν+1 = min(dωsνe, n) whenever
τ ν < θ. If τ ν ≥ θ, one can simply set sν+1 = sν , i.e., the sample size is
never decreased. We leave the question of whether strategies for decreasing
the sample size can lead to performance benefits for future research.

3.3.2 Incorporation of Curvature Information and the
Solution of the Trust-Region Subproblems

For Aν,k = 0 the solution of the trust-region subproblem (3.1) is dr =
−∆rg

ν,k/‖gν,k‖2. Thus, if Aν,k = 0 for all ν, k, the ASTR method is a adaptive
sample size gradient method.

It is one of the strengths of the ASTR method that any kind of curvature
information can be used. However, one has to keep in mind that the choice
of Aν,k is tightly coupled with effort necessary to compute an (approximate)
solution to the trust-region subproblem. Fortunately, the trust-region sub-
problem is a problem that has been studied for decades and one can choose
from a wide variety of methods in order to determine exact or inexact solu-
tions, see, for example, Conn et al. (2000). Consequently, there is a lot of
flexibility for investigating different ways to incorporate curvature informa-
tion.

The most straightforward way to incorporate curvature information is
to set Aν,k = D2F ν,k(xν,k) as soon as the sample size sν is considered large
enough for the sampled Hessian to contain meaningful curvature information.
If the decision variable is very high dimensional, the (sampled) Hessian of
the objective is expensive to compute and might be too large to store. How-
ever, if the truncated CG method is used for the solution of the trust-region
subproblems, only matrix-vector products of Aν,k and certain vectors need to
be computed. These matrix-vector products can be efficiently computed for
various problems in supervised machine learning without ever forming the
matrix Aν,k explicitly, see Pearlmutter (1994). This technique is known as
“Hessian-free” optimization.

Note that if this “Hessian-free” technique is used, the cost of multiplying
Aν,k with a vector depends on the size of the sample used for the computation
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of Aν,k. This cost can therefore be reduced by setting Aν,k = D2FSν,kH
(xν,k)

for some subsample Sν,kH ⊆ Sν,k, provided that sν is large enough. In Xu
et al. (2017) one can find some guidance on how to subsample the Hessian
in a trust-region framework when exact gradient information is used.

Also note that for nonconvex problems, Aν,k can be indefinite and di-
rections of negative curvature can be exploited. This might be particularly
useful in the proximity of saddle points, which are considered one of the
main obstacles when training neural networks with current methods, see, for
example, Dauphin et al. (2014).

3.3.3 Adjusting the Number of Inner Iterations
The last detail that needs to be specified is how the number of inner iterations
Rν+1 should be adjusted depending on the updated sample size sν+1. We
suggest to select Rν+1 in a way such that the total computational cost in all
the inner iterations combined is approximately equal to the cost of evaluating
the objective function F in the outer iteration. Consequently, the number of
inner iterations depends on the kind of curvature information used and the
method for the solution of the trust-region subproblem.

To be more concrete: Assume that evaluating the objective function is
half as expensive as computing the gradient, and that the computation of a
Hessian-vector product costs approximately the same as the computation of
a gradient. This is indeed the case for various applications, see Section 4 for
some examples.

If Aν,k = 0 for some ν and all k, the solution of the trust-region sub-
problem (3.1) is given explicitly by dr = −∆rg

ν,k/‖gν,k‖2. Thus, the cost of
one inner iteration corresponds to the cost of evaluating the gradient gν,k.
Consequently, Rν should satisfy the equation Rν · sν/n = 0.5 and we obtain
Rν = n/(2sν) for the number of inner iterations of Algorithm 3.2.

If Aν,k = D2FSν,kH
(xν,k) for some ν and all k, and the truncated CG method

is used to approximately solve the trust-region subproblems, analogous rea-
soning leads to the formula Rν = n/((2 + ᾱ) · sν + β̄ · 2 · sνH), where ᾱ denotes
the average number of iterations of Algorithm 3, β̄ denotes the average num-
ber of iterations the truncated CG method requires to find an approximate
solution to the trust-region subproblems and sνH := |Sν,kH |, where we assume
that the size of the subsample Sν,kH is fixed during the inner iterations.
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Chapter 4

Numerical Experiments

In this section we compare the ASTR method with a mini-batch stochastic
gradient descent method (SGD), the SVRG method by Johnson and Zhang
(2013) and a full-batch Trust-Region Newton-CG method (TR). We consider
three classification problems: logistic regression (convex), nonlinear least-
squares (nonconvex) and neural network training (nonconvex). For each
problem and data set, we report the training errors of the methods against
CPU time measurements. The algorithms were implemented in Python 3.6
and the computations were performed on an Intel Core i7-9700K with 32 GB
of main memory.

In contrast to the SGD and SVRG methods, who depend on hyper-
parameter tuning for reasonable performance, we did not perform hyper-
parameter tuning to individual problems or data sets for the ASTR or TR
methods, i.e., we always used the same hyper-parameters.

TR: For the standard Trust-Region Newton-CG method, we used δ0 =
1 as the initial trust-region radius and the standard parameters from the
literature for the trail point acceptance and trust-region radius update, see
Conn et al. (2000). The maximum number of conjugate-gradient iterations
was set to 30.

ASTR: For the parameters that the ASTR and TR methods have in
common, we used the same values. For the additional parameters, we chose
θ = 0.5 and s0 = 0.01·n. We increased the sample size as described in Section
3.3.1 with ω = 2. The parameter ε was set close to machine precision. For the
curvature information in the ASTR method, we chose Aν,k := D2FSν,kH

(xν,k),
where Sν,kH ⊆ Sν,k with sνH := |Sν,kH | = 0.1 · sν and adjusted the number of
inner iterations as it was described in section 3.3.3 (with ᾱ = 5 and β̄ = 20).
When sν reaches its maximal size of n, sνH is doubled in every outer iteration
until it reaches n as well.
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SGD: Two hyper-parameters where tuned for each problem and data set.
The best combination of a step-size t ∈ {10−6, 10−5 . . . , 1, 10} and mini-batch
size s = dζ · ne for ζ ∈ { 1

n
, 10−5, 10−4 . . . , 10−1} was selected.

SVRG: For each problem and data set we tried all combinations of step-
sizes t ∈ {10−6, 10−5 . . . , 1, 10} and number of inner iterations K = dµ · ne
for µ ∈ {10−4, 10−3, . . . , 1, 2}, and selected the combination that achieved the
minimal training error.

For each problem and data set, a starting point x0 was randomly gener-
ated and used by each of the methods. We ran each method for a fixed time
budget. This was also the time budget that SGD and SVRG were tuned to.
In order to report the training error F (xk)−F ?, the value F ? was determined
by running the full-batch TR-Algorithm until it was unable to improve the
objective value due to numeric precision.

4.1 Logistic Regression
Given a data set (zi, yi) ∈ Rm × {−1, 1}, i = 1, . . . , n, we consider the `2-
regularized logistic regression problem

min
x

F (x) = 1
n

n∑
i=1

log
(
1 + e−yi(x

ᵀzi)
)

+ λ‖x‖2
2 with λ = 1

n
.

Since the objective F is strongly convex, there exists a globally minimal point
and it coincides with the unique critical point of F . We test the methods on
the binary classification data sets described in Table A.1 in the appendix.

In Figure 4.1 we report the results concerning the minimization of the
training error. We observe consistent superior performance of the ASTR
method compared to the full-batch TR and the tuned SGD and SVRG meth-
ods.

We note that ASTR and the tuned SGD method consistently need less
CPU time than the other methods in order to achieve a high test accuracy.
ASTR is faster than SGD for the data sets odd_even, skin, covertype and
HIGGS, and equally fast for all the remaining data sets. The test accuracies
for odd_even and HIGGS are shown in the upper left panels of Figures 4.2
and 4.3, respectively.

We also compared the performance of the algorithms with respect to
effective gradient evaluations, a platform and implementation independent
measure often used in the literature, see, for example, Bollapragada et al.
(2018c). In order to determine the number of effective gradient evaluations
per iteration for each method, we made use of the fact that for each of the
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problems considered in this section, evaluating the objective is half as ex-
pensive as computing its gradient. And the latter operation costs the same
as computing a Hessian-vector product. As to be expected, the qualitative
results of the comparison of the algorithms remains unchanged when this al-
ternative measure is used, see, for example, the upper right panels of Figures
4.2 and 4.3, where the training errors for the data sets odd_even and HIGGS
are depicted. However, since the methods we compare are very dissimilar, we
believe that CPU times are more transparent and therefore more appropriate
in order to evaluate the performance of the methods. Note that the last row
of Figures 4.2 and 4.3 shows the behavior of the sample sizes used in the
gradient and Hessian matrix approximations (s and sH , respectively), and of
the number of inner iterations of the ADST method.

In Figures A.1 - A.8 in the appendix we report all the details concerning
the results of our numerical experiments on logistic regression problems for
each data set.

4.2 Nonlinear Least-Squares
We now focus on binary classification with squared loss as a concrete instance
of a nonlinear (and nonconvex) least-squares problem. Given a data set
(zi, yi) ∈ Rm × {0, 1}, i = 1, . . . , n, we consider the problem

min
x

F (x) = 1
n

n∑
i=1

(
yi − ϕ(xᵀzi)

)2
,

where ϕ denotes the sigmoid function, i.e., ϕ(t) = 1
1+e−t . We use the same

data sets that were used for logistic regression in the previous section.
In Figure 4.4 we report the results of the numerical experiments. Again,

our results show strong performance of the ASTR method. On all data sets,
except for w8a and skin, ASTR is clearly superior to the other methods
concerning the minimization of the training error. For the data set skin,
it seems like ASTR, SGD and SVRG approximate a local minimal point,
whereas TR approximates either a better local or the actual global minimal
point.

In Figures A.9 - A.16 in the appendix we report additional details on
our numerical experiments on nonlinear least-squares problems. Again, we
observe that the test accuracies of ASTR and the tuned SGD method are
comparable and that they are superior to the SVRG and TR methods. Only
on the data set skin, the TR method approximates a minimal point with much
better generalization properties than the local minimal point approximated
by the other methods.
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Figure 4.1: Logistic regression error of SGD, SVRG, TR and ASTR for all
data sets.
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Figure 4.2: Further details on the performance of SGD, SVRG, TR and
ASTR on the logistic regression problem with the odd_even data set. In the
plots in the second row, the behaviour of the sample sizes and the number
of inner iterations of ASTR is depicted.

4.3 Neural Network Training
Finally, we also considered the problem of training a simple two layer feed-
forward neural network on the popularMNIST data set of handwritten digits,
see Lecun et al. (1998). Details concerning this data set can be found in Table
A.1 in the appendix. The fully connected two layer neural network has 748
input neurons, 100 hidden neurons and 10 output neurons. The hidden
neurons implement the logistic function, the output neurons the softmax
function. Thus, if we have a data set (zi, yi) ∈ R784 × {0, 1}10, i = 1, . . . , n,
and choose the cross-entropy loss function, we arrive at the optimization
problem

min
x∈Rm

F (x) := −
n∑
i=1

10∑
j=1

yij ln([h(zi, x)]j),

where h(·, x) denotes the function that implements the neural network with
weight vector x.

In Figure 4.5 one can observe that ASTR achieves better results than
the other methods concerning the training error. With regard to the test
accuracy, ASTR performes on par with the tuned SGD method.
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Figure 4.3: Further details on the performance of SGD, SVRG, TR and
ASTR on the logistic regression problem with the HIGGS data set. In the
plots in the second row, the behaviour of the sample sizes and the number
of inner iterations of ASTR is depicted.

4.4 Conclusions
The results of the numerical experiments demonstrate that the ASTRmethod
has significant advantages compared to the SGD and SVRG methods. On all
the logistic regression problems, the majority of the nonlinear least-squares
problems and the neural network training problem, the ASTR method out-
performed the other two methods with respect to the minimization of the
training error. Concerning the test accuracies, the ASTR method was mostly
on par with the tuned SGD method. Moreover, whereas a lot of experimen-
tation was necessary in order for the SGD and SVRG methods to show good
performance, the performance of the ASTR method was not dependent on
tuning the parameters to individual problems or data set.

The neural network training problem from the previous section is quite
simple compared to those typically encountered in practice. So far it is not
clear whether the ASTR method can be beneficial for the training of these
more complex neural networks. We leave this important question for future
research.
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Figure 4.4: Nonlinear least-squares error of SGD, SVRG, TR and ASTR for
all data sets.
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Figure 4.5: Performance of SGD, SVRG, TR and ASTR on the neural net-
work training problem with the MNIST data set.
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Chapter 5

Introduction

In Part I of this thesis we considered the general class of possibly noncon-
vex and large-scale finite-sum minimization problems and proposed a local
optimization algorithm that is particularly well suited for the solution of
problems from this class. However, there also exist nonconvex data approxi-
mation problems for which purely local optimization algorithms do not yield
satisfactory results. In Part II of this thesis we consider a specific noncon-
vex data approximation problem that is known to be difficult to solve with
local optimization methods, namely the least-squares spline approximation
problem with free knots.

In this chapter we first explain what a spline function is and why it is
a useful tool for data approximation. Then we formulate the least-squares
spline approximation problem with fixed and free knots. After a review of
existing approaches for the solution of the approximation problem with free
knots, we give a short overview of our approach.

5.1 Curve Fitting with Splines
In the basic data approximation problem we are given n data points (xi, yi) ∈
R2 and a family of functions h(·, w) : R → R parametrized with a vector
w ∈ Rm. The goal is to find a parameter w̄ such that h(xi, w̄) ≈ yi for
all i ∈ {1, . . . , n}. Thus, one aims to compute the global minimizer of the
finite-sum problem

min
w∈Rm

n∑
i=1

`(h(xi, w), yi),

where l : R2 → R is an error function that quantifies the discrepancy between
h(xi, w) and the actual value yi corresponding to xi.
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In many applications it is clear from the context which family of functions
h(·, w) should be used and the parameters w might even have a physical
meaning. However, there are also many cases where no specific family of
functions h(·, w) is dictated by the application. In those cases spline functions
are a popular tool for data approximation, see Dierckx (1996).

A spline function consists of several polynomial functions of degreem ∈ N
each defined on a segment of the approximation interval [x1, xm]. The joint
points of those segments are called knots. In order to simplify the exposition,
we only consider cubic spline functions in this thesis, i.e, m = 3. The formal
definition of a cubic spline function with k knots is

s(x, β(0), . . . , β(k), ξ) :=



p(x, β(0)), for x1 ≤ x ≤ ξ1

p(x, β(1)), for ξ1 < x ≤ ξ2,
...

p(x, β(k)), for ξk < x ≤ xn,

with the ordered knot vector ξ ∈ Rk, x1 < ξ1 < ξ2 < . . . < ξk < xn, and k+1
cubic polynomials

p(x, β(j)) := β
(j)
0 + β

(j)
1 x+ β

(j)
2 x2 + β

(j)
3 x3

for j ∈ {0, . . . , k}. Depending on the application, the cubic polynomials may
have to satisfy certain continuity restrictions at the knots where they join,
e.g., continuity and smoothness up to the second derivative. Note that we
limit our exposition to cubic splines with the maximum number of continuity
restrictions only for ease of presentation. It is straightforward to generalize
our approach to piecewise polynomials of arbitrary degree and different con-
tinuity restrictions.

Another important choice concerns the type of error function. In this the-
sis we will mainly consider the most important and well-known error function,
namely the least-squares criterion, i.e., l(z, y) = (z − y)2. Depending on the
application, other choices can be more appropriate, e.g., l(z, y) = |z − y|.
However, these alternative error functions and their implications for the so-
lution of the spline approximation problem are for the most part beyond the
scope of this thesis.

5.2 The Least-Squares Spline Approximation
Problem

In this section we start by formulating the least-squares spline approximation
problem with fixed knots and describe how to efficiently compute its optimal
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solutions. Then we consider the problem with free knots and explain why
the computation of globally optimal solutions is challenging.

5.2.1 The Problem with Fixed Knots

We first assume that the knot vector ξ ∈ Rk is fixed and the goal is to
determine parameters optimal with respect to the least-squares criterion,
i.e., we aim to solve the optimization problem

min
β∈R4(k+1)

n∑
i=1

(s(xi, β, ξ)− yi)2, (5.1)

where β ∈ R4(k+1) denotes the concatenation of the vectors β(0), . . . , β(k) ∈
R4. Since the spline function s is linear in the decision variable β, the problem
is a linear least-squares problem whose optimal solutions can be computed
by solving a system of linear equations.

In order to derive this system of linear equations, we first reformulate
problem (5.1) as the linearly constrained convex quadratic problem

min
β

k∑
j=0

∑
i∈Ij

(
p(xi, β(j))− yi

)2

s.t. p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
β ∈ R4(k+1),

(5.2)

with the index sets

I0 := {i | x1 ≤ xi ≤ ξ1}
Ij := {i | ξj < xi ≤ ξj+1}, j = 1, . . . , k − 1,
Ik := {i | ξk ≤ xi ≤ xn}.

Note that we assume the maximum number of continuity restrictions in prob-
lem (5.2).

Let Xj ∈ Rnj×4 be the Vandermonde matrix corresponding to the nj data
points with indices in Ij, i.e., a matrix with the rows (1, xi, x2

i , x
3
i ), for i ∈ Ij.

Let yj ∈ Rnj be a column vector of the concatenated yi values with i ∈ Ij.
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We can rewrite problem (5.2) as

min
β

k∑
j=0
‖Xjβ

(j) − yj‖2
2

s.t. p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k
β ∈ R4(k+1).

With the row vectors

Aj :=
(
1 ξj ξ2

j ξ3
j

)
, Bj :=

(
0 1 2ξj 3ξ2

j

)
, Cj :=

(
0 0 2 6ξj

)
,

for j = 1, . . . , k, we can define the matrix

D :=



A1 −A1 0 0 · · · 0
B1 −B1 0 0 · · · 0
C1 −C1 0 0 · · · 0
0 A2 −A2 0 · · · 0
0 B2 −B2 0 · · · 0
0 C2 −C2 0 · · · 0
... ... . . . . . . · · · ...
0 · · · 0 Ak−1 −Ak−1 0
0 · · · 0 Bk−1 −Bk−1 0
0 · · · 0 Ck−1 −Ck−1 0
0 · · · 0 0 Ak −Ak
0 · · · 0 0 Bk −Bk

0 · · · 0 0 Ck −Ck



∈ R3k×4(k+1)

and rewrite our problem as

min
β

q(β) :=
k∑
j=0
‖Xjβ

(j) − yj‖2
2

s.t. Dβ = 0,
β ∈ R4(k+1).

We assume thatD has full row rank, i.e., rankD = 3k. Since the objective
function q is convex, a point β? is optimal if and only if there exists a µ ∈ R3k

such that the linear system of equations
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∇q(β?) +Dᵀµ = 0
Dβ? = 0.

is satisfied. Noting that

∇q(β) = 2 ·


Xᵀ0X0β

(0) −Xᵀ0y0

Xᵀ1X1β
(1) −Xᵀ1y1

...
XᵀkXkβ

(k) −Xᵀkyk

 ∈ R4(k+1)

we can define the matrix

X := 2 ·


Xᵀ0X0 0 · · · 0

0 Xᵀ1X1 · · · 0
0 0 . . . XᵀkXk

 ∈ R4(k+1)×4(k+1)

and the vector

b := 2 ·


Xᵀ0y

0

...
Xᵀky

k

 ∈ R4(k+1)

and reformulate this linear system as

(
X Dᵀ

D 0

)(
β
µ

)
=
(
b
0

)
. (5.3)

This linear system has a unique solution if and only if X|Kern(D) is non-
singular. Note that X is positive definite if and only if all the Vandermonde
matrices Xj, j = 1, . . . , k, have full column rank, i.e. rank(Xj) = 4. If nj ≥ 4
the matrix Xj has full column rank if and only if at least four of the data
points xi with i ∈ Ij are distinct. Thus, the linear system (5.3) has a unique
solution under very mild conditions.

If fewer continuity restrictions are needed, e.g, because the splines do not
have to be smooth but only continuous at the knots, the matrix D changes
accordingly. In case there are no continuity restrictions, the linear system
(5.3) is equivalent to the k + 1 linear systems

XᵀjXjβ
(j) = Xᵀj y

j, j = 0, . . . , k,

which are, of course, the normal equations for each cubic polynomial.
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Summarizing the above, when the vector of knots ξ is fixed, one can solve
a simple linear system in order to obtain an optimal solution of problem
(5.2). However, the quality of the fit of the cubic spline function is highly
dependent on the placement of the knots ξ1, . . . , ξk. Thus, a natural question
is whether it is possible to determine an optimal placement of the knots.

5.2.2 The Problem with Free Knots
If the knot vector ξ ∈ Rk is not fixed but enters the optimization problem
as a decision variable, the problem is referred to as the least squares spline
approximation problem with free knots:

min
β, ξ

k∑
j=0

∑
i∈Ij

(
p(xi, β(j))− yi

)2

s.t. p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
ξj ≤ ξj+1, j = 1, . . . , k − 1,
x1 ≤ ξ1, ξk ≤ xn,

β ∈ R4(k+1), ξ ∈ Rk.

(5.4)

Note that while the knot vector ξ is a decision variable, the number of
knots k is still a fixed parameter of the problem.

Since the equality constraints are nonlinear in the decision variables ξj,
problem (5.4) is not a convex optimization problem. Moreover, problem
(5.4) typically possesses many locally minimal solutions that prevent local
optimization algorithm from converging to the globally minimal solutions.

In order to visualize this, we reformulate the problem such that the vector
ξ is the only decision variable. This is easily possible since we can obtain the
optimal parameters β(ξ) of a spline function with a fixed knot vector ξ by
solving a linear system of equations, which is uniquely solvable under mild
conditions. With this notation we can write problem (5.4) equivalently as
the problem

min
ξ

k∑
j=0

∑
i∈Ij

(
p(xi, β(j)(ξ))− yi

)2

s.t. ξj ≤ ξj+1, j = 1, . . . , k − 1,
x1 ≤ ξ1, ξk ≤ xn

ξ ∈ Rk.

(5.5)
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Note that the nonlinear equality constraints are eliminated from the prob-
lem since they are automatically satisfied due to the choice of the optimal
parameter vector β(ξ). However, the problem is still a nonconvex problem
since β(·) is a nonlinear function of the knot vector ξ.

Suboptimal local solutions of problem (5.5) are already present when the
dimension k of the knot vector is small. We visualize this for k = 1 and k = 2.
Figure 5.1a shows the objective function of problem (5.5) for a synthetic data
set with 200 data points and one free knot ξ1. We observe that there exists
a global and a local minimum. Moreover, a local optimization algorithm
initialized with a random knot placement might approximate either one of
these two locally optimal points with similar probability. The spline functions
corresponding to these solutions are shown in Figure 5.1b. Based on these
plots one could argue that the spline function corresponding to the globally
optimal solutions approximates the data set more accurately, but it is also
apparent that a cubic spline function with one free knot is not enough in
order to obtain a good approximation of this data set.

The objective function of problem (5.5) for the same data set and two
free knots ξ1 and ξ2 is depicted in Figure 5.2. The function has one globally
minimal point ξ̄ := (0.2632, 0.5166)ᵀ and two locally minimal points ξ̃ :=
(0.0939, 0.1003)ᵀ and ξ̂ := (0.8191, 0.8422)ᵀ. Moreover, the spline functions
corresponding to the local solutions approximate the data set significantly
worse than the spline function corresponding to the globally optimal knot
placement, as can be observed in Figure 5.3.

This demonstrates that local optimization algorithm are only useful for
the solution of the least-squares spline approximation problem with free knots
if they start from an initial solution close enough to the globally optimal
solution. In this thesis, we propose a novel way to compute a solution close
to the global optimal solution. Before we describe our approach, we review
some of the existing approaches for the solution of the least-squares spline
approximation problem with free knots.

5.3 Literature review of existing approaches
The earliest algorithmic approach to determine an optimal knot placement
with respect to the least-square error for a fixed given number of knots is a
discrete Newton method proposed by de Boor and Rice (1968), which can
be used to approximate locally optimal solutions. Other local approaches
include the use of Gauss-Newton-type methods, see, e.g., Gallant and Fuller
(1973), Jupp (1978) and Schwetlick and Schütze (1995), and the Fletcher-
Reeves nonlinear conjugate gradient (CG) method, see Dierckx (1996). With
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these approaches it is only possible to determine locally optimal solutions,
and their quality is highly dependent on the initial solution provided to the
algorithm.

In contrast, genetic algorithms, see, e.g., Pittman and Murthy (2000),
Miyata and Shen (2003) and Spiriti et al. (2013), can escape low-quality lo-
cally optimal solutions, but the solution that is returned by these algorithms
might be neither locally nor globally optimal, since these approaches are
purely heuristic and cannot provide any certificate of optimality.

In Beliakov (2004) the cutting angle method is used in order to compue
the globally optimal knot placement of the least-squares spline approximation
problem with free knots. To the best of our knowledge, it is the only method
from deterministic global optimization that was proposed specifically for the
solution of this problem. However, as noted in the section on numerical
experiments in Beliakov (2004), the computing time is prohibitive even for
small problems.

There exist many approaches in the literature which, in contrast to the
methods reviewed so far, do not seek an optimal knot placement with respect
to the least-squares criterion, but instead determine a knot placement that
satisfies other quality measuring criteria. Some suggest to look at the data
and place the knots according to some rule of thumbs, such as placing them
near points of inflection or at specific quantiles, see Wold (1974) and Ruppert
(2002). Other approaches are based on forward knot addition and/or back-
ward knot deletion, see, e.g, Smith (1982) and Stone et al. (1997). Moreover,
Bayesian approaches are proposed in Denison et al. (1998) and DiMatteo
et al. (2001), which employ a continuous random search methodology via
reversible-jump Markov chain Monte Carlo methods. A more detailed re-
view and comparison of these approaches can be found in Wand (2000) and
Lee (2002).

5.4 Overview of our Approach
In this article, we propose to solve a combinatorial formulation of the least-
squares spline approximation problem with free knots in order to obtain a
solution close to the globally optimal solution. We assume the number k of
free knots to be fixed and are only concerned with the optimal placement
of the knots. The first approach that we present is the formulation of the
combinatorial least-squares spline approximation problem as a mixed-integer
quadratically constrained problem (MIQCP). MIQCPs can be solved with
commercial optimization solvers like Gurobi or CPLEX.

The second method that we propose is a branch-and-bound algorithm
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tailored specifically to the combinatorial least-squares spline approximation
problem with free knots. In contrast to heuristic approaches, branch-and-
bound methods maintain provable upper and lower bounds on the optimal
value and terminate with a globally optimal solution after a finite number
of steps. In the worst case, the computational effort grows exponentially
in the problem size. Nevertheless, branch-and-bound methods have been
successfully applied to a range of statistical problems like variable selection
and clustering, see, for example, Hand (1981) and Brusco and Stahl (2005).
And as we will demonstrate in the numerical experiments in Chapter 8, it
is possible to solve the combinatorial formulation for problem sizes typically
encountered in practice.
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Figure 5.1: Objective function of problem (5.5) with one free knot and the
corresponding locally and globally optimal least-squares spline functions.
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Figure 5.2: Objective function of problem (5.5) with two free knots.
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Figure 5.3: Least-squares splines corresponding to the two locally minimal
knot placements and the least-squares spline corresponding to the globally
optimal knot placement ξ̄. The red and blue curves correspond to the knot
placements ξ̃ and ξ̂, respectively.



Chapter 6

A Combinatorial Formulation

In this chapter we describe how the least-squares spline approximation prob-
lem with free knots can be reformulated as a combinatorial optimization prob-
lem. Then we explain how this combinatorial formulation can be modeled
as a mixed-integer optimization problem. In the last section we comment on
other error criterions and their implications for mixed-integer formulations.

6.1 Reformulation as a Set Partitioning Prob-
lem

We reformulate the least squares spline approximation problem with free
knots as a type of set partitioning problem. It is not an equivalent refor-
mulation, however, since we restrict the possible knot locations to a finite
set. Nevertheless, as we will explain in the following, we restrict the possible
knot locations in a very natural and intuitive way, and such that the optimal
solution of the combinatorial formulation is a promising initial point for local
optimization algorithms.

If our goal is to approximate the given dataset with a spline with k knots,
then every data point needs to be assigned to exactly one of the k+1 polyno-
mials. Therefore, instead of computing the optimal placement of the knots,
we aim to find an optimal partition {Ij | j = 0, . . . , k} of the set of indices
{1, . . . , n}.

Due to the assumed ordering of the design points x1 < . . . < xn, a
partition is only feasible if for all i, j ∈ {0, . . . , k} with i < j we have that
r < q for all r ∈ Ii and q ∈ Ij. Since the spline function corresponding to
a feasible partition {Ij | j = 0, . . . , k} has to satisfy continuity conditions
at the knots, the exact location of these knots has to be fixed based solely
on the partition. Clearly, the knot ξj has to be placed between the values

45
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maxi∈Ij−1 xi and mini∈Ij xi for all j = 1, . . . , k. We propose to select the
midpoint of these two values, i.e., we set ξj = (maxi∈Ij−1 xi + mini∈Ij xi)/2
for all j = 1, . . . , k. This simple and symmetric choice worked well in our
numerical experiments.

Thus, in order to determine the optimal feasible partition, we solve the
combinatorial optimization problem

min
β,I0,...,Ik

k∑
j=0

∑
i∈Ij

(
p(xi, β(j))− yi

)2

s.t.
k⋃
j=0

Ij = {1, . . . , n},

Ij 6= ∅, j = 0, . . . , k,
s < i for all s ∈ Il and i ∈ Ij with l < j,

p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
β ∈ R4(k+1),

(6.1)

where
ξj = ( max

i∈Ij−1
xi + min

i∈Ij
xi)/2,

for all j ∈ {1, . . . , k}.
The total number of feasible set partitions in problem (6.1) is

(
n−1
k

)
. Note

that we do not allow empty index sets in our feasible partitions since this
would reduce the number of knots of the spline function.

We also remark that if the goal is to compute a piecewise polynomial,
i.e., a spline function without any continuity restrictions, only the first three
constraints in problem (6.1) are needed and the resulting combinatorial prob-
lem is an equivalent reformulation of the least-squares piecewise polynomial
approximation problem with free knots.

6.2 Formulation as a Convex Mixed-Integer
Quadratically Constrained Problem

A natural step towards the solution of the combinatorial problem (6.1) is
to reformulate it as a type of mixed-integer optimization problem that can
be solved with a commercial optimization solver like Gurobi or CPLEX. As
will be explained in detail in the rest of this section, problem (6.1) can be
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equivalently reformulated as the following convex mixed-integer quadratically
constrained problem (MIQCP):

min
α,β,z,q,w

n∑
i=1

αi

s.t. [zij = 1] =⇒ [qij = p(xi, β(j))− yi], ∀(i, j) ∈ J1 × J2,

q2
ij ≤ αi, ∀(i, j) ∈ J1 × J2,

k∑
j=0

zij = 1, ∀i ∈ J1,

n∑
i=1

zij ≥ 1, ∀j ∈ J2,

n∑
q=i+1

j−1∑
r=0

(1− zqr) ≥ (n− i) · j · zij, ∀i ∈ J1 \ {n}, j ∈ J2 \ {0},

wij ≤ zij, ∀(i, j) ∈ J̄ ,
wij ≤ zi+1,j+1, ∀(i, j) ∈ J̄ ,
wij ≥ zij + zi+1,j+1 − 1, ∀(i, j) ∈ J̄ ,
[wij = 1] =⇒ [p(γi, β(j))− p(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ ,
[wij = 1] =⇒ [p′(γi, β(j))− p′(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ ,
[wij = 1] =⇒ [p′′(γi, β(j))− p′′(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ ,
α ∈ Rn, β ∈ R4(k+1), z ∈ {0, 1}n(k+1), q ∈ Rn(k+1), w ∈ {0, 1}(n−1)k

(6.2)

where J1 := {1, . . . , n}, J2 := {0, . . . , k}, J̄ := (J1 \ {n}) × (J2 \ {k}) and
γi := (xi + xi+1)/2, for all i ∈ J1 \ {n}.

In total, the problem contains (n+ 4) · (k + 1) + n continuous variables,
2nk + n − k binary variables and 9n(k + 1) constraints. Among those con-
straints are n(k + 1) convex quadratic inequality constraints and 4n(k + 1)
indicator constraints.

Indicator constraints have the general structure

[c = δ] =⇒ aᵀx ≤ b, (6.3)

where x ∈ Rn and c ∈ {0, 1} are variables and δ ∈ {0, 1}, a ∈ Rn and
b ∈ R are fixed parameters. The interpretation is that the inequality is only
enforced if the condition c = δ is true, otherwise the inequality is ignored
by the solver. Indicator constraints are an alternative to big-M formulations
and can be handled directly by commercial optimization solvers like Gurobi
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or Cplex. The big-M formulation

d ·M ≤ aᵀx− b ≤ d ·M,

is equivalent to (6.3) ifM ∈ R is a sufficiently large number and d is a binary
variable that satisfies

d =

0, if c = δ,

1, otherwise.

In general, the existence of a sufficiently large value M is dependent on the
objective function and the other constraints in the optimization problem. If
M is too small, the optimal solution might be excluded from the problem. On
the other hand, large big-M constants can lead to numerical difficulties and
excessively long run times. In contrast, indicator constraints are handled
internally by the solvers and usually do not lead to numerical difficulties.
However, they can lead to longer run times compared to well chosen big-M
constants in some cases. Further below we will comment on whether a big-M
formulation could be an appropriate alternative to the indicator constraints
in problem (6.2).

The constraints in problem (6.2) can be grouped into three blocks: The
first two constraints stem from an epigraph reformulation of the least-squares
objective function, the next three constraints ensure that the partition of
the data points encoded in the variables zij is feasible, and the remaining
constraints enforce the continuity restrictions at the knots. In the following
subsections we explain each of the three blocks in detail.

6.2.1 Feasible Partitions

For every index tuple (i, j) ∈ J1×J2 the binary variable zij encodes whether
the ith design point xi is assigned to the jth polynomial, or, equivalently, if
the index i is contained in the index set Ij, i.e., for all (i, j) ∈ J1×J2 it holds
that

zij =

1, if i ∈ Ij,
0, if i /∈ Ij.

(6.4)
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The constraints
k∑
j=0

zij = 1, ∀i ∈ J1, (6.5)

n∑
i=1

zij ≥ 1, ∀j ∈ J2, (6.6)

n∑
q=i+1

j−1∑
r=0

(1− zqr) ≥ (n− i) · j · zij, ∀i ∈ J1 \ {n}, j ∈ J2 \ {0}, (6.7)

can be explained intuitively by observing that the constraints (6.5) and (6.6)
ensure that each design point is assigned to exactly one polynomial, and that
at least one design point is assigned to each polynomial. Moreover, constraint
(6.7) states that a design point xi can only be assigned to the jth polynomial
if all the following design points are not assigned to prior polynomials.

Constraints (6.5), (6.6) and (6.7) are equivalent to the constraints
k⋃
j=0

Ij = {1, . . . , n}, (6.8)

Ij 6= ∅, j = 0, . . . , k, (6.9)
s < i for all s ∈ Il and i ∈ Ij with l < j, (6.10)

in problem (6.1). Clearly, conditions (6.6) and (6.9) are equivalent. The
equivalence of the remaining conditions is shown in the following lemma.

Lemma 6.2.1 If the binary vector z ∈ {0, 1}n(k+1) is defined as in (6.4),
then conditions (6.5) and (6.7) are equivalent to conditions (6.8) and (6.10).

Proof. We first show that if conditions (6.8) and (6.10) are satisfied, then
conditions (6.5) and (6.7) are satisfied as well. Note that conditions (6.8) and
(6.10) are both satisfied. Condition (6.8) implies that ∑k

j=0 zij ≥ 1 holds for
all i ∈ J1 and since condition (6.10) implies that every index is assigned to
at most one index set, i.e., ∑k

j=0 zij ≤ 1 for all i ∈ J1, we arrive at condition
(6.5).

Next, we choose some i ∈ J1 \ {n} and j ∈ J2 \ {0}. If zij = 0 then the
inequality in condition (6.7) is satisfied trivially. On the other hand, if zij = 1,
then i ∈ Ij holds. Let us define the set K := {i + 1, . . . , n} × {0, . . . , j − 1}
and suppose there exist (q, r) ∈ K with zqr = 1. This would imply q ∈ Ir,
r < j and q > i, in contradiction to condition (6.10). Thus, zqr = 0 and
(1− zqr) = 1 holds for all (q, r) ∈ K. Consequently, we obtain

n∑
q=i+1

j−1∑
r=0

(1− zqr) =
∑

(q,r)∈K
(1− zqr) = |K| = (n− i) · j = (n− i) · j · zij
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and condition (6.7) is satisfied.
For the other direction, let us assume that condition (6.8) or (6.10) is

violated and show that this implies that condition (6.5) or (6.7) is violated.
If condition (6.8) is violated, then there exists an index i ∈ {1, . . . , n} which is
not assigned to any index set. Therefore, we have ∑k

j=0 zij = 0 and condition
(6.5) is violated. On the other hand, if (6.10) is violated, then there exist
l, j ∈ {1, ..., k} with l < j and indices s ∈ Il and i ∈ Ij such that s ≥ i.
Consequently, we have that zsl = 1 and zij = 1. Thus, either condition (6.5)
is violated, or it follows that s 6= i and therefore s > i must be true. Now,
since (s, l) ∈ K and zsl = 1 we obtain the equality

n∑
q=i+1

j−1∑
r=0

(1− zqr) = |K \ {(s, l)}| = |K| − 1 = (n− i) · j − 1.

However, if condition (6.7) was satisfied, the inequality

n∑
q=i+1

j−1∑
r=0

(1− zqr) ≥ (n− i) · j

would have to be satisfied as well. Since this is not the case, condition (6.7)
is violated. �

To summarize the above, a feasible binary vector z in problem (6.2) corre-
sponds to a feasible partition of the data points, in the sense that conditions
(6.8) to (6.10) are satisfied.

6.2.2 Continuity Restrictions
The interpretation of the variable wij is that wij = 1 holds if and only if
i ∈ Ij and i + 1 ∈ Ij+1, i.e., two successive indices are assigned to different
(successive) index sets. Another way to say this is that wij = 1 holds if and
only if there is a knot between the data points xi and xi+1. Consequently,
the constraints

[wij = 1] =⇒ [p(γi, β(j))− p(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ , (6.11)
[wij = 1] =⇒ [p′(γi, β(j))− p′(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ , (6.12)
[wij = 1] =⇒ [p′′(γi, β(j))− p′′(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ (6.13)

from problem (6.2) enforce the continuity conditions at a value γi = (xi +
xi+1)/2 only if xi and xi+1 belong to different polynomials. Note that, as in
problem (6.1), knots are midpoints between two consecutive design points
that are assigned to different polynomials.
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An intuitive way to model the variable w would be via the nonlinear
constraints

wij = zij · zi+1,j+1, ∀(i, j) ∈ J̄ . (6.14)

Fortunately, there is a simple technique to replace these nonlinear con-
straints with linear ones. In order to explain this technique, suppose we are
given three binary variables a, b and c and the nonlinear constraint

a = b · c.

Then the same relationship can be modeled with the linear constraints

a ≤ b,

a ≤ c,

a ≥ b+ c− 1.

Since w and z both are binary decision variables in problem (6.2), the
constraints

wij ≤ zij, ∀(i, j) ∈ J̄ ,
wij ≤ zi+1,j+1, ∀(i, j) ∈ J̄ ,
wij ≥ zij + zi+1,j+1 − 1, ∀(i, j) ∈ J̄ ,

are equivalent to the nonlinear constraints (6.14).
As mentioned previously, on could also use a big-M formulation to model

the continuity restrictions (6.11) to (6.13). However, it is not clear how
to obtain a sufficiently large value for the constant M without knowledge
of the optimal solution. The numerical tests that we conducted showed
that constants M that are large enough so that the optimal solution is not
excluded from the feasible set often lead to numerical difficulties and long run
times. In contrast, indicator constraints neither increased the computation
time nor lead to numerical issues on the problem instances that we tested.
Moreover, they are easier to use since no big-M constant has to be specified.

6.2.3 Generalized Epigraph Reformulation
In the following we explain how the epigraph reformulation gives rise to the
linear objective function and the first two constraints in problem (6.2).

We first note that the objective function of problem (6.1) can be rewritten
as

k∑
j=0

∑
i∈Ij

(
p(xi, β(j))− yi

)2
=

n∑
i=0

k∑
j=0

zij
(
p(xi, β(j))− yi

)2
.
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In combination with the results from the previous subsections, it is clear that
problem (6.1) is equivalent to the problem

min
β,z,w

n∑
i=0

k∑
j=0

zij
(
p(xi, β(j))− yi

)2

s.t.
k∑
j=0

zij = 1, ∀i ∈ J1,

n∑
i=1

zij ≥ 1, ∀j ∈ J2,

n∑
q=i+1

j−1∑
r=0

(1− zqr) ≥ (n− i) · j · zij, ∀i ∈ J1 \ {n}, j ∈ J2 \ {0},

wij ≤ zij, ∀(i, j) ∈ J̄ ,
wij ≤ zi+1,j+1, ∀(i, j) ∈ J̄ ,
wij ≥ zij + zi+1,j+1 − 1, ∀(i, j) ∈ J̄ ,
[wij = 1] =⇒ [p(γi, β(j))− p(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ ,
[wij = 1] =⇒ [p′(γi, β(j))− p′(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ ,
[wij = 1] =⇒ [p′′(γi, β(j))− p′′(γi, β(j+1)) = 0], ∀(i, j) ∈ J̄ ,
β ∈ R4(k+1), z ∈ {0, 1}n(k+1), w ∈ {0, 1}(n−1)k.

(6.15)

This objective function, however, has a difficult nonlinear and nonconvex
structure. In order to improve upon this formulation, we introduce the addi-
tional decision variables α ∈ Rn, replace the objective function with ∑n

i=0 αi
and add the constraints

k∑
j=0

zij
(
p(xi, β(j))− yi

)2
≤ αi, ∀i ∈ J1. (6.16)

This type of reformulation is sometimes referred to as the generalized epigraph
reformulation, see, e.g., Stein (2018). Due to the first constraint in problem
(6.11), we have that for each i ∈ J1 there only exists a single index j ∈ J2
such that zij = 1. Thus, the constraints (6.16) are equivalent to the quadratic
indicator constraints

[zij = 1] =⇒
(
p(xi, β(j))− yi

)2
≤ αi, ∀i ∈ J1.

Since the quadratic functions are convex in the decision variables, the re-
sulting problem is a convex MIQCP. However, so far optimization solvers
can only handle linear indicator constraints. By introducing an additional
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decision variable q ∈ Rn(k+1) we arrive at the first two constraints of problem
(6.2)

[zij = 1] =⇒ [qij = p(xi, β(j))− yi], ∀(i, j) ∈ J1 × J2, (6.17)
q2
ij ≤ αi, ∀(i, j) ∈ J1 × J2, (6.18)

and thus at the convex MIQCP (6.2), which can be solved with standard
solvers.

Again, one might ask the question whether the indicator constraints (6.17)
could be replaced by big-M constraints. But also in this case there is no
obvious way to select a value for M that leads to good performance both in
terms of computing time and solution quality. Therefore, we will not further
consider big-M formulations in this thesis.

In our numerical experiments, the computing time decreased significantly
when bounds were added to the decision variable q, i.e., when the additional
constraints −q̄ ≤ q ≤ q̄ were imposed for some q̄ > 0. If the optimal
solution is not known, this is not possible without the risk of excluding the
optimal solution from the feasible set. However, bounds on q only lead to the
exclusion of the optimal solution of problem (6.2) if in this optimal solution
there exist (i, j) ∈ J1×J2 with zij = 1 such that |p(xi, β(j))−yi| > q̄, i.e., the
y component of a data point (xi, yi) that is assigned to the jth polynomial
in the optimal solution has to have a distance to the polynomial function
evaluated at xi that is larger than q̄. So, by setting q̄ := maxi yi − mini yi,
one can argue that in typical applications these bounds should not affect
the optimal solution. Indeed, if the optimal solution does not satisfy these
bounds, this might be an indication that there are outliers in the data or that
the spline function with the chosen number of free knots is not appropriate
for the approximation of the given data set. Note that this same reasoning
is not possible for the bounds imposed by big-M constants, since they have
to hold for all (i, j) ∈ J1 × J2, and not only for those that satisfy zij = 1.

Lastly, we mention that, due to the convexity of the quadratic constraints,
it is straightforward to linearize these constraints and in this way approximate
the convex MIQCP with an mixed-integer linear problem (MILP). Since we
already impose bounds on q in our MIQCP formulation, we can simply choose
m points rt ∈ [−q̄, q̄], compute for t = 1, . . . ,m− 1, the parameters

at = r2
t+1 − r2

t

rt+1 − rt
,

bt = r2
t − at · rt,

of the secants passing through the points (rt, r2
t ), t = 1, . . . ,m, and replace
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the quadratic constraints

q2
ij ≤ αi, ∀(i, j) ∈ J1 × J2,

with the linear constraints

atqij + bk ≤ αi, ∀(i, j) ∈ J1 × J2, t = 1, . . . ,m− 1.

We tested this approach for different choices of m and points rt ∈ [−q̄, q̄].
However, it was not possible to obtain a decrease in the computing time with-
out significantly worsening the quality of the obtained solution. Therefore,
we will not consider this linearization further in this thesis.

6.3 Alternative Error Functions

The main focus of this thesis lies on the computation of spline functions that
minimize the least-squares error. Nevertheless, in this section we want to
consider two error functions that could be alternatives to the least-squares
objective function

k∑
j=0

∑
i∈Ij

(
p(xi, β(j))− yi

)2
,

and we explain what implication the choice of error function has for the spline
approximation problem with fixed knots and the mixed-integer formulation
of the combinatorial formulation of the spline approximation with free knots.

6.3.1 Absolute Error Function

First we consider the absolute error function

k∑
j=0

∑
i∈Ij
|p(xi, β(j))− yi|,

which is less sensitive to outliers than the least-squares error function and
therefore more appropriate in applications where a certain robustness with
respect to outliers in the data is required.
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The absolute error spline approximation problem with fixed knots

min
β

k∑
j=0

∑
i∈Ij
|p(xi, β(j))− yi|

s.t. p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
β ∈ R4(k+1),

can be equivalently reformulated via the generalized epigraph reformulation
in order to obtain the linear optimization problem (LP)

min
β, α

k∑
j=0

∑
i∈Ij

αji

s.t. p(xi, β(j))− yi ≤ αji, j = 0, . . . , k, i ∈ Ij
yi − p(xi, β(j)) ≤ αji, j = 0, . . . , k, i ∈ Ij
p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
β ∈ R4(k+1), α ∈ Rn(k+1).

Therefore, just like the optimal least-squares spline with fixed knots can
be computed very efficiently by solving a linear system of equations, the
absolute error spline approximation problem with fixed knots can be solved
to optimality very efficiently by solving an LP.

In the case of the problem with free knots, a similar derivation as in Sec-
tion 6.2 leads to a mixed integer formulation of the combinatorial formulation
of the absolute error spline approximation problem, where the only difference
to problem (6.2) is that the first two constraints

[zij = 1] =⇒ [qij = p(xi, β(j))− yi], ∀(i, j) ∈ J1 × J2,

q2
ij ≤ αi, ∀(i, j) ∈ J1 × J2,

are replaced with the constraints
[zij = 1] =⇒ [p(xi, β(j))− yi ≤ αi], ∀(i, j) ∈ J1 × J2,

[zij = 1] =⇒ [yi − p(xi, β(j)) ≤ αi], ∀(i, j) ∈ J1 × J2,

and the decision variable q is removed from the problem. Although this is
only a small modification, a major difference to problem (6.2) is that this
new problem is an MILP, since there are no quadratic constraints anymore.
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6.3.2 Maximum Error Function
The second error function we consider is the maximum error function

max
j∈{0,...,k}

max
i∈Ij

|p(xi, β(j))− yi|,

which is more sensitive to outliers than the least-squares error function and
can be more appropriate in applications where outliers occur due to the
variability of the underlying process and not because of measurement errors.

The maximum error spline approximation problem with fixed knots can
be formulated as the LP

min
β, α

α

s.t. p(xi, β(j))− yi ≤ α, j = 0, . . . , k, i ∈ Ij
yi − p(xi, β(j)) ≤ α, j = 0, . . . , k, i ∈ Ij
p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
β ∈ R4(k+1), α ∈ R.

Also in this case, an epigraph reformulation was used in order to obtain this
formulation.

The mixed-integer formulation in the case of free knots is again quite sim-
ilar to the MIQCP (6.2), the only difference being that the decision variable
α ∈ R is minimized in the objective function and the constraints

[zij = 1] =⇒ [qij = p(xi, β(j))− yi], ∀(i, j) ∈ J1 × J2,

q2
ij ≤ αi, ∀(i, j) ∈ J1 × J2,

are replaced with the constraints

[zij = 1] =⇒ [p(xi, β(j))− yi ≤ α], ∀(i, j) ∈ J1 × J2,

[zij = 1] =⇒ [yi − p(xi, β(j)) ≤ α], ∀(i, j) ∈ J1 × J2.

Thus, both of the considered alternative objective functions lead to MILPs
that can be expected to be easier to solve than the convex MIQCP (6.2).
However, the empirical evaluation of this claim is beyond the scope of this
thesis.



Chapter 7

A Branch-and-Bound
Algorithm for the
Combinatorial Formulation

In this chapter our branch-and-bound (B&B) algorithm for the solution of
the combinatorial formulation (6.1) of the least-squares spline approximation
problem with free knots is described. We start by sketching the main idea
of B&B algorithms before going into the details our algorithm. A general
description of branch-and-bound methods in combinatorial optimization can
be found in the books Nemhauser andWolsey (1988), Bertsimas and Tsitsiklis
(1997), Papadimitriou and Steiglitz (1982).

7.1 General Outline of the Branch-and-Bound
Algorithm

The main idea of B&B algorithms is to subsequently divide the problem into
subproblems (branching) and compute lower bounds of the minimal values
of those subproblems. All problems are stored in a list together with the
corresponding lower bound. In case there are subproblems in the list whose
lower bound exceeds a known upper bound for the optimal value of problem
(6.1), these can be excluded from the list without further consideration as
none of their subproblems can contain a globally minimal point. This is also
known as fathoming or pruning. The algorithm terminates with the optimal
solution after a finite number of steps.

57
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7.2 Branching Strategy
As a first step in describing our branching strategy, we define the subproblems
into which the problem is subsequently divided in our B&B algorithm.

For given index sets Λ0, . . . ,Λk ⊆ {1, . . . , n} we formulate the optimiza-
tion problem

S(Λ0, . . . ,Λk) : min
β,I0,...,Ik

k∑
j=0

∑
i∈Ij

(
p(xi, β(j))− yi

)2

s.t. Λj ⊆ Ij, j = 0, . . . , k,
k⋃
j=0

Ij = {1, . . . , n},

Ij 6= ∅, j = 0, . . . , k,
r < q for all r ∈ Ii and q ∈ Ij with i < j,

p(ξj, β(j−1)) = p(ξj, β(j)), j = 1, . . . , k,
p′(ξj, β(j−1)) = p′(ξj, β(j)), j = 1, . . . , k,
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j = 1, . . . , k,
β ∈ R4(k+1),

where
ξj = ( max

i∈Ij−1
xi + min

i∈Ij
xi)/2,

for all j ∈ {1, . . . , k}. We call the index sets Λ0, . . . ,Λk restriction sets, since
by adding indices to these sets we restrict the set of feasible partitions in
problem S(Λ0, . . . ,Λk).

Definition 7.2.1 Restriction sets Λ0, . . . ,Λk ⊆ {1, . . . , n} are called valid,
if there exists a partition I0, . . . , Ik of the set {1, . . . , n} such that the condi-
tions

Λj ⊆ Ij, j = 0, . . . , k, (7.1)
Ij 6= ∅, j = 0, . . . , k, (7.2)
r < q for all r ∈ Ii and q ∈ Ij with i < j, (7.3)

are satisfied.

The basic idea of our B&B algorithm is to subsequently assign indices to
the restriction sets in order to split problem (6.1) into subproblems S(Λ0, . . . ,Λk)
that allow the efficient computation of nontrivial lower bounds.
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Since we can without loss of generality assume that the first point x1 is
assigned to the first polynomial, i.e., 1 ∈ I0, and the last point xn is assigned
to the last polynomial, i.e., n ∈ Ik, we start the B&B algorithm with the
initial restriction sets Λ0 := {1}, Λ1 := ∅, . . . ,Λk−1 := ∅,Λk := {n} and the
set of unassigned indices I = {2, ..., n− 1}.

In order to divide a subproblem S(Λ0, . . . ,Λk) further into subproblems,
we choose an index i ∈ I and assign it to one of the restriction sets Λ0,. . .,Λk.
When we add an index i to a restriction set Λj for which i < min(Λj)
holds, then we also add the indices {i + 1, . . . ,min(Λj) − 1} to Λj, since
those indices cannot be assigned to another restriction set without making
S(Λ0, . . . ,Λk) infeasible. Analogously, if i > max(Λj), then we add the
indices {max(Λj) + 1, . . . , i− 1} to Λj. Note that this implies that an index
which is added to a restriction set is always the smallest or largest index in
this restriction set. The following lemma gives simple conditions that ensure
that the resulting restriction sets are valid, i.e., the new subproblem still
permits feasible partitions.

Lemma 7.2.2 Let Λ0, . . . ,Λk ⊂ {1, ..., n} be valid restriction sets, 1 ∈ Λ0,
n ∈ Λk and j ∈ {0, ..., k}. In addition, let i ∈ {1, ..., n} be an index such that
i /∈ Λm for all m ∈ {0, . . . , k}. Then the sets Λ̄j := Λj ∪ {i}, Λ̄m := Λm,
∀m 6= j, are valid restriction sets if and only if the following conditions are
satisfied:

i < min(Λj) =⇒ max(Λ`) ≤ i+ `− j, (7.4)
i > max(Λj) =⇒ min(Λr) ≥ i+ r − j, (7.5)

where ` := max{ m | Λm 6= ∅, m ∈ {0, . . . , j − 1}} and r := min{ m | Λm 6=
∅, m ∈ {j + 1, . . . , k}}.

Proof. Since the sets Λ0, . . . ,Λk are valid restriction sets, there exists a
partition I0, . . . , Ik of the set {1, ..., n} such that the conditions (7.1) to (7.3)
are satisfied.

We show that if i < min(Λj), then condition (7.4) is satisfied if and only
if the sets Λ̄0, . . . , Λ̄k are valid restriction sets. The argumentation that if
i > max(Λj) condition (7.5) is satisfied if and only if the sets Λ̄0, . . . , Λ̄k are
valid restriction sets is analogous and therefore omitted.

Thus, we assume that i < min(Λj) is true. Since i < min(Λj) and 1 ∈ Λ0
it follows that j ≥ 1 and the set { m | Λm 6= ∅, m ∈ {0, . . . , j − 1}} is
nonempty, i.e., the index ` is well defined.
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Algorithm 7.1 Branching strategy
1: Input: Restriction sets Λ0, . . . ,Λk;

2: Choose an unassigned index i ∈ {1, . . . , n} (i.e., an index which is not
yet contained in one of the restriction sets Λ0, . . . ,Λk);

3: for j = 0, . . . , k do
4: if i and j satisfy conditions (7.4) and (7.5) then
5: if i < min(Λj) then
6: Set Λ̃j := Λj ∪ {i, . . . ,min(Λj)− 1};
7: else
8: Set Λ̃j := Λj ∪ {max(Λj) + 1, . . . , i};
9: end if
10: Add S(Λ0, . . . ,Λj−1, Λ̃j,Λj+1, . . . ,Λk) to list of subproblems P ;
11: end if
12: end for

13: Output: List of new subproblems P ;

If we assume that condition (7.4) is satisfied, we can define the sets

Īm :=


{min(Λ`), . . . , i+ `− j}, if m = `,

{i+m− j}, if ` < m < j,

{i, . . . ,max(Λj)}, if m = j,

Im, if m < ` or j < m,

for allm ∈ {0, . . . , k}. The sets Ī0, . . . , Īk form a partition of the set {1, ..., n}
such that the conditions (7.1) to (7.3) are satisfied for the restriction sets
Λ̄0, . . . , Λ̄k. Consequently, these restriction sets are valid.

On the other hand, assume that condition (7.4) is violated, i.e., max(Λ`) ≥
i+`−j+1. If max(Λ`) > i, it is clear that there exists no partition I0, . . . , Ik
of the set {1, ..., n} such that condition (7.3) is satisfied. If max(Λ`) < i,
then i + ` − j + 1 ≤ max(Λ`) < i and thus there are j − ` − 1 > 0 empty
restriction sets between the sets Λ` and Λj. In every partition I0, . . . , Ik of
the set {1, ..., n} that satisfies conditions (7.1) and (7.3) the j − ` − 1 in-
dex sets Im with ` < m < j cannot all be nonempty, since there are only
i−max(Λ`)− 1 ≤ j − l− 2 unassigned indices that can be assigned to these
sets without violating condition (7.1) or (7.3). But then condition (7.2) is
violated and the restriction sets Λ̄0, . . . , Λ̄k are not valid. �

Our branching strategy is described more formally in Algorithm 7.1. Note
that there are different possibilities to choose an unassigned index in Algo-
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rithm 7.1. We propose to take the midpoint of the (ordered) set of currently
unassigned indices.

If one obtains restriction sets Λ0, . . . ,Λk with Algorithm 7.1 such that
between two nonempty sets Λ` and Λr there are q = min(Λr)−max(Λ`)−1 >
0 empty sets Λm = ∅ with ` < m < r, then one can set Λm := {max(Λ`) +
m − `} for ` < m < r, since this is the only way to assign these indices
such that one obtains valid restriction sets. We made use of this in our
implementation, but it is not explicitly mentioned in Algorithm 7.1.

Example 7.2.3 Suppose we are given the restriction sets Λ0 = {1, 2},Λ1 =
∅,Λ2 = ∅ and Λ3 = {9}. Assume that in Algorithm 7.1 the so far unassigned
index i = 5 is assigned to Λ3. The restriction sets obtained with Algorithm
7.1 are then Λ0 = {1, 2},Λ1 = ∅,Λ2 = ∅ and Λ̃3 = {5, 6, 7, 8, 9}. However, in
addition to that, the empty index sets Λ1 and Λ2 can be filled and we obtain
the restriction sets Λ0 = {1, 2}, Λ̃1 = {3}, Λ̃2 = {4} and Λ̃3 = {5, 6, 7, 8, 9}.

7.3 Computation of Lower Bounds
In order to obtain a nontrivial lower bound of the optimal value of problem
S(Λ0, . . . ,Λk) for given restriction sets Λ0, . . . ,Λk, we compute the optimal
value of the optimization problem

L(Λ0, . . . ,Λk) : min
β

k∑
j=0

∑
i∈Λj

(
p(xi, β(j))− yi

)2

s.t. p(ξj, β(j−1)) = p(ξj, β(j)), j ∈ J(Λ0, . . . ,Λk),
p′(ξj, β(j−1)) = p′(ξj, β(j)), j ∈ J(Λ0, . . . ,Λk),
p′′(ξj, β(j−1)) = p′′(ξj, β(j)), j ∈ J(Λ0, . . . ,Λk),
β ∈ R4(k+1),

where
ξj := ( max

i∈Ij−1
xi + min

i∈Ij
xi)/2,

for all j ∈ J(Λ0, . . . ,Λk) and

J(Λ0, . . . ,Λk) := {j ∈ {1, . . . , k} | 1 + max(Ij−1) = min(Ij)}.

Note that L(Λ0, . . . ,Λk) is a least-squares spline approximation problem with
fixed knots, and can be solved analogously to problem (5.2). The only differ-
ence is that only the knots ξj with j ∈ J(Λ0, . . . ,Λk) and the corresponding
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continuity restrictions are included in the problem. Note that the index set
J(Λ0, . . . ,Λk) contains only the indices of knots which are not subject to
change when the problem S(Λ0, . . . ,Λk) is further divided into subproblems
in subsequent branching steps.

Lemma 7.3.1 Let vL be the optimal value of problem L(Λ0, . . . ,Λk) and vS
the optimal value of problem S(Λ0, . . . ,Λk). Then vL ≤ vS.

Proof. Let β? and I?0 , ..., I
?
k denote an optimal solution of S(Λ0, . . . ,Λk).

Since the partition I?0 , ..., I
?
k is feasible for problem S(Λ0, . . . ,Λk), it must

hold that Λj ⊆ I?j for all j ∈ {0, . . . , k}. Therefore the inequality

k∑
j=0

∑
i∈Λj

(
p(xi, β(j),?)− yi

)2
≤

k∑
j=0

∑
i∈I?j

(
p(xi, β(j),?)− yi

)2

is satisfied. Due to J(Λ0, . . . ,Λk) ⊆ {1, . . . , k} we have that every vec-
tor β that is feasible for problem S(Λ0, . . . ,Λk) is also feasible for problem
L(Λ0, . . . ,Λk). Consequently, the optimal solution β? is feasible for problem
L(Λ0, . . . ,Λk) and we obtain that

vL ≤
k∑
j=0

∑
i∈Λj

(
p(xi, β(j),?)− yi

)2
≤

k∑
j=0

∑
i∈I?j

(
p(xi, β(j),?)− yi

)2
= vS.

�
The optimal value of L(Λ0, . . . ,Λk) is increasing as more indices are added

to the restriction sets Λ0, . . . ,Λk. When the set of unassigned indices is
empty, then the optimal value of L(Λ0, . . . ,Λk) coincides with the optimal
value of the subproblem S(Λ0, . . . ,Λk). Consequently, we can use this tech-
nique to efficiently compute lower bounds for the subproblems and we obtain
a B&B algorithm that terminates with an optimal solution after a finite
number of steps.

We also want to shortly comment on the use of other error functions,
as we did for the mixed-integer formulation in Section 6.3. For both error
functions presented in Section 6.3, problem L(Λ0, . . . ,Λk) becomes an LP.
And although LPs can be solved very efficiently via simplex or interior point
methods, the time necessary to compute an optimal solution of L(Λ0, . . . ,Λk)
should be expected to increase. However, possibly by incorporating a tech-
nique for warm starting the solution process of the linear programming solver,
the B&B approach could still be a competitive method in these cases.
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Algorithm 7.2 Branch-and-bound algorithm for problem (6.1)
1: Input: n data points (xi, yi) ∈ R2, number of free knots k;

2: Initialize list of subproblems as L := {
(
lS, S(Λ0, . . . ,Λk)

)
}, where lS := 0

and Λ0 := {1},Λ1 := ∅, . . . ,Λk−1 := ∅,Λk := {n};
3: Use a heuristic method to determine initial partition (I?0 , . . . , I?k) and

initial upper bound u ∈ [0,∞);
4: while L 6= ∅ do
5: Select

(
lS, S(Λ0, . . . ,Λk)

)
∈ L with smallest lower bound lS;

6: Create set P of new subproblems using Algorithm 7.1;
7: for S(Λ0, . . . ,Λk) ∈ P do
8: Compute the optimal value lS of problem L(Λ0, . . . ,Λk);
9: if lS < u then
10: Add

(
lS, S(Λ0, . . . ,Λk)

)
to L;

11: if ⋃kj=0 Λj = {1, . . . , n} then
12: Set u := lS and I?0 := Λ0, . . . , I

?
k := Λk;

13: end if
14: end if
15: end for
16: for

(
lS, S(Λ0, . . . ,Λk)

)
∈ L with lS ≥ u do

17: Remove
(
lS, S(Λ0, . . . ,Λk)

)
from L;

18: end for
19: end while

20: Output: Globally optimal partition (I?0 , . . . , I?k) for problem (6.1);

7.4 The Branch-and-Bound Algorithm
In Algorithm 7.2 our branch-and-bound method to solve the combinatorial
formulation (6.1) of the least-squares spline problem with free knots is de-
scribed formally.

The initial partition and initial upper bound can be determined by any
heuristic method, or one could simply choose equally spaced knots. Moreover,
in addition to the upper bounds obtained in Algorithm (7.2) when the set of
unassigned indices is empty, every subproblem S(Λ0, . . . ,Λk) can be used to
compute an upper bound for the globally minimal value of problem (6.1). One
only has to generate new restriction sets Λ̄0, . . . , Λ̄k such that all remaining
indices are assigned, i.e., ⋃kj=0 Λ̄j = {1, ..., n}, and Λj ⊆ Λ̄j holds for all
j ∈ {0, ..., k}. Then the optimal value of problem L(Λ̄0, . . . , Λ̄k) is an upper
bound for the globally minimal value of problem (6.1).
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In our numerical tests upper bounds only had a minor influence on the
runtime of the algorithm. Therefore, we did not compute additional upper
bounds during the optimization process. However, upper bounds can help to
keep the list of subproblems L short and ensure that the main memory does
not become a limiting factor.



Chapter 8

Numerical Experiments

In this chapter we present numerical experiments that aim to answer the
question whether the combinatorial approach to the least-squares spline ap-
proximation problem with free knots makes it possible to compute high-
quality solutions to problems of realistic sizes within reasonable computing
times. First we compare the quality of the optimal solution of the combina-
torial formulation with the results obtained with existing approaches. Then
we investigate whether the B&B or the MIQCP approach are more efficient
for the computation of the optimal solution of the combinatorial formulation
(6.1) of the spline approximation problem. Finally, we also compare the B&B
and MIQCP approaches concerning the computation of optimal least-squares
piecewise polynomials, without any continuity restrictions.

8.1 Comparison with Existing Approaches
We consider four different approaches in this section: A variant of the Fletcher-
Reeves nonlinear conjugate gradient method (FR) presented in Dierckx (1996),
the continuous genetic algorithm (CG) proposed in Spiriti et al. (2013), the
combinatorial formulation (CF) presented in Chapter 6 and a combination of
the combinatorial formulation with the Fletcher-Reeves nonlinear conjugate
gradient method (CF+FR).

We use two real data sets from the literature to empirically compare the
quality of the solutions obtained with each of these approaches. Since the
goal is to compare the quality of the solutions and not the computing times,
it is possible to use implementations of the methods in different programming
languages. For the CG method we use the implementation in the R-package
freeknotsplines by Spiriti et al. (2018). For the other methods we use our
own Python implementations. The FR method is always initialized with the
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number of knots FR CG CF CF+FR

2 2.1157 2.0815 2.0741 2.0703
3 1.9209 0.5104 0.5006 0.4651
4 0.0904 0.0669 0.0681 0.0654
5 0.0962 0.0077 0.0093 0.0088

Table 8.1: Least-squares errors of the solutions obtained with the FR, CG,
CF and CF+FR methods when applied to the titanium heat data set.

equidistant knot placement.

Titanium Heat Data

The titanium heat data set was introduced by de Boor and Rice (1968) as an
example of a data set that is difficult to approximate with classical methods.
It is actual data that expresses a thermal property of titanium. It consists
of 49 data points and contains a significant amount of noise.

Table 8.1 shows the least-squares errors of the spline functions corre-
sponding to the knot placements computed with the four approaches for
different numbers of free knots. We can observe that if the FR method is
initialized with the equidistant knot placement, it approximates local solu-
tions with a substantially worse least-squares error then the other methods,
in particular for three and five free knots. The CG and CF approaches both
yield high-quality solutions, with the CF approach being superior for two
and three free knots and slightly inferior for four and five free knots. The
CF+FR approach, where we use the FR method to locally improve the knot
placement obtained with the CF approach, yields the best knot placement
for all problems except the one with five free knots, where it obtains a local
solution slightly inferior to the solution obtained with the CG approach.

The CG and CF approaches both seem to find solutions close to the
globally optimal solution and therefore both of them could be combined
with the FR method in order to find high-quality solutions. However, there
is a theoretically and practically relevant difference. Whereas there is no
optimality guarantee except local optimality if we use the knot placement
obtained with the CG approach as the initial solution of the FR method, the
CF+FR approach guarantees that the approximated local solution is at least
as good as the optimal solution of the combinatorial formulation.

In Figure 8.1 the spline functions corresponding to the knot placements
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computed with the four methods are depicted for the case of three free knots.
Clearly, the solution obtained by the FR method is not satisfactory. The
other three methods yield similarly good approximations, the only visible
difference being the approximation quality near the peak in the data set.
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Figure 8.1: Spline functions with three free knots corresponding to the solu-
tions obtained with the FR, CG, CF and CF+FR methods when applied to
the titanium heat data set.

Angular Displacement Data

The angular displacement data set was introduced in Pezzack et al. (1977)
for the evaluation of differentiation methods of film data of human motion.
We use the modification of this data set proposed by Lanshammar (1982),
which contains larger errors and is supposed to be more realistic than the
original data set. It consists of 142 data points.

In Table 8.2 the least-squares errors of the spline functions correspond-
ing to the knot placements computed with the four approaches for different
numbers of free knots are presented. The overall picture is similar to the one
obtained from the titanium heat data set. The FR method seems to approxi-
mate the globally minimal point for two and three free knots, even when it is
initialized with the equidistant knot placement. However, the least-squares
error of the locally minimal point approximated in case of four and five free
knots is much worse than the result obtained with the other methods. The



68 CHAPTER 8. NUMERICAL EXPERIMENTS

number of knots FR CG CF CF+FR

2 11.4483 11.4486 11.4496 11.4483
3 1.5298 1.5335 1.5384 1.5297
4 1.5266 0.1475 0.1493 0.1465
5 1.3663 0.0544 0.0552 0.0545

Table 8.2: Least-squares errors of the solutions obtained with the FR, CG,
CF and CF+FR methods when applied to the angular displacement data set.

CG and CF methods both find high-quality solutions in all cases and are
only slightly inferior to the combined CF+FR method.

The similarity of the results obtained with the CG, CF and CF+FR
approaches is also visible in Figure 8.2, where only two curves can be dis-
tinguished: the suboptimal fit obtained with the FR method initialized with
the equidistant knot placement, and the high quality approximation obtained
with the other methods.

We stress again that while all methods, except the purely local FR method,
compute high-quality solutions for this problem, only the CF and CF+FR
approaches yield solutions that are guaranteed to be as good or better than
the optimal solution of the combinatorial formulation.

8.2 Comparison of MIQCP and Branch-and-
Bound Approaches

In the previous section we saw that it is possible to obtain high-quality so-
lutions of the least-squares spline approximation problem with free knots by
solving the combinatorial reformulation of the continuous original problem.
In this section we want to determine whether the MIQCP or the B&B ap-
proach is more efficient for the solution of the combinatorial formulation.
First we consider the two real data sets from the previous section to gain
some preliminary insights into the relative performance of the approaches.
Then we use a larger testbed of synthetic data sets in order to decide which
approach should be preferred in practice.

The B&B algorithm was implemented in Python 3.6. We used the com-
mercial optimization solver Gurobi (version 8.1.1) and its Python API to
model and solve the MIQCPs. The computations were performed on an In-
tel Core i7-9700K with 32 GB of main memory. The time limit for each
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Figure 8.2: Spline functions with five free knots corresponding to the solu-
tions obtained with the FR, CG, CF and CF+FR methods when applied to
the angular displacement data set.

algorithm was set to 3600 seconds.

8.2.1 Titanium Heat and Angular Displacement Data
Sets

Tables 8.3 and 8.4 show the least-squares errors of the knot placements com-
puted via the B&B and MIQCP approaches for the titanium heat and angular
displacement data sets and the corresponding CPU times. As was to be ex-
pected, both algorithms seem to approximate the same optimal solutions,
except for the case of five free knots and the displacement data set, where
the MIQCP approach is not able to compute the optimal solution within the
given time limit. The main observation is that the B&B algorithm needs
significantly less CPU time than the MIQCP approach. It is consistently
faster by an order of magnitude.

We can also make some preliminary observations concerning the growth
in computation time when the number of data points or free knots is in-
creased. The angular displacement data set contains almost exactly three
times as many data points as the titanium heat data set. This leads to about
a tenfold increase in computation time for the B&B method. In contrast, the
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B&B MIQCP

number of knots time error time error

2 0.07 2.0741 0.88 2.0741
3 0.40 0.5006 2.00 0.5006
4 1.99 0.0681 9.31 0.0681
5 5.55 0.0093 12.09 0.0093

Table 8.3: CPU times (in seconds) and least-squares errors of the solutions
obtained with the B&B and MIQCP approaches for the titanium heat data
set.

B&B MIQCP

number of knots time error time error

2 0.61 11.4496 78.77 11.4496
3 8.14 1.5384 379.31 1.5384
4 44.95 0.1493 1250.79 0.1493
5 446.37 0.0552 3600.01 0.0563

Table 8.4: CPU times (in seconds) and least-squares errors of the solutions
obtained with the B&B and MIQCP approaches for the angular displacement
data set.

computation time of the MIQCP method increases a hundredfold. However,
increasing the number of free knots by one leads to an increase in the com-
puting time of the B&B algorithm by a factor between 5 and 10, whereas the
computing time of the MIQCP approach increases only by a factor between
1.5 and 5. We will further investigate the dependency of the computation
time on the number of data points and knots in the next section.

8.2.2 Synthetic Data Sets
The experiments on the titanium heat and angular displacement data sets
gave a first impression about the relative performance of the B&B and
MIQCP approaches. In this section we present the results of more exten-
sive numerical experiments with synthetic data sets. The functions used to
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number of data points number of free knots

50 {2, 3, 4, 5, 6, 7}
100 {2, 3, 4, 5, 6}
200 {2, 3, 4, 5}
400 {2, 3, 4}
800 {2, 3}

Table 8.5: All the combinations of data set sizes and number of free knots
that were considered when generating instances of the spline approximation
problem with the functions in Table A.2.

generate the synthetic data sets are listed in Table A.2 in the appendix,
along with further details on the nature and magnitude of the added noise
and the sources that first used these synthetic data sets in the literature on
free knot spline approximation. Each of these functions was used to gener-
ate five synthetic data sets of different sizes. In combination with varying
numbers of free knots we obtained 20 problem instances for each of the 12
functions, yielding 240 problem instances in total. Table 8.5 shows all the
combinations of data set sizes and number of free knots that were considered.

All the results of the experiments are listed in Tables A.3 to A.14 in the
appendix. Concerning the CPU time required by the approaches, the B&B
algorithm was faster than the MIQCP approach on all but three problem
instances. Of the 240 problem instances, the B&B approach was able to solve
218 (90.8%) within the specified time limit of 3600 seconds. In contrast,
the MIQCP approach was only able to solve 141 (58.8%) of the problem
instances in the given time limit. Moreover, there exists no problem instance
in our testbed that could be solved with the MIQCP but not with the B&B
approach.

In particular when the size of the data set is large, the MIQCP approach
frequently fails to compute the optimal solution within the time limit. Among
24 problem instances with data sets containing 800 points, only one could be
solved to optimality with the MIQCP approach, whereas the B&B algorithm
computed the optimal solution for 23 of these problem instances. These
findings support the preliminary observations made in the previous section
that the computing time required by the B&B algorithm grows slower in the
size of the data set than the computing time of the MIQCP approach.

In order to further investigate the dependency of the computing time
on the size of the data set, we consider problem instances with three free
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Figure 8.3: CPU times (in seconds) required by the B&B and MIQCP ap-
proaches in order to compute the optimal spline functions with three free
knots. There are 12 synthetic data sets for each data set size and the time
limit for each algorithm was set to 3600 seconds.

knots and compare the CPU times required by each method for different
data set sizes. Figure 8.3 depicts the CPU times as box plots on a log
scale. From this figure on can observe that the required CPU times of the
B&B and MIQCP approaches increase exponentially in the number of data
points, but the growth constant is smaller for the B&B algorithm. For most
problems, the CPU times needed by the B&B algorithm are an order of
magnitude smaller than the CPU times required by the MIQCP approach.
This can also be observed in Table 8.6, which shows the average CPU times
and the percentages of solved problem instances. Note that unsolved problem
instances enter the average CPU times with the maximal computing time of
3600 seconds. Thus, if there are many unsolved instances, the average CPU
time shown in the table do not give an accurate value for the average CPU
time in absence of any time limit, which should be expected to be much
higher.

Another dependency worth investigating is the dependence of the com-
puting time on the number of free knots. In order to visualize this, we fix
the size of the data set to 50 and compare the CPU times required by each
method for problem instances with different numbers of free knots. From
the box plots in Figure 8.4 we conclude that the CPU time required by both
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B&B MIQCP

number of data points time solved time solved

50 0.71 100% 7.89 100%
100 4.06 100% 152.13 100%
200 27.18 100% 2425.97 66.7%
400 222.81 100% 3591.73 8.3%
800 1927.69 91.7% 3602.16 0%

Table 8.6: Percentage of solved instances and average CPU times (in seconds)
required by the B&B and MIQCP approaches to compute the optimal spline
functions with three free knots. There are 12 synthetic data sets for each
data set size and the time limit for each algorithm was set to 3600 seconds.

methods grows exponentially in the number of free knots, and the growth
constants seem to be roughly similar. This can also be observed in Table 8.7,
where the average CPU time required by the MIQCP approach is consis-
tently 8-10 times larger then the CPU time required by the B&B algorithm,
as long as both methods solve all problem instances in the given time limit,
which is the case for up to five knots.

In summery it can be said that while both approaches enable the compu-
tation of high-quality solutions to least-squares spline approximation prob-
lems with free knots of practically relevant sizes, the conclusion of the nu-
merical experiments presented in this section is that the B&B algorithm is
superior to the MIQCP approach in terms of computing time.

8.2.3 Computation of Piecewise Polynomials
In the previous sections, we focused on the computation of cubic spline func-
tions with the maximum number of continuity restrictions, since this is ar-
guably the most relevant case in practice. However, as me mentioned in the
beginning, our approaches can also be used if there are fewer or no conti-
nuity restriction. In this section we want to compare the B&B and MIQCP
approaches when it comes to computing the optimal solution of the least-
squares piecewise polynomial approximation problem with free knots, i.e.,
when no continuity conditions have to be satisfied at the knots.

We again used each of the functions from Table A.2 to generate five syn-
thetic data sets of different sizes, and in combination with varying numbers
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Figure 8.4: CPU times (in seconds) required by the B&B and MIQCP ap-
proaches in order to compute the optimal spline functions for 50 data points.
There are 12 synthetic data sets for each data set size and the time limit for
each algorithm was set to 3600 seconds.

of free knots, we obtained 240 problem instances in total. The combinations
of data set sizes and numbers of free knots that we considered are shown in
Table 8.8.

The results of the numerical experiments are listed in Tables A.15 to A.25
in the appendix. As was to be expected, the computing time required to com-
pute an optimal piecewise polynomial function is considerably lower than the
computing time needed to determine the optimal least-squares spline func-
tions. This holds true for both approaches. On problem instances that could
be solved in the piecewise polynomial and in the spline function approxima-
tion case, the B&B approach for the computation of the optimal piecewise
polynomial needs on average only 18.9% of the CPU time required for the
computation of the optimal spline function. Similarly, the MIQCP approach
for the computation of the optimal piecewise polynomial needs on average
only 15.9% of the CPU time required for the computation of the optimal
spline function.

Concerning the relative performance of the B&B and MIQCP approaches,
we observe that of the 240 problem instances, 204 (85%) could be solved
within the given time limit of 3600 seconds with the B&B approach, whereas
only 149 (62.1%) could be solved with the MIQCP approach. Of the 141
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B&B MIQCP

number of free knots time solved time solved

2 0.08 100% 0.85 100%
3 0.71 100% 7.88 100%
4 4.79 100% 42.08 100%
5 37.76 100% 307.34 100%
6 283.99 100% 1222.19 75.0%
7 1287.84 83.3% 2265.58 58.3%

Table 8.7: Percentage of solved instances and average CPU times (in seconds)
required by the B&B and MIQCP approaches to compute the optimal spline
functions for 50 data points. There are 12 synthetic data sets for each data
set size and the time limit for each algorithm was set to 3600 seconds.

number of data points number of free knots

100 {2, 3, 4, 5, 6, 7}
200 {2, 3, 4, 5, 6}
400 {2, 3, 4, 5}
800 {2, 3, 4}
1600 {2, 3}

Table 8.8: All the combinations of data set sizes and number of free knots
that were considered when generating instances of the piecewise polynomial
approximation problem with the functions in Table A.2.
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problems that could be solved with both approaches, the B&B algorithm was
faster for 129 problems and the average CPU time required by the MIQCP
approach was more than three times as large as the average CPU time re-
quired by the B&B algorithm.

However, the relative performance of the approaches is highly dependent
on the number of data points and knots. Of the 24 problem instances with
data sets containing 1600 points, only one could be solved with the MIQCP
approach, whereas the B&B approach was able to solve all of the 24 instances.
On the other hand, of the 12 problems instances with 7 free knots, the
MIQCP approach is able to solve 9, whereas the B&B approach can only
solve 5 in the given time limit.

We illustrate the dependency of the CPU time on the number of data
points in Figure 8.5, which depicts the CPU times required by each method
for problem instances with three free knots and different data set sizes as
box plots on a log scale. We observe that the CPU times required by the
B&B algorithm are two orders of magnitude smaller than the CPU times
required by the MIQCP approach. This can also be seen in Table 8.9, where
the average CPU times and the percentage of solved problem instances are
listed.
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Figure 8.5: CPU times (in seconds) required by the B&B and MIQCP ap-
proaches in order to compute the optimal piecewise polynomials with three
free knots. There are 12 synthetic data sets for each data set size and the
time limit for each algorithm was set to 3600 seconds.
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B&B MIQCP

number of data points time solved time solved

100 0.20 100% 7.60 100%
200 1.19 100% 139.95 100%
400 8.08 100% 1629.47 83.3%
800 49.56 100% 3600.13 0%
1600 429.10 100% 3664.32 0%

Table 8.9: Percentage of solved instances and average CPU times (in sec-
onds) required by the B&B and MIQCP approaches to compute the optimal
piecewise polynomials with three free knots. There are 12 synthetic data sets
for each data set size and the time limit for each algorithm was set to 3600
seconds.

We also illustrate the dependency of the CPU time on the number of free
knots. For this purpose, we consider the problem instances with 100 data
points and consider the CPU time required by each method for different num-
bers of free knots. From the box plots in Figure 8.6 and the corresponding
Table 8.10 we observe that although the MIQCP approach is slower for most
problem instances, the computing time grows slower in the number of free
knots than the computing time of the B&B approach. In fact, for seven free
knots, the average CPU time required by the MIQCP approach is smaller
than the average CPU time of the B&B approach. Therefore, the MIQCP
approach might be the more appropriate choice for problems with seven or
more free knots.
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Figure 8.6: CPU times (in seconds) required by the B&B and MIQCP ap-
proaches in order to compute the optimal piecewise polynomials for 100 data
points. There are 12 synthetic data sets for each data set size and the time
limit for each algorithm was set to 3600 seconds.

B&B MIQCP

number of free knots time solved time solved

2 0.01 100% 1.43 100%
3 0.20 100% 7.60 100%
4 3.63 100% 30.03 100%
5 50.48 100% 159.45 100%
6 492.54 100% 755.92 100%
7 2683.70 41.7 % 1967.34 75.0%

Table 8.10: Percentage of solved instances and average CPU times (in sec-
onds) required by the B&B and MIQCP approaches to compute optimal
piecewise polynomials for 100 data points. There are 12 synthetic data sets
for each data set size and the time limit for each algorithm was set to 3600
seconds.



Chapter 9

Conclusions and Outlook

In this thesis we proposed new algorithms for the solution of nonconvex data
approximation problems.

In Part I we proposed an adaptively sampled trust-region method for
finite-sum minimization. We showed theoretically that the sample size is
eventually increased to the size of the whole training data set, which implies
global convergence. Our numerical experiments demonstrated strong perfor-
mance of our method, which did not involve any hyper-parameter tuning to
individual problems or data sets.

A promising avenue for future research is the incorporation of different
kinds of curvature information. Limited-memory techniques could be used
to make our method applicable to high-dimensional problems, see Burdakov
et al. (2017) and Erway et al. (2019). Approximations to the diagonal of the
Hessian, as described in Gower et al. (2018), could make the method more
efficient for very large data sets and the training of more complex neural
networks.

In Part II of this thesis, we proposed to solve a combinatorial formula-
tion of the least-squares spline approximation problem with free knots. We
demonstrated that the optimal solution of this combinatorial problem is close
to the globally optimal solution and can therefore serve as an initial solution
for a local optimization algorithm. We developed two approaches for the
solution of the combinatorial optimization problem, namely an MIQCP for-
mulation and a tailored B&B method. Our numerical experiments confirmed
that both approaches enable the solution of problems of practically relevant
sizes, and that the B&B algorithm is superior in terms of the required CPU
time.

There are several possible directions for future research. One promising
idea is to accelerate the solution of the linear systems of equations in the
B&B approach by switching to the B-Spline basis. On the one hand, the
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linear systems that have to be solved in order to determine lower bounds
for the subproblems become banded and therefore the method of Cholesky
for positive band matrices could be used, see Martin et al. (1965). On the
other hand, and going even further, one could make use of the fact that the
restriction sets Λ̄0, . . . , Λ̄k obtained with Algorithm (7.1) are oftentimes very
similar to the sets Λ0, . . . ,Λk that were provided as input to the algorithm. In
many cases, only a single index is added to one of the restriction sets. Thus,
in order to compute a lower bound for the subproblem S(Λ̄0, . . . , Λ̄k) one
typically has to solve a linear system of equations that is quite similar to the
linear system that was solved in a prior iteration when a lower bound of the
subproblem S(Λ0, . . . ,Λk) was computed. Thus, it should be expected that
the efficiency of the B&B algorithm would improve significantly by employing
the orthogonalization method of Cox (1981), saving the QR decomposition
for each subproblem and solving the modified linear systems with Givens
rotations, see, e.g., Gentleman (1973).

Finally, it would be interesting to compare the B&B and mixed-integer
approaches for spline approximation problems with other error functions. As
discussed in Section 6.3, the absolute and maximum error functions lead to
MILPs, which might be easier to solve than the convex MIQCPs that have
to be solved when the least-squares error function is used. In contrast, the
iterations of the B&B algorithm likely become more expensive, since an LP
has to be solved in every iteration, instead of a system of linear equations.
The question of whether this is sufficient to make the mixed-integer approach
superior to the B&B algorithm in these cases is left for future research.
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Appendix A

Results of the Numerical
Experiments

A.1 Large-Scale Finite-Sum Minimization
For each problem and data set, we plot the training error and the test ac-
curacy against CPU-time and effective gradient evaluations. Moreover, the
plots in the last row provide additional details concerning the ADST method.
On the left, we report the behavior of the sample sizes used in the gradient
and Hessian matrix approximations (s and sH , respectively), on the right the
number of inner iterations is depicted.

In Figures A.1 - A.8 we report the results for the logistic regression exper-
iments on the 8 binary classification data sets from Table A.1. Figures A.9
- A.16 show the performance of the methods for the nonlinear least-squares
problems on the same binary classification data sets.
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Figure A.1: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set a9a.
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Figure A.2: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set w8a.
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Figure A.3: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set odd_even.
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Figure A.4: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set ijcnn.
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Figure A.5: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set skin.
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Figure A.6: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set covertype.
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Figure A.7: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set SUSY.
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Figure A.8: Performance of SGD, SVRG, TR and ASTR on the logistic
regression problem with data set HIGGS.
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Figure A.9: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set a9a.
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Figure A.10: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set w8a.
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Figure A.11: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set odd_even.
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Figure A.12: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set ijcnn.
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Figure A.13: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set skin.
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Figure A.14: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set covertype.
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Figure A.15: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set SUSY.
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Figure A.16: Performance of SGD, SVRG, TR and ASTR on the nonlinear
least squares problem with data set HIGGS.
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A.2 Least-Squares Spline Approximation with
Free Knots

The test functions that were used to generate the data sets are listed in
Table A.2. Five data sets of different sizes were generated per test function,
totaling 60 data sets. In combination with varying numbers of free knots (see
Table A.2), we obtain 240 problem instances

The results of the application of the B&B and MIQCP approaches to
the 240 problem instances are shown in Tables A.3 to A.14. Each table
shows the CPU time and the minimal least-squares error that was obtained
with the B&B and MIQCP approaches for each of the 20 problem instances
corresponding to one of the test functions.
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number of B&B MIQCP

data points knots time error time error

50

2 0.07 3.4591 0.92 3.4591
3 0.25 0.9112 8.01 0.9013
4 0.53 0.1044 7.95 0.1044
5 8.72 0.0940 71.65 0.0940
6 90.92 0.0895 1030.00 0.0895
7 1028.44 0.0854 3600.00 0.0855

100

2 0.29 6.1540 10.10 6.1540
3 1.07 1.4899 80.14 1.4899
4 4.02 0.2041 121.05 0.2041
5 106.39 0.1921 1969.82 0.1921
6 2471.47 0.1799 3600.00 0.1876

200

2 1.01 11.8372 126.75 11.8372
3 5.44 2.9371 1797.52 2.9371
4 32.58 0.4192 1165.82 0.4192
5 1795.14 0.4095 3600.00 0.4200

400
2 4.38 23.9315 3098.95 23.9315
3 30.83 6.0669 3600.00 6.8201
4 300.28 0.9724 3600.00 1.7208

800
2 19.94 46.7016 3600.00 47.7514
3 209.47 11.8452 3600.00 13.5497

Table A.3: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the coslin data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.06 0.5753 0.51 0.5753
3 0.89 0.5042 5.82 0.5042
4 7.19 0.3160 84.99 0.3160
5 13.03 0.0294 29.38 0.0294
6 82.66 0.0183 292.54 0.0183
7 392.80 0.0130 1378.41 0.0130

100

2 0.18 1.1390 7.39 1.1390
3 4.90 0.9678 71.32 0.9678
4 75.40 0.5554 1763.19 0.5576
5 196.79 0.0531 2425.19 0.0534
6 2122.54 0.0314 3600.00 0.0315

200

2 0.70 2.3114 55.39 2.3114
3 34.47 1.9061 2542.63 1.9061
4 988.15 1.1100 3600.00 1.1129
5 3600.00 0.1185 3600.00 0.2545

400
2 2.77 4.5829 2658.01 4.5829
3 279.66 3.6729 3600.00 3.8171
4 3600.00 2.4240 3600.00 2.6586

800
2 12.69 9.2442 3600.00 9.4368
3 2518.26 7.4096 3600.00 9.3481

Table A.4: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the cube data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.06 4.6964 0.48 4.6964
3 0.58 3.4588 2.53 3.4588
4 1.53 0.4325 15.74 0.4325
5 10.10 0.3455 39.87 0.3455
6 51.51 0.2558 408.95 0.2558
7 210.92 0.2329 1997.10 0.2481

100

2 0.21 9.1059 2.53 9.1059
3 3.86 6.6438 148.64 6.6438
4 0.21 0.2232 212.95 0.2232
5 4.71 0.2165 1806.63 0.2165
6 78.87 0.2064 3600.00 0.2105

200

2 0.90 18.1362 86.03 18.1362
3 27.39 13.1515 3570.80 13.1515
4 0.71 0.4567 636.43 0.4567
5 10.53 0.4144 3600.00 0.4306

400
2 3.38 36.1392 3043.60 36.1392
3 250.25 26.4483 3600.00 27.0581
4 5.95 0.9081 3600.00 1.0660

800
2 15.83 72.0712 3600.00 72.5003
3 2164.30 52.7153 3600.00 84.4990

Table A.5: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the arctan data sets.



110 APPENDIX A. RESULTS OF THE NUMERICAL EXPERIMENTS

number of B&B MIQCP

data points knots time error time error

50

2 0.06 0.7367 0.32 0.7367
3 1.48 0.5666 4.24 0.5666
4 2.26 0.0318 6.99 0.0318
5 1.18 0.0192 15.99 0.0192
6 6.34 0.0095 38.59 0.0099
7 27.02 0.0082 562.21 0.0082

100

2 0.24 1.4512 13.51 1.4512
3 4.41 1.1025 68.04 1.1025
4 0.24 0.0182 33.89 0.0239
5 1.73 0.0137 67.53 0.0138
6 2.04 0.0087 404.93 0.0088

200

2 0.89 2.9621 69.46 2.9623
3 31.41 2.2638 1253.74 2.2649
4 2.01 0.0423 556.68 0.0423
5 9.87 0.0288 2285.96 0.0289

400
2 3.87 5.8450 1265.97 5.8452
3 262.54 4.4643 3600.00 4.5481
4 26.58 0.0982 3600.00 0.1008

800
2 16.78 11.9212 3600.00 11.9777
3 2520.92 9.1307 3600.00 9.3086

Table A.6: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the rational data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.09 10.9860 0.65 10.9860
3 0.72 8.6328 7.07 8.6328
4 7.46 7.1044 32.63 7.1044
5 57.07 5.7851 218.39 5.7851
6 354.36 4.6809 877.02 4.6970
7 1949.43 3.7589 2452.50 3.7589

100

2 0.33 23.0728 14.84 23.0728
3 4.84 17.7147 220.74 17.7147
4 97.05 15.0395 2556.93 15.0649
5 1328.56 12.5097 3600.00 12.5606
6 3600.00 20.4869 3600.00 11.5174

200

2 1.37 45.9278 238.58 45.9278
3 36.65 37.6970 3600.00 37.9377
4 1219.98 31.5434 3600.00 32.5706
5 3600.00 43.8824 3600.00 27.6896

400
2 5.14 94.1947 3600.00 94.2006
3 304.57 77.1099 3600.00 84.7810
4 3600.00 72.2202 3600.00 78.1342

800
2 22.04 183.7737 3600.00 190.3930
3 2891.00 151.8663 3600.00 190.7947

Table A.7: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the Inhom1 data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.02 0.0182 0.43 0.0182
3 0.21 0.0080 0.76 0.0080
4 3.55 0.0069 7.23 0.0069
5 29.26 0.0040 18.71 0.0040
6 295.27 0.0037 113.66 0.0037
7 2522.02 0.0035 840.06 0.0035

100

2 0.03 0.0333 1.14 0.0333
3 0.76 0.0140 8.99 0.0142
4 21.43 0.0100 80.74 0.0100
5 472.39 0.0074 804.64 0.0074
6 3600.00 0.0447 3600.00 0.0073

200

2 0.06 0.0579 48.01 0.0579
3 3.17 0.0295 128.31 0.0295
4 163.64 0.0194 3600.00 0.0195
5 3600.00 0.6379 3600.00 0.0160

400
2 0.15 0.1016 201.55 0.1016
3 14.48 0.0606 3500.27 0.0606
4 1595.61 0.0460 3600.00 0.0630

800
2 0.46 0.1995 3214.82 0.1995
3 69.01 0.1260 3600.00 0.1353

Table A.8: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the Inhom2 data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.07 0.5018 0.39 0.5033
3 0.55 0.3750 6.52 0.3750
4 3.40 0.2077 52.92 0.2078
5 26.18 0.1585 248.20 0.1585
6 156.17 0.0964 882.31 0.0964
7 832.57 0.0723 3600.00 0.0723

100

2 0.20 0.9394 10.03 0.9394
3 3.46 0.6942 116.00 0.6942
4 41.64 0.3957 791.54 0.3957
5 456.95 0.2472 3600.00 0.2472
6 3600.00 0.1336 3600.00 0.1382

200

2 0.62 1.7637 110.13 1.7637
3 22.36 1.3302 2867.66 1.3302
4 539.18 0.7983 3600.00 0.8076
5 3600.00 0.4517 3600.00 0.4716

400
2 2.35 3.4699 3600.00 3.4702
3 172.10 2.6261 3600.00 2.6495
4 3600.00 1.5362 3600.00 1.9998

800
2 10.11 6.9963 3600.00 6.9993
3 1645.45 5.3194 3600.00 8.1098

Table A.9: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the Inhom3 data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.07 0.1139 0.39 0.1139
3 0.59 0.0970 6.93 0.0969
4 9.91 0.0933 79.92 0.0933
5 141.17 0.0911 1390.74 0.0911
6 1049.85 0.0844 3600.00 0.0848
7 3600.00 0.0822 3600.00 0.0820

100

2 0.26 0.2193 8.13 0.2193
3 4.93 0.1962 155.72 0.1961
4 76.86 0.1791 2794.67 0.1791
5 2124.09 0.1732 3600.00 0.1732
6 3600.00 0.1822 3600.00 0.1718

200

2 0.79 0.4427 73.99 0.4427
3 22.35 0.4115 3600.00 0.4113
4 873.29 0.3961 3600.00 0.4008
5 3600.00 0.5014 3600.00 0.4021

400
2 2.88 0.9864 1851.05 0.9864
3 240.02 0.9560 3600.00 0.9634
4 3600.00 0.9737 3600.00 0.9574

800
2 13.78 2.1311 3600.00 2.1323
3 2171.49 2.0462 3600.00 2.2193

Table A.10: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the logit data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.08 5.7810 0.70 5.7810
3 0.49 0.8783 3.97 1.0780
4 1.26 0.4670 10.91 0.4670
5 0.79 0.1027 25.54 0.1035
6 6.75 0.0912 178.70 0.0912
7 77.91 0.0895 1472.02 0.0895

100

2 0.31 11.2940 14.80 11.2940
3 3.12 1.5471 98.27 1.5471
4 12.49 0.7787 1820.18 0.7791
5 10.25 0.1781 2890.07 0.1781
6 202.99 0.1698 3600.00 0.1732

200

2 1.18 22.5535 268.56 22.5535
3 22.65 3.3619 1455.88 3.3619
4 138.53 1.8640 3600.00 1.9237
5 193.40 0.3961 3600.00 0.5218

400
2 5.24 45.7506 3600.00 45.7670
3 178.02 6.7443 3600.00 6.9803
4 1840.29 3.8048 3600.00 4.1288

800
2 24.44 91.0807 3600.00 101.2249
3 1600.59 13.3475 3600.00 13.4037

Table A.11: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the bump data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.13 17.0711 1.46 17.0711
3 0.97 10.4822 18.98 10.4822
4 0.60 0.3702 13.73 0.3843
5 6.01 0.2340 73.87 0.2413
6 33.19 0.1027 44.48 0.1027
7 289.52 0.0926 484.61 0.0938

100

2 0.52 33.1035 22.50 33.1035
3 6.41 19.6492 416.24 19.6492
4 3.60 0.4631 179.56 0.4631
5 66.21 0.3024 803.71 0.3063
6 935.16 0.1927 1983.31 0.1927

200

2 2.06 67.0331 398.53 67.0331
3 44.15 38.5993 3600.00 39.3872
4 30.74 0.9182 3600.00 0.9600
5 1226.02 0.6415 3600.00 0.7174

400
2 9.10 135.4760 3600.00 136.1795
3 359.62 77.8900 3600.00 80.1551
4 301.97 1.9672 3600.00 3.1658

800
2 42.35 267.9905 3600.00 273.7274
3 3528.50 153.3054 3600.00 154.2675

Table A.12: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the sine3 data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.18 21.1645 3.65 21.1645
3 1.48 18.4579 26.52 18.4579
4 12.77 16.9435 170.77 16.9435
5 56.04 14.2477 1146.07 14.2477
6 342.77 12.7009 3600.00 12.7177
7 923.43 10.0586 3600.00 10.0586

100

2 0.71 43.9084 28.31 43.9084
3 9.75 38.2630 413.70 38.2630
4 149.12 35.0655 3600.00 35.0655
5 1257.85 29.4076 3600.00 29.4646
6 3600.00 26.5850 3600.00 26.2792

200

2 2.94 87.8447 392.33 87.8447
3 68.91 76.4570 3600.00 76.4825
4 2025.08 69.9809 3600.00 76.3092
5 3600.00 67.1722 3600.00 69.8451

400
2 12.61 175.9133 3600.00 176.5174
3 534.93 153.9283 3600.00 157.7253
4 3600.00 151.3318 3600.00 153.3733

800
2 58.69 357.5205 3600.00 364.8069
3 3600.00 312.9597 3600.00 366.5322

Table A.13: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the sine6 data sets.
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number of B&B MIQCP

data points knots time error time error

50

2 0.04 0.1393 0.33 0.1393
3 0.33 0.0974 3.24 0.0974
4 6.99 0.0950 21.24 0.0950
5 103.58 0.0928 409.67 0.0929
6 938.14 0.0869 3600.00 0.0872
7 3600.00 0.0878 3600.00 0.0845

100

2 0.10 0.2273 1.84 0.2273
3 1.19 0.1807 27.76 0.1807
4 49.77 0.1756 957.79 0.1756
5 1625.99 0.1717 3600.00 0.1717
6 3600.00 0.2070 3600.00 0.1697

200

2 0.24 0.4619 41.64 0.4620
3 7.18 0.4044 1095.09 0.4044
4 640.30 0.3977 3600.00 0.3993
5 3600.00 0.5200 3600.00 0.3949

400
2 1.09 1.0607 1332.05 1.0607
3 46.68 0.9583 3600.00 0.9581
4 3600.00 1.4674 3600.00 0.9573

800
2 3.21 2.1295 3600.00 2.1295
3 213.29 1.9869 3600.00 2.1089

Table A.14: CPU times (in seconds) and least-squares errors of the cubic
spline functions corresponding to the knot placements computed with the
B&B and MIQCP approaches for the SpaHet3 data sets.
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A.3 Least-Squares Polynomial Approximation
with Free Knots

The test functions that were used to generate the data sets are listed in
Table A.2. Five data sets of different sizes were generated per test function,
totaling 60 data sets. In combination with varying numbers of free knots (see
Table A.2), we obtain 240 problem instances

The results of the application of the B&B and MIQCP approaches to
the 240 problem instances are shown in Tables A.15 to A.25. Each table
shows the CPU time and the minimal least-squares error that was obtained
with the B&B and MIQCP approaches for each of the 20 problem instances
corresponding to one of the test functions.
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number of B&B MIQCP

data points knots time error time error

100

2 0.01 0.5107 0.23 0.7888
3 0.10 0.2049 8.24 0.2049
4 2.71 0.1405 28.72 0.1405
5 55.67 0.1132 117.27 0.1132
6 739.60 0.0943 475.81 0.0943
7 3600.00 0.1425 3600.00 0.0785

200

2 0.01 1.0492 11.49 1.0492
3 0.51 0.4759 140.00 0.4759
4 31.80 0.3660 1658.04 0.3660
5 1896.04 0.3368 3600.00 0.3425
6 3600.00 0.3722 3600.00 0.3156

400

2 0.03 2.0178 114.60 2.0572
3 2.40 1.0737 3082.96 1.0737
4 351.82 0.8843 3600.00 0.8905
5 3600.00 0.9197 3600.00 0.9049

800
2 0.09 4.3832 2462.61 4.3832
3 14.45 2.4931 3600.00 2.5524
4 3600.00 1.9357 3600.00 2.0062

1600
2 0.25 8.7039 3600.00 12.4831
3 85.61 4.9216 3600.00 5.1713

Table A.15: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the coslin data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.01 0.2027 0.66 0.2027
3 0.19 0.0398 1.22 0.0516
4 4.06 0.0295 25.97 0.0309
5 61.28 0.0221 374.50 0.0221
6 691.22 0.0174 274.84 0.0174
7 3600.00 0.0287 2654.69 0.0136

200

2 0.02 0.3993 2.72 0.3993
3 0.87 0.0839 38.96 0.0839
4 42.72 0.0679 176.24 0.0699
5 1616.99 0.0566 1421.53 0.0566
6 3600.00 0.1034 3600.00 0.0517

400

2 0.06 0.8939 129.56 0.8939
3 3.98 0.1834 868.65 0.2434
4 427.97 0.1549 3600.00 0.1553
5 3600.00 0.7362 3600.00 0.1769

800
2 0.14 1.7095 2447.29 1.7095
3 20.45 0.3953 3600.00 0.5423
4 3600.00 3.3116 3600.00 1.1113

1600
2 0.45 3.5120 3600.00 17.2600
3 115.35 0.7763 3600.00 8.3445

Table A.16: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the cube data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.00 0.1777 0.35 0.1819
3 0.03 0.1533 10.20 0.1533
4 0.62 0.1393 25.08 0.1393
5 7.85 0.1216 186.67 0.1216
6 99.07 0.1090 2028.98 0.1090
7 863.58 0.0930 3600.00 0.0980

200

2 0.00 0.4382 1.60 0.4382
3 0.12 0.3827 115.03 0.3846
4 4.79 0.3631 686.84 0.3631
5 177.41 0.3431 3600.00 0.3437
6 3600.00 3.0895 3600.00 0.3250

400

2 0.01 0.8905 148.64 0.8905
3 0.50 0.7637 904.91 0.7637
4 38.04 0.7196 3600.00 0.7339
5 3346.17 0.6906 3600.00 0.8234

800
2 0.03 1.7500 1011.89 1.7500
3 2.46 1.5143 3600.00 2.3085
4 473.32 1.4751 3600.00 1.9899

1600
2 0.13 3.6059 3600.00 7.4444
3 14.31 3.0868 3600.00 10.7422

Table A.17: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the arctan data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.00 0.0176 0.39 0.0176
3 0.01 0.0084 0.85 0.0084
4 0.12 0.0055 13.25 0.0060
5 2.28 0.0046 16.41 0.0046
6 30.22 0.0037 76.87 0.0037
7 312.59 0.0030 316.72 0.0030

200

2 0.01 0.0421 1.21 0.0421
3 0.05 0.0209 36.38 0.0209
4 1.06 0.0156 236.85 0.0156
5 50.75 0.0141 1842.65 0.0141
6 2181.12 0.0130 3600.00 0.0133

400

2 0.02 0.0979 234.93 0.0979
3 0.26 0.0497 577.15 0.0498
4 11.25 0.0383 1940.71 0.0383
5 1215.64 0.0352 3600.00 0.0366

800
2 0.04 0.1930 1680.66 0.1930
3 1.50 0.1090 3600.00 0.1152
4 103.99 0.0804 3600.00 0.0910

1600
2 0.13 0.3863 3600.00 2.1625
3 9.36 0.2192 3600.00 0.4026

Table A.18: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the rational data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.02 11.8090 0.62 11.8090
3 0.36 7.7033 12.24 7.7033
4 6.71 4.9851 56.67 4.9851
5 97.32 2.5491 75.19 2.5491
6 942.03 0.5317 80.76 0.5317
7 3600.00 9.6872 66.09 0.1963

200

2 0.05 25.8713 3.74 25.8713
3 1.95 18.8375 56.07 18.8375
4 74.22 13.8222 338.44 13.8222
5 2540.94 9.8131 1432.61 9.8131
6 3600.00 23.7368 2451.69 6.8354

400

2 0.13 53.8883 220.64 53.8883
3 9.48 39.3469 1237.96 39.3469
4 823.45 30.2025 3600.00 33.4801
5 3600.00 57.6433 3600.00 28.0787

800
2 0.34 104.5557 2882.40 104.5557
3 45.47 74.8116 3600.00 75.0148
4 3600.00 120.8058 3600.00 74.7258

1600
2 1.01 220.8426 3600.00 274.6243
3 278.96 161.2179 3600.00 234.4409

Table A.19: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the Inhom1 data sets.



A.3. POLYNOMIAL APPROXIMATION WITH FREE KNOTS 125

number of B&B MIQCP

data points knots time error time error

100

2 0.01 0.0152 0.77 0.0152
3 0.34 0.0062 1.20 0.0062
4 7.44 0.0050 10.36 0.0050
5 103.25 0.0041 115.76 0.0041
6 853.59 0.0034 281.28 0.0034
7 3600.00 0.0214 1252.50 0.0028

200

2 0.05 0.0330 14.62 0.0330
3 1.43 0.0147 76.58 0.0147
4 78.72 0.0135 322.23 0.0135
5 3600.00 0.0128 3196.22 0.0128
6 3600.00 0.0416 3600.00 0.0122

400

2 0.09 0.0680 92.18 0.0680
3 7.41 0.0389 2096.09 0.0389
4 910.11 0.0361 3082.60 0.0361
5 3600.00 0.0904 3600.00 0.0355

800
2 0.20 0.1295 410.90 0.1295
3 38.39 0.0844 3600.00 0.0859
4 3600.00 0.5910 3600.00 0.0842

1600
2 0.64 0.2661 3600.00 0.2677
3 220.47 0.1696 3600.00 0.4654

Table A.20: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the Inhom2 data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.03 0.1668 3.38 0.1668
3 0.57 0.1387 10.99 0.1387
4 8.14 0.1132 54.52 0.1132
5 102.96 0.0972 412.67 0.0972
6 832.81 0.0812 1926.12 0.0812
7 3600.00 0.1405 1049.07 0.0685

200

2 0.10 0.3798 17.30 0.3798
3 4.52 0.3530 813.28 0.3556
4 188.54 0.3314 3289.98 0.3314
5 3600.00 0.3748 3600.00 0.3110
6 3600.00 0.3755 3600.00 0.2977

400

2 0.39 0.9184 318.12 0.9184
3 39.40 0.8815 3600.00 0.8831
4 3279.72 0.8436 3600.00 0.8633
5 3600.00 0.9149 3600.00 0.8564

800
2 1.16 1.9657 3600.00 1.9883
3 243.69 1.9128 3600.00 1.9599
4 3600.00 1.9714 3600.00 1.9355

1600
2 3.56 3.9553 3600.00 4.0251
3 2652.56 3.9146 3600.00 3.9444

Table A.21: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the logit data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.00 0.3902 0.52 0.3902
3 0.05 0.1545 6.79 0.1545
4 1.20 0.1319 26.14 0.1319
5 21.69 0.1099 116.37 0.1100
6 283.56 0.0903 402.53 0.0903
7 2622.32 0.0744 2717.25 0.0744

200

2 0.01 0.8147 2.84 0.8147
3 0.26 0.3839 96.22 0.3847
4 16.29 0.3563 363.81 0.3567
5 790.82 0.3314 3600.00 0.3349
6 3600.00 0.5516 3600.00 0.3140

400

2 0.03 1.7785 224.05 1.7785
3 1.33 0.9032 847.92 0.9032
4 192.22 0.8672 3600.00 0.8904
5 3600.00 1.4422 3600.00 0.8478

800
2 0.06 3.5225 2068.52 3.5225
3 6.59 1.9587 3600.00 3.2012
4 2268.58 1.9045 3600.00 4.0858

1600
2 0.25 7.4082 3600.00 15.8993
3 44.77 4.0155 3600.00 8.8137

Table A.22: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the bump data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.01 0.6713 1.63 0.6713
3 0.09 0.3275 5.92 0.3275
4 2.10 0.2116 23.19 0.2119
5 31.14 0.1358 122.22 0.1358
6 418.49 0.1047 321.66 0.1047
7 3600.00 0.0872 1448.17 0.0843

200

2 0.01 1.3100 10.76 1.3100
3 0.48 0.7596 23.73 0.8926
4 18.37 0.4690 305.05 0.4690
5 755.41 0.3860 1865.44 0.3860
6 3600.00 0.3681 3600.00 0.3205

400

2 0.03 2.7867 82.23 2.7867
3 1.97 1.5899 636.09 1.5899
4 164.27 1.0238 3600.00 1.0481
5 3600.00 1.0137 3600.00 0.9302

800
2 0.08 5.0479 1641.67 5.0479
3 11.74 3.3369 3600.00 3.4325
4 2149.06 2.3186 3600.00 2.4599

1600
2 0.23 10.7035 3600.00 10.7365
3 69.69 6.8835 3600.00 8.8953

Table A.23: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the sine3 data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.03 28.8515 7.51 28.8515
3 0.14 16.0270 16.61 16.0270
4 1.30 5.0837 22.61 5.0837
5 9.33 0.7038 17.81 0.7038
6 110.91 0.4032 78.31 0.4032
7 1157.62 0.2463 208.57 0.2463

200

2 0.08 57.7344 25.33 57.7344
3 0.59 30.9351 99.70 30.9351
4 12.20 10.9239 200.98 11.0774
5 150.92 1.2587 90.17 1.2587
6 3600.00 2.0918 1428.42 0.9021

400

2 0.21 116.8796 602.18 116.8796
3 2.79 61.8021 1474.82 61.8021
4 118.40 22.8100 3600.00 22.9361
5 2798.25 2.6731 1007.49 2.7798

800
2 0.55 237.2338 3600.00 239.2360
3 13.94 124.2191 3600.00 164.3217
4 1215.57 46.4083 3600.00 52.6634

1600
2 1.66 470.9995 3600.00 515.8757
3 80.66 245.9257 3600.00 465.6945

Table A.24: CPU times (in seconds) and least-squares errors of the piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the sine6 data sets.
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number of B&B MIQCP

data points knots time error time error

100

2 0.01 0.1626 0.84 0.1626
3 0.40 0.1304 11.72 0.1357
4 7.64 0.1107 47.41 0.1107
5 92.76 0.0945 319.41 0.0945
6 693.78 0.0786 2584.06 0.0786
7 3600.00 0.1432 3600.00 0.0667

200

2 0.05 0.3973 17.64 0.3973
3 3.12 0.3565 152.50 0.3585
4 155.20 0.3318 2207.49 0.3318
5 3600.00 0.3844 3600.00 0.3089
6 3600.00 0.3763 3600.00 0.3000

400

2 0.14 0.9328 154.48 0.9328
3 25.45 0.9008 3600.00 0.9008
4 2788.58 0.8651 3600.00 0.8833
5 3600.00 0.9236 3600.00 0.8550

800
2 0.56 2.0049 3015.71 2.0049
3 185.92 1.9438 3600.00 1.9448
4 3600.00 2.0275 3600.00 1.9492

1600
2 1.68 3.9740 3600.00 4.2123
3 1516.48 3.9197 3600.00 3.9926

Table A.25: CPU times (in seconds) and least-squares errors of piecewise
polynomial functions corresponding to the knot placements computed with
the B&B and MIQCP approaches for the SpaHet3 data sets.
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